internal.R 45.6 KB
Newer Older
stevenn's avatar
stevenn committed
1
2
3



Stevenn Volant's avatar
Stevenn Volant committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
## Function for the rdp format
getval <- function(annotation_rdp, interest, threshold_annot){
  annotation_rdp = unlist(strsplit(annotation_rdp,"\t"))
  annotation = c(annotation_rdp[1])
  for(level in interest){
    idlevel=which(annotation_rdp == level)
    if(length(idlevel)>0){
      if(as.numeric(annotation_rdp[idlevel+1]) >= threshold_annot){
        annotation = c(annotation, gsub("\"", "", annotation_rdp[idlevel-1]))
      }
      else annotation = c(annotation, "NA")
    }
    else annotation = c(annotation, "NA")  
  }
  return(annotation)
}

## Read rdp file
read_rdp <- function(filename, threshold_annot)
{
  interest=c("phylum", "class", "order", "family", "genus")
  conn <- file(filename,open="r")
  linn <-readLines(conn)
  tab=t(sapply(1:length(linn), function(i) getval(linn[i], interest, threshold_annot)))
  close(conn)
  
  if(!TRUE%in%duplicated(tab[,1])) rownames(tab)=tab[,1];tab=tab[,-1]
  colnames(tab) = c("Phylum","Class","Order","Family","Genus")
  
  return(tab)
}









CheckCountsTable <- function(counts)
  {
    Error = NULL
    Warning = NULL
    numTest = FALSE%in%sapply(counts,is.numeric)
    if(ncol(counts)<=1){Error = "The number of columns of the counts table must be at least 2" }
    if(nrow(counts)<=1){Error = "The number of rows of the counts table must be at least 2" }
    if(numTest){Error = "The counts table must contain only numeric values" }
    if(!numTest)
    {
      if(0%in%colSums(counts)){Error = "At least one of the column of the counts table is 0" }
      if(min(counts)<0){Error = "The counts table must contain only positive values" }
    }
    if(TRUE%in%sapply(counts,is.na)){Warning = "NA values are considered as 0 is the counts table"; counts[sapply(counts,is.na)]=0}
    
  
    return(list(Error=Error,Warning=Warning,counts=counts))
  }
  
  CheckTaxoTable <- function(taxo)
stevenn's avatar
stevenn committed
64
  {
Stevenn Volant's avatar
Stevenn Volant committed
65
66
67
68
69
70
71
72
73
74
75
76
    Error = NULL
    Warning = NULL
    if(ncol(taxo)<=1){Error = "The number of columns of the taxonomy table must be at least 2" }
    if(nrow(taxo)<=1){Error = "The number of rows if the taxonomy table must be at least 2" }
    if(TRUE%in%is.numeric(taxo)){Error = "The taxonomy table must contain only character" }

    for(i in 1:ncol(taxo))
    {
      level = levels(taxo[,i])
      nb = length(level)
      if(nb==1 && level=="NA"){ Error = "At least one column contains only NA"}
    }
stevenn's avatar
stevenn committed
77
    
Stevenn Volant's avatar
Stevenn Volant committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    return(list(Error=Error,Warning=Warning))
  }
  
  PercentAnnot <- function(counts,taxo)
  {
    Error = NULL  
    tmp = table(rownames(counts)%in%rownames(taxo))
    Percent = tmp["TRUE"]/sum(tmp)
    if(is.na(Percent)) Percent = 0
    if(Percent==0){Error = "Counts table and annotation do not matched" }
       
    return(list(Error=Error,Percent=Percent))
  }
  
  
  GetDataFromBIOM <-function(dataBIOM)
  {
    ## Counts table
stevenn's avatar
stevenn committed
96
    counts = biom_data(dataBIOM)
stevenn's avatar
stevenn committed
97
98
    counts = as.matrix(counts)
    counts = as.data.frame(counts)
Stevenn Volant's avatar
Stevenn Volant committed
99
100
101
102
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
stevenn's avatar
stevenn committed
103
    taxo = as.data.frame(observation_metadata(dataBIOM))
Stevenn Volant's avatar
Stevenn Volant committed
104
105
106
107
108
109
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
110
  }
stevenn's avatar
stevenn committed
111
112
  
  
stevenn's avatar
stevenn committed
113
114
115
  GetDataFromCT <-function(dataC,dataT)
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
116
    ## Counts table
stevenn's avatar
stevenn committed
117
    counts = dataC
Stevenn Volant's avatar
Stevenn Volant committed
118
119
120
121
122
123
124
125
126
127
128
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
    taxo = as.data.frame(dataT)
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
129
130
131
  }
  
  GetInteraction2 <- function(target)
stevenn's avatar
stevenn committed
132
  { 
stevenn's avatar
stevenn committed
133
134
135
136
    res=c()
    namesTarget = colnames(target)[2:ncol(target)]
    k=1
    for(i in 1:(length(namesTarget)-1))
stevenn's avatar
stevenn committed
137
    { 
stevenn's avatar
stevenn committed
138
139
140
141
142
      for(j in (i+1):length(namesTarget))
      { 
        res[k] = paste(namesTarget[i],":",namesTarget[j],sep="")
        k = k+1
      }
stevenn's avatar
stevenn committed
143
    }
stevenn's avatar
stevenn committed
144
145
    
    return(res)
stevenn's avatar
stevenn committed
146
147
148
149
  }
  


Amine  GHOZLANE's avatar
Amine GHOZLANE committed
150
  ## Print the contrasts
stevenn's avatar
stevenn committed
151
152
153
154
155
156
157
158
159
160
  PrintContrasts <- function (coefs, contrasts,contnames) 
  {
    contrasts = as.matrix(contrasts)
    out <-""
    
    for (i in 1:ncol(contrasts)) 
    {
      contrast <- contrasts[,i]
      contrast <- paste(ifelse(contrast > 0, "+ ", ""), contrast, sep = "")
      contrast <- gsub("( 1)|(1)", "", contrast)
161
      out = paste(out,paste("<b>",contnames[i], "</b> <br/>", paste(contrast[contrast != 0], coefs[contrast != 0], collapse = " ", sep = " ")),"<br/>")
stevenn's avatar
stevenn committed
162
163
164
165
    }
    return(out)
    
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
166
167

  
stevenn's avatar
stevenn committed
168
169
  
  ## Get the counts for the selected taxonomy
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
170
  GetCountsMerge <- function(input,dataInput,taxoSelect,target,design)
stevenn's avatar
stevenn committed
171
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
172
173
    counts= NULL
    CheckTarget = FALSE
stevenn's avatar
stevenn committed
174
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
175
    ## Counts and taxo tables
stevenn's avatar
stevenn committed
176
177
    CT = dataInput$counts
    taxo = dataInput$taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
178
179
180
181
        
    ## Select cols in the target
    labels = target[,1]
    ind = which(colnames(CT)%in%labels)
stevenn's avatar
stevenn committed
182
    
stevenn's avatar
stevenn committed
183
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    if(length(ind)==length(labels))
    { 
      CT = CT[,ind]
      
      ## Order CT according to the target
      CT = OrderCounts(CT,labels)
#       ind0 = which(rowSums(CT)==0)
#       if(length(ind0)>0) CT = CT[-ind0,]
      
      ## Counts normalisation
      dds <- DESeqDataSetFromMatrix(countData=CT, colData=target, design=design)
      dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))

      CT = as.data.frame(round(counts(dds, normalized = TRUE)))
      ordOTU = order(rownames(taxo))
      indOTU_annot = which(rownames(CT)%in%rownames(taxo))
      counts_annot = CT[indOTU_annot[ordOTU],]
      
      if(taxoSelect=="OTU") counts = counts_annot
      else{
      taxoS = taxo[ordOTU,taxoSelect]
      counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),sum)
      rownames(counts)=counts[,1];counts=counts[,-1]
      }
      
      ## Ordering the counts table according to the target labels 
      counts = OrderCounts(counts,labels)
      CheckTarget = TRUE
    }
    return(list(counts=counts,CheckTarget=CheckTarget))
stevenn's avatar
stevenn committed
214
215
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
216
217
218
219
220
  ## Order the counts 
  OrderCounts <- function(counts,labels)
  {
    n = length(labels)
    CountsOrder = counts
stevenn's avatar
stevenn committed
221

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
222
223
224
225
226
227
228
229
230
231
232
    for(i in 1:n)
    {
      
      ind = which(labels[i]==colnames(counts))
      CountsOrder[,i] = counts[,ind]
    }
    colnames(CountsOrder) = labels
    return(CountsOrder)
  }
  
  
stevenn's avatar
stevenn committed
233
234
235
  ## Get the dds object of DESeq2
  Get_dds_object <- function(input,counts,target,design)
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
236
    
stevenn's avatar
stevenn committed
237
    dds <- DESeqDataSetFromMatrix(countData=counts, colData=target, design=design)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
238
    normFactors = rep(1,nrow(target))
stevenn's avatar
stevenn committed
239
    ## Size factor estimation
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
240
241
242
    #dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
    #normalizationFactors(dds) <- normFactors
    sizeFactors(dds)<- normFactors
stevenn's avatar
stevenn committed
243
244
245
246
247
248
249
250
251
252
253
254
    dds <- estimateDispersions(dds, fitType=input$fitType)
    dds <- nbinomWaldTest(dds)
    return(list(dds = dds,counts=counts,target=target,design=design))
  }

  ## Get the design according to the input
  GetDesign <- function(input)
  {
    InterVar = input$InterestVar
    Interaction = input$Interaction2
    alltmp = c(InterVar,Interaction)
    design = as.formula(paste("~", paste0(alltmp, collapse= "+")))
stevenn's avatar
stevenn committed
255

stevenn's avatar
stevenn committed
256
257
258
259
260
261
262
263
    return(design)
  }
  


  ## Diagnostic Plots
  Plot_diag <- function(input,resDiff)
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
264
265
    #colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
stevenn's avatar
stevenn committed
266
267
268
269
270
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
271
272
273
274
275
276
    rownames(group) = rownames(target)
    
    ## If more than 4 levels for one factor
    if(length(VarInt)>1)  maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    else maxFact = length(levels(group))
    if(maxFact>=4) colors = rainbow(maxFact) 
stevenn's avatar
stevenn committed
277
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
278
279
280
281
282
    if(input$DiagPlot=="barplotTot") barplotTot(input,counts,group = group, col=colors)
    if(input$DiagPlot=="barplotNul") barPlotNul(input,counts, group = group, col=colors)
    if(input$DiagPlot=="densityPlot") densityPlotTot(input,counts, group = group, col=colors)
    if(input$DiagPlot=="MajTax") majTaxPlot(input,counts, group = group, col=colors)
    if(input$DiagPlot=="SERE") SEREplot(input,counts)
stevenn's avatar
stevenn committed
283
284
    if(input$DiagPlot=="Sfactors") diagSFactors(input,dds,frame=1) 
    if(input$DiagPlot=="SfactorsVStot") diagSFactors(input,dds,frame=2) 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
285
286
287
    if(input$DiagPlot=="pcaPlot") PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
    if(input$DiagPlot=="pcoaPlot") PCoAPlot_meta(input,dds, group) 
    if(input$DiagPlot=="clustPlot") HCPlot(input,dds,group,type.trans=input$TransType)
stevenn's avatar
stevenn committed
288
289
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
  
#   HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
#   {
#     counts = as.data.frame(round(counts(dds, normalized = TRUE)))
#     if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
#     if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
#     
#     hc <- hclust(dist(t(counts.trans)), method = "ward.D")
#     
#     type <- switch(input$typeHculst,
#                   "radial"="radial",
#                   "fan"="fan",
#                   "triangle"="cladogram",,
#                   "hori"= "hori",
#                   "verti"=NULL)
#     
#     par(cex=input$cexLabelDiag,mar=c(12,5,8,5))
#     if(input$colorHC && type=="hori") 
#     {
#       hc = dendrapply(as.dendrogram(hc),colLabdendo,group) 
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram")
#     }
#     
#     if(!input$colorHC && type=="hori") 
#     {
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram",hang=-1)
#     }
#     
#     if(type!="hori") 
#     { 
#       group = apply(group,1,paste, collapse = "-")
#       nb = length(unique(group))
#       plot(as.phylo(hc), type= type,label.offset = 1, tip.color = ifelse(input$colorHC, rainbow(nb)[as.integer(as.factor(group))], rep(1,nb)))
#     }
#     dev.off() 
#   }
  
  HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
  {
    
    ## Get the counts
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
    
    ## Get the group of leaf
    group = apply(group,1,paste, collapse = "-")    
    nb = length(unique((group)))
    
    ## Get the dendrogram
    hc <- hclust(dist(t(counts.trans)), method = "ward.D")
    dend = as.dendrogram(hc)
    
    ## Get the type of dendrogram
    type <- switch(input$typeHculst,
                   "fan"="fan",
                   "hori"= "hori")
    
    dend <- set(dend, "labels_cex", input$cexLabelDiag)
    if(input$colorHC) labels_colors(dend)<-rainbow(nb)[as.integer(as.factor(group))][order.dendrogram(dend)]
    
    if(type=="hori") 
    { 
      par(mar = c(8,4,4,2))
      plot(dend, main = "Cluster dendrogram")
    }  
    if(type!="hori")
    {
      par(mar = c(0.3,2,0.3,2))
      circlize_dendrogram(dend, labels_track_height = 0.2, dend_track_height = .3, main = "Cluster dendrogram")
    }
  }
  
  
  ## Color for the horizontal dendro
  colLabdendo <- function(n,group) {
    
    group = apply(group,1,paste, collapse = "-")
    
    nb = length(unique((group)))
    namesGrp = names(group)
stevenn's avatar
stevenn committed
371

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
    }
    return(n)
  }
  
  ## Diagnostic Plots Eigen value
  Plot_diag_Eigen <- function(input,resDiff)
  {
    colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    
    ## If more than 4 levels for one factor
    maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    if(maxFact>=4) colors = rainbow(maxFact) 
    
    PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
  }
  
  Plot_diag_pcoaEigen = function(input,resDiff)
  {
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
    VarInt = input$VarInt
    dds = resDiff$dds
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    rownames(group) = rownames(target)
    PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
  }
  
  
  
stevenn's avatar
stevenn committed
410
411

  ## barplot total
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
412
  barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
413
414
  {
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
415
416
    par(cex=input$cexLabelDiag,mar=c(12,5,4,5))
    barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
stevenn's avatar
stevenn committed
417
418
419
420
421
422
423
424
425
426
427
            ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
            else {c(-45, 0, 45, 90)[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
  
  }


  ## barplot Nul 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
428
  barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
429
430
431
  {
    
    percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
432
    percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
stevenn's avatar
stevenn committed
433
434
    ncol1 <- ncol(group) == 1
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
435
436
    par(cex=input$cexLabelDiag,mar=c(12,5,4,5))

stevenn's avatar
stevenn committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
            density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
            else {c(-45, 0, 45, 90)[as.integer(group[, 2])]},
            cex.names = cex.names, ylab = "Proportion of null counts", 
            main = "Proportion of null counts per sample", 
            ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
    
    abline(h = percentage.allNull, lty = 2, lwd = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
  }


  ## Plot density
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
453
  densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
454
455
456
457
  {
    
    counts <- removeNulCounts(counts)
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
458
    par(cex=input$cexLabelDiag,mar=c(8,5,4,5))
stevenn's avatar
stevenn committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
         xlab = expression(log[2] ~ (raw ~ count + 1)), 
         ylim = c(0, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
         lty = if (ncol1) {1}
         else{c(1, 2, 3, 4)[as.integer(group[, 2])[1]]}, 
         col = col[as.integer(group[, 1])[1]])
    
    for (i in 2:ncol(counts)) 
    {
      lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
            lty = if (ncol1) {1}
            else {c(1, 2, 3, 4)[as.integer(group[, 2])[i]]})
    }
    legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), lty = c(1, 2, 3, 4)[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
    
  }


  ## Table of maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
479
  majTab <- function(input,counts,n)
stevenn's avatar
stevenn committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
  {
    seqnames <- apply(counts, 2, function(x) {
      x <- sort(x, decreasing = TRUE)
      names(x)[1:n]
    })
    seqnames <- unique(unlist(as.character(seqnames)))
    sum <- apply(counts, 2, sum)
    counts <- counts[seqnames, ]
    sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
    p <- round(100 * counts/sum, digits = 3)
    return(p)
  }


  ## Plot maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
495
  majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
496
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
497
    p = majTab(input,counts,n)
stevenn's avatar
stevenn committed
498
499
500
    maj <- apply(p, 2, max)
    seqname <- rownames(p)[apply(p, 2, which.max)]
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
501
502

    x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
stevenn's avatar
stevenn committed
503
                 ylim = c(0, max(maj) * 1.2), cex.main = 1, 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
504
                 cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
stevenn's avatar
stevenn committed
505
506
507
508
509
510
511
512
513
                 density = if (ncol1) {NULL}
                 else {15}, 
                 angle = if (ncol1) {NULL}
                 else {c(-45, 0, 45, 90)[as.integer(group[, 2])]})
    
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
                       angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
514
    for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
stevenn's avatar
stevenn committed
515
516
517
518
  }
  

  ## plot SERE Coefs
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
519
  SEREplot<-function(input,counts) 
stevenn's avatar
stevenn committed
520
521
  {
    sere = SEREcoef(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
522
    print(sere)
stevenn's avatar
stevenn committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    hc <- hclust(as.dist(sere), method = "ward.D")
    plot(hc, las = 2, hang = -1, xlab = "SERE distance, Ward criterion",main = "Cluster dendrogram\non SERE values")
    
  }
  
  
  ## Get the SERE COEF
  SEREcoef<-function(counts)
  {
    sere <- matrix(NA, ncol = ncol(counts), nrow = ncol(counts))
    for (i in 1:ncol(counts)) {
      for (j in 1:ncol(counts)) {
        sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
      }
    }
    colnames(sere) <- rownames(sere) <- colnames(counts)
    sere <- round(sere, digits = 3)
    
    return(sere) 
  }
  

  ## function for the SERE coef
  sigfun_Pearson_meta <- function(observed) {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
547
    print("OK1")
stevenn's avatar
stevenn committed
548
549
    laneTotals <- colSums(observed)
    total <- sum(laneTotals)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
550
    print("OK2")
stevenn's avatar
stevenn committed
551
552
553
    fullObserved <- observed[rowSums(observed) > 0, ]
    fullLambda <- rowSums(fullObserved)/total
    fullLhat <- fullLambda > 0
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
554
    print("OK3")
stevenn's avatar
stevenn committed
555
556
    fullExpected <- outer(fullLambda, laneTotals)
    fullKeep <- which(fullExpected > 0)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
557
558
    print(fullKeep)
    print(fullExpected)
stevenn's avatar
stevenn committed
559
    oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
560
    print(oeFull)
stevenn's avatar
stevenn committed
561
    dfFull <- length(fullKeep) - sum(fullLhat != 0)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
562
    print(dfFull)
stevenn's avatar
stevenn committed
563
564
    sqrt(sum(oeFull)/dfFull)
  }
stevenn's avatar
stevenn committed
565
566


stevenn's avatar
stevenn committed
567
568
569
570
571
572
573
574
575
576
577
578
579
  ## Plots of size factors
  diagSFactors<-function (input,dds,frame=1) 
  {
    geomeans <- exp(rowMeans(log(counts(dds))))
    samples <- colnames(counts(dds))
    counts.trans <- log2(counts(dds)/geomeans)
    xmin <- min(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
    xmax <- max(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
    
    if(!is.na(input$NbcolSfactors)) parCols = as.numeric(input$NbcolSfactors)
    else parCols = ceiling(ncol(counts.trans)/3)
    
    parRows = ceiling(ncol(counts.trans)/parCols)
stevenn's avatar
stevenn committed
580

stevenn's avatar
stevenn committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    if(frame==1)
    {
      par(mfrow=c(parRows,parCols))
      for (j in 1:ncol(dds)) {
        hist(log2(counts(dds)[, j]/geomeans), nclass = 100, 
             xlab = expression(log[2] ~ (counts/geometric ~ mean)), las = 1, xlim = c(xmin, xmax), 
             main = paste("Size factors diagnostic - Sample ",samples[j], sep = ""), col = "skyblue")
        
        abline(v = log2(sizeFactors(dds)[j]), col = "red", lwd = 1.5)
      }
    }
    
    if(frame==2)
    {
      plot(sizeFactors(dds), colSums(counts(dds)), pch = 19, las = 1, 
           ylab = "Total number of reads", xlab = "Size factors", 
           main = "Diagnostic: size factors vs total number of reads")
      abline(lm(colSums(counts(dds)) ~ sizeFactors(dds) + 0), lty = 2, col = "grey")
    }
  }
stevenn's avatar
stevenn committed
601

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
  
  ### PCoA
  PCoAPlot_meta <-function (input,dds, group_init,col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
  {
    cval=c()
    # Set of shape
    shape=c(19,17,15,18)
    ## Var of interest
    VarInt  = input$VarInt
    ## Group
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
    ## Get the norm data
    counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
    
    # was removed
    counts.norm = counts.norm[,ind_kept]
    
    ## Get the distance
    dist.counts.norm = vegdist(t(counts.norm), method = input$DistPCOA)
    
    ## Do PCoA
    pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=3)
    
    ## Get eigen values
    eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
    
    
    ## xlim and ylim of the plot
    min = min(pco.counts.norm$li)
    max = max(pco.counts.norm$li)
    
    ## get condition set
    condition_set=val[which(val %in% unique(group_init$condition))]
    time_set=val[which(val %in% unique(group_init$time))]
    
    ## Colors
    if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
    {
      col = rainbow(length(condition_set) * length(time_set))
    }
    #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
    #  col = rep(col[1:length(condition_set)], length(time_set))
    #}
    print(condition_set)
    print(time_set)
    if (length(time_set) == 1 && length(condition_set) <= 4){
      cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
      cval = sort(cval)
    }
    print(col)
    # to reactivate
    #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
    if (plot == "pcoa"){
      ## Plot axis, label and circles
      plot(pco.counts.norm$li[1:2], xlab=paste("PC1 : ",round(eigen[1],1),"%") , ylab=paste("PC2 : ",round(eigen[2],1),"%"),
           xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), cex.axis=1, cex.lab=1,lwd=2, type="n")
      # Set different shapes
      if(input$labelPCOA == "Group"){
        print(cval)
        print(length(cval))
        if(!is.null(cval)){
          for (i in 1:length(cval)){
            points(pco.counts.norm$li[which(group==cval[i]),1:2],pch=shape[i],col=col[i], cex=input$cexpoint)
          }
          s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                  add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
        }else s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                      add.plot = TRUE, cpoint = input$cexpoint, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
      }  
      else{
        s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
        s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
      }
    }else{
      barplot(eigen[1:7], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:7, col = c(rep("black", 2), rep("grey", 5)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
    }
   
  }
  
  ### PCA
  PCAPlot_meta <-function (input,dds, group, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
                           col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
  {
    type.trans <- type.trans[1]
    
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    else counts.trans <- assay(rlogTransformation(dds))
    
    rv = apply(counts.trans, 1, var, na.rm = TRUE)
    pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
    
   
    
    
    
    if(plot=="pca")
    { 
      prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
      prp <- round(prp, 2)
      ncol1 <- ncol(group) == 1
      
      par(mfrow = c(1, 2))
      
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 2])
      ord = abs(ord[2] - ord[1])/25
      
      par(mar=c(8,5,4,5))
      plot(pca$x[, 1], pca$x[, 2], las = 1, cex = 2, col = col[as.integer(group[,1])], 
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]},
           xlab = paste0("PC1 (", prp[1], "%)"),
           ylab = paste0("PC2 (", prp[2], "%)"), 
           main = "Principal Component Analysis",
            )
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,2] - ifelse(pca$x[, 2] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])])
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 3])
      ord = abs(ord[2] - ord[1])/25
      plot(pca$x[, 1], pca$x[, 3], las = 1, cex = 2, col = col[as.integer(group[, 1])], 
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]}, 
           xlab = paste0("PC1 (", prp[1], "%)"), 
           ylab = paste0("PC3 (", prp[3], "%)"), 
           main = "Principal Component Analysis")
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,3] - ifelse(pca$x[, 3] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
    }
    
    if(plot=="eigen") barplot(pca$sdev^2, main = "Eigen values of the PCA", names.arg = 1:length(pca$sdev), xlab = "Axes")
  }
  
  
  
stevenn's avatar
stevenn committed
757

stevenn's avatar
stevenn committed
758
759
760
761
762
  ############################################################
  ##
  ##              CREATE THE CONTRAST DATABASE
  ##
  ############################################################
stevenn's avatar
stevenn committed
763

stevenn's avatar
stevenn committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
  
  BaseContrast <- function(input,names,namesfile)
  {  

    v_tmp = c()
    filesize = file.info(namesfile)[,"size"]
    
    for(i in 1:length(names))
    {  
      Tinput = paste("input$",names[i],sep="")
      expr=parse(text=Tinput)
      val = eval(expr) 
      v_tmp[i] = as.numeric(val)
    }
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
      colnamesTmp = c(colnames(oldContrast),input$ContrastName)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = input$ContrastName; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
  ## Remove nul counts
  removeNulCounts <-function (counts) 
  {
    return(counts[rowSums(counts) > 0, ])
  }
stevenn's avatar
stevenn committed
796
797

  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
798
799
800
801
802
  ############################################################
  ##
  ##              VISUALISATION PLOTS
  ##
  ############################################################
stevenn's avatar
stevenn committed
803
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
804
805
806
807
808
809
810
811
812
813
814
  GetDataToPlot <- function(resDiff,VarInt,ind_taxo,aggregate=TRUE)
  {
    dds = resDiff$dds
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    target = resDiff$target
    counts_tmp_combined = NULL
    prop_tmp_combined = NULL
    targetInt = NULL
    ## Select a subset within the taxonomy level (default is the 12 most abundant)
    nbKept = length(ind_taxo)
    Taxonomy = rownames(counts)
stevenn's avatar
stevenn committed
815
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
816
817
818
819
820
821
822
823
824
825
    if (length(VarInt)>0 && nbKept>0)
    { 
      ## Create the variable to plot
      targetInt = as.data.frame(target[,VarInt])
      rownames(targetInt)=target[,1]  
      if(length(VarInt)>1) targetInt$AllVar = apply(targetInt,1,paste, collapse = "-")
      if(length(VarInt)<=1)  targetInt$AllVar = target[,VarInt]
      colnames(targetInt) = c(VarInt,"AllVar")
      ## Create the counts matrix only for the selected subset
      counts_tmp = counts[Taxonomy%in%ind_taxo,]
stevenn's avatar
stevenn committed
826

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
      ## Be careful transposition !
      if(aggregate)
      { 
        counts_tmp_combined = aggregate(t(counts_tmp),by=list(targetInt$AllVar),sum)
        rownames(counts_tmp_combined) = counts_tmp_combined$Group.1
        counts_tmp_combined = as.matrix(counts_tmp_combined[,-1])
      }
      if(!aggregate)
      {  
        counts_tmp_combined = t(counts_tmp)
        prop_tmp_combined = counts_tmp_combined/colSums(counts)
        rownames(counts_tmp_combined) = targetInt$AllVar
        rownames(prop_tmp_combined) = targetInt$AllVar
      }
      ## Ordering the counts
      MeanCounts = apply(counts_tmp_combined,2,mean)
      ord = order(MeanCounts,decreasing=TRUE)
      counts_tmp_combined = as.matrix(counts_tmp_combined[,ord])
      if(!aggregate) prop_tmp_combined = as.matrix(prop_tmp_combined[,ord])
    }
    
      return(list(counts = counts_tmp_combined,targetInt=targetInt,prop=prop_tmp_combined))
    
    
  }
stevenn's avatar
stevenn committed
852
853
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
854
855
856
857
858
859
  
  ###########################
  ## Plots for visualisation
  ###########################
  
  Plot_Visu_Barplot <- function(input,resDiff)
stevenn's avatar
stevenn committed
860
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
861
862
863
864

    ## Get Input for BarPlot
    VarInt = input$VisuVarIntBP
    ind_taxo = input$selectTaxoPlotBP
stevenn's avatar
stevenn committed
865
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
866
867
    counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
    nbKept = length(ind_taxo)
stevenn's avatar
stevenn committed
868
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
869
870
871
872
873
874
875
876
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
    { 
      counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
      Taxonomy = rownames(counts_tmp_combined)
      ## Create the data frame for the plot function
      dataBarPlot_mat = c()
      tmp_mat = matrix(0,ncol=3,nrow=nbKept)
      tmp_counts = c()
stevenn's avatar
stevenn committed
877
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
        for(i in 1:(nrow(counts_tmp_combined)))
        {
          ## Taxo
          tmp_mat[1:nbKept,1] = colnames(counts_tmp_combined)
          
          ## Counts
  
          tmpProp = counts_tmp_combined[i,]
          if(input$CountsOrProp=="prop")
          { 
            tmpProp = round(tmpProp/sum(tmpProp),3)
            tmpProp = as.numeric(tmpProp/sum(tmpProp) * 100)
          }
          tmp_counts = c(tmp_counts,tmpProp)      
          
          ## Meta data
          tmp_mat[1:nbKept,3] = as.character(rep(rownames(counts_tmp_combined)[i],nbKept))
          
          ## Conbined the sample
          dataBarPlot_mat = rbind(dataBarPlot_mat,tmp_mat)
        }
        
        
        ## Add numeric vector to the dataframe
        dataBarPlot_mat = as.data.frame(dataBarPlot_mat)
        
        colnames(dataBarPlot_mat) = c("Taxonomy","Proportions","AllVar")
        dataBarPlot_mat[,2] = tmp_counts
  
        plotd3 <- nvd3Plot(Proportions ~ AllVar | Taxonomy, data = dataBarPlot_mat, type = input$SensPlotVisuBP, id = 'barplotTaxo',height = input$heightVisu,width=input$widthVisu)
        plotd3$chart(stacked = TRUE)
    } 
    else{ 
      ## Pb affichage quand data NULL
      dataNull = data.frame(x=c(1,2),y=c(1,2))
      plotd3 = nvd3Plot(x ~ y , data = dataNull, type = "multiBarChart", id = 'barplotTaxoNyll',height = input$heightVisu,width=input$widthVisu)
stevenn's avatar
stevenn committed
914
    }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
    return(plotd3)
  }
  
  
  
######################################################
##
##            HEATMAP
##
######################################################
  
  
  Plot_Visu_Heatmap <- function(input,resDiff){
  
  VarInt = input$VisuVarIntHM
  ind_taxo = input$selectTaxoPlotHM
  
  counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
  
  if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
  { 
    ## Transform to log2
    counts_tmp_combined = log2(GetDataToPlot(resDiff,VarInt,ind_taxo)$counts+1)
   
    col <- switch(input$colors,
                  "green-blue"=colorRampPalette(brewer.pal(9,"GnBu"))(200),
                  "blue-white-red"=colorRampPalette(rev(brewer.pal(9, "RdBu")))(200),
                  "purple-white-orange"=colorRampPalette(rev(brewer.pal(9, "PuOr")))(200),
                  "red-yellow-green"= colorRampPalette(rev(brewer.pal(9,"RdYlGn")))(200))
stevenn's avatar
stevenn committed
944
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
945
946
947
948
    ## Transpose matrix if Horizontal
    if(input$SensPlotVisuHM=="Horizontal") counts_tmp_combined = t(as.matrix(counts_tmp_combined))
         #print(counts_tmp_combined)
    return(heatmap.2(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE, density.info="none", margins=c(12,8),trace="none",srtCol=45,
stevenn's avatar
stevenn committed
949
                    col = col, scale = input$scaleHeatmap,cexRow = 0.6))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
950
951
952
#     return(d3heatmap(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE, 
#                      width = 1500, height = 1000, show_grid = FALSE, colors = col, scale = input$scaleHeatmap,
#                      cexRow = 0.6))
stevenn's avatar
stevenn committed
953
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
954

stevenn's avatar
stevenn committed
955
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
956
957
958
959
960
961
962
963
964
965
  }

  ######################################################
  ##
  ##            BOXPLOT
  ##
  ######################################################
  
  
  Plot_Visu_Boxplot <- function(input,resDiff){
stevenn's avatar
stevenn committed
966
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
    gg = NULL
    ## Get Input for BoxPlot
    VarInt = input$VisuVarIntBoxP
    ind_taxo = input$selectTaxoPlotBoxP
    
    tmp_merge = GetDataToPlot(resDiff,VarInt,ind_taxo,aggregate=FALSE)
    counts_tmp_combined = tmp_merge$counts

    nbKept = length(ind_taxo)
    
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
    { 
      Taxonomy = rownames(counts_tmp_combined)
    
      if(input$typeDataBox == "Relative") 
      { 
        counts_tmp_combined = tmp_merge$prop
      }
      if(input$typeDataBox == "Log2") counts_tmp_combined = log2(counts_tmp_combined+1)
stevenn's avatar
stevenn committed
986
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
987
988
989
990
991
992
993
      if(nbKept==1) colnames(counts_tmp_combined)=ind_taxo
    

      ## Create the data frame for the plot function
      dataBarPlot_mat = c()
      tmp_mat = matrix(0,ncol=3,nrow=nbKept)
      tmp_counts = c()
stevenn's avatar
stevenn committed
994
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
995
996
997
998
999
1000
      for(i in 1:(nrow(counts_tmp_combined)))
      {
        ## Taxo
        tmp_mat[1:nbKept,1] = colnames(counts_tmp_combined)
        
        ## Counts