internal.R 48 KB
Newer Older
stevenn's avatar
stevenn committed
1
2
3



Stevenn Volant's avatar
Stevenn Volant committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
## Function for the rdp format
getval <- function(annotation_rdp, interest, threshold_annot){
  annotation_rdp = unlist(strsplit(annotation_rdp,"\t"))
  annotation = c(annotation_rdp[1])
  for(level in interest){
    idlevel=which(annotation_rdp == level)
    if(length(idlevel)>0){
      if(as.numeric(annotation_rdp[idlevel+1]) >= threshold_annot){
        annotation = c(annotation, gsub("\"", "", annotation_rdp[idlevel-1]))
      }
      else annotation = c(annotation, "NA")
    }
    else annotation = c(annotation, "NA")  
  }
  return(annotation)
}

## Read rdp file
read_rdp <- function(filename, threshold_annot)
{
  interest=c("phylum", "class", "order", "family", "genus")
  conn <- file(filename,open="r")
  linn <-readLines(conn)
  tab=t(sapply(1:length(linn), function(i) getval(linn[i], interest, threshold_annot)))
  close(conn)
  
  if(!TRUE%in%duplicated(tab[,1])) rownames(tab)=tab[,1];tab=tab[,-1]
  colnames(tab) = c("Phylum","Class","Order","Family","Genus")
  
  return(tab)
}









CheckCountsTable <- function(counts)
  {
    Error = NULL
    Warning = NULL
    numTest = FALSE%in%sapply(counts,is.numeric)
    if(ncol(counts)<=1){Error = "The number of columns of the counts table must be at least 2" }
    if(nrow(counts)<=1){Error = "The number of rows of the counts table must be at least 2" }
    if(numTest){Error = "The counts table must contain only numeric values" }
    if(!numTest)
    {
      if(0%in%colSums(counts)){Error = "At least one of the column of the counts table is 0" }
      if(min(counts)<0){Error = "The counts table must contain only positive values" }
    }
    if(TRUE%in%sapply(counts,is.na)){Warning = "NA values are considered as 0 is the counts table"; counts[sapply(counts,is.na)]=0}
    
  
    return(list(Error=Error,Warning=Warning,counts=counts))
  }
  
  CheckTaxoTable <- function(taxo)
stevenn's avatar
stevenn committed
64
  {
Stevenn Volant's avatar
Stevenn Volant committed
65
66
67
68
69
70
71
72
73
74
75
76
    Error = NULL
    Warning = NULL
    if(ncol(taxo)<=1){Error = "The number of columns of the taxonomy table must be at least 2" }
    if(nrow(taxo)<=1){Error = "The number of rows if the taxonomy table must be at least 2" }
    if(TRUE%in%is.numeric(taxo)){Error = "The taxonomy table must contain only character" }

    for(i in 1:ncol(taxo))
    {
      level = levels(taxo[,i])
      nb = length(level)
      if(nb==1 && level=="NA"){ Error = "At least one column contains only NA"}
    }
stevenn's avatar
stevenn committed
77
    
Stevenn Volant's avatar
Stevenn Volant committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    return(list(Error=Error,Warning=Warning))
  }
  
  PercentAnnot <- function(counts,taxo)
  {
    Error = NULL  
    tmp = table(rownames(counts)%in%rownames(taxo))
    Percent = tmp["TRUE"]/sum(tmp)
    if(is.na(Percent)) Percent = 0
    if(Percent==0){Error = "Counts table and annotation do not matched" }
       
    return(list(Error=Error,Percent=Percent))
  }
  
  
  GetDataFromBIOM <-function(dataBIOM)
  {
    ## Counts table
stevenn's avatar
stevenn committed
96
    counts = biom_data(dataBIOM)
stevenn's avatar
stevenn committed
97
98
    counts = as.matrix(counts)
    counts = as.data.frame(counts)
Stevenn Volant's avatar
Stevenn Volant committed
99
100
101
102
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
stevenn's avatar
stevenn committed
103
    taxo = as.data.frame(observation_metadata(dataBIOM))
Stevenn Volant's avatar
Stevenn Volant committed
104
105
106
107
108
109
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
110
  }
stevenn's avatar
stevenn committed
111
112
  
  
stevenn's avatar
stevenn committed
113
114
115
  GetDataFromCT <-function(dataC,dataT)
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
116
    ## Counts table
stevenn's avatar
stevenn committed
117
    counts = dataC
Stevenn Volant's avatar
Stevenn Volant committed
118
119
120
121
122
123
124
125
126
127
128
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
    taxo = as.data.frame(dataT)
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
129
130
131
  }
  
  GetInteraction2 <- function(target)
stevenn's avatar
stevenn committed
132
  { 
stevenn's avatar
stevenn committed
133
134
135
136
    res=c()
    namesTarget = colnames(target)[2:ncol(target)]
    k=1
    for(i in 1:(length(namesTarget)-1))
stevenn's avatar
stevenn committed
137
    { 
stevenn's avatar
stevenn committed
138
139
140
141
142
      for(j in (i+1):length(namesTarget))
      { 
        res[k] = paste(namesTarget[i],":",namesTarget[j],sep="")
        k = k+1
      }
stevenn's avatar
stevenn committed
143
    }
stevenn's avatar
stevenn committed
144
145
    
    return(res)
stevenn's avatar
stevenn committed
146
147
148
149
  }
  


Amine  GHOZLANE's avatar
Amine GHOZLANE committed
150
  ## Print the contrasts
stevenn's avatar
stevenn committed
151
152
153
154
155
156
157
158
159
160
  PrintContrasts <- function (coefs, contrasts,contnames) 
  {
    contrasts = as.matrix(contrasts)
    out <-""
    
    for (i in 1:ncol(contrasts)) 
    {
      contrast <- contrasts[,i]
      contrast <- paste(ifelse(contrast > 0, "+ ", ""), contrast, sep = "")
      contrast <- gsub("( 1)|(1)", "", contrast)
161
      out = paste(out,paste("<b>",contnames[i], "</b> <br/>", paste(contrast[contrast != 0], coefs[contrast != 0], collapse = " ", sep = " ")),"<br/>")
stevenn's avatar
stevenn committed
162
163
164
165
    }
    return(out)
    
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
166
167

  
stevenn's avatar
stevenn committed
168
169
  
  ## Get the counts for the selected taxonomy
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
170
  GetCountsMerge <- function(input,dataInput,taxoSelect,target,design)
stevenn's avatar
stevenn committed
171
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
172
173
    counts= NULL
    CheckTarget = FALSE
Stevenn Volant's avatar
Stevenn Volant committed
174
175
    CT_noNorm = NULL
    normFactors = NULL
stevenn's avatar
stevenn committed
176
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
177
    ## Counts and taxo tables
stevenn's avatar
stevenn committed
178
179
    CT = dataInput$counts
    taxo = dataInput$taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
180
181
182
183
        
    ## Select cols in the target
    labels = target[,1]
    ind = which(colnames(CT)%in%labels)
stevenn's avatar
stevenn committed
184
    
stevenn's avatar
stevenn committed
185
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
186
187
188
189
190
    if(length(ind)==length(labels))
    { 
      CT = CT[,ind]
      
      ## Order CT according to the target
191
      CT = OrderCounts(counts=CT,labels=labels)$CountsOrder
Stevenn Volant's avatar
Stevenn Volant committed
192
      CT_noNorm = CT
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
193
194
195
196
#       ind0 = which(rowSums(CT)==0)
#       if(length(ind0)>0) CT = CT[-ind0,]
      
      ## Counts normalisation
Stevenn Volant's avatar
Stevenn Volant committed
197

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
198
199
      dds <- DESeqDataSetFromMatrix(countData=CT, colData=target, design=design)
      dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
Stevenn Volant's avatar
Stevenn Volant committed
200
201
      normFactors = sizeFactors(dds)

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
202
203
204
205
      CT = as.data.frame(round(counts(dds, normalized = TRUE)))
      ordOTU = order(rownames(taxo))
      indOTU_annot = which(rownames(CT)%in%rownames(taxo))
      counts_annot = CT[indOTU_annot[ordOTU],]
206

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
207
208
      if(taxoSelect=="OTU") counts = counts_annot
      else{
Stevenn Volant's avatar
Stevenn Volant committed
209
210
211
        taxoS = taxo[ordOTU,taxoSelect]
        counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),sum)
        rownames(counts)=counts[,1];counts=counts[,-1]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
212
213
214
      }
      
      ## Ordering the counts table according to the target labels 
215
216
217
      tmpOrder = OrderCounts(counts,normFactors,labels)
      counts = tmpOrder$CountsOrder
      normFactors = tmpOrder$normFactorsOrder
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
218
219
      CheckTarget = TRUE
    }
Stevenn Volant's avatar
Stevenn Volant committed
220
    return(list(counts=counts,CheckTarget=CheckTarget,normFactors=normFactors, CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
221
222
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
223
  ## Order the counts 
224
  OrderCounts <- function(counts,normFactors=NULL,labels)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
225
226
227
  {
    n = length(labels)
    CountsOrder = counts
228
    normFactorsOrder = normFactors
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
229
230
231
232
233
    for(i in 1:n)
    {
      
      ind = which(labels[i]==colnames(counts))
      CountsOrder[,i] = counts[,ind]
234
      if(!is.null(normFactors)) normFactorsOrder[i] = normFactors[ind]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
235
236
    }
    colnames(CountsOrder) = labels
237
    return(list(CountsOrder=CountsOrder,normFactorsOrder = normFactorsOrder))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
238
239
240
  }
  
  
stevenn's avatar
stevenn committed
241
  ## Get the dds object of DESeq2
Stevenn Volant's avatar
Stevenn Volant committed
242
  Get_dds_object <- function(input,counts,target,design,normFactorsOTU,CT_noNorm)
stevenn's avatar
stevenn committed
243
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
244
    
stevenn's avatar
stevenn committed
245
    dds <- DESeqDataSetFromMatrix(countData=counts, colData=target, design=design)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
246
    normFactors = rep(1,nrow(target))
stevenn's avatar
stevenn committed
247
    ## Size factor estimation
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
248
249
250
    #dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
    #normalizationFactors(dds) <- normFactors
    sizeFactors(dds)<- normFactors
stevenn's avatar
stevenn committed
251
252
    dds <- estimateDispersions(dds, fitType=input$fitType)
    dds <- nbinomWaldTest(dds)
Stevenn Volant's avatar
Stevenn Volant committed
253
    return(list(dds = dds,counts=counts,target=target,design=design,normFactors = normFactorsOTU,CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
254
255
256
257
258
259
260
261
262
  }

  ## Get the design according to the input
  GetDesign <- function(input)
  {
    InterVar = input$InterestVar
    Interaction = input$Interaction2
    alltmp = c(InterVar,Interaction)
    design = as.formula(paste("~", paste0(alltmp, collapse= "+")))
stevenn's avatar
stevenn committed
263

stevenn's avatar
stevenn committed
264
265
266
267
268
269
270
271
    return(design)
  }
  


  ## Diagnostic Plots
  Plot_diag <- function(input,resDiff)
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
272
273
    #colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
stevenn's avatar
stevenn committed
274
275
276
277
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
278
    normFactors = resDiff$normFactors
Stevenn Volant's avatar
Stevenn Volant committed
279
    CT_noNorm = resDiff$CT_noNorm
stevenn's avatar
stevenn committed
280
    group = as.data.frame(target[,VarInt])
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
281
    rownames(group) = rownames(target)
Stevenn Volant's avatar
Stevenn Volant committed
282
    res = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
283
    
Stevenn Volant's avatar
Stevenn Volant committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    if(ncol(group)>0 && nrow(counts)>0)
    { 
      ## If more than 4 levels for one factor
      if(length(VarInt)>1)  maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
      else maxFact = length(levels(group))
      if(maxFact>=4) colors = rainbow(maxFact) 
      
      if(input$DiagPlot=="barplotTot") res = barplotTot(input,counts,group = group, col=colors)
      if(input$DiagPlot=="barplotNul") res = barPlotNul(input,counts, group = group, col=colors)
      if(input$DiagPlot=="densityPlot") res = densityPlotTot(input,counts, group = group, col=colors)
      if(input$DiagPlot=="MajTax") res = majTaxPlot(input,counts, group = group, col=colors)
      if(input$DiagPlot=="SERE") res = SEREplot(input,counts)
      #if(input$DiagPlot=="Sfactors") diagSFactors(input,dds,frame=1) 
      if(input$DiagPlot=="SfactorsVStot") res = diagSFactors(input,dds,normFactors,CT_noNorm,frame=2) 
      if(input$DiagPlot=="pcaPlot") res = PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
      if(input$DiagPlot=="pcoaPlot") res = PCoAPlot_meta(input,dds, group) 
      if(input$DiagPlot=="clustPlot") res = HCPlot(input,dds,group,type.trans=input$TransType)
    }
302
    
Stevenn Volant's avatar
Stevenn Volant committed
303
    return(res)
stevenn's avatar
stevenn committed
304
305
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  
#   HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
#   {
#     counts = as.data.frame(round(counts(dds, normalized = TRUE)))
#     if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
#     if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
#     
#     hc <- hclust(dist(t(counts.trans)), method = "ward.D")
#     
#     type <- switch(input$typeHculst,
#                   "radial"="radial",
#                   "fan"="fan",
#                   "triangle"="cladogram",,
#                   "hori"= "hori",
#                   "verti"=NULL)
#     
#     par(cex=input$cexLabelDiag,mar=c(12,5,8,5))
#     if(input$colorHC && type=="hori") 
#     {
#       hc = dendrapply(as.dendrogram(hc),colLabdendo,group) 
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram")
#     }
#     
#     if(!input$colorHC && type=="hori") 
#     {
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram",hang=-1)
#     }
#     
#     if(type!="hori") 
#     { 
#       group = apply(group,1,paste, collapse = "-")
#       nb = length(unique(group))
#       plot(as.phylo(hc), type= type,label.offset = 1, tip.color = ifelse(input$colorHC, rainbow(nb)[as.integer(as.factor(group))], rep(1,nb)))
#     }
#     dev.off() 
#   }
  
  HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
  {
    
    ## Get the counts
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
    
    ## Get the group of leaf
    group = apply(group,1,paste, collapse = "-")    
    nb = length(unique((group)))
    
    ## Get the dendrogram
    hc <- hclust(dist(t(counts.trans)), method = "ward.D")
    dend = as.dendrogram(hc)
    
    ## Get the type of dendrogram
    type <- switch(input$typeHculst,
                   "fan"="fan",
                   "hori"= "hori")
    
    dend <- set(dend, "labels_cex", input$cexLabelDiag)
    if(input$colorHC) labels_colors(dend)<-rainbow(nb)[as.integer(as.factor(group))][order.dendrogram(dend)]
    
    if(type=="hori") 
    { 
      par(mar = c(8,4,4,2))
      plot(dend, main = "Cluster dendrogram")
    }  
    if(type!="hori")
    {
      par(mar = c(0.3,2,0.3,2))
      circlize_dendrogram(dend, labels_track_height = 0.2, dend_track_height = .3, main = "Cluster dendrogram")
    }
  }
  
  
  ## Color for the horizontal dendro
  colLabdendo <- function(n,group) {
    
    group = apply(group,1,paste, collapse = "-")
    
    nb = length(unique((group)))
    namesGrp = names(group)
stevenn's avatar
stevenn committed
387

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
    }
    return(n)
  }
  
  ## Diagnostic Plots Eigen value
  Plot_diag_Eigen <- function(input,resDiff)
  {
    colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    
    ## If more than 4 levels for one factor
    maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    if(maxFact>=4) colors = rainbow(maxFact) 
    
    PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
  }
  
  Plot_diag_pcoaEigen = function(input,resDiff)
  {
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
    VarInt = input$VarInt
    dds = resDiff$dds
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    rownames(group) = rownames(target)
    PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
  }
  
  
  
stevenn's avatar
stevenn committed
426
427

  ## barplot total
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
428
  barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
429
430
  {
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
431
432
    par(cex=input$cexLabelDiag,mar=c(12,5,4,5))
    barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
stevenn's avatar
stevenn committed
433
434
435
436
437
438
439
440
441
442
443
            ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
            else {c(-45, 0, 45, 90)[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
  
  }


  ## barplot Nul 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
444
  barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
445
446
447
  {
    
    percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
448
    percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
stevenn's avatar
stevenn committed
449
450
    ncol1 <- ncol(group) == 1
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
451
452
    par(cex=input$cexLabelDiag,mar=c(12,5,4,5))

stevenn's avatar
stevenn committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
            density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
            else {c(-45, 0, 45, 90)[as.integer(group[, 2])]},
            cex.names = cex.names, ylab = "Proportion of null counts", 
            main = "Proportion of null counts per sample", 
            ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
    
    abline(h = percentage.allNull, lty = 2, lwd = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
  }


  ## Plot density
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
469
  densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
470
471
472
473
  {
    
    counts <- removeNulCounts(counts)
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
474
    par(cex=input$cexLabelDiag,mar=c(8,5,4,5))
stevenn's avatar
stevenn committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
         xlab = expression(log[2] ~ (raw ~ count + 1)), 
         ylim = c(0, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
         lty = if (ncol1) {1}
         else{c(1, 2, 3, 4)[as.integer(group[, 2])[1]]}, 
         col = col[as.integer(group[, 1])[1]])
    
    for (i in 2:ncol(counts)) 
    {
      lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
            lty = if (ncol1) {1}
            else {c(1, 2, 3, 4)[as.integer(group[, 2])[i]]})
    }
    legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), lty = c(1, 2, 3, 4)[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
    
  }


  ## Table of maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
495
  majTab <- function(input,counts,n)
stevenn's avatar
stevenn committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
  {
    seqnames <- apply(counts, 2, function(x) {
      x <- sort(x, decreasing = TRUE)
      names(x)[1:n]
    })
    seqnames <- unique(unlist(as.character(seqnames)))
    sum <- apply(counts, 2, sum)
    counts <- counts[seqnames, ]
    sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
    p <- round(100 * counts/sum, digits = 3)
    return(p)
  }


  ## Plot maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
511
  majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
512
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
513
    p = majTab(input,counts,n)
stevenn's avatar
stevenn committed
514
515
516
    maj <- apply(p, 2, max)
    seqname <- rownames(p)[apply(p, 2, which.max)]
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
517
518

    x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
stevenn's avatar
stevenn committed
519
                 ylim = c(0, max(maj) * 1.2), cex.main = 1, 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
520
                 cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
stevenn's avatar
stevenn committed
521
522
523
524
525
526
527
528
529
                 density = if (ncol1) {NULL}
                 else {15}, 
                 angle = if (ncol1) {NULL}
                 else {c(-45, 0, 45, 90)[as.integer(group[, 2])]})
    
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
                       angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
530
    for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
stevenn's avatar
stevenn committed
531
532
533
534
  }
  

  ## plot SERE Coefs
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
535
  SEREplot<-function(input,counts) 
stevenn's avatar
stevenn committed
536
537
  {
    sere = SEREcoef(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
538
    print(sere)
stevenn's avatar
stevenn committed
539
540
541
542
543
544
545
546
547
    hc <- hclust(as.dist(sere), method = "ward.D")
    plot(hc, las = 2, hang = -1, xlab = "SERE distance, Ward criterion",main = "Cluster dendrogram\non SERE values")
    
  }
  
  
  ## Get the SERE COEF
  SEREcoef<-function(counts)
  {
Stevenn Volant's avatar
Stevenn Volant committed
548
549
550
551
    counts = as.matrix(counts)
    sere <- matrix(0, ncol = ncol(counts), nrow = ncol(counts))
    for (i in 1:(ncol(counts)-1)) {
      for (j in (i+1):ncol(counts)) {
stevenn's avatar
stevenn committed
552
553
554
        sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
      }
    }
Stevenn Volant's avatar
Stevenn Volant committed
555
    sere=sere+t(sere)
stevenn's avatar
stevenn committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    colnames(sere) <- rownames(sere) <- colnames(counts)
    sere <- round(sere, digits = 3)
    
    return(sere) 
  }
  

  ## function for the SERE coef
  sigfun_Pearson_meta <- function(observed) {
    laneTotals <- colSums(observed)
    total <- sum(laneTotals)
    fullObserved <- observed[rowSums(observed) > 0, ]
    fullLambda <- rowSums(fullObserved)/total
    fullLhat <- fullLambda > 0
    fullExpected <- outer(fullLambda, laneTotals)
    fullKeep <- which(fullExpected > 0)
    oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
    dfFull <- length(fullKeep) - sum(fullLhat != 0)
    sqrt(sum(oeFull)/dfFull)
  }
stevenn's avatar
stevenn committed
576
577


stevenn's avatar
stevenn committed
578
  ## Plots of size factors
Stevenn Volant's avatar
Stevenn Volant committed
579
  diagSFactors<-function (input,dds,normFactors,CT_noNorm,frame=1) 
stevenn's avatar
stevenn committed
580
  {
Stevenn Volant's avatar
Stevenn Volant committed
581
582
583
584
585
586
    counts = CT_noNorm
    geomeans <- exp(rowMeans(log(counts)))
    samples <- colnames(counts)
#     counts.trans <- log2(counts/geomeans)
#     xmin <- min(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
#     xmax <- max(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
587
#     
Stevenn Volant's avatar
Stevenn Volant committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# #     if(!is.na(input$NbcolSfactors)) parCols = as.numeric(input$NbcolSfactors)
# #     else parCols = ceiling(ncol(counts.trans)/3)
# #     
# #     parRows = ceiling(ncol(counts.trans)/parCols)
# 
#     if(frame==1)
#     {
#       par(mfrow=c(parRows,parCols))
#       for (j in 1:ncol(dds)) {
#         hist(log2(counts[, j]/geomeans), nclass = 100, 
#              xlab = expression(log[2] ~ (counts/geometric ~ mean)), las = 1, xlim = c(xmin, xmax), 
#              main = paste("Size factors diagnostic - Sample ",samples[j], sep = ""), col = "skyblue")
#         
#         abline(v = log2(normFactors[j]), col = "red", lwd = 1.5)
#       }
#     }
stevenn's avatar
stevenn committed
604
605
606
    
    if(frame==2)
    {
Stevenn Volant's avatar
Stevenn Volant committed
607
      plot(normFactors, colSums(counts), pch = 19, las = 1, 
stevenn's avatar
stevenn committed
608
609
           ylab = "Total number of reads", xlab = "Size factors", 
           main = "Diagnostic: size factors vs total number of reads")
Stevenn Volant's avatar
Stevenn Volant committed
610
      abline(lm(colSums(counts) ~ normFactors + 0), lty = 2, col = "grey")
stevenn's avatar
stevenn committed
611
612
    }
  }
stevenn's avatar
stevenn committed
613

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
614
615
616
617
618
  
  ### PCoA
  PCoAPlot_meta <-function (input,dds, group_init,col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
  {
    cval=c()
Stevenn Volant's avatar
Stevenn Volant committed
619
    time_set = 0
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
620
621
    # Set of shape
    shape=c(19,17,15,18)
Stevenn Volant's avatar
Stevenn Volant committed
622
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
623
624
    ## Var of interest
    VarInt  = input$VarInt
Stevenn Volant's avatar
Stevenn Volant committed
625
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    ## Group
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
Stevenn Volant's avatar
Stevenn Volant committed
641
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
642
643
644
645
646
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
Stevenn Volant's avatar
Stevenn Volant committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    if(nlevels(group)!=0)
    { 
      ## Get the norm data
      counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
      
      # was removed
      counts.norm = counts.norm[,ind_kept]
  
      ## Get the distance
      dist.counts.norm = vegdist(t(counts.norm), method = input$DistPCOA)
  
      ## Do PCoA
      pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=3)
      
      ## Get eigen values
      eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
      print(eigen)
      
      ## xlim and ylim of the plot
      min = min(pco.counts.norm$li)
      max = max(pco.counts.norm$li)
      
      ## get condition set
      condition_set=val[which(val %in% unique(group_init$condition))]
      time_set=val[which(val %in% unique(group_init$time))]
      
      ## Colors
      if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
      {
        col = rainbow(length(condition_set) * length(time_set))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
677
      }
Stevenn Volant's avatar
Stevenn Volant committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
      #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
      #  col = rep(col[1:length(condition_set)], length(time_set))
      #}
      if (length(time_set) == 1 && length(condition_set) <= 4){
        cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
        cval = sort(cval)
      }
      
      # to reactivate
      #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
      if (plot == "pcoa"){
        ## Plot axis, label and circles
        plot(pco.counts.norm$li[1:2], xlab=paste("PC1 : ",round(eigen[1],1),"%") , ylab=paste("PC2 : ",round(eigen[2],1),"%"),
             xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), cex.axis=1, cex.lab=1,lwd=2, type="n")
        # Set different shapes
        if(input$labelPCOA == "Group"){
          if(!is.null(cval)){
            for (i in 1:length(cval)){
              points(pco.counts.norm$li[which(group==cval[i]),1:2],pch=shape[i],col=col[i], cex=input$cexpoint)
            }
            s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                    add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
          }else s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                        add.plot = TRUE, cpoint = input$cexpoint, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
        }  
        else{
          s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
          s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
        }
      }else{
        barplot(eigen[1:7], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:7, col = c(rep("black", 2), rep("grey", 5)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
      }
  }
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
  }
  
  ### PCA
  PCAPlot_meta <-function (input,dds, group, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
                           col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
  {
    type.trans <- type.trans[1]
    
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    else counts.trans <- assay(rlogTransformation(dds))
    
    rv = apply(counts.trans, 1, var, na.rm = TRUE)
    pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
    
    if(plot=="pca")
    { 
      prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
      prp <- round(prp, 2)
      ncol1 <- ncol(group) == 1
      
      par(mfrow = c(1, 2))
      
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 2])
      ord = abs(ord[2] - ord[1])/25
      
      par(mar=c(8,5,4,5))
      plot(pca$x[, 1], pca$x[, 2], las = 1, cex = 2, col = col[as.integer(group[,1])], 
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]},
           xlab = paste0("PC1 (", prp[1], "%)"),
           ylab = paste0("PC2 (", prp[2], "%)"), 
           main = "Principal Component Analysis",
            )
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,2] - ifelse(pca$x[, 2] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])])
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 3])
      ord = abs(ord[2] - ord[1])/25
      plot(pca$x[, 1], pca$x[, 3], las = 1, cex = 2, col = col[as.integer(group[, 1])], 
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]}, 
           xlab = paste0("PC1 (", prp[1], "%)"), 
           ylab = paste0("PC3 (", prp[3], "%)"), 
           main = "Principal Component Analysis")
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,3] - ifelse(pca$x[, 3] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
    }
    
    if(plot=="eigen") barplot(pca$sdev^2, main = "Eigen values of the PCA", names.arg = 1:length(pca$sdev), xlab = "Axes")
  }
  
  
  
stevenn's avatar
stevenn committed
768

stevenn's avatar
stevenn committed
769
770
771
772
773
  ############################################################
  ##
  ##              CREATE THE CONTRAST DATABASE
  ##
  ############################################################
stevenn's avatar
stevenn committed
774

stevenn's avatar
stevenn committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
  
  BaseContrast <- function(input,names,namesfile)
  {  

    v_tmp = c()
    filesize = file.info(namesfile)[,"size"]
    
    for(i in 1:length(names))
    {  
      Tinput = paste("input$",names[i],sep="")
      expr=parse(text=Tinput)
      val = eval(expr) 
      v_tmp[i] = as.numeric(val)
    }
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
      colnamesTmp = c(colnames(oldContrast),input$ContrastName)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = input$ContrastName; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
  ## Remove nul counts
  removeNulCounts <-function (counts) 
  {
    return(counts[rowSums(counts) > 0, ])
  }
stevenn's avatar
stevenn committed
807
808

  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
809
810
811
812
813
  ############################################################
  ##
  ##              VISUALISATION PLOTS
  ##
  ############################################################
stevenn's avatar
stevenn committed
814
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
815
816
817
818
819
820
821
822
  GetDataToPlot <- function(resDiff,VarInt,ind_taxo,aggregate=TRUE)
  {
    dds = resDiff$dds
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    target = resDiff$target
    counts_tmp_combined = NULL
    prop_tmp_combined = NULL
    targetInt = NULL
Stevenn Volant's avatar
Stevenn Volant committed
823
    namesCounts = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
824
825
826
    ## Select a subset within the taxonomy level (default is the 12 most abundant)
    nbKept = length(ind_taxo)
    Taxonomy = rownames(counts)
stevenn's avatar
stevenn committed
827
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
828
829
830
831
832
833
834
835
836
837
    if (length(VarInt)>0 && nbKept>0)
    { 
      ## Create the variable to plot
      targetInt = as.data.frame(target[,VarInt])
      rownames(targetInt)=target[,1]  
      if(length(VarInt)>1) targetInt$AllVar = apply(targetInt,1,paste, collapse = "-")
      if(length(VarInt)<=1)  targetInt$AllVar = target[,VarInt]
      colnames(targetInt) = c(VarInt,"AllVar")
      ## Create the counts matrix only for the selected subset
      counts_tmp = counts[Taxonomy%in%ind_taxo,]
stevenn's avatar
stevenn committed
838

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
839
840
841
842
843
      ## Be careful transposition !
      if(aggregate)
      { 
        counts_tmp_combined = aggregate(t(counts_tmp),by=list(targetInt$AllVar),sum)
        rownames(counts_tmp_combined) = counts_tmp_combined$Group.1
Stevenn Volant's avatar
Stevenn Volant committed
844
        namesCounts = counts_tmp_combined$Group.1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
845
846
847
848
849
850
851
        counts_tmp_combined = as.matrix(counts_tmp_combined[,-1])
      }
      if(!aggregate)
      {  
        counts_tmp_combined = t(counts_tmp)
        prop_tmp_combined = counts_tmp_combined/colSums(counts)
        rownames(counts_tmp_combined) = targetInt$AllVar
Stevenn Volant's avatar
Stevenn Volant committed
852
        namesCounts = targetInt$AllVar
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
853
854
        rownames(prop_tmp_combined) = targetInt$AllVar
      }
Stevenn Volant's avatar
Stevenn Volant committed
855
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
856
857
858
859
860
861
862
      ## Ordering the counts
      MeanCounts = apply(counts_tmp_combined,2,mean)
      ord = order(MeanCounts,decreasing=TRUE)
      counts_tmp_combined = as.matrix(counts_tmp_combined[,ord])
      if(!aggregate) prop_tmp_combined = as.matrix(prop_tmp_combined[,ord])
    }
    
Stevenn Volant's avatar
Stevenn Volant committed
863
      return(list(counts = counts_tmp_combined,targetInt=targetInt,prop=prop_tmp_combined,namesCounts=namesCounts))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
864
865
866
    
    
  }
stevenn's avatar
stevenn committed
867
868
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
869
870
871
872
873
874
  
  ###########################
  ## Plots for visualisation
  ###########################
  
  Plot_Visu_Barplot <- function(input,resDiff)
stevenn's avatar
stevenn committed
875
  {
876
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
877
    ## Get Input for BarPlot
878
879
    VarInt = input$VisuVarInt
    ind_taxo = input$selectTaxoPlot
stevenn's avatar
stevenn committed
880
    
Stevenn Volant's avatar
Stevenn Volant committed
881
882
    tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)
    counts_tmp_combined = tmp_combined$counts
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
883
    nbKept = length(ind_taxo)
Stevenn Volant's avatar
Stevenn Volant committed
884
885
886
887
    SamplesNames = tmp_combined$namesCounts
    
    if(nbKept>1) namesTax = colnames(counts_tmp_combined)
    if(nbKept==1) namesTax = ind_taxo
stevenn's avatar
stevenn committed
888
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
889
890
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
    { 
Stevenn Volant's avatar
Stevenn Volant committed
891
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
892
893
894
895
      ## Create the data frame for the plot function
      dataBarPlot_mat = c()
      tmp_mat = matrix(0,ncol=3,nrow=nbKept)
      tmp_counts = c()
stevenn's avatar
stevenn committed
896
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
897
898
899
        for(i in 1:(nrow(counts_tmp_combined)))
        {
          ## Taxo
Stevenn Volant's avatar
Stevenn Volant committed
900
          tmp_mat[1:nbKept,1] = namesTax
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
901
902
903
904
905
906
907
908
909
910
911
912
          
          ## Counts
  
          tmpProp = counts_tmp_combined[i,]
          if(input$CountsOrProp=="prop")
          { 
            tmpProp = round(tmpProp/sum(tmpProp),3)
            tmpProp = as.numeric(tmpProp/sum(tmpProp) * 100)
          }
          tmp_counts = c(tmp_counts,tmpProp)      
          
          ## Meta data
Stevenn Volant's avatar
Stevenn Volant committed
913
          tmp_mat[1:nbKept,3] = as.character(rep(SamplesNames[i],nbKept))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
914
915
916
917
918
919
920
921
922
923
924
          
          ## Conbined the sample
          dataBarPlot_mat = rbind(dataBarPlot_mat,tmp_mat)
        }
        
        
        ## Add numeric vector to the dataframe
        dataBarPlot_mat = as.data.frame(dataBarPlot_mat)
        
        colnames(dataBarPlot_mat) = c("Taxonomy","Proportions","AllVar")
        dataBarPlot_mat[,2] = tmp_counts
925
926
927
928
        if(input$SensPlotVisu == "Vertical") Sens = "multiBarChart"
        if(input$SensPlotVisu == "Horizontal") Sens = "multiBarHorizontalChart"
      
        plotd3 <- nvd3Plot(Proportions ~ AllVar | Taxonomy, data = dataBarPlot_mat, type = Sens, id = 'barplotTaxo',height = input$heightVisu,width=input$widthVisu)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
929
        plotd3$chart(stacked = TRUE)
Stevenn Volant's avatar
Stevenn Volant committed
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
      
        ##################################
        ## Same plot in ggplot2 for export
        ##################################
      
        tax.colors=rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                         "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nbKept/20))
        
        dataBarPlot_mat$Taxonomy = factor(dataBarPlot_mat$Taxonomy,levels = namesTax)
      
        gg= ggplot(dataBarPlot_mat, aes(x=AllVar, y=Proportions, fill=Taxonomy)) 
        gg= gg + geom_bar(stat="identity")
        gg= gg + theme_bw()+ scale_fill_manual(values=tax.colors)
        gg = gg +theme(panel.grid.minor.x=element_blank(),panel.grid.major.x=element_blank()) 
        if(input$CountsOrProp=="prop") gg = gg+labs(y="Relative abundance (%)",x="")
        if(input$CountsOrProp=="counts") gg = gg+labs(y="Abundance",x="")
        if(input$SensPlotVisu == "Horizontal") gg = gg + coord_flip()
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
947
948
949
950
951
    } 
    else{ 
      ## Pb affichage quand data NULL
      dataNull = data.frame(x=c(1,2),y=c(1,2))
      plotd3 = nvd3Plot(x ~ y , data = dataNull, type = "multiBarChart", id = 'barplotTaxoNyll',height = input$heightVisu,width=input$widthVisu)
Stevenn Volant's avatar
Stevenn Volant committed
952
953
      plotd3 = NULL
      gg = NULL
stevenn's avatar
stevenn committed
954
    }
Stevenn Volant's avatar
Stevenn Volant committed
955
    return(list(plotd3=plotd3,gg=gg))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
956
957
958
959
960
961
962
963
964
965
966
  }
  
  
  
######################################################
##
##            HEATMAP
##
######################################################
  
  
Stevenn Volant's avatar
Stevenn Volant committed
967
  Plot_Visu_Heatmap <- function(input,resDiff,export=FALSE){
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
968
  
969
970
  VarInt = input$VisuVarInt
  ind_taxo = input$selectTaxoPlot
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
971
972
973
974
975
976
977
978
979
980
981
982
983
  
  counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
  
  if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
  { 
    ## Transform to log2
    counts_tmp_combined = log2(GetDataToPlot(resDiff,VarInt,ind_taxo)$counts+1)
   
    col <- switch(input$colors,
                  "green-blue"=colorRampPalette(brewer.pal(9,"GnBu"))(200),
                  "blue-white-red"=colorRampPalette(rev(brewer.pal(9, "RdBu")))(200),
                  "purple-white-orange"=colorRampPalette(rev(brewer.pal(9, "PuOr")))(200),
                  "red-yellow-green"= colorRampPalette(rev(brewer.pal(9,"RdYlGn")))(200))
stevenn's avatar
stevenn committed
984
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
985
    ## Transpose matrix if Horizontal
986
    if(input$SensPlotVisu=="Horizontal") counts_tmp_combined = t(as.matrix(counts_tmp_combined))
Stevenn Volant's avatar
Stevenn Volant committed
987
988
989
990
991
    
    if(!export) plot = d3heatmap(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE,width = input$widthVisu, height = input$heightVisu, show_grid = FALSE, colors = col, scale = input$scaleHeatmap,cexRow = 0.6)
    
    if(export) plot = heatmap.2(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE, density.info="none", margins=c(12,8),trace="none",srtCol=45,col = col, scale = input$scaleHeatmap,cexRow = 0.6)
    return(plot)
stevenn's avatar
stevenn committed
992
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
993

stevenn's avatar
stevenn committed
994
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
995
996
997
998
999
1000
  }

  ######################################################
  ##
  ##            BOXPLOT
  ##