internal.R 54.3 KB
Newer Older
stevenn's avatar
stevenn committed
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

## Modified version of expand.grid
expand.grid2.list <- function(listInput)
{
  n = length(listInput)
  if(is.list(listInput) && n>1)
  {
    l1 = listInput[[1]]
    l2 = listInput[[2]]
    res = c()
    
    for(i in l1){
      for(j in l2){ 
        res = rbind(res,paste(i,j,sep = "-"))
      }
    }
    listInput[[1]] = res
    listInput = listInput[-2]
    if(length(listInput)>1 && is.list(listInput)) res = expand.grid2.list(listInput)
  }
  else res = listInput
  return(res)
}


Stevenn Volant's avatar
Stevenn Volant committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
## Function for the rdp format
getval <- function(annotation_rdp, interest, threshold_annot){
  annotation_rdp = unlist(strsplit(annotation_rdp,"\t"))
  annotation = c(annotation_rdp[1])
  for(level in interest){
    idlevel=which(annotation_rdp == level)
    if(length(idlevel)>0){
      if(as.numeric(annotation_rdp[idlevel+1]) >= threshold_annot){
        annotation = c(annotation, gsub("\"", "", annotation_rdp[idlevel-1]))
      }
      else annotation = c(annotation, "NA")
    }
    else annotation = c(annotation, "NA")  
  }
  return(annotation)
}

## Read rdp file
read_rdp <- function(filename, threshold_annot)
{
  interest=c("phylum", "class", "order", "family", "genus")
  conn <- file(filename,open="r")
  linn <-readLines(conn)
  tab=t(sapply(1:length(linn), function(i) getval(linn[i], interest, threshold_annot)))
  close(conn)
  
  if(!TRUE%in%duplicated(tab[,1])) rownames(tab)=tab[,1];tab=tab[,-1]
  colnames(tab) = c("Phylum","Class","Order","Family","Genus")
  
  return(tab)
}






CheckCountsTable <- function(counts)
  {
    Error = NULL
    Warning = NULL
    numTest = FALSE%in%sapply(counts,is.numeric)
    if(ncol(counts)<=1){Error = "The number of columns of the counts table must be at least 2" }
    if(nrow(counts)<=1){Error = "The number of rows of the counts table must be at least 2" }
    if(numTest){Error = "The counts table must contain only numeric values" }
    if(!numTest)
    {
      if(0%in%colSums(counts)){Error = "At least one of the column of the counts table is 0" }
      if(min(counts)<0){Error = "The counts table must contain only positive values" }
    }
    if(TRUE%in%sapply(counts,is.na)){Warning = "NA values are considered as 0 is the counts table"; counts[sapply(counts,is.na)]=0}
    
  
    return(list(Error=Error,Warning=Warning,counts=counts))
  }
  
svolant's avatar
svolant committed
83
  CheckTaxoTable <- function(taxo,counts)
stevenn's avatar
stevenn committed
84
  {
Stevenn Volant's avatar
Stevenn Volant committed
85
86
    Error = NULL
    Warning = NULL
svolant's avatar
svolant committed
87
    if(ncol(taxo)<1){Error = "The number of columns of the taxonomy table must be at least 1" }
Stevenn Volant's avatar
Stevenn Volant committed
88
89
90
91
92
93
94
95
96
    if(nrow(taxo)<=1){Error = "The number of rows if the taxonomy table must be at least 2" }
    if(TRUE%in%is.numeric(taxo)){Error = "The taxonomy table must contain only character" }

    for(i in 1:ncol(taxo))
    {
      level = levels(taxo[,i])
      nb = length(level)
      if(nb==1 && level=="NA"){ Error = "At least one column contains only NA"}
    }
stevenn's avatar
stevenn committed
97
    
svolant's avatar
svolant committed
98
99
100
    ## Annotated features without counts
    if(!any(rownames(taxo)%in%rownames(counts))){ Error = "Some annotated features are not in the count table"}
    
Stevenn Volant's avatar
Stevenn Volant committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    return(list(Error=Error,Warning=Warning))
  }
  
  PercentAnnot <- function(counts,taxo)
  {
    Error = NULL  
    tmp = table(rownames(counts)%in%rownames(taxo))
    Percent = tmp["TRUE"]/sum(tmp)
    if(is.na(Percent)) Percent = 0
    if(Percent==0){Error = "Counts table and annotation do not matched" }
       
    return(list(Error=Error,Percent=Percent))
  }
  
  
  GetDataFromBIOM <-function(dataBIOM)
  {
    ## Counts table
stevenn's avatar
stevenn committed
119
    counts = biom_data(dataBIOM)
stevenn's avatar
stevenn committed
120
121
    counts = as.matrix(counts)
    counts = as.data.frame(counts)
Stevenn Volant's avatar
Stevenn Volant committed
122
123
124
125
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
stevenn's avatar
stevenn committed
126
    taxo = as.data.frame(observation_metadata(dataBIOM))
svolant's avatar
svolant committed
127
    CheckTaxo = CheckTaxoTable(taxo,counts)
Stevenn Volant's avatar
Stevenn Volant committed
128
129
130
131
132
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
133
  }
stevenn's avatar
stevenn committed
134
135
  
  
stevenn's avatar
stevenn committed
136
137
138
  GetDataFromCT <-function(dataC,dataT)
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
139
    ## Counts table
stevenn's avatar
stevenn committed
140
    counts = dataC
Stevenn Volant's avatar
Stevenn Volant committed
141
142
143
144
145
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
    taxo = as.data.frame(dataT)
svolant's avatar
svolant committed
146
    CheckTaxo = CheckTaxoTable(taxo,counts)
Stevenn Volant's avatar
Stevenn Volant committed
147
148
149
150
151
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
152
153
154
  }
  
  GetInteraction2 <- function(target)
stevenn's avatar
stevenn committed
155
  { 
stevenn's avatar
stevenn committed
156
157
158
159
    res=c()
    namesTarget = colnames(target)[2:ncol(target)]
    k=1
    for(i in 1:(length(namesTarget)-1))
stevenn's avatar
stevenn committed
160
    { 
stevenn's avatar
stevenn committed
161
162
163
164
165
      for(j in (i+1):length(namesTarget))
      { 
        res[k] = paste(namesTarget[i],":",namesTarget[j],sep="")
        k = k+1
      }
stevenn's avatar
stevenn committed
166
    }
stevenn's avatar
stevenn committed
167
168
    
    return(res)
stevenn's avatar
stevenn committed
169
170
171
172
  }
  


Amine  GHOZLANE's avatar
Amine GHOZLANE committed
173
  ## Print the contrasts
stevenn's avatar
stevenn committed
174
175
176
177
178
179
180
181
182
183
  PrintContrasts <- function (coefs, contrasts,contnames) 
  {
    contrasts = as.matrix(contrasts)
    out <-""
    
    for (i in 1:ncol(contrasts)) 
    {
      contrast <- contrasts[,i]
      contrast <- paste(ifelse(contrast > 0, "+ ", ""), contrast, sep = "")
      contrast <- gsub("( 1)|(1)", "", contrast)
184
      out = paste(out,paste("<b>",contnames[i], "</b> <br/>", paste(contrast[contrast != 0], coefs[contrast != 0], collapse = " ", sep = " ")),"<br/>")
stevenn's avatar
stevenn committed
185
186
187
188
    }
    return(out)
    
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
189
190

  
stevenn's avatar
stevenn committed
191
192
  
  ## Get the counts for the selected taxonomy
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
193
  GetCountsMerge <- function(input,dataInput,taxoSelect,target,design)
stevenn's avatar
stevenn committed
194
  {
195
    ## Init
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
196
197
    counts= NULL
    CheckTarget = FALSE
Stevenn Volant's avatar
Stevenn Volant committed
198
199
    CT_noNorm = NULL
    normFactors = NULL
200
201
    FeatureSize = NULL

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
202
    ## Counts and taxo tables
stevenn's avatar
stevenn committed
203
204
    CT = dataInput$counts
    taxo = dataInput$taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
205
206
207
208
        
    ## Select cols in the target
    labels = target[,1]
    ind = which(colnames(CT)%in%labels)
stevenn's avatar
stevenn committed
209
    
210
211
212
    ## Get the feature size for the normalisation
    Size_indcol = which(toupper(colnames(CT))%in%"SIZE")
    if(length(Size_indcol)==1) FeatureSize = CT[,Size_indcol]
stevenn's avatar
stevenn committed
213
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
214
215
216
217
218
    if(length(ind)==length(labels))
    { 
      CT = CT[,ind]
      
      ## Order CT according to the target
219
      CT = OrderCounts(counts=CT,labels=labels)$CountsOrder
Stevenn Volant's avatar
Stevenn Volant committed
220
      CT_noNorm = CT
221
      RowProd = sum(apply(CT_noNorm,1,prod))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
222
223
224
      
      ## Counts normalisation
      dds <- DESeqDataSetFromMatrix(countData=CT, colData=target, design=design)
225
226
227
228
229
      
      ## Normalisation with or without 0
      if(input$AccountForNA || RowProd==0) dds = estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)),geoMeans=GeoMeansCT(CT))
      if(!input$AccountForNA && RowProd!=0) dds = estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
       
Stevenn Volant's avatar
Stevenn Volant committed
230
      normFactors = sizeFactors(dds)
231
        
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
232
233
234
      ordOTU = order(rownames(taxo))
      indOTU_annot = which(rownames(CT)%in%rownames(taxo))
      counts_annot = CT[indOTU_annot[ordOTU],]
235

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
236
237
      if(taxoSelect=="OTU") counts = counts_annot
      else{
Stevenn Volant's avatar
Stevenn Volant committed
238
239
240
        taxoS = taxo[ordOTU,taxoSelect]
        counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),sum)
        rownames(counts)=counts[,1];counts=counts[,-1]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
241
242
243
      }
      
      ## Ordering the counts table according to the target labels 
244
245
246
      tmpOrder = OrderCounts(counts,normFactors,labels)
      counts = tmpOrder$CountsOrder
      normFactors = tmpOrder$normFactorsOrder
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
247
248
      CheckTarget = TRUE
    }
Stevenn Volant's avatar
Stevenn Volant committed
249
    return(list(counts=counts,CheckTarget=CheckTarget,normFactors=normFactors, CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
250
  }
251
252
253
254
255
256
257
258
259
260
261
  
  ## Get the geometric mean of the counts (0 are replaced by NA values)
  GeoMeansCT <- function(CT)
  {
    CT=as.matrix(CT)
    CT[which(CT<1)]=NA
    gm = apply(CT,1,geometric.mean,na.rm=TRUE)
    return(gm)
  }
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
262
  ## Order the counts 
263
  OrderCounts <- function(counts,normFactors=NULL,labels)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
264
265
266
  {
    n = length(labels)
    CountsOrder = counts
267
    normFactorsOrder = normFactors
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
268
269
270
271
    for(i in 1:n)
    {
      ind = which(labels[i]==colnames(counts))
      CountsOrder[,i] = counts[,ind]
272
      if(!is.null(normFactors)) normFactorsOrder[i] = normFactors[ind]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
273
274
    }
    colnames(CountsOrder) = labels
275
    return(list(CountsOrder=CountsOrder,normFactorsOrder = normFactorsOrder))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
276
277
278
  }
  
  
stevenn's avatar
stevenn committed
279
  ## Get the dds object of DESeq2
Stevenn Volant's avatar
Stevenn Volant committed
280
  Get_dds_object <- function(input,counts,target,design,normFactorsOTU,CT_noNorm)
stevenn's avatar
stevenn committed
281
282
  {
    dds <- DESeqDataSetFromMatrix(countData=counts, colData=target, design=design)
283
    sizeFactors(dds) = normFactorsOTU
stevenn's avatar
stevenn committed
284
    dds <- estimateDispersions(dds, fitType=input$fitType)
Stevenn Volant's avatar
Stevenn Volant committed
285
    dds <- nbinomWaldTest(dds)
286
287
    countsNorm = counts(dds, normalized = TRUE)
    return(list(dds = dds,raw_counts=counts,countsNorm=countsNorm,target=target,design=design,normFactors = normFactorsOTU,CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
  }

  ## Get the design according to the input
  GetDesign <- function(input)
  {
    InterVar = input$InterestVar
    Interaction = input$Interaction2
    alltmp = c(InterVar,Interaction)
    design = as.formula(paste("~", paste0(alltmp, collapse= "+")))
    return(design)
  }
  


  ## Diagnostic Plots
  Plot_diag <- function(input,resDiff)
  {
Stevenn Volant's avatar
Stevenn Volant committed
305
    
stevenn's avatar
stevenn committed
306
307
    VarInt = input$VarInt
    dds = resDiff$dds
308
309
    counts = resDiff$raw_counts
    if(input$CountsType=="norm") counts = resDiff$countsNorm
stevenn's avatar
stevenn committed
310
    target = resDiff$target
311
    normFactors = resDiff$normFactors
Stevenn Volant's avatar
Stevenn Volant committed
312
    CT_noNorm = resDiff$CT_noNorm
stevenn's avatar
stevenn committed
313
    group = as.data.frame(target[,VarInt])
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
314
    rownames(group) = rownames(target)
Stevenn Volant's avatar
Stevenn Volant committed
315
    res = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
316
    
Stevenn Volant's avatar
Stevenn Volant committed
317
318
    if(ncol(group)>0 && nrow(counts)>0)
    { 
Stevenn Volant's avatar
Stevenn Volant committed
319
320
      colors = rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                     "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nrow(target)/20))
Stevenn Volant's avatar
Stevenn Volant committed
321
322
323
324
      
      if(input$DiagPlot=="barplotTot") res = barplotTot(input,counts,group = group, col=colors)
      if(input$DiagPlot=="barplotNul") res = barPlotNul(input,counts, group = group, col=colors)
      if(input$DiagPlot=="densityPlot") res = densityPlotTot(input,counts, group = group, col=colors)
325
      if(input$DiagPlot=="DispPlot") res = plotDispEsts(dds)
Stevenn Volant's avatar
Stevenn Volant committed
326
      if(input$DiagPlot=="MajTax") res = majTaxPlot(input,counts, group = group, col=colors)
327
      if(input$DiagPlot=="SfactorsVStot") res = diagSFactors(input,normFactors,resDiff$raw_counts) 
Stevenn Volant's avatar
Stevenn Volant committed
328
      if(input$DiagPlot=="pcaPlot") res = PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
Stevenn Volant's avatar
Stevenn Volant committed
329
      if(input$DiagPlot=="pcoaPlot") res = PCoAPlot_meta(input,dds, group, col = colors) 
330
      if(input$DiagPlot=="clustPlot") res = HCPlot(input,dds,group,type.trans=input$TransType,counts,col=colors)
Stevenn Volant's avatar
Stevenn Volant committed
331
    }
332
    
Stevenn Volant's avatar
Stevenn Volant committed
333
    return(res)
stevenn's avatar
stevenn committed
334
335
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
336
  
337
  HCPlot <- function (input,dds,group,type.trans,counts,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
338
339
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
340
341
    res = NULL
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
342
    ## Get the counts
343
344
    if (input$DistClust == "euclidean" && type.trans == "VST") counts <- assay(varianceStabilizingTransformation(dds))
    if (input$DistClust == "euclidean" && type.trans == "rlog") counts <- assay(rlogTransformation(dds))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
345
346
347
348
349
350
    
    ## Get the group of leaf
    group = apply(group,1,paste, collapse = "-")    
    nb = length(unique((group)))
    
    ## Get the dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
351
352
353
354
    if(input$DistClust!="sere") dist = vegdist(t(counts), method = input$DistClust)
    if(input$DistClust=="sere") dist = as.dist(SEREcoef(counts))
    hc <- hclust(dist, method = "ward.D")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
355
356
357
    dend = as.dendrogram(hc)
    
    ## Get the type of dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
358
    type <- input$typeHculst
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
359
360
    
    dend <- set(dend, "labels_cex", input$cexLabelDiag)
361
    if(input$colorHC) labels_colors(dend)<-col[as.integer(as.factor(group))][order.dendrogram(dend)]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
362
363
    if(type=="hori") 
    { 
364
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
365
      res = plot(dend, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "),cex=input$cexLabelDiag)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
366
367
368
    }  
    if(type!="hori")
    {
369
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
370
      res = circlize_dendrogram(dend, labels_track_height = 0.2, dend_track_height = .3, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
371
    }
Stevenn Volant's avatar
Stevenn Volant committed
372
    return(res)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
373
374
375
376
377
378
379
380
381
382
  }
  
  
  ## Color for the horizontal dendro
  colLabdendo <- function(n,group) {
    
    group = apply(group,1,paste, collapse = "-")
    
    nb = length(unique((group)))
    namesGrp = names(group)
stevenn's avatar
stevenn committed
383

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
    }
    return(n)
  }
  
  ## Diagnostic Plots Eigen value
  Plot_diag_Eigen <- function(input,resDiff)
  {
    colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    
    ## If more than 4 levels for one factor
    maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    if(maxFact>=4) colors = rainbow(maxFact) 
    
    PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
  }
  
  Plot_diag_pcoaEigen = function(input,resDiff)
  {
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
    VarInt = input$VarInt
    dds = resDiff$dds
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    rownames(group) = rownames(target)
    PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
  }
  
  
  
stevenn's avatar
stevenn committed
422
423

  ## barplot total
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
424
  barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
425
  {
Stevenn Volant's avatar
Stevenn Volant committed
426

stevenn's avatar
stevenn committed
427
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
428
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
429
    barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
stevenn's avatar
stevenn committed
430
431
432
            ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
433
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
stevenn's avatar
stevenn committed
434
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
Stevenn Volant's avatar
Stevenn Volant committed
435
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
436
437
438
439
440
  
  }


  ## barplot Nul 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
441
  barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
442
443
444
  {
    
    percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
445
    percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
stevenn's avatar
stevenn committed
446
447
    ncol1 <- ncol(group) == 1
    
Stevenn Volant's avatar
Stevenn Volant committed
448
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
449

stevenn's avatar
stevenn committed
450
451
452
453
    barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
            density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
454
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]},
stevenn's avatar
stevenn committed
455
456
457
458
459
460
            cex.names = cex.names, ylab = "Proportion of null counts", 
            main = "Proportion of null counts per sample", 
            ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
    
    abline(h = percentage.allNull, lty = 2, lwd = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
Stevenn Volant's avatar
Stevenn Volant committed
461
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
462
463
464
465
  }


  ## Plot density
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
466
  densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
467
468
469
470
  {
    
    counts <- removeNulCounts(counts)
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
471
    par(cex=input$cexTitleDiag,mar=c(8,5,4,5))
stevenn's avatar
stevenn committed
472
473
    plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
         xlab = expression(log[2] ~ (raw ~ count + 1)), 
474
         ylim = c(0, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
stevenn's avatar
stevenn committed
475
         lty = if (ncol1) {1}
476
         else{rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[as.integer(group[, 2])[1]]}, 
stevenn's avatar
stevenn committed
477
478
479
480
481
482
         col = col[as.integer(group[, 1])[1]])
    
    for (i in 2:ncol(counts)) 
    {
      lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
            lty = if (ncol1) {1}
483
            else{rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[as.integer(group[, 2])[i]]})
stevenn's avatar
stevenn committed
484
485
    }
    legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
486
    if (!ncol1) legend("topleft", levels(group[, 2]), lty = rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
stevenn's avatar
stevenn committed
487
488
489
490
491
    
  }


  ## Table of maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
492
  majTab <- function(input,counts,n)
stevenn's avatar
stevenn committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
  {
    seqnames <- apply(counts, 2, function(x) {
      x <- sort(x, decreasing = TRUE)
      names(x)[1:n]
    })
    seqnames <- unique(unlist(as.character(seqnames)))
    sum <- apply(counts, 2, sum)
    counts <- counts[seqnames, ]
    sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
    p <- round(100 * counts/sum, digits = 3)
    return(p)
  }


  ## Plot maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
508
  majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
509
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
510
    p = majTab(input,counts,n)
stevenn's avatar
stevenn committed
511
512
513
    maj <- apply(p, 2, max)
    seqname <- rownames(p)[apply(p, 2, which.max)]
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
514
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
515
    x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
stevenn's avatar
stevenn committed
516
                 ylim = c(0, max(maj) * 1.2), cex.main = 1, 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
517
                 cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
stevenn's avatar
stevenn committed
518
519
520
                 density = if (ncol1) {NULL}
                 else {15}, 
                 angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
521
                 else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]})
stevenn's avatar
stevenn committed
522
523
524
    
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
Stevenn Volant's avatar
Stevenn Volant committed
525
                       angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
526
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
527
    for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
stevenn's avatar
stevenn committed
528
529
530
531
  }
  

  ## plot SERE Coefs
Stevenn Volant's avatar
Stevenn Volant committed
532
533
534
535
536
537
538
#   SEREplot<-function(input,counts) 
#   {
#     sere = SEREcoef(counts)
#     hc <- hclust(as.dist(sere), method = "ward.D")
#     plot(hc, las = 2, hang = -1, xlab = "SERE distance, Ward criterion",main = "Cluster dendrogram\non SERE values")
#     
#   }
stevenn's avatar
stevenn committed
539
540
541
542
543
  
  
  ## Get the SERE COEF
  SEREcoef<-function(counts)
  {
Stevenn Volant's avatar
Stevenn Volant committed
544
545
546
547
    counts = as.matrix(counts)
    sere <- matrix(0, ncol = ncol(counts), nrow = ncol(counts))
    for (i in 1:(ncol(counts)-1)) {
      for (j in (i+1):ncol(counts)) {
stevenn's avatar
stevenn committed
548
549
550
        sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
      }
    }
Stevenn Volant's avatar
Stevenn Volant committed
551
    sere=sere+t(sere)
stevenn's avatar
stevenn committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    colnames(sere) <- rownames(sere) <- colnames(counts)
    sere <- round(sere, digits = 3)
    
    return(sere) 
  }
  

  ## function for the SERE coef
  sigfun_Pearson_meta <- function(observed) {
    laneTotals <- colSums(observed)
    total <- sum(laneTotals)
    fullObserved <- observed[rowSums(observed) > 0, ]
    fullLambda <- rowSums(fullObserved)/total
    fullLhat <- fullLambda > 0
    fullExpected <- outer(fullLambda, laneTotals)
    fullKeep <- which(fullExpected > 0)
    oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
    dfFull <- length(fullKeep) - sum(fullLhat != 0)
    sqrt(sum(oeFull)/dfFull)
  }
stevenn's avatar
stevenn committed
572
573


stevenn's avatar
stevenn committed
574
  ## Plots of size factors
575
  diagSFactors<-function (input,normFactors,counts) 
stevenn's avatar
stevenn committed
576
  {
Stevenn Volant's avatar
Stevenn Volant committed
577
578
    geomeans <- exp(rowMeans(log(counts)))
    samples <- colnames(counts)
Stevenn Volant's avatar
Stevenn Volant committed
579
580
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
      plot(normFactors, colSums(counts), pch = 19, las = 1,cex = ifelse(input$addLabelSFact,0,input$cexLabelDiag),
stevenn's avatar
stevenn committed
581
582
           ylab = "Total number of reads", xlab = "Size factors", 
           main = "Diagnostic: size factors vs total number of reads")
Stevenn Volant's avatar
Stevenn Volant committed
583
      if(input$addLabelSFact) text(normFactors,colSums(counts),labels = samples,cex=input$cexLabelDiag)
Stevenn Volant's avatar
Stevenn Volant committed
584
      abline(lm(colSums(counts) ~ normFactors + 0), lty = 2, col = "grey")
stevenn's avatar
stevenn committed
585
  }
stevenn's avatar
stevenn committed
586

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
587
588
589
590
591
  
  ### PCoA
  PCoAPlot_meta <-function (input,dds, group_init,col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
  {
    cval=c()
Stevenn Volant's avatar
Stevenn Volant committed
592
    time_set = 0
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
593
594
    # Set of shape
    shape=c(19,17,15,18)
Stevenn Volant's avatar
Stevenn Volant committed
595
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
596
597
    ## Var of interest
    VarInt  = input$VarInt
Stevenn Volant's avatar
Stevenn Volant committed
598
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    ## Group
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
Stevenn Volant's avatar
Stevenn Volant committed
614
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
615
616
617
618
619
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
Stevenn Volant's avatar
Stevenn Volant committed
620
621
622
    if(nlevels(group)!=0)
    { 
      ## Get the norm data
623
624
      counts.norm = as.data.frame(round(counts(dds)))
      if(input$CountsType=="norm") counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
Stevenn Volant's avatar
Stevenn Volant committed
625
626
627
628
      # was removed
      counts.norm = counts.norm[,ind_kept]
  
      ## Get the distance
Stevenn Volant's avatar
Stevenn Volant committed
629
630
631
      if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
      if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
      
Stevenn Volant's avatar
Stevenn Volant committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
      ## Do PCoA
      pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=3)
      
      ## Get eigen values
      eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
      
      ## xlim and ylim of the plot
      min = min(pco.counts.norm$li)
      max = max(pco.counts.norm$li)
      
      ## get condition set
      condition_set=val[which(val %in% unique(group_init$condition))]
      time_set=val[which(val %in% unique(group_init$time))]
      
      ## Colors
      if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
      {
        col = rainbow(length(condition_set) * length(time_set))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
650
      }
Stevenn Volant's avatar
Stevenn Volant committed
651
652
653
654
655
656
657
658
659
660
661
      #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
      #  col = rep(col[1:length(condition_set)], length(time_set))
      #}
      if (length(time_set) == 1 && length(condition_set) <= 4){
        cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
        cval = sort(cval)
      }
      
      # to reactivate
      #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
      if (plot == "pcoa"){
Stevenn Volant's avatar
Stevenn Volant committed
662
        par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
663
664
        ## Plot axis, label and circles
        plot(pco.counts.norm$li[1:2], xlab=paste("PC1 : ",round(eigen[1],1),"%") , ylab=paste("PC2 : ",round(eigen[2],1),"%"),
Stevenn Volant's avatar
Stevenn Volant committed
665
             xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), cex.axis=1, cex.lab=1,lwd=2, type="n",main='Principal Coordinates Analysis ')
Stevenn Volant's avatar
Stevenn Volant committed
666
667
668
669
670
671
672
673
674
        # Set different shapes
        if(input$labelPCOA == "Group"){
          if(!is.null(cval)){
            for (i in 1:length(cval)){
              points(pco.counts.norm$li[which(group==cval[i]),1:2],pch=shape[i],col=col[i], cex=input$cexpoint)
            }
            s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                    add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
          }else s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
675
                        add.plot = TRUE, cpoint = input$cexpoint, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
Stevenn Volant's avatar
Stevenn Volant committed
676
677
678
679
680
681
682
683
684
685
        }  
        else{
          s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
          s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
        }
      }else{
        barplot(eigen[1:7], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:7, col = c(rep("black", 2), rep("grey", 5)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
      }
  }
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
686
687
688
  }
  
  ### PCA
689
  PCAPlot_meta <-function(input,dds, group_init, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
690
691
                           col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
  {
692
693
    ## Var of interest
    VarInt  = input$VarInt
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
694
    
695
696
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    group_init = group
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
697
    
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
    
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
    ## To select the colors
    indgrp =as.integer(as.factor(group_init))[ind_kept]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
718
    
719
720
    
    if(nlevels(group)!=0)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
721
    { 
722
      type.trans <- type.trans[1]
Stevenn Volant's avatar
Stevenn Volant committed
723
      
724
725
726
      if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
      else counts.trans <- assay(rlogTransformation(dds))
      counts.trans = counts.trans[,ind_kept]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
727
      
728
729
      rv = apply(counts.trans, 1, var, na.rm = TRUE)
      pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
730
      
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
      if(plot=="pca")
      { 
        prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
        prp <- round(prp, 2)
        ncol1 <- ncol(group) == 1
        
        abs = range(pca$x[, 1])
        abs = abs(abs[2] - abs[1])/25
        ord = range(pca$x[, 2])
        ord = abs(ord[2] - ord[1])/25
        
        par(mfrow = c(1, 2),cex=input$cexTitleDiag,mar=c(6,6,4,5))
        plot(pca$x[, 1], pca$x[, 2], las = 1, cex = input$cexTitleDiag, col = col[indgrp], 
             pch = 16,
             xlab = paste0("PC1 (", prp[1], "%)"),
             ylab = paste0("PC2 (", prp[2], "%)"), 
             main = "Principal Component Analysis"
              )
        abline(h = 0, v = 0, lty = 2, col = "lightgray")
        text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,2] - ifelse(pca$x[, 2] > 0, ord, -ord), colnames(counts.trans), col = col[indgrp],cex=input$cexLabelDiag)
        abs = range(pca$x[, 1])
        abs = abs(abs[2] - abs[1])/25
        ord = range(pca$x[, 3])
        ord = abs(ord[2] - ord[1])/25
        plot(pca$x[, 1], pca$x[, 3], las = 1, cex = input$cexTitleDiag, col = col[indgrp], 
             pch = 16,
             xlab = paste0("PC1 (", prp[1], "%)"), 
             ylab = paste0("PC3 (", prp[3], "%)"), 
             main = "Principal Component Analysis")
        abline(h = 0, v = 0, lty = 2, col = "lightgray")
        text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,3] - ifelse(pca$x[, 3] > 0, ord, -ord), colnames(counts.trans), col = col[indgrp],cex=input$cexLabelDiag)
      }
      if(plot=="eigen"){eigen = pca$sdev[1:min(7,ncol(counts.trans))]^2; barplot(eigen, xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:min(7,ncol(counts.trans)), col = c(rep("black", 3), rep("grey", 4)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)}
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
764
765
766
767
768
    }
  }
  
  
  
stevenn's avatar
stevenn committed
769

stevenn's avatar
stevenn committed
770
771
772
773
774
  ############################################################
  ##
  ##              CREATE THE CONTRAST DATABASE
  ##
  ############################################################
stevenn's avatar
stevenn committed
775

stevenn's avatar
stevenn committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
  
  BaseContrast <- function(input,names,namesfile)
  {  

    v_tmp = c()
    filesize = file.info(namesfile)[,"size"]
    
    for(i in 1:length(names))
    {  
      Tinput = paste("input$",names[i],sep="")
      expr=parse(text=Tinput)
      val = eval(expr) 
      v_tmp[i] = as.numeric(val)
    }
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
      colnamesTmp = c(colnames(oldContrast),input$ContrastName)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = input$ContrastName; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
  ## Remove nul counts
  removeNulCounts <-function (counts) 
  {
    return(counts[rowSums(counts) > 0, ])
  }
stevenn's avatar
stevenn committed
808
809

  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
810
811
812
813
814
  ############################################################
  ##
  ##              VISUALISATION PLOTS
  ##
  ############################################################
stevenn's avatar
stevenn committed
815
  
816
  GetDataToPlot <- function(input,resDiff,VarInt,ind_taxo,aggregate=TRUE)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
817
818
  {
    dds = resDiff$dds
819
820
    val = c()
    list.val = list()
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
821
822
823
824
825
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    target = resDiff$target
    counts_tmp_combined = NULL
    prop_tmp_combined = NULL
    targetInt = NULL
Stevenn Volant's avatar
Stevenn Volant committed
826
    namesCounts = NULL
827
828
    levelsMod = NULL
    prop_all=NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
829
830
831
    ## Select a subset within the taxonomy level (default is the 12 most abundant)
    nbKept = length(ind_taxo)
    Taxonomy = rownames(counts)
stevenn's avatar
stevenn committed
832
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
833
834
    if (length(VarInt)>0 && nbKept>0)
    { 
835
836
      ## Get the modalities to keep
      for(i in 1:length(VarInt))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
837
      { 
838
839
840
841
842
        Tinput = paste("input$","ModVisu",VarInt[i],sep="")
        expr=parse(text=Tinput)
        ## All the modalities for all the var of interest
        val = c(val,eval(expr))
        list.val[[i]] = eval(expr)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
843
      }
844
845
      if (!is.null(val) && !is.null(list.val))
      {
svolant's avatar
svolant committed
846

847
848
849
850
851
852
853
854
855
        ## Create the variable to plot
        targetInt = as.data.frame(target[,VarInt])
        rownames(targetInt)=target[,1]  
        ## Combining the Varint
        if(length(VarInt)>1){targetInt$AllVar = apply(targetInt,1,paste, collapse = "-"); targetInt$AllVar = factor(targetInt$AllVar,levels =  expand.grid2.list(list.val))}
        if(length(VarInt)<=1){targetInt$AllVar = target[,VarInt]; targetInt$AllVar = factor(targetInt$AllVar,levels = val)}
        colnames(targetInt) = c(VarInt,"AllVar")
        
        ## Keep only the selected modalities
svolant's avatar
svolant committed
856
857
858
        ind_kept = which(!is.na(targetInt$AllVar))
        targetInt = targetInt[ind_kept,]
          
859
860
861
862
        levelsMod = levels(targetInt$AllVar)
        
        ## Create the counts matrix only for the selected subset
        counts_tmp = counts[Taxonomy%in%ind_taxo,]
svolant's avatar
svolant committed
863
        counts_tmp = counts_tmp[,colnames(counts_tmp)%in%rownames(targetInt)]
864
865
866
867
868
869
870
871
        
        ## Proportions over all the taxonomies
        prop_all = t(counts)/rowSums(t(counts))
        prop_all = as.data.frame(prop_all[,Taxonomy%in%ind_taxo])
        prop_all = as.matrix(prop_all[rownames(prop_all)%in%rownames(targetInt),])
        rownames(prop_all) = targetInt$AllVar
        
        ## Be careful transposition !
svolant's avatar
svolant committed
872
        if(aggregate && nrow(counts_tmp)>0 && nrow(targetInt)>0)
873
        { 
svolant's avatar
svolant committed
874
          counts_tmp_combined = aggregate(t(counts_tmp),by=list(targetInt$AllVar),mean)
875
876
877
878
          rownames(counts_tmp_combined) = counts_tmp_combined$Group.1
          namesCounts = counts_tmp_combined$Group.1
          counts_tmp_combined = as.matrix(counts_tmp_combined[,-1])
        }
svolant's avatar
svolant committed
879
        if(!aggregate && nrow(counts_tmp)>0 && nrow(targetInt)>0)
880
881
882
883
884
885
886
887
888
        {  
          counts_tmp_combined = t(counts_tmp)
          prop_tmp_combined = counts_tmp_combined/colSums(counts_tmp)
          rownames(counts_tmp_combined) = targetInt$AllVar
          namesCounts = targetInt$AllVar
          rownames(prop_tmp_combined) = targetInt$AllVar
        }
        
        ## Ordering the counts
svolant's avatar
svolant committed
889
890
891
892
893
894
895
896
        if(!is.null(counts_tmp_combined))
        {
          MeanCounts = apply(counts_tmp_combined,2,mean)
          ord = order(MeanCounts,decreasing=TRUE)
          counts_tmp_combined = as.matrix(counts_tmp_combined[,ord])
          if(!aggregate) prop_tmp_combined = as.matrix(prop_tmp_combined[,ord])
          prop_all = as.matrix(prop_all[,ord])
        }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
897
898
899
      }
    }
    
900
      return(list(counts = counts_tmp_combined,targetInt=targetInt,prop=prop_tmp_combined,namesCounts=namesCounts,levelsMod=levelsMod,prop_all=prop_all))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
901
902
903
    
    
  }
stevenn's avatar
stevenn committed
904
905
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
906
907
908
909
910
911
  
  ###########################
  ## Plots for visualisation
  ###########################
  
  Plot_Visu_Barplot <- function(input,resDiff)
stevenn's avatar
stevenn committed
912
  {
913
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
914
    ## Get Input for BarPlot
915
916
    VarInt = input$VisuVarInt
    ind_taxo = input$selectTaxoPlot
stevenn's avatar
stevenn committed
917
    
918
    tmp_combined = GetDataToPlot(input,resDiff,VarInt,ind_taxo)
Stevenn Volant's avatar
Stevenn Volant committed
919
    counts_tmp_combined = tmp_combined$counts
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
920
    nbKept = length(ind_taxo)
Stevenn Volant's avatar
Stevenn Volant committed
921
922
923
924
    SamplesNames = tmp_combined$namesCounts
    
    if(nbKept>1) namesTax = colnames(counts_tmp_combined)
    if(nbKept==1) namesTax = ind_taxo
stevenn's avatar
stevenn committed
925
    
926
927
928
929
930
    dataNull = data.frame(x=c(1,2),y=c(1,2))
    plotd3 = nvd3Plot(x ~ y , data = dataNull, type = "multiBarChart", id = 'barplotTaxoNyll',height = input$heightVisu,width=input$widthVisu)
    gg = NULL
    
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0 && length(VarInt)>0)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
931
    { 
Stevenn Volant's avatar
Stevenn Volant committed
932
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
933
934
935
936
      ## Create the data frame for the plot function
      dataBarPlot_mat = c()
      tmp_mat = matrix(0,ncol=3,nrow=nbKept)
      tmp_counts = c()
stevenn's avatar
stevenn committed
937
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
938
939
940
        for(i in 1:(nrow(counts_tmp_combined)))
        {
          ## Taxo
Stevenn Volant's avatar
Stevenn Volant committed
941
          tmp_mat[1:nbKept,1] = namesTax
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
942
943
944
945
946
947
948
949
950
951
952
953
          
          ## Counts
  
          tmpProp = counts_tmp_combined[i,]
          if(input$CountsOrProp=="prop")
          { 
            tmpProp = round(tmpProp/sum(tmpProp),3)
            tmpProp = as.numeric(tmpProp/sum(tmpProp) * 100)
          }
          tmp_counts = c(tmp_counts,tmpProp)      
          
          ## Meta data
Stevenn Volant's avatar
Stevenn Volant committed
954
          tmp_mat[1:nbKept,3] = as.character(rep(SamplesNames[i],nbKept))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
955
956
957
958
959
960
961
962
963
964
965
          
          ## Conbined the sample
          dataBarPlot_mat = rbind(dataBarPlot_mat,tmp_mat)
        }
        
        
        ## Add numeric vector to the dataframe
        dataBarPlot_mat = as.data.frame(dataBarPlot_mat)
        
        colnames(dataBarPlot_mat) = c("Taxonomy","Proportions","AllVar")
        dataBarPlot_mat[,2] = tmp_counts
966
967
968
969
        if(input$SensPlotVisu == "Vertical") Sens = "multiBarChart"
        if(input$SensPlotVisu == "Horizontal") Sens = "multiBarHorizontalChart"
      
        plotd3 <- nvd3Plot(Proportions ~ AllVar | Taxonomy, data = dataBarPlot_mat, type = Sens, id = 'barplotTaxo',height = input$heightVisu,width=input$widthVisu)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
970
        plotd3$chart(stacked = TRUE)
Stevenn Volant's avatar
Stevenn Volant committed
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
      
        ##################################
        ## Same plot in ggplot2 for export
        ##################################
      
        tax.colors=rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                         "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nbKept/20))
        
        dataBarPlot_mat$Taxonomy = factor(dataBarPlot_mat$Taxonomy,levels = namesTax)
      
        gg= ggplot(dataBarPlot_mat, aes(x=AllVar, y=Proportions, fill=Taxonomy)) 
        gg= gg + geom_bar(stat="identity")
        gg= gg + theme_bw()+ scale_fill_manual(values=tax.colors)
        gg = gg +theme(panel.grid.minor.x=element_blank(),panel.grid.major.x=element_blank()) 
        if(input$CountsOrProp=="prop") gg = gg+labs(y="Relative abundance (%)",x="")
        if(input$CountsOrProp=="counts") gg = gg+labs(y="Abundance",x="")
        if(input$SensPlotVisu == "Horizontal") gg = gg + coord_flip()
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
988
    } 
Stevenn Volant's avatar
Stevenn Volant committed
989
    return(list(plotd3=plotd3,gg=gg))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
990
991
992
993
994
995
996
997
998
999
1000
  }
  
  
  
######################################################
##
##            HEATMAP
##
######################################################