internal.R 73.5 KB
Newer Older
stevenn's avatar
stevenn committed
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

## Modified version of expand.grid
expand.grid2.list <- function(listInput)
{
  n = length(listInput)
  if(is.list(listInput) && n>1)
  {
    l1 = listInput[[1]]
    l2 = listInput[[2]]
    res = c()
    
    for(i in l1){
      for(j in l2){ 
        res = rbind(res,paste(i,j,sep = "-"))
      }
    }
    listInput[[1]] = res
    listInput = listInput[-2]
    if(length(listInput)>1 && is.list(listInput)) res = expand.grid2.list(listInput)
  }
  else res = listInput
  return(res)
}


Stevenn Volant's avatar
Stevenn Volant committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
## Function for the rdp format
getval <- function(annotation_rdp, interest, threshold_annot){
  annotation_rdp = unlist(strsplit(annotation_rdp,"\t"))
  annotation = c(annotation_rdp[1])
  for(level in interest){
    idlevel=which(annotation_rdp == level)
    if(length(idlevel)>0){
      if(as.numeric(annotation_rdp[idlevel+1]) >= threshold_annot){
        annotation = c(annotation, gsub("\"", "", annotation_rdp[idlevel-1]))
      }
      else annotation = c(annotation, "NA")
    }
    else annotation = c(annotation, "NA")  
  }
  return(annotation)
}

## Read rdp file
read_rdp <- function(filename, threshold_annot)
{
  interest=c("phylum", "class", "order", "family", "genus")
  conn <- file(filename,open="r")
  linn <-readLines(conn)
  tab=t(sapply(1:length(linn), function(i) getval(linn[i], interest, threshold_annot)))
  close(conn)
  
  if(!TRUE%in%duplicated(tab[,1])) rownames(tab)=tab[,1];tab=tab[,-1]
  colnames(tab) = c("Phylum","Class","Order","Family","Genus")
  
  return(tab)
}






CheckCountsTable <- function(counts)
  {
    Error = NULL
    Warning = NULL
    numTest = FALSE%in%sapply(counts,is.numeric)
    if(ncol(counts)<=1){Error = "The number of columns of the counts table must be at least 2" }
    if(nrow(counts)<=1){Error = "The number of rows of the counts table must be at least 2" }
    if(numTest){Error = "The counts table must contain only numeric values" }
    if(!numTest)
    {
      if(0%in%colSums(counts)){Error = "At least one of the column of the counts table is 0" }
      if(min(counts)<0){Error = "The counts table must contain only positive values" }
    }
    if(TRUE%in%sapply(counts,is.na)){Warning = "NA values are considered as 0 is the counts table"; counts[sapply(counts,is.na)]=0}
    
  
    return(list(Error=Error,Warning=Warning,counts=counts))
  }
  
svolant's avatar
svolant committed
83
  CheckTaxoTable <- function(taxo,counts)
stevenn's avatar
stevenn committed
84
  {
Stevenn Volant's avatar
Stevenn Volant committed
85
86
    Error = NULL
    Warning = NULL
svolant's avatar
svolant committed
87
    if(ncol(taxo)<1){Error = "The number of columns of the taxonomy table must be at least 1" }
Stevenn Volant's avatar
Stevenn Volant committed
88
89
90
91
92
93
94
95
96
    if(nrow(taxo)<=1){Error = "The number of rows if the taxonomy table must be at least 2" }
    if(TRUE%in%is.numeric(taxo)){Error = "The taxonomy table must contain only character" }

    for(i in 1:ncol(taxo))
    {
      level = levels(taxo[,i])
      nb = length(level)
      if(nb==1 && level=="NA"){ Error = "At least one column contains only NA"}
    }
stevenn's avatar
stevenn committed
97
    
svolant's avatar
svolant committed
98
99
100
    ## Annotated features without counts
    if(!any(rownames(taxo)%in%rownames(counts))){ Error = "Some annotated features are not in the count table"}
    
Stevenn Volant's avatar
Stevenn Volant committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    return(list(Error=Error,Warning=Warning))
  }
  
  PercentAnnot <- function(counts,taxo)
  {
    Error = NULL  
    tmp = table(rownames(counts)%in%rownames(taxo))
    Percent = tmp["TRUE"]/sum(tmp)
    if(is.na(Percent)) Percent = 0
    if(Percent==0){Error = "Counts table and annotation do not matched" }
       
    return(list(Error=Error,Percent=Percent))
  }
  
  
  GetDataFromBIOM <-function(dataBIOM)
  {
    ## Counts table
stevenn's avatar
stevenn committed
119
    counts = biom_data(dataBIOM)
stevenn's avatar
stevenn committed
120
    counts = as.matrix(counts)
121
122
    ## Change of - to . is risky
    colnames(counts) = gsub("-",".",colnames(counts))
stevenn's avatar
stevenn committed
123
    counts = as.data.frame(counts)
Stevenn Volant's avatar
Stevenn Volant committed
124
125
126
127
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
stevenn's avatar
stevenn committed
128
    taxo = as.data.frame(observation_metadata(dataBIOM))
129
130
131
132
133
134
135
    OTUnames = rownames(taxo)
    ## Modif taxo table (remove p__,... and change the colnames)
    taxo = as.data.frame(sapply(taxo,gsub,pattern="^.*__",replacement=""))
    colnames(taxo) = c("Kingdom", "Phylum","Class","Order","Family","Genus","Species")
    rownames(taxo) = OTUnames
    ## Remove empty row
    taxo[taxo==""] = NA
136
137
    taxo[taxo=="Unassigned"] = NA
    taxo=taxo[rowSums(is.na(taxo))!=dim(taxo)[2], ]
138
    
svolant's avatar
svolant committed
139
    CheckTaxo = CheckTaxoTable(taxo,counts)
Stevenn Volant's avatar
Stevenn Volant committed
140
141
142
143
144
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
145
  }
stevenn's avatar
stevenn committed
146
147
  
  
stevenn's avatar
stevenn committed
148
149
150
  GetDataFromCT <-function(dataC,dataT)
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
151
    ## Counts table
stevenn's avatar
stevenn committed
152
    counts = dataC
Stevenn Volant's avatar
Stevenn Volant committed
153
154
155
156
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    ## Taxonomy table
    taxo = as.data.frame(dataT)
svolant's avatar
svolant committed
157
    CheckTaxo = CheckTaxoTable(taxo,counts)
Stevenn Volant's avatar
Stevenn Volant committed
158
159
160
161
162
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
163
164
165
  }
  
  GetInteraction2 <- function(target)
stevenn's avatar
stevenn committed
166
  { 
stevenn's avatar
stevenn committed
167
168
169
170
    res=c()
    namesTarget = colnames(target)[2:ncol(target)]
    k=1
    for(i in 1:(length(namesTarget)-1))
stevenn's avatar
stevenn committed
171
    { 
stevenn's avatar
stevenn committed
172
173
174
175
176
      for(j in (i+1):length(namesTarget))
      { 
        res[k] = paste(namesTarget[i],":",namesTarget[j],sep="")
        k = k+1
      }
stevenn's avatar
stevenn committed
177
    }
stevenn's avatar
stevenn committed
178
179
    
    return(res)
stevenn's avatar
stevenn committed
180
181
182
183
  }
  


Amine  GHOZLANE's avatar
Amine GHOZLANE committed
184
  ## Print the contrasts
stevenn's avatar
stevenn committed
185
186
187
188
189
190
191
192
193
194
  PrintContrasts <- function (coefs, contrasts,contnames) 
  {
    contrasts = as.matrix(contrasts)
    out <-""
    
    for (i in 1:ncol(contrasts)) 
    {
      contrast <- contrasts[,i]
      contrast <- paste(ifelse(contrast > 0, "+ ", ""), contrast, sep = "")
      contrast <- gsub("( 1)|(1)", "", contrast)
195
      out = paste(out,paste("<b>",contnames[i], "</b> <br/>", paste(contrast[contrast != 0], coefs[contrast != 0], collapse = " ", sep = " ")),"<br/>")
stevenn's avatar
stevenn committed
196
197
198
199
    }
    return(out)
    
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
200

stevenn's avatar
stevenn committed
201
  ## Get the counts for the selected taxonomy
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
202
  GetCountsMerge <- function(input,dataInput,taxoSelect,target,design)
stevenn's avatar
stevenn committed
203
  {
204
    ## Init
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
205
206
    counts= NULL
    CheckTarget = FALSE
Stevenn Volant's avatar
Stevenn Volant committed
207
208
    CT_noNorm = NULL
    normFactors = NULL
209
210
    FeatureSize = NULL

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
211
    ## Counts and taxo tables
stevenn's avatar
stevenn committed
212
213
    CT = dataInput$counts
    taxo = dataInput$taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
214

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
215
216
217
    ## Select cols in the target
    labels = target[,1]
    ind = which(colnames(CT)%in%labels)
218

svolant's avatar
svolant committed
219
220
221
    ## Get the normalization variable (normalization can be done according to this variable)
    VarNorm = input$VarNorm
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
222
223
    if(length(ind)==length(labels))
    { 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
      if(input$TypeTable == "MGS"){
        ## Get the feature size for the normalisation
        Size_indcol = which(toupper(colnames(CT))%in%"SIZE")
        if(length(Size_indcol)==1) FeatureSize = CT[,Size_indcol]
        else print("Size parameter is missing in the count matrix")
        # Consider only counts
        CT = CT[,ind]
        # Divide by gene length
        CT = CT / FeatureSize * 1000
        # Convert matrix as integer
        CT_int=t(apply(CT,1,as.integer))
        rownames(CT_int)=rownames(CT)
        colnames(CT_int)=colnames(CT)
        CT=CT_int
svolant's avatar
svolant committed
238
239
      } else CT = CT[,ind]
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
240
      ## Order CT according to the target
241
      CT = OrderCounts(counts=CT,labels=labels)$CountsOrder
Stevenn Volant's avatar
Stevenn Volant committed
242
      CT_noNorm = CT
243
      RowProd = sum(apply(CT_noNorm,1,prod))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
244
      
svolant's avatar
svolant committed
245
      ## Create the dds object
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
246
      dds <- DESeqDataSetFromMatrix(countData=CT, colData=target, design=design)
svolant's avatar
svolant committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
      
      if(is.null(VarNorm)){
        ## Counts normalisation
        ## Normalisation with or without 0
        if(input$AccountForNA || RowProd==0) dds = estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)),geoMeans=GeoMeansCT(CT))
        if(!input$AccountForNA && RowProd!=0) dds = estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
        normFactors = sizeFactors(dds)
        
      } else{
        group = as.data.frame(target[,VarNorm])
        group = apply(group,1,paste, collapse = "-")
        normFactors = c()
        mod = unique(group)
        ## At least 2 samples are needed for the normalization
        if(min(table(group))>1){
          for(i in unique(group))
          {
            indgrp = which(group==i) 
            CT_tmp = CT[,indgrp]
            CT_tmp = removeNulCounts(CT_tmp) 
            target_tmp = data.frame(labels = rownames(target)[indgrp])
            dds_tmp <- DESeqDataSetFromMatrix(countData=CT_tmp, colData=target_tmp, design=~labels)
            if(input$AccountForNA) dds_tmp = estimateSizeFactors(dds_tmp,locfunc=eval(as.name(input$locfunc)),geoMeans=GeoMeansCT(CT_tmp))
            if(!input$AccountForNA) dds_tmp = estimateSizeFactors(dds_tmp,locfunc=eval(as.name(input$locfunc)))
            normFactors[indgrp] = sizeFactors(dds_tmp)
          }
        } else{
            if(input$AccountForNA || RowProd==0) dds = estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)),geoMeans=GeoMeansCT(CT))
            if(!input$AccountForNA && RowProd!=0) dds = estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
            normFactors = sizeFactors(dds)
        }
        
        sizeFactors(dds) = normFactors
      }
281
282
283
284
      
      ## Keep normalized OTU table
      CT_Norm = counts(dds, normalized=TRUE)
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
285
286
287
288
289
290
      # Only interesting OTU
      merged_table = merge(CT, taxo[order(rownames(CT)),], by="row.names")
      CT = merged_table[,2: (dim(CT)[2]+1)]
      taxo = merged_table[,(dim(CT)[2]+2):dim(merged_table)[2]]
      rownames(CT) = merged_table[,1]
      rownames(taxo) = merged_table[,1]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
291
      #ordOTU = order(rownames(taxo))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
292
293
294
295
      counts_annot = CT
#       ordOTU = order(rownames(taxo))
#       indOTU_annot = which(rownames(CT)%in%rownames(taxo))
#       counts_annot = CT[indOTU_annot[ordOTU],]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
296
297
     ## Aggregate matrix
      if(taxoSelect=="OTU/Gene") counts = counts_annot
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
298
      else{
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        if(input$TypeTable == "MGS"){
          taxoS = taxo[,input$TypeTable]
          counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),mean)
          rownames(counts)=counts[,1]
          counts=counts[,-1]
          counts_int=t(apply(counts,1,as.integer))
          rownames(counts_int)=rownames(counts)
          colnames(counts_int)=colnames(counts)
          counts=counts_int
        }
        if(taxoSelect != "MGS"){
          #taxoS = taxo[ordOTU,taxoSelect]
          taxoS = taxo[,taxoSelect]
          counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),sum)
          rownames(counts)=counts[,1];counts=counts[,-1]
        }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
315
316
317
      }
      
      ## Ordering the counts table according to the target labels 
318
319
320
      tmpOrder = OrderCounts(counts,normFactors,labels)
      counts = tmpOrder$CountsOrder
      normFactors = tmpOrder$normFactorsOrder
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
321
322
      CheckTarget = TRUE
    }
323
    return(list(counts=counts,CheckTarget=CheckTarget,normFactors=normFactors, CT_noNorm=CT_noNorm, CT_Norm =CT_Norm))
324
    #return(list(counts=counts,target=target[ind,],labeled=labeled,normFactors=normFactors, CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
325
  }
326
327
328
329
330
331
332
333
334
335
336
  
  ## Get the geometric mean of the counts (0 are replaced by NA values)
  GeoMeansCT <- function(CT)
  {
    CT=as.matrix(CT)
    CT[which(CT<1)]=NA
    gm = apply(CT,1,geometric.mean,na.rm=TRUE)
    return(gm)
  }
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
337
  ## Order the counts 
338
  OrderCounts <- function(counts,normFactors=NULL,labels)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
339
340
341
  {
    n = length(labels)
    CountsOrder = counts
342
    normFactorsOrder = normFactors
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
343
344
345
346
    for(i in 1:n)
    {
      ind = which(labels[i]==colnames(counts))
      CountsOrder[,i] = counts[,ind]
347
      if(!is.null(normFactors)) normFactorsOrder[i] = normFactors[ind]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
348
349
    }
    colnames(CountsOrder) = labels
350
    return(list(CountsOrder=CountsOrder,normFactorsOrder = normFactorsOrder))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
351
352
353
  }
  
  
stevenn's avatar
stevenn committed
354
  ## Get the dds object of DESeq2
355
  Get_dds_object <- function(input,counts,target,design,normFactorsOTU,CT_noNorm,CT_Norm)
stevenn's avatar
stevenn committed
356
357
  {
    dds <- DESeqDataSetFromMatrix(countData=counts, colData=target, design=design)
358
    sizeFactors(dds) = normFactorsOTU
stevenn's avatar
stevenn committed
359
    dds <- estimateDispersions(dds, fitType=input$fitType)
360
    if(as.numeric(R.Version()$major)+as.numeric(R.Version()$minor) >= 4.3){
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
361
      dds <- nbinomWaldTest(dds)
362
    }else{
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
363
      dds <- nbinomWaldTest(dds,modelMatrixType = "expanded")
364
    }
365
    countsNorm = counts(dds, normalized = TRUE)
366
367
368
    
    save(dds,file="dds.RData")
    return(list(dds = dds,raw_counts=counts,countsNorm=countsNorm,target=target,design=design,normFactors = normFactorsOTU,CT_noNorm=CT_noNorm,CT_Norm=CT_Norm))
stevenn's avatar
stevenn committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
  }

  ## Get the design according to the input
  GetDesign <- function(input)
  {
    InterVar = input$InterestVar
    Interaction = input$Interaction2
    alltmp = c(InterVar,Interaction)
    design = as.formula(paste("~", paste0(alltmp, collapse= "+")))
    return(design)
  }
  


  ## Diagnostic Plots
  Plot_diag <- function(input,resDiff)
  {
Stevenn Volant's avatar
Stevenn Volant committed
386
    
stevenn's avatar
stevenn committed
387
388
    VarInt = input$VarInt
    dds = resDiff$dds
389
    counts = resDiff$raw_counts
390
    if(input$CountsType=="Normalized") counts = resDiff$countsNorm
stevenn's avatar
stevenn committed
391
    target = resDiff$target
392
    normFactors = resDiff$normFactors
393
394
395
396
397
    
    ## Counts at the OTU level
    CT = resDiff$CT_noNorm
    if(input$CountsType=="Normalized") CT = resDiff$CT_Norm
    
stevenn's avatar
stevenn committed
398
    group = as.data.frame(target[,VarInt])
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
399
    rownames(group) = rownames(target)
Stevenn Volant's avatar
Stevenn Volant committed
400
    res = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
401
    
Stevenn Volant's avatar
Stevenn Volant committed
402
403
    if(ncol(group)>0 && nrow(counts)>0)
    { 
Stevenn Volant's avatar
Stevenn Volant committed
404
405
      colors = rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                     "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nrow(target)/20))
Stevenn Volant's avatar
Stevenn Volant committed
406
407
408
409
      
      if(input$DiagPlot=="barplotTot") res = barplotTot(input,counts,group = group, col=colors)
      if(input$DiagPlot=="barplotNul") res = barPlotNul(input,counts, group = group, col=colors)
      if(input$DiagPlot=="densityPlot") res = densityPlotTot(input,counts, group = group, col=colors)
410
      if(input$DiagPlot=="boxplotNorm") res = boxplotNorm(input,CT,group = group, col=colors)
411
      if(input$DiagPlot=="DispPlot") res = plotDispEsts(dds)
Stevenn Volant's avatar
Stevenn Volant committed
412
      if(input$DiagPlot=="MajTax") res = majTaxPlot(input,counts, group = group, col=colors)
413
      if(input$DiagPlot=="SfactorsVStot") res = diagSFactors(input,normFactors,resDiff$raw_counts) 
Stevenn Volant's avatar
Stevenn Volant committed
414
      if(input$DiagPlot=="pcaPlot") res = PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
Stevenn Volant's avatar
Stevenn Volant committed
415
      if(input$DiagPlot=="pcoaPlot") res = PCoAPlot_meta(input,dds, group, col = colors) 
416
      if(input$DiagPlot=="clustPlot") res = HCPlot(input,dds,group,type.trans=input$TransType,counts,col=colors)
Stevenn Volant's avatar
Stevenn Volant committed
417
    }
418
    
Stevenn Volant's avatar
Stevenn Volant committed
419
    return(res)
stevenn's avatar
stevenn committed
420
421
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
422
  
423
  HCPlot <- function (input,dds,group,type.trans,counts,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
424
425
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
426
427
    res = NULL
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
428
    ## Get the counts
429
430
    if (input$DistClust == "euclidean" && type.trans == "VST") counts <- assay(varianceStabilizingTransformation(dds))
    if (input$DistClust == "euclidean" && type.trans == "rlog") counts <- assay(rlogTransformation(dds))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
431
432
433
434
435
436
    
    ## Get the group of leaf
    group = apply(group,1,paste, collapse = "-")    
    nb = length(unique((group)))
    
    ## Get the dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
437
438
439
440
    if(input$DistClust!="sere") dist = vegdist(t(counts), method = input$DistClust)
    if(input$DistClust=="sere") dist = as.dist(SEREcoef(counts))
    hc <- hclust(dist, method = "ward.D")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
441
442
443
    dend = as.dendrogram(hc)
    
    ## Get the type of dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
444
    type <- input$typeHculst
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
445
446
    
    dend <- set(dend, "labels_cex", input$cexLabelDiag)
447
    if(input$colorHC) labels_colors(dend)<-col[as.integer(as.factor(group))][order.dendrogram(dend)]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
448
449
    if(type=="hori") 
    { 
450
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
451
      res = plot(dend, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "),cex=input$cexLabelDiag)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
452
453
454
    }  
    if(type!="hori")
    {
455
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
456
      res = circlize_dendrogram(dend, labels_track_height = 0.2, dend_track_height = .3, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
457
    }
Stevenn Volant's avatar
Stevenn Volant committed
458
    return(res)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
459
460
461
462
463
464
465
466
467
468
  }
  
  
  ## Color for the horizontal dendro
  colLabdendo <- function(n,group) {
    
    group = apply(group,1,paste, collapse = "-")
    
    nb = length(unique((group)))
    namesGrp = names(group)
stevenn's avatar
stevenn committed
469

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
    }
    return(n)
  }
  
  ## Diagnostic Plots Eigen value
  Plot_diag_Eigen <- function(input,resDiff)
  {
    colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    
    ## If more than 4 levels for one factor
    maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    if(maxFact>=4) colors = rainbow(maxFact) 
    
    PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
  }
  
  Plot_diag_pcoaEigen = function(input,resDiff)
  {
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
    VarInt = input$VarInt
    dds = resDiff$dds
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    rownames(group) = rownames(target)
    PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
  }
  
  
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
  my.boxplot <- function(x, pol.col = 1, pol.density = NULL, pol.angle = 45,
                         bxp.pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5), ...){
    res <- boxplot(x, pars = bxp.pars, ...) # que boxplot se d�merde avec ses arguments
    n <- ncol(res$stats) # nombre de boxplots
    density <- if(is.null(pol.density)){NULL}else{rep(pol.density, length = n)}
    angle <- if(is.null(pol.angle)){NULL}else{rep(pol.angle, length = n)}
    col <- if(is.null(pol.col)){NULL}else{rep(pol.col, length = n)}
    # Ajout des textures
    ex <- bxp.pars$boxwex/2 # j'ai juste besoin de la largeur des bo�tes pass�e � bxp
    for(i in 1:n){
      polygon(c(i - ex, i - ex, i + ex, i + ex),
              c(res$stats[2, i], res$stats[4, i], res$stats[4, i], res$stats[2, i]),
              density = density[i], angle = angle[i], col = col[i])
      segments(i-ex,res$stats[3,i],i+ex,res$stats[3,i],lwd=3,col="black",lend=1)
    }
  }
  
  
  
  ## Boxplot for the counts normalized/no normalized
  boxplotNorm <- function(input,CT, group, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
  {
    
    ncol1 <- ncol(group) == 1
    par(cex=input$cexTitleDiag,mar=c(12,6,4,5))
    if(input$RemoveNullValue) CT[CT==0] = NA
    
    ### Boxplots of the counts
    my.boxplot(log2(CT+1), las = 2, pol.col = col[as.integer(group[,1])],
               pol.density = if (ncol1) {NULL}
               else {15}, 
               pol.angle = if (ncol1) {NULL}
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]},
            main = paste(input$CountsType, "counts distribution"), ylab = expression(log[2] ~ ( count + 1)))
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
    
     }
  

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
547
  
stevenn's avatar
stevenn committed
548
549

  ## barplot total
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
550
  barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
551
  {
Stevenn Volant's avatar
Stevenn Volant committed
552

stevenn's avatar
stevenn committed
553
    ncol1 <- ncol(group) == 1
554
    par(cex=input$cexTitleDiag,mar=c(12,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
555
    barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
stevenn's avatar
stevenn committed
556
557
558
            ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
559
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
stevenn's avatar
stevenn committed
560
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
Stevenn Volant's avatar
Stevenn Volant committed
561
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
562
563
564
565
566
  
  }


  ## barplot Nul 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
567
  barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
568
569
570
  {
    
    percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
571
    percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
stevenn's avatar
stevenn committed
572
573
    ncol1 <- ncol(group) == 1
    
574
    par(cex=input$cexTitleDiag,mar=c(12,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
575

stevenn's avatar
stevenn committed
576
577
578
579
    barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
            density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
580
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]},
stevenn's avatar
stevenn committed
581
582
583
584
585
586
            cex.names = cex.names, ylab = "Proportion of null counts", 
            main = "Proportion of null counts per sample", 
            ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
    
    abline(h = percentage.allNull, lty = 2, lwd = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
Stevenn Volant's avatar
Stevenn Volant committed
587
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
588
589
590
591
  }


  ## Plot density
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
592
  densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
593
594
595
596
  {
    
    counts <- removeNulCounts(counts)
    ncol1 <- ncol(group) == 1
597
    par(cex=input$cexTitleDiag,mar=c(12,5,4,5))
stevenn's avatar
stevenn committed
598
599
    plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
         xlab = expression(log[2] ~ (raw ~ count + 1)), 
600
         ylim = c(0, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
stevenn's avatar
stevenn committed
601
         lty = if (ncol1) {1}
602
         else{rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[as.integer(group[, 2])[1]]}, 
stevenn's avatar
stevenn committed
603
604
605
606
607
608
         col = col[as.integer(group[, 1])[1]])
    
    for (i in 2:ncol(counts)) 
    {
      lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
            lty = if (ncol1) {1}
609
            else{rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[as.integer(group[, 2])[i]]})
stevenn's avatar
stevenn committed
610
611
    }
    legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
612
    if (!ncol1) legend("topleft", levels(group[, 2]), lty = rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
stevenn's avatar
stevenn committed
613
614
615
616
617
    
  }


  ## Table of maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
618
  majTab <- function(input,counts,n)
stevenn's avatar
stevenn committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
  {
    seqnames <- apply(counts, 2, function(x) {
      x <- sort(x, decreasing = TRUE)
      names(x)[1:n]
    })
    seqnames <- unique(unlist(as.character(seqnames)))
    sum <- apply(counts, 2, sum)
    counts <- counts[seqnames, ]
    sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
    p <- round(100 * counts/sum, digits = 3)
    return(p)
  }


  ## Plot maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
634
  majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
635
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
636
    p = majTab(input,counts,n)
stevenn's avatar
stevenn committed
637
638
639
    maj <- apply(p, 2, max)
    seqname <- rownames(p)[apply(p, 2, which.max)]
    ncol1 <- ncol(group) == 1
640
    par(cex=input$cexTitleDiag,mar=c(12,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
641
    x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
stevenn's avatar
stevenn committed
642
                 ylim = c(0, max(maj) * 1.2), cex.main = 1, 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
643
                 cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
stevenn's avatar
stevenn committed
644
645
646
                 density = if (ncol1) {NULL}
                 else {15}, 
                 angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
647
                 else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]})
stevenn's avatar
stevenn committed
648
649
650
    
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
Stevenn Volant's avatar
Stevenn Volant committed
651
                       angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
652
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
653
    for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
stevenn's avatar
stevenn committed
654
655
656
657
  }
  

  ## plot SERE Coefs
Stevenn Volant's avatar
Stevenn Volant committed
658
659
660
661
662
663
664
#   SEREplot<-function(input,counts) 
#   {
#     sere = SEREcoef(counts)
#     hc <- hclust(as.dist(sere), method = "ward.D")
#     plot(hc, las = 2, hang = -1, xlab = "SERE distance, Ward criterion",main = "Cluster dendrogram\non SERE values")
#     
#   }
stevenn's avatar
stevenn committed
665
666
667
668
669
  
  
  ## Get the SERE COEF
  SEREcoef<-function(counts)
  {
Stevenn Volant's avatar
Stevenn Volant committed
670
671
672
673
    counts = as.matrix(counts)
    sere <- matrix(0, ncol = ncol(counts), nrow = ncol(counts))
    for (i in 1:(ncol(counts)-1)) {
      for (j in (i+1):ncol(counts)) {
stevenn's avatar
stevenn committed
674
675
676
        sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
      }
    }
Stevenn Volant's avatar
Stevenn Volant committed
677
    sere=sere+t(sere)
stevenn's avatar
stevenn committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    colnames(sere) <- rownames(sere) <- colnames(counts)
    sere <- round(sere, digits = 3)
    
    return(sere) 
  }
  

  ## function for the SERE coef
  sigfun_Pearson_meta <- function(observed) {
    laneTotals <- colSums(observed)
    total <- sum(laneTotals)
    fullObserved <- observed[rowSums(observed) > 0, ]
    fullLambda <- rowSums(fullObserved)/total
    fullLhat <- fullLambda > 0
    fullExpected <- outer(fullLambda, laneTotals)
    fullKeep <- which(fullExpected > 0)
    oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
    dfFull <- length(fullKeep) - sum(fullLhat != 0)
    sqrt(sum(oeFull)/dfFull)
  }
stevenn's avatar
stevenn committed
698
699


stevenn's avatar
stevenn committed
700
  ## Plots of size factors
701
  diagSFactors<-function (input,normFactors,counts) 
stevenn's avatar
stevenn committed
702
  {
Stevenn Volant's avatar
Stevenn Volant committed
703
704
    geomeans <- exp(rowMeans(log(counts)))
    samples <- colnames(counts)
Stevenn Volant's avatar
Stevenn Volant committed
705
706
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
      plot(normFactors, colSums(counts), pch = 19, las = 1,cex = ifelse(input$addLabelSFact,0,input$cexLabelDiag),
stevenn's avatar
stevenn committed
707
708
           ylab = "Total number of reads", xlab = "Size factors", 
           main = "Diagnostic: size factors vs total number of reads")
Stevenn Volant's avatar
Stevenn Volant committed
709
      if(input$addLabelSFact) text(normFactors,colSums(counts),labels = samples,cex=input$cexLabelDiag)
Stevenn Volant's avatar
Stevenn Volant committed
710
      abline(lm(colSums(counts) ~ normFactors + 0), lty = 2, col = "grey")
stevenn's avatar
stevenn committed
711
  }
stevenn's avatar
stevenn committed
712

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
713
714
  
  ### PCoA
715
  PCoAPlot_meta <-function (input, dds, group_init, col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
716
717
  {
    cval=c()
Stevenn Volant's avatar
Stevenn Volant committed
718
    time_set = 0
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
719
720
    # Set of shape
    shape=c(19,17,15,18)
Stevenn Volant's avatar
Stevenn Volant committed
721
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
722
723
    ## Var of interest
    VarInt  = input$VarInt
Stevenn Volant's avatar
Stevenn Volant committed
724
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
    ## Group
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
Stevenn Volant's avatar
Stevenn Volant committed
740
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
741
742
743
744
745
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
Stevenn Volant's avatar
Stevenn Volant committed
746
747
748
    if(nlevels(group)!=0)
    { 
      ## Get the norm data
749
      counts.norm = as.data.frame(round(counts(dds)))
750
      if(input$CountsType=="Normalized") counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
Stevenn Volant's avatar
Stevenn Volant committed
751
752
753
754
      # was removed
      counts.norm = counts.norm[,ind_kept]
  
      ## Get the distance
Stevenn Volant's avatar
Stevenn Volant committed
755
756
757
      if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
      if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
      
Stevenn Volant's avatar
Stevenn Volant committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
      ## Do PCoA
      pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=3)
      
      ## Get eigen values
      eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
      
      ## xlim and ylim of the plot
      min = min(pco.counts.norm$li)
      max = max(pco.counts.norm$li)
      
      ## get condition set
      condition_set=val[which(val %in% unique(group_init$condition))]
      time_set=val[which(val %in% unique(group_init$time))]
      
      ## Colors
      if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
      {
        col = rainbow(length(condition_set) * length(time_set))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
776
      }
Stevenn Volant's avatar
Stevenn Volant committed
777
778
779
780
781
782
783
784
785
786
787
      #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
      #  col = rep(col[1:length(condition_set)], length(time_set))
      #}
      if (length(time_set) == 1 && length(condition_set) <= 4){
        cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
        cval = sort(cval)
      }
      
      # to reactivate
      #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
      if (plot == "pcoa"){
Stevenn Volant's avatar
Stevenn Volant committed
788
        par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
789
790
        ## Plot axis, label and circles
        plot(pco.counts.norm$li[1:2], xlab=paste("PC1 : ",round(eigen[1],1),"%") , ylab=paste("PC2 : ",round(eigen[2],1),"%"),
Stevenn Volant's avatar
Stevenn Volant committed
791
             xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), cex.axis=1, cex.lab=1,lwd=2, type="n",main='Principal Coordinates Analysis ')
Stevenn Volant's avatar
Stevenn Volant committed
792
793
794
795
796
797
798
799
800
        # Set different shapes
        if(input$labelPCOA == "Group"){
          if(!is.null(cval)){
            for (i in 1:length(cval)){
              points(pco.counts.norm$li[which(group==cval[i]),1:2],pch=shape[i],col=col[i], cex=input$cexpoint)
            }
            s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                    add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
          }else s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
801
                        add.plot = TRUE, cpoint = input$cexpoint, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
Stevenn Volant's avatar
Stevenn Volant committed
802
803
804
805
806
807
808
809
810
811
        }  
        else{
          s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
          s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
        }
      }else{
        barplot(eigen[1:7], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:7, col = c(rep("black", 2), rep("grey", 5)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
      }
  }
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
812
813
814
  }
  
  ### PCA
815
  PCAPlot_meta <-function(input,dds, group_init, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
816
817
                           col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
  {
818
819
    ## Var of interest
    VarInt  = input$VarInt
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
820
    
821
822
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    group_init = group
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
823
    
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
    
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
    ## To select the colors
    indgrp =as.integer(as.factor(group_init))[ind_kept]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
844
    
845
846
    
    if(nlevels(group)!=0)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
847
    { 
848
      type.trans <- type.trans[1]
Stevenn Volant's avatar
Stevenn Volant committed
849
      
850
851
852
      if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
      else counts.trans <- assay(rlogTransformation(dds))
      counts.trans = counts.trans[,ind_kept]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
853
      
854
855
      rv = apply(counts.trans, 1, var, na.rm = TRUE)
      pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
856
      
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
      if(plot=="pca")
      { 
        prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
        prp <- round(prp, 2)
        ncol1 <- ncol(group) == 1
        
        abs = range(pca$x[, 1])
        abs = abs(abs[2] - abs[1])/25
        ord = range(pca$x[, 2])
        ord = abs(ord[2] - ord[1])/25
        
        par(mfrow = c(1, 2),cex=input$cexTitleDiag,mar=c(6,6,4,5))
        plot(pca$x[, 1], pca$x[, 2], las = 1, cex = input$cexTitleDiag, col = col[indgrp], 
             pch = 16,
             xlab = paste0("PC1 (", prp[1], "%)"),
             ylab = paste0("PC2 (", prp[2], "%)"), 
             main = "Principal Component Analysis"
              )
        abline(h = 0, v = 0, lty = 2, col = "lightgray")
        text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,2] - ifelse(pca$x[, 2] > 0, ord, -ord), colnames(counts.trans), col = col[indgrp],cex=input$cexLabelDiag)
        abs = range(pca$x[, 1])
        abs = abs(abs[2] - abs[1])/25
        ord = range(pca$x[, 3])
        ord = abs(ord[2] - ord[1])/25
        plot(pca$x[, 1], pca$x[, 3], las = 1, cex = input$cexTitleDiag, col = col[indgrp], 
             pch = 16,
             xlab = paste0("PC1 (", prp[1], "%)"), 
             ylab = paste0("PC3 (", prp[3], "%)"), 
             main = "Principal Component Analysis")
        abline(h = 0, v = 0, lty = 2, col = "lightgray")
        text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,3] - ifelse(pca$x[, 3] > 0, ord, -ord), colnames(counts.trans), col = col[indgrp],cex=input$cexLabelDiag)
      }
      if(plot=="eigen"){eigen = pca$sdev[1:min(7,ncol(counts.trans))]^2; barplot(eigen, xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:min(7,ncol(counts.trans)), col = c(rep("black", 3), rep("grey", 4)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)}
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
890
891
892
893
894
    }
  }
  
  
  
stevenn's avatar
stevenn committed
895

stevenn's avatar
stevenn committed
896
897
898
899
900
  ############################################################
  ##
  ##              CREATE THE CONTRAST DATABASE
  ##
  ############################################################
stevenn's avatar
stevenn committed
901

stevenn's avatar
stevenn committed
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
  
  BaseContrast <- function(input,names,namesfile)
  {  

    v_tmp = c()
    filesize = file.info(namesfile)[,"size"]
    
    for(i in 1:length(names))
    {  
      Tinput = paste("input$",names[i],sep="")
      expr=parse(text=Tinput)
      val = eval(expr) 
      v_tmp[i] = as.numeric(val)
    }
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
      colnamesTmp = c(colnames(oldContrast),input$ContrastName)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = input$ContrastName; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
929
930
931
932
  BaseContrastEasy <- function(input,names,namesfile,target)
  {  
    
    v_tmp = rep(0,length(names))
svolant's avatar
svolant committed
933
    print(names)
934
935
936
937
938
939
940
    filesize = file.info(namesfile)[,"size"]
    F1 = NULL
    nameContrast = ""
    
    ## Get the selected modalities
    M1 = input$Select1_contrast
    M2 = input$Select2_contrast
svolant's avatar
svolant committed
941
942
    print(M1)
    print(M2)
943
944
945
946
947
948
949
950
951
952
953
    
    if(length(input$Interaction2)>0) F1 = input$Select3_contrast
    ## Get the name of the parameter corresponding to the modalities
    InterVar = input$InterestVar
    Sel_Var = InterVar[which(unlist(lapply(target[,InterVar],FUN = function(x){M1%in%x})))]
    names1dds = paste(Sel_Var,M1,sep="")
    names2dds = paste(Sel_Var,M2,sep="")
    
    ## fill the vector
    ind1 = which(names%in%names1dds)
    ind2 = which(names%in%names2dds)
svolant's avatar
svolant committed
954
955
    print(ind1)
    print(ind2)
956
957
    if(length(ind1)>0) v_tmp[ind1] = 1
    if(length(ind2)>0) v_tmp[ind2] = -1
svolant's avatar
svolant committed
958
    print(v_tmp)
959
960
961
962
963
964
965
966
967
968
969
970
    
    nameContrast = paste(M1,"_vs_",M2,sep="")
    
    if(F1!="All" && !is.null(F1)){
      Sel_Var_For = InterVar[which(unlist(lapply(target[,InterVar],FUN = function(x){F1%in%x})))]
      ## Depends on the interation
      namesfor1 = paste(Sel_Var,M1,".",Sel_Var_For,F1,sep="")
      namesfor1.1 = paste(Sel_Var_For,F1,".",Sel_Var,M1,sep="")
      namesfor2 = paste(Sel_Var,M2,".",Sel_Var_For,F1,sep="")
      namesfor2.1 = paste(Sel_Var_For,F1,".",Sel_Var,M2,sep="")
      ind1.for = which(names%in%c(namesfor1,namesfor1.1))
      ind2.for = which(names%in%c(namesfor2,namesfor2.1))
971
972
      if(length(ind1.for)>0) v_tmp[ind1.for] = 1
      if(length(ind2.for)>0) v_tmp[ind2.for] = -1
973
974
      nameContrast = paste(nameContrast,"_for_",F1,sep="")
    }
svolant's avatar
svolant committed
975
    print(v_tmp)
976
977
978
979
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
svolant's avatar
svolant committed
980
      print(oldContrast)
981
982
983
984
985
986
987
988
989
      colnamesTmp = c(colnames(oldContrast),nameContrast)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = nameContrast; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
stevenn's avatar
stevenn committed
990
991
992
993
994
  ## Remove nul counts
  removeNulCounts <-function (counts) 
  {
    return(counts[rowSums(counts) > 0, ])
  }
stevenn's avatar
stevenn committed
995
996

  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
997
998
999
1000
  ############################################################
  ##
  ##              VISUALISATION PLOTS
  ##
For faster browsing, not all history is shown. View entire blame