internal.R 49 KB
Newer Older
stevenn's avatar
stevenn committed
1
2
3



Stevenn Volant's avatar
Stevenn Volant committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
## Function for the rdp format
getval <- function(annotation_rdp, interest, threshold_annot){
  annotation_rdp = unlist(strsplit(annotation_rdp,"\t"))
  annotation = c(annotation_rdp[1])
  for(level in interest){
    idlevel=which(annotation_rdp == level)
    if(length(idlevel)>0){
      if(as.numeric(annotation_rdp[idlevel+1]) >= threshold_annot){
        annotation = c(annotation, gsub("\"", "", annotation_rdp[idlevel-1]))
      }
      else annotation = c(annotation, "NA")
    }
    else annotation = c(annotation, "NA")  
  }
  return(annotation)
}

## Read rdp file
read_rdp <- function(filename, threshold_annot)
{
  interest=c("phylum", "class", "order", "family", "genus")
  conn <- file(filename,open="r")
  linn <-readLines(conn)
  tab=t(sapply(1:length(linn), function(i) getval(linn[i], interest, threshold_annot)))
  close(conn)
  
  if(!TRUE%in%duplicated(tab[,1])) rownames(tab)=tab[,1];tab=tab[,-1]
  colnames(tab) = c("Phylum","Class","Order","Family","Genus")
  
  return(tab)
}









CheckCountsTable <- function(counts)
  {
    Error = NULL
    Warning = NULL
    numTest = FALSE%in%sapply(counts,is.numeric)
    if(ncol(counts)<=1){Error = "The number of columns of the counts table must be at least 2" }
    if(nrow(counts)<=1){Error = "The number of rows of the counts table must be at least 2" }
    if(numTest){Error = "The counts table must contain only numeric values" }
    if(!numTest)
    {
      if(0%in%colSums(counts)){Error = "At least one of the column of the counts table is 0" }
      if(min(counts)<0){Error = "The counts table must contain only positive values" }
    }
    if(TRUE%in%sapply(counts,is.na)){Warning = "NA values are considered as 0 is the counts table"; counts[sapply(counts,is.na)]=0}
    
  
    return(list(Error=Error,Warning=Warning,counts=counts))
  }
  
  CheckTaxoTable <- function(taxo)
stevenn's avatar
stevenn committed
64
  {
Stevenn Volant's avatar
Stevenn Volant committed
65
66
67
68
69
70
71
72
73
74
75
76
    Error = NULL
    Warning = NULL
    if(ncol(taxo)<=1){Error = "The number of columns of the taxonomy table must be at least 2" }
    if(nrow(taxo)<=1){Error = "The number of rows if the taxonomy table must be at least 2" }
    if(TRUE%in%is.numeric(taxo)){Error = "The taxonomy table must contain only character" }

    for(i in 1:ncol(taxo))
    {
      level = levels(taxo[,i])
      nb = length(level)
      if(nb==1 && level=="NA"){ Error = "At least one column contains only NA"}
    }
stevenn's avatar
stevenn committed
77
    
Stevenn Volant's avatar
Stevenn Volant committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    return(list(Error=Error,Warning=Warning))
  }
  
  PercentAnnot <- function(counts,taxo)
  {
    Error = NULL  
    tmp = table(rownames(counts)%in%rownames(taxo))
    Percent = tmp["TRUE"]/sum(tmp)
    if(is.na(Percent)) Percent = 0
    if(Percent==0){Error = "Counts table and annotation do not matched" }
       
    return(list(Error=Error,Percent=Percent))
  }
  
  
  GetDataFromBIOM <-function(dataBIOM)
  {
    ## Counts table
stevenn's avatar
stevenn committed
96
    counts = biom_data(dataBIOM)
stevenn's avatar
stevenn committed
97
98
    counts = as.matrix(counts)
    counts = as.data.frame(counts)
Stevenn Volant's avatar
Stevenn Volant committed
99
100
101
102
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
stevenn's avatar
stevenn committed
103
    taxo = as.data.frame(observation_metadata(dataBIOM))
Stevenn Volant's avatar
Stevenn Volant committed
104
105
106
107
108
109
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
110
  }
stevenn's avatar
stevenn committed
111
112
  
  
stevenn's avatar
stevenn committed
113
114
115
  GetDataFromCT <-function(dataC,dataT)
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
116
    ## Counts table
stevenn's avatar
stevenn committed
117
    counts = dataC
Stevenn Volant's avatar
Stevenn Volant committed
118
119
120
121
122
123
124
125
126
127
128
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
    taxo = as.data.frame(dataT)
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
129
130
131
  }
  
  GetInteraction2 <- function(target)
stevenn's avatar
stevenn committed
132
  { 
stevenn's avatar
stevenn committed
133
134
135
136
    res=c()
    namesTarget = colnames(target)[2:ncol(target)]
    k=1
    for(i in 1:(length(namesTarget)-1))
stevenn's avatar
stevenn committed
137
    { 
stevenn's avatar
stevenn committed
138
139
140
141
142
      for(j in (i+1):length(namesTarget))
      { 
        res[k] = paste(namesTarget[i],":",namesTarget[j],sep="")
        k = k+1
      }
stevenn's avatar
stevenn committed
143
    }
stevenn's avatar
stevenn committed
144
145
    
    return(res)
stevenn's avatar
stevenn committed
146
147
148
149
  }
  


Amine  GHOZLANE's avatar
Amine GHOZLANE committed
150
  ## Print the contrasts
stevenn's avatar
stevenn committed
151
152
153
154
155
156
157
158
159
160
  PrintContrasts <- function (coefs, contrasts,contnames) 
  {
    contrasts = as.matrix(contrasts)
    out <-""
    
    for (i in 1:ncol(contrasts)) 
    {
      contrast <- contrasts[,i]
      contrast <- paste(ifelse(contrast > 0, "+ ", ""), contrast, sep = "")
      contrast <- gsub("( 1)|(1)", "", contrast)
161
      out = paste(out,paste("<b>",contnames[i], "</b> <br/>", paste(contrast[contrast != 0], coefs[contrast != 0], collapse = " ", sep = " ")),"<br/>")
stevenn's avatar
stevenn committed
162
163
164
165
    }
    return(out)
    
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
166
167

  
stevenn's avatar
stevenn committed
168
169
  
  ## Get the counts for the selected taxonomy
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
170
  GetCountsMerge <- function(input,dataInput,taxoSelect,target,design)
stevenn's avatar
stevenn committed
171
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
172
173
    counts= NULL
    CheckTarget = FALSE
Stevenn Volant's avatar
Stevenn Volant committed
174
175
    CT_noNorm = NULL
    normFactors = NULL
stevenn's avatar
stevenn committed
176
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
177
    ## Counts and taxo tables
stevenn's avatar
stevenn committed
178
179
    CT = dataInput$counts
    taxo = dataInput$taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
180
181
182
183
        
    ## Select cols in the target
    labels = target[,1]
    ind = which(colnames(CT)%in%labels)
stevenn's avatar
stevenn committed
184
    
stevenn's avatar
stevenn committed
185
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
186
187
188
189
190
    if(length(ind)==length(labels))
    { 
      CT = CT[,ind]
      
      ## Order CT according to the target
191
      CT = OrderCounts(counts=CT,labels=labels)$CountsOrder
Stevenn Volant's avatar
Stevenn Volant committed
192
      CT_noNorm = CT
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
193
194
195
196
#       ind0 = which(rowSums(CT)==0)
#       if(length(ind0)>0) CT = CT[-ind0,]
      
      ## Counts normalisation
Stevenn Volant's avatar
Stevenn Volant committed
197

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
198
199
      dds <- DESeqDataSetFromMatrix(countData=CT, colData=target, design=design)
      dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
Stevenn Volant's avatar
Stevenn Volant committed
200
201
      normFactors = sizeFactors(dds)

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
202
203
204
205
      CT = as.data.frame(round(counts(dds, normalized = TRUE)))
      ordOTU = order(rownames(taxo))
      indOTU_annot = which(rownames(CT)%in%rownames(taxo))
      counts_annot = CT[indOTU_annot[ordOTU],]
206

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
207
208
      if(taxoSelect=="OTU") counts = counts_annot
      else{
Stevenn Volant's avatar
Stevenn Volant committed
209
210
211
        taxoS = taxo[ordOTU,taxoSelect]
        counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),sum)
        rownames(counts)=counts[,1];counts=counts[,-1]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
212
213
214
      }
      
      ## Ordering the counts table according to the target labels 
215
216
217
      tmpOrder = OrderCounts(counts,normFactors,labels)
      counts = tmpOrder$CountsOrder
      normFactors = tmpOrder$normFactorsOrder
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
218
219
      CheckTarget = TRUE
    }
Stevenn Volant's avatar
Stevenn Volant committed
220
    return(list(counts=counts,CheckTarget=CheckTarget,normFactors=normFactors, CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
221
222
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
223
  ## Order the counts 
224
  OrderCounts <- function(counts,normFactors=NULL,labels)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
225
226
227
  {
    n = length(labels)
    CountsOrder = counts
228
    normFactorsOrder = normFactors
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
229
230
231
232
233
    for(i in 1:n)
    {
      
      ind = which(labels[i]==colnames(counts))
      CountsOrder[,i] = counts[,ind]
234
      if(!is.null(normFactors)) normFactorsOrder[i] = normFactors[ind]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
235
236
    }
    colnames(CountsOrder) = labels
237
    return(list(CountsOrder=CountsOrder,normFactorsOrder = normFactorsOrder))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
238
239
240
  }
  
  
stevenn's avatar
stevenn committed
241
  ## Get the dds object of DESeq2
Stevenn Volant's avatar
Stevenn Volant committed
242
  Get_dds_object <- function(input,counts,target,design,normFactorsOTU,CT_noNorm)
stevenn's avatar
stevenn committed
243
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
244
    
stevenn's avatar
stevenn committed
245
    dds <- DESeqDataSetFromMatrix(countData=counts, colData=target, design=design)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
246
    normFactors = rep(1,nrow(target))
stevenn's avatar
stevenn committed
247
    ## Size factor estimation
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
248
249
250
    #dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
    #normalizationFactors(dds) <- normFactors
    sizeFactors(dds)<- normFactors
stevenn's avatar
stevenn committed
251
252
    dds <- estimateDispersions(dds, fitType=input$fitType)
    dds <- nbinomWaldTest(dds)
Stevenn Volant's avatar
Stevenn Volant committed
253
    return(list(dds = dds,counts=counts,target=target,design=design,normFactors = normFactorsOTU,CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  }

  ## Get the design according to the input
  GetDesign <- function(input)
  {
    InterVar = input$InterestVar
    Interaction = input$Interaction2
    alltmp = c(InterVar,Interaction)
    design = as.formula(paste("~", paste0(alltmp, collapse= "+")))
    return(design)
  }
  


  ## Diagnostic Plots
  Plot_diag <- function(input,resDiff)
  {
Stevenn Volant's avatar
Stevenn Volant committed
271
    
stevenn's avatar
stevenn committed
272
273
274
275
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
276
    normFactors = resDiff$normFactors
Stevenn Volant's avatar
Stevenn Volant committed
277
    CT_noNorm = resDiff$CT_noNorm
stevenn's avatar
stevenn committed
278
    group = as.data.frame(target[,VarInt])
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
279
    rownames(group) = rownames(target)
Stevenn Volant's avatar
Stevenn Volant committed
280
    res = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
281
    
Stevenn Volant's avatar
Stevenn Volant committed
282
283
    if(ncol(group)>0 && nrow(counts)>0)
    { 
Stevenn Volant's avatar
Stevenn Volant committed
284
285
      colors = rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                     "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nrow(target)/20))
Stevenn Volant's avatar
Stevenn Volant committed
286
287
288
289
290
      
      if(input$DiagPlot=="barplotTot") res = barplotTot(input,counts,group = group, col=colors)
      if(input$DiagPlot=="barplotNul") res = barPlotNul(input,counts, group = group, col=colors)
      if(input$DiagPlot=="densityPlot") res = densityPlotTot(input,counts, group = group, col=colors)
      if(input$DiagPlot=="MajTax") res = majTaxPlot(input,counts, group = group, col=colors)
Stevenn Volant's avatar
Stevenn Volant committed
291
      #if(input$DiagPlot=="SERE") res = SEREplot(input,counts)
Stevenn Volant's avatar
Stevenn Volant committed
292
293
294
      #if(input$DiagPlot=="Sfactors") diagSFactors(input,dds,frame=1) 
      if(input$DiagPlot=="SfactorsVStot") res = diagSFactors(input,dds,normFactors,CT_noNorm,frame=2) 
      if(input$DiagPlot=="pcaPlot") res = PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
Stevenn Volant's avatar
Stevenn Volant committed
295
      if(input$DiagPlot=="pcoaPlot") res = PCoAPlot_meta(input,dds, group, col = colors) 
Stevenn Volant's avatar
Stevenn Volant committed
296
297
      if(input$DiagPlot=="clustPlot") res = HCPlot(input,dds,group,type.trans=input$TransType)
    }
298
    
Stevenn Volant's avatar
Stevenn Volant committed
299
    return(res)
stevenn's avatar
stevenn committed
300
301
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  
#   HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
#   {
#     counts = as.data.frame(round(counts(dds, normalized = TRUE)))
#     if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
#     if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
#     
#     hc <- hclust(dist(t(counts.trans)), method = "ward.D")
#     
#     type <- switch(input$typeHculst,
#                   "radial"="radial",
#                   "fan"="fan",
#                   "triangle"="cladogram",,
#                   "hori"= "hori",
#                   "verti"=NULL)
#     
#     par(cex=input$cexLabelDiag,mar=c(12,5,8,5))
#     if(input$colorHC && type=="hori") 
#     {
#       hc = dendrapply(as.dendrogram(hc),colLabdendo,group) 
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram")
#     }
#     
#     if(!input$colorHC && type=="hori") 
#     {
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram",hang=-1)
#     }
#     
#     if(type!="hori") 
#     { 
#       group = apply(group,1,paste, collapse = "-")
#       nb = length(unique(group))
#       plot(as.phylo(hc), type= type,label.offset = 1, tip.color = ifelse(input$colorHC, rainbow(nb)[as.integer(as.factor(group))], rep(1,nb)))
#     }
#     dev.off() 
#   }
  
  HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
342
343
    res = NULL
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
344
345
346
347
348
349
350
351
352
353
    ## Get the counts
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
    
    ## Get the group of leaf
    group = apply(group,1,paste, collapse = "-")    
    nb = length(unique((group)))
    
    ## Get the dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
354
355
356
357
    if(input$DistClust!="sere") dist = vegdist(t(counts), method = input$DistClust)
    if(input$DistClust=="sere") dist = as.dist(SEREcoef(counts))
    hc <- hclust(dist, method = "ward.D")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
358
359
360
    dend = as.dendrogram(hc)
    
    ## Get the type of dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
361
    type <- input$typeHculst
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
362
363
364
365
366
367
    
    dend <- set(dend, "labels_cex", input$cexLabelDiag)
    if(input$colorHC) labels_colors(dend)<-rainbow(nb)[as.integer(as.factor(group))][order.dendrogram(dend)]
    
    if(type=="hori") 
    { 
Stevenn Volant's avatar
Stevenn Volant committed
368
369
      par(cex=input$cexTitleDiag,mar = c(0.3,2,0.3,2))
      res = plot(dend, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "),cex=input$cexLabelDiag)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
370
371
372
    }  
    if(type!="hori")
    {
Stevenn Volant's avatar
Stevenn Volant committed
373
      par(cex=input$cexTitleDiag,mar = c(0.3,2,0.3,2))
Stevenn Volant's avatar
Stevenn Volant committed
374
      res = circlize_dendrogram(dend, labels_track_height = 0.2, dend_track_height = .3, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
375
    }
Stevenn Volant's avatar
Stevenn Volant committed
376
    return(res)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
377
378
379
380
381
382
383
384
385
386
  }
  
  
  ## Color for the horizontal dendro
  colLabdendo <- function(n,group) {
    
    group = apply(group,1,paste, collapse = "-")
    
    nb = length(unique((group)))
    namesGrp = names(group)
stevenn's avatar
stevenn committed
387

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
    }
    return(n)
  }
  
  ## Diagnostic Plots Eigen value
  Plot_diag_Eigen <- function(input,resDiff)
  {
    colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    
    ## If more than 4 levels for one factor
    maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    if(maxFact>=4) colors = rainbow(maxFact) 
    
    PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
  }
  
  Plot_diag_pcoaEigen = function(input,resDiff)
  {
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
    VarInt = input$VarInt
    dds = resDiff$dds
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    rownames(group) = rownames(target)
    PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
  }
  
  
  
stevenn's avatar
stevenn committed
426
427

  ## barplot total
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
428
  barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
429
  {
Stevenn Volant's avatar
Stevenn Volant committed
430

stevenn's avatar
stevenn committed
431
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
432
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
433
    barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
stevenn's avatar
stevenn committed
434
435
436
            ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
437
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
stevenn's avatar
stevenn committed
438
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
Stevenn Volant's avatar
Stevenn Volant committed
439
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
440
441
442
443
444
  
  }


  ## barplot Nul 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
445
  barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
446
447
448
  {
    
    percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
449
    percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
stevenn's avatar
stevenn committed
450
451
    ncol1 <- ncol(group) == 1
    
Stevenn Volant's avatar
Stevenn Volant committed
452
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
453

stevenn's avatar
stevenn committed
454
455
456
457
    barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
            density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
458
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]},
stevenn's avatar
stevenn committed
459
460
461
462
463
464
            cex.names = cex.names, ylab = "Proportion of null counts", 
            main = "Proportion of null counts per sample", 
            ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
    
    abline(h = percentage.allNull, lty = 2, lwd = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
Stevenn Volant's avatar
Stevenn Volant committed
465
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
466
467
468
469
  }


  ## Plot density
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
470
  densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
471
472
473
474
  {
    
    counts <- removeNulCounts(counts)
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
475
    par(cex=input$cexTitleDiag,mar=c(8,5,4,5))
stevenn's avatar
stevenn committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
         xlab = expression(log[2] ~ (raw ~ count + 1)), 
         ylim = c(0, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
         lty = if (ncol1) {1}
         else{c(1, 2, 3, 4)[as.integer(group[, 2])[1]]}, 
         col = col[as.integer(group[, 1])[1]])
    
    for (i in 2:ncol(counts)) 
    {
      lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
            lty = if (ncol1) {1}
            else {c(1, 2, 3, 4)[as.integer(group[, 2])[i]]})
    }
    legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), lty = c(1, 2, 3, 4)[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
    
  }


  ## Table of maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
496
  majTab <- function(input,counts,n)
stevenn's avatar
stevenn committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
  {
    seqnames <- apply(counts, 2, function(x) {
      x <- sort(x, decreasing = TRUE)
      names(x)[1:n]
    })
    seqnames <- unique(unlist(as.character(seqnames)))
    sum <- apply(counts, 2, sum)
    counts <- counts[seqnames, ]
    sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
    p <- round(100 * counts/sum, digits = 3)
    return(p)
  }


  ## Plot maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
512
  majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
513
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
514
    p = majTab(input,counts,n)
stevenn's avatar
stevenn committed
515
516
517
    maj <- apply(p, 2, max)
    seqname <- rownames(p)[apply(p, 2, which.max)]
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
518
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
519
    x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
stevenn's avatar
stevenn committed
520
                 ylim = c(0, max(maj) * 1.2), cex.main = 1, 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
521
                 cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
stevenn's avatar
stevenn committed
522
523
524
                 density = if (ncol1) {NULL}
                 else {15}, 
                 angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
525
                 else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]})
stevenn's avatar
stevenn committed
526
527
528
    
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
Stevenn Volant's avatar
Stevenn Volant committed
529
                       angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
530
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
531
    for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
stevenn's avatar
stevenn committed
532
533
534
535
  }
  

  ## plot SERE Coefs
Stevenn Volant's avatar
Stevenn Volant committed
536
537
538
539
540
541
542
#   SEREplot<-function(input,counts) 
#   {
#     sere = SEREcoef(counts)
#     hc <- hclust(as.dist(sere), method = "ward.D")
#     plot(hc, las = 2, hang = -1, xlab = "SERE distance, Ward criterion",main = "Cluster dendrogram\non SERE values")
#     
#   }
stevenn's avatar
stevenn committed
543
544
545
546
547
  
  
  ## Get the SERE COEF
  SEREcoef<-function(counts)
  {
Stevenn Volant's avatar
Stevenn Volant committed
548
549
550
551
    counts = as.matrix(counts)
    sere <- matrix(0, ncol = ncol(counts), nrow = ncol(counts))
    for (i in 1:(ncol(counts)-1)) {
      for (j in (i+1):ncol(counts)) {
stevenn's avatar
stevenn committed
552
553
554
        sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
      }
    }
Stevenn Volant's avatar
Stevenn Volant committed
555
    sere=sere+t(sere)
stevenn's avatar
stevenn committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    colnames(sere) <- rownames(sere) <- colnames(counts)
    sere <- round(sere, digits = 3)
    
    return(sere) 
  }
  

  ## function for the SERE coef
  sigfun_Pearson_meta <- function(observed) {
    laneTotals <- colSums(observed)
    total <- sum(laneTotals)
    fullObserved <- observed[rowSums(observed) > 0, ]
    fullLambda <- rowSums(fullObserved)/total
    fullLhat <- fullLambda > 0
    fullExpected <- outer(fullLambda, laneTotals)
    fullKeep <- which(fullExpected > 0)
    oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
    dfFull <- length(fullKeep) - sum(fullLhat != 0)
    sqrt(sum(oeFull)/dfFull)
  }
stevenn's avatar
stevenn committed
576
577


stevenn's avatar
stevenn committed
578
  ## Plots of size factors
Stevenn Volant's avatar
Stevenn Volant committed
579
  diagSFactors<-function (input,dds,normFactors,CT_noNorm,frame=1) 
stevenn's avatar
stevenn committed
580
  {
Stevenn Volant's avatar
Stevenn Volant committed
581
582
583
584
585
586
    counts = CT_noNorm
    geomeans <- exp(rowMeans(log(counts)))
    samples <- colnames(counts)
#     counts.trans <- log2(counts/geomeans)
#     xmin <- min(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
#     xmax <- max(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
587
#     
Stevenn Volant's avatar
Stevenn Volant committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# #     if(!is.na(input$NbcolSfactors)) parCols = as.numeric(input$NbcolSfactors)
# #     else parCols = ceiling(ncol(counts.trans)/3)
# #     
# #     parRows = ceiling(ncol(counts.trans)/parCols)
# 
#     if(frame==1)
#     {
#       par(mfrow=c(parRows,parCols))
#       for (j in 1:ncol(dds)) {
#         hist(log2(counts[, j]/geomeans), nclass = 100, 
#              xlab = expression(log[2] ~ (counts/geometric ~ mean)), las = 1, xlim = c(xmin, xmax), 
#              main = paste("Size factors diagnostic - Sample ",samples[j], sep = ""), col = "skyblue")
#         
#         abline(v = log2(normFactors[j]), col = "red", lwd = 1.5)
#       }
#     }
stevenn's avatar
stevenn committed
604
605
606
    
    if(frame==2)
    {
Stevenn Volant's avatar
Stevenn Volant committed
607
608
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
      plot(normFactors, colSums(counts), pch = 19, las = 1,cex = ifelse(input$addLabelSFact,0,input$cexLabelDiag),
stevenn's avatar
stevenn committed
609
610
           ylab = "Total number of reads", xlab = "Size factors", 
           main = "Diagnostic: size factors vs total number of reads")
Stevenn Volant's avatar
Stevenn Volant committed
611
      if(input$addLabelSFact) text(normFactors,colSums(counts),labels = samples,cex=input$cexLabelDiag)
Stevenn Volant's avatar
Stevenn Volant committed
612
      abline(lm(colSums(counts) ~ normFactors + 0), lty = 2, col = "grey")
stevenn's avatar
stevenn committed
613
614
    }
  }
stevenn's avatar
stevenn committed
615

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
616
617
618
619
620
  
  ### PCoA
  PCoAPlot_meta <-function (input,dds, group_init,col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
  {
    cval=c()
Stevenn Volant's avatar
Stevenn Volant committed
621
    time_set = 0
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
622
623
    # Set of shape
    shape=c(19,17,15,18)
Stevenn Volant's avatar
Stevenn Volant committed
624
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
625
626
    ## Var of interest
    VarInt  = input$VarInt
Stevenn Volant's avatar
Stevenn Volant committed
627
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    ## Group
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
Stevenn Volant's avatar
Stevenn Volant committed
643
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
644
645
646
647
648
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
Stevenn Volant's avatar
Stevenn Volant committed
649
650
651
652
653
654
655
656
657
    if(nlevels(group)!=0)
    { 
      ## Get the norm data
      counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
      
      # was removed
      counts.norm = counts.norm[,ind_kept]
  
      ## Get the distance
Stevenn Volant's avatar
Stevenn Volant committed
658
659
660
      if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
      if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
      
Stevenn Volant's avatar
Stevenn Volant committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
      ## Do PCoA
      pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=3)
      
      ## Get eigen values
      eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
      
      ## xlim and ylim of the plot
      min = min(pco.counts.norm$li)
      max = max(pco.counts.norm$li)
      
      ## get condition set
      condition_set=val[which(val %in% unique(group_init$condition))]
      time_set=val[which(val %in% unique(group_init$time))]
      
      ## Colors
      if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
      {
        col = rainbow(length(condition_set) * length(time_set))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
679
      }
Stevenn Volant's avatar
Stevenn Volant committed
680
681
682
683
684
685
686
687
688
689
690
      #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
      #  col = rep(col[1:length(condition_set)], length(time_set))
      #}
      if (length(time_set) == 1 && length(condition_set) <= 4){
        cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
        cval = sort(cval)
      }
      
      # to reactivate
      #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
      if (plot == "pcoa"){
Stevenn Volant's avatar
Stevenn Volant committed
691
        par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
692
693
        ## Plot axis, label and circles
        plot(pco.counts.norm$li[1:2], xlab=paste("PC1 : ",round(eigen[1],1),"%") , ylab=paste("PC2 : ",round(eigen[2],1),"%"),
Stevenn Volant's avatar
Stevenn Volant committed
694
             xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), cex.axis=1, cex.lab=1,lwd=2, type="n",main='Principal Coordinates Analysis ')
Stevenn Volant's avatar
Stevenn Volant committed
695
696
697
698
699
700
701
702
703
        # Set different shapes
        if(input$labelPCOA == "Group"){
          if(!is.null(cval)){
            for (i in 1:length(cval)){
              points(pco.counts.norm$li[which(group==cval[i]),1:2],pch=shape[i],col=col[i], cex=input$cexpoint)
            }
            s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                    add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
          }else s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
Stevenn Volant's avatar
Stevenn Volant committed
704
                        add.plot = TRUE, cpoint = input$cexTitleDiag, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
Stevenn Volant's avatar
Stevenn Volant committed
705
706
707
708
709
710
711
712
713
714
        }  
        else{
          s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
          s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
        }
      }else{
        barplot(eigen[1:7], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:7, col = c(rep("black", 2), rep("grey", 5)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
      }
  }
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
  }
  
  ### PCA
  PCAPlot_meta <-function (input,dds, group, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
                           col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
  {
    type.trans <- type.trans[1]
    
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    else counts.trans <- assay(rlogTransformation(dds))
    
    rv = apply(counts.trans, 1, var, na.rm = TRUE)
    pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
    
    if(plot=="pca")
    { 
      prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
      prp <- round(prp, 2)
      ncol1 <- ncol(group) == 1
      
Stevenn Volant's avatar
Stevenn Volant committed
735
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
736
737
738
739
740
741
      
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 2])
      ord = abs(ord[2] - ord[1])/25
      
Stevenn Volant's avatar
Stevenn Volant committed
742
      par(mfrow = c(1, 2),cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
743
      plot(pca$x[, 1], pca$x[, 2], las = 1, cex = input$cexTitleDiag, col = col[as.integer(group[,1])], 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
744
745
746
747
748
749
750
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]},
           xlab = paste0("PC1 (", prp[1], "%)"),
           ylab = paste0("PC2 (", prp[2], "%)"), 
           main = "Principal Component Analysis",
            )
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
Stevenn Volant's avatar
Stevenn Volant committed
751
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,2] - ifelse(pca$x[, 2] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
752
753
754
755
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 3])
      ord = abs(ord[2] - ord[1])/25
Stevenn Volant's avatar
Stevenn Volant committed
756
      plot(pca$x[, 1], pca$x[, 3], las = 1, cex = input$cexTitleDiag, col = col[as.integer(group[, 1])], 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]}, 
           xlab = paste0("PC1 (", prp[1], "%)"), 
           ylab = paste0("PC3 (", prp[3], "%)"), 
           main = "Principal Component Analysis")
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,3] - ifelse(pca$x[, 3] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
    }
    
    if(plot=="eigen") barplot(pca$sdev^2, main = "Eigen values of the PCA", names.arg = 1:length(pca$sdev), xlab = "Axes")
  }
  
  
  
stevenn's avatar
stevenn committed
771

stevenn's avatar
stevenn committed
772
773
774
775
776
  ############################################################
  ##
  ##              CREATE THE CONTRAST DATABASE
  ##
  ############################################################
stevenn's avatar
stevenn committed
777

stevenn's avatar
stevenn committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
  
  BaseContrast <- function(input,names,namesfile)
  {  

    v_tmp = c()
    filesize = file.info(namesfile)[,"size"]
    
    for(i in 1:length(names))
    {  
      Tinput = paste("input$",names[i],sep="")
      expr=parse(text=Tinput)
      val = eval(expr) 
      v_tmp[i] = as.numeric(val)
    }
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
      colnamesTmp = c(colnames(oldContrast),input$ContrastName)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = input$ContrastName; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
  ## Remove nul counts
  removeNulCounts <-function (counts) 
  {
    return(counts[rowSums(counts) > 0, ])
  }
stevenn's avatar
stevenn committed
810
811

  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
812
813
814
815
816
  ############################################################
  ##
  ##              VISUALISATION PLOTS
  ##
  ############################################################
stevenn's avatar
stevenn committed
817
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
818
819
820
821
822
823
824
825
  GetDataToPlot <- function(resDiff,VarInt,ind_taxo,aggregate=TRUE)
  {
    dds = resDiff$dds
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    target = resDiff$target
    counts_tmp_combined = NULL
    prop_tmp_combined = NULL
    targetInt = NULL
Stevenn Volant's avatar
Stevenn Volant committed
826
    namesCounts = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
827
828
829
    ## Select a subset within the taxonomy level (default is the 12 most abundant)
    nbKept = length(ind_taxo)
    Taxonomy = rownames(counts)
stevenn's avatar
stevenn committed
830
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
831
832
833
834
835
836
837
838
839
840
    if (length(VarInt)>0 && nbKept>0)
    { 
      ## Create the variable to plot
      targetInt = as.data.frame(target[,VarInt])
      rownames(targetInt)=target[,1]  
      if(length(VarInt)>1) targetInt$AllVar = apply(targetInt,1,paste, collapse = "-")
      if(length(VarInt)<=1)  targetInt$AllVar = target[,VarInt]
      colnames(targetInt) = c(VarInt,"AllVar")
      ## Create the counts matrix only for the selected subset
      counts_tmp = counts[Taxonomy%in%ind_taxo,]
stevenn's avatar
stevenn committed
841

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
842
843
844
845
846
      ## Be careful transposition !
      if(aggregate)
      { 
        counts_tmp_combined = aggregate(t(counts_tmp),by=list(targetInt$AllVar),sum)
        rownames(counts_tmp_combined) = counts_tmp_combined$Group.1
Stevenn Volant's avatar
Stevenn Volant committed
847
        namesCounts = counts_tmp_combined$Group.1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
848
849
850
851
852
853
854
        counts_tmp_combined = as.matrix(counts_tmp_combined[,-1])
      }
      if(!aggregate)
      {  
        counts_tmp_combined = t(counts_tmp)
        prop_tmp_combined = counts_tmp_combined/colSums(counts)
        rownames(counts_tmp_combined) = targetInt$AllVar
Stevenn Volant's avatar
Stevenn Volant committed
855
        namesCounts = targetInt$AllVar
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
856
857
        rownames(prop_tmp_combined) = targetInt$AllVar
      }
Stevenn Volant's avatar
Stevenn Volant committed
858
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
859
860
861
862
863
864
865
      ## Ordering the counts
      MeanCounts = apply(counts_tmp_combined,2,mean)
      ord = order(MeanCounts,decreasing=TRUE)
      counts_tmp_combined = as.matrix(counts_tmp_combined[,ord])
      if(!aggregate) prop_tmp_combined = as.matrix(prop_tmp_combined[,ord])
    }
    
Stevenn Volant's avatar
Stevenn Volant committed
866
      return(list(counts = counts_tmp_combined,targetInt=targetInt,prop=prop_tmp_combined,namesCounts=namesCounts))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
867
868
869
    
    
  }
stevenn's avatar
stevenn committed
870
871
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
872
873
874
875
876
877
  
  ###########################
  ## Plots for visualisation
  ###########################
  
  Plot_Visu_Barplot <- function(input,resDiff)
stevenn's avatar
stevenn committed
878
  {
879
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
880
    ## Get Input for BarPlot
881
882
    VarInt = input$VisuVarInt
    ind_taxo = input$selectTaxoPlot
stevenn's avatar
stevenn committed
883
    
Stevenn Volant's avatar
Stevenn Volant committed
884
885
    tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)
    counts_tmp_combined = tmp_combined$counts
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
886
    nbKept = length(ind_taxo)
Stevenn Volant's avatar
Stevenn Volant committed
887
888
889
890
    SamplesNames = tmp_combined$namesCounts
    
    if(nbKept>1) namesTax = colnames(counts_tmp_combined)
    if(nbKept==1) namesTax = ind_taxo
stevenn's avatar
stevenn committed
891
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
892
893
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
    { 
Stevenn Volant's avatar
Stevenn Volant committed
894
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
895
896
897
898
      ## Create the data frame for the plot function
      dataBarPlot_mat = c()
      tmp_mat = matrix(0,ncol=3,nrow=nbKept)
      tmp_counts = c()
stevenn's avatar
stevenn committed
899
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
900
901
902
        for(i in 1:(nrow(counts_tmp_combined)))
        {
          ## Taxo
Stevenn Volant's avatar
Stevenn Volant committed
903
          tmp_mat[1:nbKept,1] = namesTax
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
904
905
906
907
908
909
910
911
912
913
914
915
          
          ## Counts
  
          tmpProp = counts_tmp_combined[i,]
          if(input$CountsOrProp=="prop")
          { 
            tmpProp = round(tmpProp/sum(tmpProp),3)
            tmpProp = as.numeric(tmpProp/sum(tmpProp) * 100)
          }
          tmp_counts = c(tmp_counts,tmpProp)      
          
          ## Meta data
Stevenn Volant's avatar
Stevenn Volant committed
916
          tmp_mat[1:nbKept,3] = as.character(rep(SamplesNames[i],nbKept))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
917
918
919
920
921
922
923
924
925
926
927
          
          ## Conbined the sample
          dataBarPlot_mat = rbind(dataBarPlot_mat,tmp_mat)
        }
        
        
        ## Add numeric vector to the dataframe
        dataBarPlot_mat = as.data.frame(dataBarPlot_mat)
        
        colnames(dataBarPlot_mat) = c("Taxonomy","Proportions","AllVar")
        dataBarPlot_mat[,2] = tmp_counts
928
929
930
931
        if(input$SensPlotVisu == "Vertical") Sens = "multiBarChart"
        if(input$SensPlotVisu == "Horizontal") Sens = "multiBarHorizontalChart"
      
        plotd3 <- nvd3Plot(Proportions ~ AllVar | Taxonomy, data = dataBarPlot_mat, type = Sens, id = 'barplotTaxo',height = input$heightVisu,width=input$widthVisu)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
932
        plotd3$chart(stacked = TRUE)
Stevenn Volant's avatar
Stevenn Volant committed
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
      
        ##################################
        ## Same plot in ggplot2 for export
        ##################################
      
        tax.colors=rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                         "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nbKept/20))
        
        dataBarPlot_mat$Taxonomy = factor(dataBarPlot_mat$Taxonomy,levels = namesTax)
      
        gg= ggplot(dataBarPlot_mat, aes(x=AllVar, y=Proportions, fill=Taxonomy)) 
        gg= gg + geom_bar(stat="identity")
        gg= gg + theme_bw()+ scale_fill_manual(values=tax.colors)
        gg = gg +theme(panel.grid.minor.x=element_blank(),panel.grid.major.x=element_blank()) 
        if(input$CountsOrProp=="prop") gg = gg+labs(y="Relative abundance (%)",x="")
        if(input$CountsOrProp=="counts") gg = gg+labs(y="Abundance",x="")
        if(input$SensPlotVisu == "Horizontal") gg = gg + coord_flip()
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
950
951
952
953
954
    } 
    else{ 
      ## Pb affichage quand data NULL
      dataNull = data.frame(x=c(1,2),y=c(1,2))
      plotd3 = nvd3Plot(x ~ y , data = dataNull, type = "multiBarChart", id = 'barplotTaxoNyll',height = input$heightVisu,width=input$widthVisu)
Stevenn Volant's avatar
Stevenn Volant committed
955
956
      plotd3 = NULL
      gg = NULL
stevenn's avatar
stevenn committed
957
    }
Stevenn Volant's avatar
Stevenn Volant committed
958
    return(list(plotd3=plotd3,gg=gg))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
959
960
961
962
963
964
965
966
967
968
969
  }
  
  
  
######################################################
##
##            HEATMAP
##
######################################################
  
  
Stevenn Volant's avatar
Stevenn Volant committed
970
  Plot_Visu_Heatmap <- function(input,resDiff,export=FALSE){
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
971
  
972
973
  VarInt = input$VisuVarInt
  ind_taxo = input$selectTaxoPlot
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
974
975
976
977
978
979
980
981
982
983
984
985
986
  
  counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
  
  if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
  { 
    ## Transform to log2
    counts_tmp_combined = log2(GetDataToPlot(resDiff,VarInt,ind_taxo)$counts+1)
   
    col <- switch(input$colors,
                  "green-blue"=colorRampPalette(brewer.pal(9,"GnBu"))(200),
                  "blue-white-red"=colorRampPalette(rev(brewer.pal(9, "RdBu")))(200),
                  "purple-white-orange"=colorRampPalette(rev(brewer.pal(9, "PuOr")))(200),
                  "red-yellow-green"= colorRampPalette(rev(brewer.pal(9,"RdYlGn")))(200))
stevenn's avatar
stevenn committed
987
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
988
    ## Transpose matrix if Horizontal
989
    if(input$SensPlotVisu=="Horizontal") counts_tmp_combined = t(as.matrix(counts_tmp_combined))
Stevenn Volant's avatar
Stevenn Volant committed
990
991
992
993
994
    
    if(!export) plot = d3heatmap(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE,width = input$widthVisu, height = input$heightVisu, show_grid = FALSE, colors = col, scale = input$scaleHeatmap,cexRow = 0.6)
    
    if(export) plot = heatmap.2(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE, density.info="none", margins=c(12,8),trace="none",srtCol=45,col = col, scale = input$scaleHeatmap,cexRow = 0.6)
    return(plot)
stevenn's avatar
stevenn committed
995
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
996

stevenn's avatar
stevenn committed
997
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
998
999
1000
  }

  ######################################################