internal.R 48.7 KB
Newer Older
stevenn's avatar
stevenn committed
1
2
3



Stevenn Volant's avatar
Stevenn Volant committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
## Function for the rdp format
getval <- function(annotation_rdp, interest, threshold_annot){
  annotation_rdp = unlist(strsplit(annotation_rdp,"\t"))
  annotation = c(annotation_rdp[1])
  for(level in interest){
    idlevel=which(annotation_rdp == level)
    if(length(idlevel)>0){
      if(as.numeric(annotation_rdp[idlevel+1]) >= threshold_annot){
        annotation = c(annotation, gsub("\"", "", annotation_rdp[idlevel-1]))
      }
      else annotation = c(annotation, "NA")
    }
    else annotation = c(annotation, "NA")  
  }
  return(annotation)
}

## Read rdp file
read_rdp <- function(filename, threshold_annot)
{
  interest=c("phylum", "class", "order", "family", "genus")
  conn <- file(filename,open="r")
  linn <-readLines(conn)
  tab=t(sapply(1:length(linn), function(i) getval(linn[i], interest, threshold_annot)))
  close(conn)
  
  if(!TRUE%in%duplicated(tab[,1])) rownames(tab)=tab[,1];tab=tab[,-1]
  colnames(tab) = c("Phylum","Class","Order","Family","Genus")
  
  return(tab)
}









CheckCountsTable <- function(counts)
  {
    Error = NULL
    Warning = NULL
    numTest = FALSE%in%sapply(counts,is.numeric)
    if(ncol(counts)<=1){Error = "The number of columns of the counts table must be at least 2" }
    if(nrow(counts)<=1){Error = "The number of rows of the counts table must be at least 2" }
    if(numTest){Error = "The counts table must contain only numeric values" }
    if(!numTest)
    {
      if(0%in%colSums(counts)){Error = "At least one of the column of the counts table is 0" }
      if(min(counts)<0){Error = "The counts table must contain only positive values" }
    }
    if(TRUE%in%sapply(counts,is.na)){Warning = "NA values are considered as 0 is the counts table"; counts[sapply(counts,is.na)]=0}
    
  
    return(list(Error=Error,Warning=Warning,counts=counts))
  }
  
  CheckTaxoTable <- function(taxo)
stevenn's avatar
stevenn committed
64
  {
Stevenn Volant's avatar
Stevenn Volant committed
65
66
67
68
69
70
71
72
73
74
75
76
    Error = NULL
    Warning = NULL
    if(ncol(taxo)<=1){Error = "The number of columns of the taxonomy table must be at least 2" }
    if(nrow(taxo)<=1){Error = "The number of rows if the taxonomy table must be at least 2" }
    if(TRUE%in%is.numeric(taxo)){Error = "The taxonomy table must contain only character" }

    for(i in 1:ncol(taxo))
    {
      level = levels(taxo[,i])
      nb = length(level)
      if(nb==1 && level=="NA"){ Error = "At least one column contains only NA"}
    }
stevenn's avatar
stevenn committed
77
    
Stevenn Volant's avatar
Stevenn Volant committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    return(list(Error=Error,Warning=Warning))
  }
  
  PercentAnnot <- function(counts,taxo)
  {
    Error = NULL  
    tmp = table(rownames(counts)%in%rownames(taxo))
    Percent = tmp["TRUE"]/sum(tmp)
    if(is.na(Percent)) Percent = 0
    if(Percent==0){Error = "Counts table and annotation do not matched" }
       
    return(list(Error=Error,Percent=Percent))
  }
  
  
  GetDataFromBIOM <-function(dataBIOM)
  {
    ## Counts table
stevenn's avatar
stevenn committed
96
    counts = biom_data(dataBIOM)
stevenn's avatar
stevenn committed
97
98
    counts = as.matrix(counts)
    counts = as.data.frame(counts)
Stevenn Volant's avatar
Stevenn Volant committed
99
100
101
102
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
stevenn's avatar
stevenn committed
103
    taxo = as.data.frame(observation_metadata(dataBIOM))
Stevenn Volant's avatar
Stevenn Volant committed
104
105
106
107
108
109
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
110
  }
stevenn's avatar
stevenn committed
111
112
  
  
stevenn's avatar
stevenn committed
113
114
115
  GetDataFromCT <-function(dataC,dataT)
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
116
    ## Counts table
stevenn's avatar
stevenn committed
117
    counts = dataC
Stevenn Volant's avatar
Stevenn Volant committed
118
119
120
121
122
123
124
125
126
127
128
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
    taxo = as.data.frame(dataT)
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
129
130
131
  }
  
  GetInteraction2 <- function(target)
stevenn's avatar
stevenn committed
132
  { 
stevenn's avatar
stevenn committed
133
134
135
136
    res=c()
    namesTarget = colnames(target)[2:ncol(target)]
    k=1
    for(i in 1:(length(namesTarget)-1))
stevenn's avatar
stevenn committed
137
    { 
stevenn's avatar
stevenn committed
138
139
140
141
142
      for(j in (i+1):length(namesTarget))
      { 
        res[k] = paste(namesTarget[i],":",namesTarget[j],sep="")
        k = k+1
      }
stevenn's avatar
stevenn committed
143
    }
stevenn's avatar
stevenn committed
144
145
    
    return(res)
stevenn's avatar
stevenn committed
146
147
148
149
  }
  


Amine  GHOZLANE's avatar
Amine GHOZLANE committed
150
  ## Print the contrasts
stevenn's avatar
stevenn committed
151
152
153
154
155
156
157
158
159
160
  PrintContrasts <- function (coefs, contrasts,contnames) 
  {
    contrasts = as.matrix(contrasts)
    out <-""
    
    for (i in 1:ncol(contrasts)) 
    {
      contrast <- contrasts[,i]
      contrast <- paste(ifelse(contrast > 0, "+ ", ""), contrast, sep = "")
      contrast <- gsub("( 1)|(1)", "", contrast)
161
      out = paste(out,paste("<b>",contnames[i], "</b> <br/>", paste(contrast[contrast != 0], coefs[contrast != 0], collapse = " ", sep = " ")),"<br/>")
stevenn's avatar
stevenn committed
162
163
164
165
    }
    return(out)
    
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
166
167

  
stevenn's avatar
stevenn committed
168
169
  
  ## Get the counts for the selected taxonomy
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
170
  GetCountsMerge <- function(input,dataInput,taxoSelect,target,design)
stevenn's avatar
stevenn committed
171
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
172
173
    counts= NULL
    CheckTarget = FALSE
Stevenn Volant's avatar
Stevenn Volant committed
174
175
    CT_noNorm = NULL
    normFactors = NULL
stevenn's avatar
stevenn committed
176
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
177
    ## Counts and taxo tables
stevenn's avatar
stevenn committed
178
179
    CT = dataInput$counts
    taxo = dataInput$taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
180
181
182
183
        
    ## Select cols in the target
    labels = target[,1]
    ind = which(colnames(CT)%in%labels)
stevenn's avatar
stevenn committed
184
    
stevenn's avatar
stevenn committed
185
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
186
187
188
189
190
    if(length(ind)==length(labels))
    { 
      CT = CT[,ind]
      
      ## Order CT according to the target
191
      CT = OrderCounts(counts=CT,labels=labels)$CountsOrder
Stevenn Volant's avatar
Stevenn Volant committed
192
      CT_noNorm = CT
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
193
194
195
196
#       ind0 = which(rowSums(CT)==0)
#       if(length(ind0)>0) CT = CT[-ind0,]
      
      ## Counts normalisation
Stevenn Volant's avatar
Stevenn Volant committed
197

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
198
199
      dds <- DESeqDataSetFromMatrix(countData=CT, colData=target, design=design)
      dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
Stevenn Volant's avatar
Stevenn Volant committed
200
201
      normFactors = sizeFactors(dds)

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
202
203
204
205
      CT = as.data.frame(round(counts(dds, normalized = TRUE)))
      ordOTU = order(rownames(taxo))
      indOTU_annot = which(rownames(CT)%in%rownames(taxo))
      counts_annot = CT[indOTU_annot[ordOTU],]
206

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
207
208
      if(taxoSelect=="OTU") counts = counts_annot
      else{
Stevenn Volant's avatar
Stevenn Volant committed
209
210
211
        taxoS = taxo[ordOTU,taxoSelect]
        counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),sum)
        rownames(counts)=counts[,1];counts=counts[,-1]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
212
213
214
      }
      
      ## Ordering the counts table according to the target labels 
215
216
217
      tmpOrder = OrderCounts(counts,normFactors,labels)
      counts = tmpOrder$CountsOrder
      normFactors = tmpOrder$normFactorsOrder
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
218
219
      CheckTarget = TRUE
    }
Stevenn Volant's avatar
Stevenn Volant committed
220
    return(list(counts=counts,CheckTarget=CheckTarget,normFactors=normFactors, CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
221
222
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
223
  ## Order the counts 
224
  OrderCounts <- function(counts,normFactors=NULL,labels)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
225
226
227
  {
    n = length(labels)
    CountsOrder = counts
228
    normFactorsOrder = normFactors
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
229
230
231
232
233
    for(i in 1:n)
    {
      
      ind = which(labels[i]==colnames(counts))
      CountsOrder[,i] = counts[,ind]
234
      if(!is.null(normFactors)) normFactorsOrder[i] = normFactors[ind]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
235
236
    }
    colnames(CountsOrder) = labels
237
    return(list(CountsOrder=CountsOrder,normFactorsOrder = normFactorsOrder))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
238
239
240
  }
  
  
stevenn's avatar
stevenn committed
241
  ## Get the dds object of DESeq2
Stevenn Volant's avatar
Stevenn Volant committed
242
  Get_dds_object <- function(input,counts,target,design,normFactorsOTU,CT_noNorm)
stevenn's avatar
stevenn committed
243
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
244
    
stevenn's avatar
stevenn committed
245
    dds <- DESeqDataSetFromMatrix(countData=counts, colData=target, design=design)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
246
    normFactors = rep(1,nrow(target))
stevenn's avatar
stevenn committed
247
    ## Size factor estimation
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
248
249
250
    #dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
    #normalizationFactors(dds) <- normFactors
    sizeFactors(dds)<- normFactors
stevenn's avatar
stevenn committed
251
252
    dds <- estimateDispersions(dds, fitType=input$fitType)
    dds <- nbinomWaldTest(dds)
Stevenn Volant's avatar
Stevenn Volant committed
253
    return(list(dds = dds,counts=counts,target=target,design=design,normFactors = normFactorsOTU,CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  }

  ## Get the design according to the input
  GetDesign <- function(input)
  {
    InterVar = input$InterestVar
    Interaction = input$Interaction2
    alltmp = c(InterVar,Interaction)
    design = as.formula(paste("~", paste0(alltmp, collapse= "+")))
    return(design)
  }
  


  ## Diagnostic Plots
  Plot_diag <- function(input,resDiff)
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
271
272
    #colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
stevenn's avatar
stevenn committed
273
274
275
276
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
277
    normFactors = resDiff$normFactors
Stevenn Volant's avatar
Stevenn Volant committed
278
    CT_noNorm = resDiff$CT_noNorm
stevenn's avatar
stevenn committed
279
    group = as.data.frame(target[,VarInt])
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
280
    rownames(group) = rownames(target)
Stevenn Volant's avatar
Stevenn Volant committed
281
    res = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
282
    
Stevenn Volant's avatar
Stevenn Volant committed
283
284
285
286
287
288
289
290
291
292
293
    if(ncol(group)>0 && nrow(counts)>0)
    { 
      ## If more than 4 levels for one factor
      if(length(VarInt)>1)  maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
      else maxFact = length(levels(group))
      if(maxFact>=4) colors = rainbow(maxFact) 
      
      if(input$DiagPlot=="barplotTot") res = barplotTot(input,counts,group = group, col=colors)
      if(input$DiagPlot=="barplotNul") res = barPlotNul(input,counts, group = group, col=colors)
      if(input$DiagPlot=="densityPlot") res = densityPlotTot(input,counts, group = group, col=colors)
      if(input$DiagPlot=="MajTax") res = majTaxPlot(input,counts, group = group, col=colors)
Stevenn Volant's avatar
Stevenn Volant committed
294
      #if(input$DiagPlot=="SERE") res = SEREplot(input,counts)
Stevenn Volant's avatar
Stevenn Volant committed
295
296
297
298
299
300
      #if(input$DiagPlot=="Sfactors") diagSFactors(input,dds,frame=1) 
      if(input$DiagPlot=="SfactorsVStot") res = diagSFactors(input,dds,normFactors,CT_noNorm,frame=2) 
      if(input$DiagPlot=="pcaPlot") res = PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
      if(input$DiagPlot=="pcoaPlot") res = PCoAPlot_meta(input,dds, group) 
      if(input$DiagPlot=="clustPlot") res = HCPlot(input,dds,group,type.trans=input$TransType)
    }
301
    
Stevenn Volant's avatar
Stevenn Volant committed
302
    return(res)
stevenn's avatar
stevenn committed
303
304
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
  
#   HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
#   {
#     counts = as.data.frame(round(counts(dds, normalized = TRUE)))
#     if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
#     if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
#     
#     hc <- hclust(dist(t(counts.trans)), method = "ward.D")
#     
#     type <- switch(input$typeHculst,
#                   "radial"="radial",
#                   "fan"="fan",
#                   "triangle"="cladogram",,
#                   "hori"= "hori",
#                   "verti"=NULL)
#     
#     par(cex=input$cexLabelDiag,mar=c(12,5,8,5))
#     if(input$colorHC && type=="hori") 
#     {
#       hc = dendrapply(as.dendrogram(hc),colLabdendo,group) 
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram")
#     }
#     
#     if(!input$colorHC && type=="hori") 
#     {
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram",hang=-1)
#     }
#     
#     if(type!="hori") 
#     { 
#       group = apply(group,1,paste, collapse = "-")
#       nb = length(unique(group))
#       plot(as.phylo(hc), type= type,label.offset = 1, tip.color = ifelse(input$colorHC, rainbow(nb)[as.integer(as.factor(group))], rep(1,nb)))
#     }
#     dev.off() 
#   }
  
  HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
345
346
    res = NULL
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
347
348
349
350
351
352
353
354
355
356
    ## Get the counts
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
    
    ## Get the group of leaf
    group = apply(group,1,paste, collapse = "-")    
    nb = length(unique((group)))
    
    ## Get the dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
357
358
359
360
    if(input$DistClust!="sere") dist = vegdist(t(counts), method = input$DistClust)
    if(input$DistClust=="sere") dist = as.dist(SEREcoef(counts))
    hc <- hclust(dist, method = "ward.D")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
361
362
363
    dend = as.dendrogram(hc)
    
    ## Get the type of dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
364
    type <- input$typeHculst
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
365
366
367
368
369
370
    
    dend <- set(dend, "labels_cex", input$cexLabelDiag)
    if(input$colorHC) labels_colors(dend)<-rainbow(nb)[as.integer(as.factor(group))][order.dendrogram(dend)]
    
    if(type=="hori") 
    { 
Stevenn Volant's avatar
Stevenn Volant committed
371
372
      par(cex=input$cexTitleDiag,mar = c(0.3,2,0.3,2))
      res = plot(dend, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "),cex=input$cexLabelDiag)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
373
374
375
    }  
    if(type!="hori")
    {
Stevenn Volant's avatar
Stevenn Volant committed
376
377
      par(cex=input$cexTitleDiag,mar = c(0.3,2,0.3,2))
      res = circlize_dendrogram(dend, labels_track_height = NULL, dend_track_height = .3, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
378
    }
Stevenn Volant's avatar
Stevenn Volant committed
379
    return(res)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
380
381
382
383
384
385
386
387
388
389
  }
  
  
  ## Color for the horizontal dendro
  colLabdendo <- function(n,group) {
    
    group = apply(group,1,paste, collapse = "-")
    
    nb = length(unique((group)))
    namesGrp = names(group)
stevenn's avatar
stevenn committed
390

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
    }
    return(n)
  }
  
  ## Diagnostic Plots Eigen value
  Plot_diag_Eigen <- function(input,resDiff)
  {
    colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    
    ## If more than 4 levels for one factor
    maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    if(maxFact>=4) colors = rainbow(maxFact) 
    
    PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
  }
  
  Plot_diag_pcoaEigen = function(input,resDiff)
  {
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
    VarInt = input$VarInt
    dds = resDiff$dds
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    rownames(group) = rownames(target)
    PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
  }
  
  
  
stevenn's avatar
stevenn committed
429
430

  ## barplot total
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
431
  barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
432
433
  {
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
434
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
435
    barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
stevenn's avatar
stevenn committed
436
437
438
439
440
441
442
443
444
445
446
            ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
            else {c(-45, 0, 45, 90)[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
  
  }


  ## barplot Nul 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
447
  barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
448
449
450
  {
    
    percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
451
    percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
stevenn's avatar
stevenn committed
452
453
    ncol1 <- ncol(group) == 1
    
Stevenn Volant's avatar
Stevenn Volant committed
454
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
455

stevenn's avatar
stevenn committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
            density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
            else {c(-45, 0, 45, 90)[as.integer(group[, 2])]},
            cex.names = cex.names, ylab = "Proportion of null counts", 
            main = "Proportion of null counts per sample", 
            ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
    
    abline(h = percentage.allNull, lty = 2, lwd = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
  }


  ## Plot density
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
472
  densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
473
474
475
476
  {
    
    counts <- removeNulCounts(counts)
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
477
    par(cex=input$cexTitleDiag,mar=c(8,5,4,5))
stevenn's avatar
stevenn committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
         xlab = expression(log[2] ~ (raw ~ count + 1)), 
         ylim = c(0, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
         lty = if (ncol1) {1}
         else{c(1, 2, 3, 4)[as.integer(group[, 2])[1]]}, 
         col = col[as.integer(group[, 1])[1]])
    
    for (i in 2:ncol(counts)) 
    {
      lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
            lty = if (ncol1) {1}
            else {c(1, 2, 3, 4)[as.integer(group[, 2])[i]]})
    }
    legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), lty = c(1, 2, 3, 4)[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
    
  }


  ## Table of maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
498
  majTab <- function(input,counts,n)
stevenn's avatar
stevenn committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
  {
    seqnames <- apply(counts, 2, function(x) {
      x <- sort(x, decreasing = TRUE)
      names(x)[1:n]
    })
    seqnames <- unique(unlist(as.character(seqnames)))
    sum <- apply(counts, 2, sum)
    counts <- counts[seqnames, ]
    sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
    p <- round(100 * counts/sum, digits = 3)
    return(p)
  }


  ## Plot maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
514
  majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
515
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
516
    p = majTab(input,counts,n)
stevenn's avatar
stevenn committed
517
518
519
    maj <- apply(p, 2, max)
    seqname <- rownames(p)[apply(p, 2, which.max)]
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
520
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
521
    x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
stevenn's avatar
stevenn committed
522
                 ylim = c(0, max(maj) * 1.2), cex.main = 1, 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
523
                 cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
stevenn's avatar
stevenn committed
524
525
526
527
528
529
530
531
532
                 density = if (ncol1) {NULL}
                 else {15}, 
                 angle = if (ncol1) {NULL}
                 else {c(-45, 0, 45, 90)[as.integer(group[, 2])]})
    
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
                       angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
533
    for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
stevenn's avatar
stevenn committed
534
535
536
537
  }
  

  ## plot SERE Coefs
Stevenn Volant's avatar
Stevenn Volant committed
538
539
540
541
542
543
544
#   SEREplot<-function(input,counts) 
#   {
#     sere = SEREcoef(counts)
#     hc <- hclust(as.dist(sere), method = "ward.D")
#     plot(hc, las = 2, hang = -1, xlab = "SERE distance, Ward criterion",main = "Cluster dendrogram\non SERE values")
#     
#   }
stevenn's avatar
stevenn committed
545
546
547
548
549
  
  
  ## Get the SERE COEF
  SEREcoef<-function(counts)
  {
Stevenn Volant's avatar
Stevenn Volant committed
550
551
552
553
    counts = as.matrix(counts)
    sere <- matrix(0, ncol = ncol(counts), nrow = ncol(counts))
    for (i in 1:(ncol(counts)-1)) {
      for (j in (i+1):ncol(counts)) {
stevenn's avatar
stevenn committed
554
555
556
        sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
      }
    }
Stevenn Volant's avatar
Stevenn Volant committed
557
    sere=sere+t(sere)
stevenn's avatar
stevenn committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    colnames(sere) <- rownames(sere) <- colnames(counts)
    sere <- round(sere, digits = 3)
    
    return(sere) 
  }
  

  ## function for the SERE coef
  sigfun_Pearson_meta <- function(observed) {
    laneTotals <- colSums(observed)
    total <- sum(laneTotals)
    fullObserved <- observed[rowSums(observed) > 0, ]
    fullLambda <- rowSums(fullObserved)/total
    fullLhat <- fullLambda > 0
    fullExpected <- outer(fullLambda, laneTotals)
    fullKeep <- which(fullExpected > 0)
    oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
    dfFull <- length(fullKeep) - sum(fullLhat != 0)
    sqrt(sum(oeFull)/dfFull)
  }
stevenn's avatar
stevenn committed
578
579


stevenn's avatar
stevenn committed
580
  ## Plots of size factors
Stevenn Volant's avatar
Stevenn Volant committed
581
  diagSFactors<-function (input,dds,normFactors,CT_noNorm,frame=1) 
stevenn's avatar
stevenn committed
582
  {
Stevenn Volant's avatar
Stevenn Volant committed
583
584
585
586
587
588
    counts = CT_noNorm
    geomeans <- exp(rowMeans(log(counts)))
    samples <- colnames(counts)
#     counts.trans <- log2(counts/geomeans)
#     xmin <- min(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
#     xmax <- max(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
589
#     
Stevenn Volant's avatar
Stevenn Volant committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# #     if(!is.na(input$NbcolSfactors)) parCols = as.numeric(input$NbcolSfactors)
# #     else parCols = ceiling(ncol(counts.trans)/3)
# #     
# #     parRows = ceiling(ncol(counts.trans)/parCols)
# 
#     if(frame==1)
#     {
#       par(mfrow=c(parRows,parCols))
#       for (j in 1:ncol(dds)) {
#         hist(log2(counts[, j]/geomeans), nclass = 100, 
#              xlab = expression(log[2] ~ (counts/geometric ~ mean)), las = 1, xlim = c(xmin, xmax), 
#              main = paste("Size factors diagnostic - Sample ",samples[j], sep = ""), col = "skyblue")
#         
#         abline(v = log2(normFactors[j]), col = "red", lwd = 1.5)
#       }
#     }
stevenn's avatar
stevenn committed
606
607
608
    
    if(frame==2)
    {
Stevenn Volant's avatar
Stevenn Volant committed
609
610
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
      plot(normFactors, colSums(counts), pch = 19, las = 1,cex = ifelse(input$addLabelSFact,0,input$cexLabelDiag),
stevenn's avatar
stevenn committed
611
612
           ylab = "Total number of reads", xlab = "Size factors", 
           main = "Diagnostic: size factors vs total number of reads")
Stevenn Volant's avatar
Stevenn Volant committed
613
      if(input$addLabelSFact) text(normFactors,colSums(counts),labels = samples,cex=input$cexLabelDiag)
Stevenn Volant's avatar
Stevenn Volant committed
614
      abline(lm(colSums(counts) ~ normFactors + 0), lty = 2, col = "grey")
stevenn's avatar
stevenn committed
615
616
    }
  }
stevenn's avatar
stevenn committed
617

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
618
619
620
621
622
  
  ### PCoA
  PCoAPlot_meta <-function (input,dds, group_init,col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
  {
    cval=c()
Stevenn Volant's avatar
Stevenn Volant committed
623
    time_set = 0
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
624
625
    # Set of shape
    shape=c(19,17,15,18)
Stevenn Volant's avatar
Stevenn Volant committed
626
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
627
628
    ## Var of interest
    VarInt  = input$VarInt
Stevenn Volant's avatar
Stevenn Volant committed
629
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    ## Group
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
Stevenn Volant's avatar
Stevenn Volant committed
645
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
646
647
648
649
650
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
Stevenn Volant's avatar
Stevenn Volant committed
651
652
653
654
655
656
657
658
659
    if(nlevels(group)!=0)
    { 
      ## Get the norm data
      counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
      
      # was removed
      counts.norm = counts.norm[,ind_kept]
  
      ## Get the distance
Stevenn Volant's avatar
Stevenn Volant committed
660
661
662
      if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
      if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
      
Stevenn Volant's avatar
Stevenn Volant committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
      ## Do PCoA
      pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=3)
      
      ## Get eigen values
      eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
      
      ## xlim and ylim of the plot
      min = min(pco.counts.norm$li)
      max = max(pco.counts.norm$li)
      
      ## get condition set
      condition_set=val[which(val %in% unique(group_init$condition))]
      time_set=val[which(val %in% unique(group_init$time))]
      
      ## Colors
      if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
      {
        col = rainbow(length(condition_set) * length(time_set))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
681
      }
Stevenn Volant's avatar
Stevenn Volant committed
682
683
684
685
686
687
688
689
690
691
692
      #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
      #  col = rep(col[1:length(condition_set)], length(time_set))
      #}
      if (length(time_set) == 1 && length(condition_set) <= 4){
        cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
        cval = sort(cval)
      }
      
      # to reactivate
      #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
      if (plot == "pcoa"){
Stevenn Volant's avatar
Stevenn Volant committed
693
        par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
694
695
        ## Plot axis, label and circles
        plot(pco.counts.norm$li[1:2], xlab=paste("PC1 : ",round(eigen[1],1),"%") , ylab=paste("PC2 : ",round(eigen[2],1),"%"),
Stevenn Volant's avatar
Stevenn Volant committed
696
             xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), cex.axis=1, cex.lab=1,lwd=2, type="n",main='Principal Coordinates Analysis ')
Stevenn Volant's avatar
Stevenn Volant committed
697
698
699
700
701
702
703
704
705
        # Set different shapes
        if(input$labelPCOA == "Group"){
          if(!is.null(cval)){
            for (i in 1:length(cval)){
              points(pco.counts.norm$li[which(group==cval[i]),1:2],pch=shape[i],col=col[i], cex=input$cexpoint)
            }
            s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                    add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
          }else s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
Stevenn Volant's avatar
Stevenn Volant committed
706
                        add.plot = TRUE, cpoint = input$cexTitleDiag, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
Stevenn Volant's avatar
Stevenn Volant committed
707
708
709
710
711
712
713
714
715
716
        }  
        else{
          s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
          s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
        }
      }else{
        barplot(eigen[1:7], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:7, col = c(rep("black", 2), rep("grey", 5)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
      }
  }
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
  }
  
  ### PCA
  PCAPlot_meta <-function (input,dds, group, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
                           col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
  {
    type.trans <- type.trans[1]
    
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    else counts.trans <- assay(rlogTransformation(dds))
    
    rv = apply(counts.trans, 1, var, na.rm = TRUE)
    pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
    
    if(plot=="pca")
    { 
      prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
      prp <- round(prp, 2)
      ncol1 <- ncol(group) == 1
      
Stevenn Volant's avatar
Stevenn Volant committed
737
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
738
739
740
741
742
743
      
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 2])
      ord = abs(ord[2] - ord[1])/25
      
Stevenn Volant's avatar
Stevenn Volant committed
744
745
      par(mfrow = c(1, 2),cex=input$cexTitleDiag,mar=c(6,6,4,5))
      plot(pca$x[, 1], pca$x[, 2], las = 1, cex = cex=input$cexTitleDiag, col = col[as.integer(group[,1])], 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
746
747
748
749
750
751
752
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]},
           xlab = paste0("PC1 (", prp[1], "%)"),
           ylab = paste0("PC2 (", prp[2], "%)"), 
           main = "Principal Component Analysis",
            )
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
Stevenn Volant's avatar
Stevenn Volant committed
753
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,2] - ifelse(pca$x[, 2] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
754
755
756
757
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 3])
      ord = abs(ord[2] - ord[1])/25
Stevenn Volant's avatar
Stevenn Volant committed
758
      plot(pca$x[, 1], pca$x[, 3], las = 1, cex = cex=input$cexTitleDiag, col = col[as.integer(group[, 1])], 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]}, 
           xlab = paste0("PC1 (", prp[1], "%)"), 
           ylab = paste0("PC3 (", prp[3], "%)"), 
           main = "Principal Component Analysis")
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,3] - ifelse(pca$x[, 3] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
    }
    
    if(plot=="eigen") barplot(pca$sdev^2, main = "Eigen values of the PCA", names.arg = 1:length(pca$sdev), xlab = "Axes")
  }
  
  
  
stevenn's avatar
stevenn committed
773

stevenn's avatar
stevenn committed
774
775
776
777
778
  ############################################################
  ##
  ##              CREATE THE CONTRAST DATABASE
  ##
  ############################################################
stevenn's avatar
stevenn committed
779

stevenn's avatar
stevenn committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
  
  BaseContrast <- function(input,names,namesfile)
  {  

    v_tmp = c()
    filesize = file.info(namesfile)[,"size"]
    
    for(i in 1:length(names))
    {  
      Tinput = paste("input$",names[i],sep="")
      expr=parse(text=Tinput)
      val = eval(expr) 
      v_tmp[i] = as.numeric(val)
    }
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
      colnamesTmp = c(colnames(oldContrast),input$ContrastName)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = input$ContrastName; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
  ## Remove nul counts
  removeNulCounts <-function (counts) 
  {
    return(counts[rowSums(counts) > 0, ])
  }
stevenn's avatar
stevenn committed
812
813

  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
814
815
816
817
818
  ############################################################
  ##
  ##              VISUALISATION PLOTS
  ##
  ############################################################
stevenn's avatar
stevenn committed
819
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
820
821
822
823
824
825
826
827
  GetDataToPlot <- function(resDiff,VarInt,ind_taxo,aggregate=TRUE)
  {
    dds = resDiff$dds
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    target = resDiff$target
    counts_tmp_combined = NULL
    prop_tmp_combined = NULL
    targetInt = NULL
Stevenn Volant's avatar
Stevenn Volant committed
828
    namesCounts = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
829
830
831
    ## Select a subset within the taxonomy level (default is the 12 most abundant)
    nbKept = length(ind_taxo)
    Taxonomy = rownames(counts)
stevenn's avatar
stevenn committed
832
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
833
834
835
836
837
838
839
840
841
842
    if (length(VarInt)>0 && nbKept>0)
    { 
      ## Create the variable to plot
      targetInt = as.data.frame(target[,VarInt])
      rownames(targetInt)=target[,1]  
      if(length(VarInt)>1) targetInt$AllVar = apply(targetInt,1,paste, collapse = "-")
      if(length(VarInt)<=1)  targetInt$AllVar = target[,VarInt]
      colnames(targetInt) = c(VarInt,"AllVar")
      ## Create the counts matrix only for the selected subset
      counts_tmp = counts[Taxonomy%in%ind_taxo,]
stevenn's avatar
stevenn committed
843

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
844
845
846
847
848
      ## Be careful transposition !
      if(aggregate)
      { 
        counts_tmp_combined = aggregate(t(counts_tmp),by=list(targetInt$AllVar),sum)
        rownames(counts_tmp_combined) = counts_tmp_combined$Group.1
Stevenn Volant's avatar
Stevenn Volant committed
849
        namesCounts = counts_tmp_combined$Group.1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
850
851
852
853
854
855
856
        counts_tmp_combined = as.matrix(counts_tmp_combined[,-1])
      }
      if(!aggregate)
      {  
        counts_tmp_combined = t(counts_tmp)
        prop_tmp_combined = counts_tmp_combined/colSums(counts)
        rownames(counts_tmp_combined) = targetInt$AllVar
Stevenn Volant's avatar
Stevenn Volant committed
857
        namesCounts = targetInt$AllVar
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
858
859
        rownames(prop_tmp_combined) = targetInt$AllVar
      }
Stevenn Volant's avatar
Stevenn Volant committed
860
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
861
862
863
864
865
866
867
      ## Ordering the counts
      MeanCounts = apply(counts_tmp_combined,2,mean)
      ord = order(MeanCounts,decreasing=TRUE)
      counts_tmp_combined = as.matrix(counts_tmp_combined[,ord])
      if(!aggregate) prop_tmp_combined = as.matrix(prop_tmp_combined[,ord])
    }
    
Stevenn Volant's avatar
Stevenn Volant committed
868
      return(list(counts = counts_tmp_combined,targetInt=targetInt,prop=prop_tmp_combined,namesCounts=namesCounts))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
869
870
871
    
    
  }
stevenn's avatar
stevenn committed
872
873
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
874
875
876
877
878
879
  
  ###########################
  ## Plots for visualisation
  ###########################
  
  Plot_Visu_Barplot <- function(input,resDiff)
stevenn's avatar
stevenn committed
880
  {
881
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
882
    ## Get Input for BarPlot
883
884
    VarInt = input$VisuVarInt
    ind_taxo = input$selectTaxoPlot
stevenn's avatar
stevenn committed
885
    
Stevenn Volant's avatar
Stevenn Volant committed
886
887
    tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)
    counts_tmp_combined = tmp_combined$counts
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
888
    nbKept = length(ind_taxo)
Stevenn Volant's avatar
Stevenn Volant committed
889
890
891
892
    SamplesNames = tmp_combined$namesCounts
    
    if(nbKept>1) namesTax = colnames(counts_tmp_combined)
    if(nbKept==1) namesTax = ind_taxo
stevenn's avatar
stevenn committed
893
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
894
895
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
    { 
Stevenn Volant's avatar
Stevenn Volant committed
896
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
897
898
899
900
      ## Create the data frame for the plot function
      dataBarPlot_mat = c()
      tmp_mat = matrix(0,ncol=3,nrow=nbKept)
      tmp_counts = c()
stevenn's avatar
stevenn committed
901
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
902
903
904
        for(i in 1:(nrow(counts_tmp_combined)))
        {
          ## Taxo
Stevenn Volant's avatar
Stevenn Volant committed
905
          tmp_mat[1:nbKept,1] = namesTax
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
906
907
908
909
910
911
912
913
914
915
916
917
          
          ## Counts
  
          tmpProp = counts_tmp_combined[i,]
          if(input$CountsOrProp=="prop")
          { 
            tmpProp = round(tmpProp/sum(tmpProp),3)
            tmpProp = as.numeric(tmpProp/sum(tmpProp) * 100)
          }
          tmp_counts = c(tmp_counts,tmpProp)      
          
          ## Meta data
Stevenn Volant's avatar
Stevenn Volant committed
918
          tmp_mat[1:nbKept,3] = as.character(rep(SamplesNames[i],nbKept))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
919
920
921
922
923
924
925
926
927
928
929
          
          ## Conbined the sample
          dataBarPlot_mat = rbind(dataBarPlot_mat,tmp_mat)
        }
        
        
        ## Add numeric vector to the dataframe
        dataBarPlot_mat = as.data.frame(dataBarPlot_mat)
        
        colnames(dataBarPlot_mat) = c("Taxonomy","Proportions","AllVar")
        dataBarPlot_mat[,2] = tmp_counts
930
931
932
933
        if(input$SensPlotVisu == "Vertical") Sens = "multiBarChart"
        if(input$SensPlotVisu == "Horizontal") Sens = "multiBarHorizontalChart"
      
        plotd3 <- nvd3Plot(Proportions ~ AllVar | Taxonomy, data = dataBarPlot_mat, type = Sens, id = 'barplotTaxo',height = input$heightVisu,width=input$widthVisu)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
934
        plotd3$chart(stacked = TRUE)
Stevenn Volant's avatar
Stevenn Volant committed
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
      
        ##################################
        ## Same plot in ggplot2 for export
        ##################################
      
        tax.colors=rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                         "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nbKept/20))
        
        dataBarPlot_mat$Taxonomy = factor(dataBarPlot_mat$Taxonomy,levels = namesTax)
      
        gg= ggplot(dataBarPlot_mat, aes(x=AllVar, y=Proportions, fill=Taxonomy)) 
        gg= gg + geom_bar(stat="identity")
        gg= gg + theme_bw()+ scale_fill_manual(values=tax.colors)
        gg = gg +theme(panel.grid.minor.x=element_blank(),panel.grid.major.x=element_blank()) 
        if(input$CountsOrProp=="prop") gg = gg+labs(y="Relative abundance (%)",x="")
        if(input$CountsOrProp=="counts") gg = gg+labs(y="Abundance",x="")
        if(input$SensPlotVisu == "Horizontal") gg = gg + coord_flip()
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
952
953
954
955
956
    } 
    else{ 
      ## Pb affichage quand data NULL
      dataNull = data.frame(x=c(1,2),y=c(1,2))
      plotd3 = nvd3Plot(x ~ y , data = dataNull, type = "multiBarChart", id = 'barplotTaxoNyll',height = input$heightVisu,width=input$widthVisu)
Stevenn Volant's avatar
Stevenn Volant committed
957
958
      plotd3 = NULL
      gg = NULL
stevenn's avatar
stevenn committed
959
    }
Stevenn Volant's avatar
Stevenn Volant committed
960
    return(list(plotd3=plotd3,gg=gg))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
961
962
963
964
965
966
967
968
969
970
971
  }
  
  
  
######################################################
##
##            HEATMAP
##
######################################################
  
  
Stevenn Volant's avatar
Stevenn Volant committed
972
  Plot_Visu_Heatmap <- function(input,resDiff,export=FALSE){
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
973
  
974
975
  VarInt = input$VisuVarInt
  ind_taxo = input$selectTaxoPlot
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
976
977
978
979
980
981
982
983
984
985
986
987
988
  
  counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
  
  if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
  { 
    ## Transform to log2
    counts_tmp_combined = log2(GetDataToPlot(resDiff,VarInt,ind_taxo)$counts+1)
   
    col <- switch(input$colors,
                  "green-blue"=colorRampPalette(brewer.pal(9,"GnBu"))(200),
                  "blue-white-red"=colorRampPalette(rev(brewer.pal(9, "RdBu")))(200),
                  "purple-white-orange"=colorRampPalette(rev(brewer.pal(9, "PuOr")))(200),
                  "red-yellow-green"= colorRampPalette(rev(brewer.pal(9,"RdYlGn")))(200))
stevenn's avatar
stevenn committed
989
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
990
    ## Transpose matrix if Horizontal
991
    if(input$SensPlotVisu=="Horizontal") counts_tmp_combined = t(as.matrix(counts_tmp_combined))
Stevenn Volant's avatar
Stevenn Volant committed
992
993
994
995
996
    
    if(!export) plot = d3heatmap(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE,width = input$widthVisu, height = input$heightVisu, show_grid = FALSE, colors = col, scale = input$scaleHeatmap,cexRow = 0.6)
    
    if(export) plot = heatmap.2(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE, density.info="none", margins=c(12,8),trace="none",srtCol=45,col = col, scale = input$scaleHeatmap,cexRow = 0.6)
    return(plot)
stevenn's avatar
stevenn committed
997
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
998

stevenn's avatar
stevenn committed
999
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
1000
  }