internal.R 46.2 KB
Newer Older
stevenn's avatar
stevenn committed
1
2
3



Stevenn Volant's avatar
Stevenn Volant committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
## Function for the rdp format
getval <- function(annotation_rdp, interest, threshold_annot){
  annotation_rdp = unlist(strsplit(annotation_rdp,"\t"))
  annotation = c(annotation_rdp[1])
  for(level in interest){
    idlevel=which(annotation_rdp == level)
    if(length(idlevel)>0){
      if(as.numeric(annotation_rdp[idlevel+1]) >= threshold_annot){
        annotation = c(annotation, gsub("\"", "", annotation_rdp[idlevel-1]))
      }
      else annotation = c(annotation, "NA")
    }
    else annotation = c(annotation, "NA")  
  }
  return(annotation)
}

## Read rdp file
read_rdp <- function(filename, threshold_annot)
{
  interest=c("phylum", "class", "order", "family", "genus")
  conn <- file(filename,open="r")
  linn <-readLines(conn)
  tab=t(sapply(1:length(linn), function(i) getval(linn[i], interest, threshold_annot)))
  close(conn)
  
  if(!TRUE%in%duplicated(tab[,1])) rownames(tab)=tab[,1];tab=tab[,-1]
  colnames(tab) = c("Phylum","Class","Order","Family","Genus")
  
  return(tab)
}









CheckCountsTable <- function(counts)
  {
    Error = NULL
    Warning = NULL
    numTest = FALSE%in%sapply(counts,is.numeric)
    if(ncol(counts)<=1){Error = "The number of columns of the counts table must be at least 2" }
    if(nrow(counts)<=1){Error = "The number of rows of the counts table must be at least 2" }
    if(numTest){Error = "The counts table must contain only numeric values" }
    if(!numTest)
    {
      if(0%in%colSums(counts)){Error = "At least one of the column of the counts table is 0" }
      if(min(counts)<0){Error = "The counts table must contain only positive values" }
    }
    if(TRUE%in%sapply(counts,is.na)){Warning = "NA values are considered as 0 is the counts table"; counts[sapply(counts,is.na)]=0}
    
  
    return(list(Error=Error,Warning=Warning,counts=counts))
  }
  
  CheckTaxoTable <- function(taxo)
stevenn's avatar
stevenn committed
64
  {
Stevenn Volant's avatar
Stevenn Volant committed
65
66
67
68
69
70
71
72
73
74
75
76
    Error = NULL
    Warning = NULL
    if(ncol(taxo)<=1){Error = "The number of columns of the taxonomy table must be at least 2" }
    if(nrow(taxo)<=1){Error = "The number of rows if the taxonomy table must be at least 2" }
    if(TRUE%in%is.numeric(taxo)){Error = "The taxonomy table must contain only character" }

    for(i in 1:ncol(taxo))
    {
      level = levels(taxo[,i])
      nb = length(level)
      if(nb==1 && level=="NA"){ Error = "At least one column contains only NA"}
    }
stevenn's avatar
stevenn committed
77
    
Stevenn Volant's avatar
Stevenn Volant committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    return(list(Error=Error,Warning=Warning))
  }
  
  PercentAnnot <- function(counts,taxo)
  {
    Error = NULL  
    tmp = table(rownames(counts)%in%rownames(taxo))
    Percent = tmp["TRUE"]/sum(tmp)
    if(is.na(Percent)) Percent = 0
    if(Percent==0){Error = "Counts table and annotation do not matched" }
       
    return(list(Error=Error,Percent=Percent))
  }
  
  
  GetDataFromBIOM <-function(dataBIOM)
  {
    ## Counts table
stevenn's avatar
stevenn committed
96
    counts = biom_data(dataBIOM)
stevenn's avatar
stevenn committed
97
98
    counts = as.matrix(counts)
    counts = as.data.frame(counts)
Stevenn Volant's avatar
Stevenn Volant committed
99
100
101
102
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
stevenn's avatar
stevenn committed
103
    taxo = as.data.frame(observation_metadata(dataBIOM))
Stevenn Volant's avatar
Stevenn Volant committed
104
105
106
107
108
109
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
110
  }
stevenn's avatar
stevenn committed
111
112
  
  
stevenn's avatar
stevenn committed
113
114
115
  GetDataFromCT <-function(dataC,dataT)
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
116
    ## Counts table
stevenn's avatar
stevenn committed
117
    counts = dataC
Stevenn Volant's avatar
Stevenn Volant committed
118
119
120
121
122
123
124
125
126
127
128
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
    taxo = as.data.frame(dataT)
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
129
130
131
  }
  
  GetInteraction2 <- function(target)
stevenn's avatar
stevenn committed
132
  { 
stevenn's avatar
stevenn committed
133
134
135
136
    res=c()
    namesTarget = colnames(target)[2:ncol(target)]
    k=1
    for(i in 1:(length(namesTarget)-1))
stevenn's avatar
stevenn committed
137
    { 
stevenn's avatar
stevenn committed
138
139
140
141
142
      for(j in (i+1):length(namesTarget))
      { 
        res[k] = paste(namesTarget[i],":",namesTarget[j],sep="")
        k = k+1
      }
stevenn's avatar
stevenn committed
143
    }
stevenn's avatar
stevenn committed
144
145
    
    return(res)
stevenn's avatar
stevenn committed
146
147
148
149
  }
  


Amine  GHOZLANE's avatar
Amine GHOZLANE committed
150
  ## Print the contrasts
stevenn's avatar
stevenn committed
151
152
153
154
155
156
157
158
159
160
  PrintContrasts <- function (coefs, contrasts,contnames) 
  {
    contrasts = as.matrix(contrasts)
    out <-""
    
    for (i in 1:ncol(contrasts)) 
    {
      contrast <- contrasts[,i]
      contrast <- paste(ifelse(contrast > 0, "+ ", ""), contrast, sep = "")
      contrast <- gsub("( 1)|(1)", "", contrast)
161
      out = paste(out,paste("<b>",contnames[i], "</b> <br/>", paste(contrast[contrast != 0], coefs[contrast != 0], collapse = " ", sep = " ")),"<br/>")
stevenn's avatar
stevenn committed
162
163
164
165
    }
    return(out)
    
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
166
167

  
stevenn's avatar
stevenn committed
168
169
  
  ## Get the counts for the selected taxonomy
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
170
  GetCountsMerge <- function(input,dataInput,taxoSelect,target,design)
stevenn's avatar
stevenn committed
171
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
172
173
    counts= NULL
    CheckTarget = FALSE
stevenn's avatar
stevenn committed
174
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
175
    ## Counts and taxo tables
stevenn's avatar
stevenn committed
176
177
    CT = dataInput$counts
    taxo = dataInput$taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
178
179
180
181
        
    ## Select cols in the target
    labels = target[,1]
    ind = which(colnames(CT)%in%labels)
stevenn's avatar
stevenn committed
182
    
stevenn's avatar
stevenn committed
183
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
184
185
186
187
188
    if(length(ind)==length(labels))
    { 
      CT = CT[,ind]
      
      ## Order CT according to the target
189
      CT = OrderCounts(counts=CT,labels=labels)$CountsOrder
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
190
191
192
193
#       ind0 = which(rowSums(CT)==0)
#       if(length(ind0)>0) CT = CT[-ind0,]
      
      ## Counts normalisation
194
195
print(head(CT))
print(head(target))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
196
197
      dds <- DESeqDataSetFromMatrix(countData=CT, colData=target, design=design)
      dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
198
199
200
      normFactors = sizeFactors(dds) 
print(normFactors)
print(colSums(CT))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
201
202
203
204
      CT = as.data.frame(round(counts(dds, normalized = TRUE)))
      ordOTU = order(rownames(taxo))
      indOTU_annot = which(rownames(CT)%in%rownames(taxo))
      counts_annot = CT[indOTU_annot[ordOTU],]
205

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
206
207
208
209
210
211
212
213
      if(taxoSelect=="OTU") counts = counts_annot
      else{
      taxoS = taxo[ordOTU,taxoSelect]
      counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),sum)
      rownames(counts)=counts[,1];counts=counts[,-1]
      }
      
      ## Ordering the counts table according to the target labels 
214
215
216
      tmpOrder = OrderCounts(counts,normFactors,labels)
      counts = tmpOrder$CountsOrder
      normFactors = tmpOrder$normFactorsOrder
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
217
218
      CheckTarget = TRUE
    }
219
    return(list(counts=counts,CheckTarget=CheckTarget,normFactors=normFactors))
stevenn's avatar
stevenn committed
220
221
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
222
  ## Order the counts 
223
  OrderCounts <- function(counts,normFactors=NULL,labels)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
224
225
226
  {
    n = length(labels)
    CountsOrder = counts
227
    normFactorsOrder = normFactors
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
228
229
230
231
232
    for(i in 1:n)
    {
      
      ind = which(labels[i]==colnames(counts))
      CountsOrder[,i] = counts[,ind]
233
      if(!is.null(normFactors)) normFactorsOrder[i] = normFactors[ind]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
234
235
    }
    colnames(CountsOrder) = labels
236
    return(list(CountsOrder=CountsOrder,normFactorsOrder = normFactorsOrder))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
237
238
239
  }
  
  
stevenn's avatar
stevenn committed
240
  ## Get the dds object of DESeq2
241
  Get_dds_object <- function(input,counts,target,design,normFactorsOTU)
stevenn's avatar
stevenn committed
242
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
243
    
stevenn's avatar
stevenn committed
244
    dds <- DESeqDataSetFromMatrix(countData=counts, colData=target, design=design)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
245
    normFactors = rep(1,nrow(target))
stevenn's avatar
stevenn committed
246
    ## Size factor estimation
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
247
248
249
    #dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
    #normalizationFactors(dds) <- normFactors
    sizeFactors(dds)<- normFactors
stevenn's avatar
stevenn committed
250
251
    dds <- estimateDispersions(dds, fitType=input$fitType)
    dds <- nbinomWaldTest(dds)
252
    return(list(dds = dds,counts=counts,target=target,design=design,normFactors = normFactorsOTU))
stevenn's avatar
stevenn committed
253
254
255
256
257
258
259
260
261
  }

  ## Get the design according to the input
  GetDesign <- function(input)
  {
    InterVar = input$InterestVar
    Interaction = input$Interaction2
    alltmp = c(InterVar,Interaction)
    design = as.formula(paste("~", paste0(alltmp, collapse= "+")))
stevenn's avatar
stevenn committed
262

stevenn's avatar
stevenn committed
263
264
265
266
267
268
269
270
    return(design)
  }
  


  ## Diagnostic Plots
  Plot_diag <- function(input,resDiff)
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
271
272
    #colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
stevenn's avatar
stevenn committed
273
274
275
276
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
277
    normFactors = resDiff$normFactors
stevenn's avatar
stevenn committed
278
    group = as.data.frame(target[,VarInt])
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
279
280
    rownames(group) = rownames(target)
    
281
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
282
283
284
285
    ## If more than 4 levels for one factor
    if(length(VarInt)>1)  maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    else maxFact = length(levels(group))
    if(maxFact>=4) colors = rainbow(maxFact) 
stevenn's avatar
stevenn committed
286
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
287
288
289
290
291
    if(input$DiagPlot=="barplotTot") barplotTot(input,counts,group = group, col=colors)
    if(input$DiagPlot=="barplotNul") barPlotNul(input,counts, group = group, col=colors)
    if(input$DiagPlot=="densityPlot") densityPlotTot(input,counts, group = group, col=colors)
    if(input$DiagPlot=="MajTax") majTaxPlot(input,counts, group = group, col=colors)
    if(input$DiagPlot=="SERE") SEREplot(input,counts)
292
293
    #if(input$DiagPlot=="Sfactors") diagSFactors(input,dds,frame=1) 
    if(input$DiagPlot=="SfactorsVStot") diagSFactors(input,dds,normFactors,frame=2) 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
294
295
296
    if(input$DiagPlot=="pcaPlot") PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
    if(input$DiagPlot=="pcoaPlot") PCoAPlot_meta(input,dds, group) 
    if(input$DiagPlot=="clustPlot") HCPlot(input,dds,group,type.trans=input$TransType)
stevenn's avatar
stevenn committed
297
298
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
  
#   HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
#   {
#     counts = as.data.frame(round(counts(dds, normalized = TRUE)))
#     if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
#     if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
#     
#     hc <- hclust(dist(t(counts.trans)), method = "ward.D")
#     
#     type <- switch(input$typeHculst,
#                   "radial"="radial",
#                   "fan"="fan",
#                   "triangle"="cladogram",,
#                   "hori"= "hori",
#                   "verti"=NULL)
#     
#     par(cex=input$cexLabelDiag,mar=c(12,5,8,5))
#     if(input$colorHC && type=="hori") 
#     {
#       hc = dendrapply(as.dendrogram(hc),colLabdendo,group) 
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram")
#     }
#     
#     if(!input$colorHC && type=="hori") 
#     {
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram",hang=-1)
#     }
#     
#     if(type!="hori") 
#     { 
#       group = apply(group,1,paste, collapse = "-")
#       nb = length(unique(group))
#       plot(as.phylo(hc), type= type,label.offset = 1, tip.color = ifelse(input$colorHC, rainbow(nb)[as.integer(as.factor(group))], rep(1,nb)))
#     }
#     dev.off() 
#   }
  
  HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
  {
    
    ## Get the counts
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
    
    ## Get the group of leaf
    group = apply(group,1,paste, collapse = "-")    
    nb = length(unique((group)))
    
    ## Get the dendrogram
    hc <- hclust(dist(t(counts.trans)), method = "ward.D")
    dend = as.dendrogram(hc)
    
    ## Get the type of dendrogram
    type <- switch(input$typeHculst,
                   "fan"="fan",
                   "hori"= "hori")
    
    dend <- set(dend, "labels_cex", input$cexLabelDiag)
    if(input$colorHC) labels_colors(dend)<-rainbow(nb)[as.integer(as.factor(group))][order.dendrogram(dend)]
    
    if(type=="hori") 
    { 
      par(mar = c(8,4,4,2))
      plot(dend, main = "Cluster dendrogram")
    }  
    if(type!="hori")
    {
      par(mar = c(0.3,2,0.3,2))
      circlize_dendrogram(dend, labels_track_height = 0.2, dend_track_height = .3, main = "Cluster dendrogram")
    }
  }
  
  
  ## Color for the horizontal dendro
  colLabdendo <- function(n,group) {
    
    group = apply(group,1,paste, collapse = "-")
    
    nb = length(unique((group)))
    namesGrp = names(group)
stevenn's avatar
stevenn committed
380

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
    }
    return(n)
  }
  
  ## Diagnostic Plots Eigen value
  Plot_diag_Eigen <- function(input,resDiff)
  {
    colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    
    ## If more than 4 levels for one factor
    maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    if(maxFact>=4) colors = rainbow(maxFact) 
    
    PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
  }
  
  Plot_diag_pcoaEigen = function(input,resDiff)
  {
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
    VarInt = input$VarInt
    dds = resDiff$dds
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    rownames(group) = rownames(target)
    PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
  }
  
  
  
stevenn's avatar
stevenn committed
419
420

  ## barplot total
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
421
  barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
422
423
  {
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
424
425
    par(cex=input$cexLabelDiag,mar=c(12,5,4,5))
    barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
stevenn's avatar
stevenn committed
426
427
428
429
430
431
432
433
434
435
436
            ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
            else {c(-45, 0, 45, 90)[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
  
  }


  ## barplot Nul 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
437
  barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
438
439
440
  {
    
    percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
441
    percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
stevenn's avatar
stevenn committed
442
443
    ncol1 <- ncol(group) == 1
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
444
445
    par(cex=input$cexLabelDiag,mar=c(12,5,4,5))

stevenn's avatar
stevenn committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
            density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
            else {c(-45, 0, 45, 90)[as.integer(group[, 2])]},
            cex.names = cex.names, ylab = "Proportion of null counts", 
            main = "Proportion of null counts per sample", 
            ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
    
    abline(h = percentage.allNull, lty = 2, lwd = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
  }


  ## Plot density
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
462
  densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
463
464
465
466
  {
    
    counts <- removeNulCounts(counts)
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
467
    par(cex=input$cexLabelDiag,mar=c(8,5,4,5))
stevenn's avatar
stevenn committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
         xlab = expression(log[2] ~ (raw ~ count + 1)), 
         ylim = c(0, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
         lty = if (ncol1) {1}
         else{c(1, 2, 3, 4)[as.integer(group[, 2])[1]]}, 
         col = col[as.integer(group[, 1])[1]])
    
    for (i in 2:ncol(counts)) 
    {
      lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
            lty = if (ncol1) {1}
            else {c(1, 2, 3, 4)[as.integer(group[, 2])[i]]})
    }
    legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), lty = c(1, 2, 3, 4)[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
    
  }


  ## Table of maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
488
  majTab <- function(input,counts,n)
stevenn's avatar
stevenn committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
  {
    seqnames <- apply(counts, 2, function(x) {
      x <- sort(x, decreasing = TRUE)
      names(x)[1:n]
    })
    seqnames <- unique(unlist(as.character(seqnames)))
    sum <- apply(counts, 2, sum)
    counts <- counts[seqnames, ]
    sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
    p <- round(100 * counts/sum, digits = 3)
    return(p)
  }


  ## Plot maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
504
  majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
505
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
506
    p = majTab(input,counts,n)
stevenn's avatar
stevenn committed
507
508
509
    maj <- apply(p, 2, max)
    seqname <- rownames(p)[apply(p, 2, which.max)]
    ncol1 <- ncol(group) == 1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
510
511

    x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
stevenn's avatar
stevenn committed
512
                 ylim = c(0, max(maj) * 1.2), cex.main = 1, 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
513
                 cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
stevenn's avatar
stevenn committed
514
515
516
517
518
519
520
521
522
                 density = if (ncol1) {NULL}
                 else {15}, 
                 angle = if (ncol1) {NULL}
                 else {c(-45, 0, 45, 90)[as.integer(group[, 2])]})
    
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
                       angle = c(-45, 0, 45, 90)[1:nlevels(group[, 2])], bty = "n")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
523
    for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
stevenn's avatar
stevenn committed
524
525
526
527
  }
  

  ## plot SERE Coefs
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
528
  SEREplot<-function(input,counts) 
stevenn's avatar
stevenn committed
529
530
  {
    sere = SEREcoef(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
531
    print(sere)
stevenn's avatar
stevenn committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    hc <- hclust(as.dist(sere), method = "ward.D")
    plot(hc, las = 2, hang = -1, xlab = "SERE distance, Ward criterion",main = "Cluster dendrogram\non SERE values")
    
  }
  
  
  ## Get the SERE COEF
  SEREcoef<-function(counts)
  {
    sere <- matrix(NA, ncol = ncol(counts), nrow = ncol(counts))
    for (i in 1:ncol(counts)) {
      for (j in 1:ncol(counts)) {
        sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
      }
    }
    colnames(sere) <- rownames(sere) <- colnames(counts)
    sere <- round(sere, digits = 3)
    
    return(sere) 
  }
  

  ## function for the SERE coef
  sigfun_Pearson_meta <- function(observed) {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
556
    print("OK1")
stevenn's avatar
stevenn committed
557
558
    laneTotals <- colSums(observed)
    total <- sum(laneTotals)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
559
    print("OK2")
stevenn's avatar
stevenn committed
560
561
562
    fullObserved <- observed[rowSums(observed) > 0, ]
    fullLambda <- rowSums(fullObserved)/total
    fullLhat <- fullLambda > 0
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
563
    print("OK3")
stevenn's avatar
stevenn committed
564
565
    fullExpected <- outer(fullLambda, laneTotals)
    fullKeep <- which(fullExpected > 0)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
566
567
    print(fullKeep)
    print(fullExpected)
stevenn's avatar
stevenn committed
568
    oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
569
    print(oeFull)
stevenn's avatar
stevenn committed
570
    dfFull <- length(fullKeep) - sum(fullLhat != 0)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
571
    print(dfFull)
stevenn's avatar
stevenn committed
572
573
    sqrt(sum(oeFull)/dfFull)
  }
stevenn's avatar
stevenn committed
574
575


stevenn's avatar
stevenn committed
576
  ## Plots of size factors
577
  diagSFactors<-function (input,dds,normFactors,frame=1) 
stevenn's avatar
stevenn committed
578
579
580
581
582
583
584
  {
    geomeans <- exp(rowMeans(log(counts(dds))))
    samples <- colnames(counts(dds))
    counts.trans <- log2(counts(dds)/geomeans)
    xmin <- min(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
    xmax <- max(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
    
585
586
587
588
#     if(!is.na(input$NbcolSfactors)) parCols = as.numeric(input$NbcolSfactors)
#     else parCols = ceiling(ncol(counts.trans)/3)
#     
#     parRows = ceiling(ncol(counts.trans)/parCols)
stevenn's avatar
stevenn committed
589

stevenn's avatar
stevenn committed
590
591
592
593
594
595
596
597
    if(frame==1)
    {
      par(mfrow=c(parRows,parCols))
      for (j in 1:ncol(dds)) {
        hist(log2(counts(dds)[, j]/geomeans), nclass = 100, 
             xlab = expression(log[2] ~ (counts/geometric ~ mean)), las = 1, xlim = c(xmin, xmax), 
             main = paste("Size factors diagnostic - Sample ",samples[j], sep = ""), col = "skyblue")
        
598
        abline(v = log2(normFactors[j]), col = "red", lwd = 1.5)
stevenn's avatar
stevenn committed
599
600
601
602
603
      }
    }
    
    if(frame==2)
    {
604
      plot(normFactors, colSums(counts(dds)), pch = 19, las = 1, 
stevenn's avatar
stevenn committed
605
606
           ylab = "Total number of reads", xlab = "Size factors", 
           main = "Diagnostic: size factors vs total number of reads")
607
      abline(lm(colSums(counts(dds)) ~ normFactors + 0), lty = 2, col = "grey")
stevenn's avatar
stevenn committed
608
609
    }
  }
stevenn's avatar
stevenn committed
610

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
  
  ### PCoA
  PCoAPlot_meta <-function (input,dds, group_init,col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
  {
    cval=c()
    # Set of shape
    shape=c(19,17,15,18)
    ## Var of interest
    VarInt  = input$VarInt
    ## Group
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
    ## Get the norm data
    counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
    
    # was removed
    counts.norm = counts.norm[,ind_kept]
    
    ## Get the distance
    dist.counts.norm = vegdist(t(counts.norm), method = input$DistPCOA)
    
    ## Do PCoA
    pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=3)
    
    ## Get eigen values
    eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
    
    
    ## xlim and ylim of the plot
    min = min(pco.counts.norm$li)
    max = max(pco.counts.norm$li)
    
    ## get condition set
    condition_set=val[which(val %in% unique(group_init$condition))]
    time_set=val[which(val %in% unique(group_init$time))]
    
    ## Colors
    if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
    {
      col = rainbow(length(condition_set) * length(time_set))
    }
    #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
    #  col = rep(col[1:length(condition_set)], length(time_set))
    #}
    print(condition_set)
    print(time_set)
    if (length(time_set) == 1 && length(condition_set) <= 4){
      cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
      cval = sort(cval)
    }
    print(col)
    # to reactivate
    #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
    if (plot == "pcoa"){
      ## Plot axis, label and circles
      plot(pco.counts.norm$li[1:2], xlab=paste("PC1 : ",round(eigen[1],1),"%") , ylab=paste("PC2 : ",round(eigen[2],1),"%"),
           xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), cex.axis=1, cex.lab=1,lwd=2, type="n")
      # Set different shapes
      if(input$labelPCOA == "Group"){
        print(cval)
        print(length(cval))
        if(!is.null(cval)){
          for (i in 1:length(cval)){
            points(pco.counts.norm$li[which(group==cval[i]),1:2],pch=shape[i],col=col[i], cex=input$cexpoint)
          }
          s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                  add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
        }else s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                      add.plot = TRUE, cpoint = input$cexpoint, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
      }  
      else{
        s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
        s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
      }
    }else{
      barplot(eigen[1:7], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:7, col = c(rep("black", 2), rep("grey", 5)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
    }
   
  }
  
  ### PCA
  PCAPlot_meta <-function (input,dds, group, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
                           col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
  {
    type.trans <- type.trans[1]
    
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    else counts.trans <- assay(rlogTransformation(dds))
    
    rv = apply(counts.trans, 1, var, na.rm = TRUE)
    pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
    
   
    
    
    
    if(plot=="pca")
    { 
      prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
      prp <- round(prp, 2)
      ncol1 <- ncol(group) == 1
      
      par(mfrow = c(1, 2))
      
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 2])
      ord = abs(ord[2] - ord[1])/25
      
      par(mar=c(8,5,4,5))
      plot(pca$x[, 1], pca$x[, 2], las = 1, cex = 2, col = col[as.integer(group[,1])], 
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]},
           xlab = paste0("PC1 (", prp[1], "%)"),
           ylab = paste0("PC2 (", prp[2], "%)"), 
           main = "Principal Component Analysis",
            )
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,2] - ifelse(pca$x[, 2] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])])
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 3])
      ord = abs(ord[2] - ord[1])/25
      plot(pca$x[, 1], pca$x[, 3], las = 1, cex = 2, col = col[as.integer(group[, 1])], 
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]}, 
           xlab = paste0("PC1 (", prp[1], "%)"), 
           ylab = paste0("PC3 (", prp[3], "%)"), 
           main = "Principal Component Analysis")
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,3] - ifelse(pca$x[, 3] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
    }
    
    if(plot=="eigen") barplot(pca$sdev^2, main = "Eigen values of the PCA", names.arg = 1:length(pca$sdev), xlab = "Axes")
  }
  
  
  
stevenn's avatar
stevenn committed
766

stevenn's avatar
stevenn committed
767
768
769
770
771
  ############################################################
  ##
  ##              CREATE THE CONTRAST DATABASE
  ##
  ############################################################
stevenn's avatar
stevenn committed
772

stevenn's avatar
stevenn committed
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
  
  BaseContrast <- function(input,names,namesfile)
  {  

    v_tmp = c()
    filesize = file.info(namesfile)[,"size"]
    
    for(i in 1:length(names))
    {  
      Tinput = paste("input$",names[i],sep="")
      expr=parse(text=Tinput)
      val = eval(expr) 
      v_tmp[i] = as.numeric(val)
    }
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
      colnamesTmp = c(colnames(oldContrast),input$ContrastName)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = input$ContrastName; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
  ## Remove nul counts
  removeNulCounts <-function (counts) 
  {
    return(counts[rowSums(counts) > 0, ])
  }
stevenn's avatar
stevenn committed
805
806

  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
807
808
809
810
811
  ############################################################
  ##
  ##              VISUALISATION PLOTS
  ##
  ############################################################
stevenn's avatar
stevenn committed
812
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
813
814
815
816
817
818
819
820
821
822
823
  GetDataToPlot <- function(resDiff,VarInt,ind_taxo,aggregate=TRUE)
  {
    dds = resDiff$dds
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    target = resDiff$target
    counts_tmp_combined = NULL
    prop_tmp_combined = NULL
    targetInt = NULL
    ## Select a subset within the taxonomy level (default is the 12 most abundant)
    nbKept = length(ind_taxo)
    Taxonomy = rownames(counts)
stevenn's avatar
stevenn committed
824
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
825
826
827
828
829
830
831
832
833
834
    if (length(VarInt)>0 && nbKept>0)
    { 
      ## Create the variable to plot
      targetInt = as.data.frame(target[,VarInt])
      rownames(targetInt)=target[,1]  
      if(length(VarInt)>1) targetInt$AllVar = apply(targetInt,1,paste, collapse = "-")
      if(length(VarInt)<=1)  targetInt$AllVar = target[,VarInt]
      colnames(targetInt) = c(VarInt,"AllVar")
      ## Create the counts matrix only for the selected subset
      counts_tmp = counts[Taxonomy%in%ind_taxo,]
stevenn's avatar
stevenn committed
835

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
      ## Be careful transposition !
      if(aggregate)
      { 
        counts_tmp_combined = aggregate(t(counts_tmp),by=list(targetInt$AllVar),sum)
        rownames(counts_tmp_combined) = counts_tmp_combined$Group.1
        counts_tmp_combined = as.matrix(counts_tmp_combined[,-1])
      }
      if(!aggregate)
      {  
        counts_tmp_combined = t(counts_tmp)
        prop_tmp_combined = counts_tmp_combined/colSums(counts)
        rownames(counts_tmp_combined) = targetInt$AllVar
        rownames(prop_tmp_combined) = targetInt$AllVar
      }
      ## Ordering the counts
      MeanCounts = apply(counts_tmp_combined,2,mean)
      ord = order(MeanCounts,decreasing=TRUE)
      counts_tmp_combined = as.matrix(counts_tmp_combined[,ord])
      if(!aggregate) prop_tmp_combined = as.matrix(prop_tmp_combined[,ord])
    }
    
      return(list(counts = counts_tmp_combined,targetInt=targetInt,prop=prop_tmp_combined))
    
    
  }
stevenn's avatar
stevenn committed
861
862
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
863
864
865
866
867
868
  
  ###########################
  ## Plots for visualisation
  ###########################
  
  Plot_Visu_Barplot <- function(input,resDiff)
stevenn's avatar
stevenn committed
869
  {
870
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
871
    ## Get Input for BarPlot
872
873
    VarInt = input$VisuVarInt
    ind_taxo = input$selectTaxoPlot
stevenn's avatar
stevenn committed
874
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
875
876
    counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
    nbKept = length(ind_taxo)
stevenn's avatar
stevenn committed
877
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
878
879
880
881
882
883
884
885
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
    { 
      counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
      Taxonomy = rownames(counts_tmp_combined)
      ## Create the data frame for the plot function
      dataBarPlot_mat = c()
      tmp_mat = matrix(0,ncol=3,nrow=nbKept)
      tmp_counts = c()
stevenn's avatar
stevenn committed
886
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
        for(i in 1:(nrow(counts_tmp_combined)))
        {
          ## Taxo
          tmp_mat[1:nbKept,1] = colnames(counts_tmp_combined)
          
          ## Counts
  
          tmpProp = counts_tmp_combined[i,]
          if(input$CountsOrProp=="prop")
          { 
            tmpProp = round(tmpProp/sum(tmpProp),3)
            tmpProp = as.numeric(tmpProp/sum(tmpProp) * 100)
          }
          tmp_counts = c(tmp_counts,tmpProp)      
          
          ## Meta data
          tmp_mat[1:nbKept,3] = as.character(rep(rownames(counts_tmp_combined)[i],nbKept))
          
          ## Conbined the sample
          dataBarPlot_mat = rbind(dataBarPlot_mat,tmp_mat)
        }
        
        
        ## Add numeric vector to the dataframe
        dataBarPlot_mat = as.data.frame(dataBarPlot_mat)
        
        colnames(dataBarPlot_mat) = c("Taxonomy","Proportions","AllVar")
        dataBarPlot_mat[,2] = tmp_counts
915
916
917
918
        if(input$SensPlotVisu == "Vertical") Sens = "multiBarChart"
        if(input$SensPlotVisu == "Horizontal") Sens = "multiBarHorizontalChart"
      
        plotd3 <- nvd3Plot(Proportions ~ AllVar | Taxonomy, data = dataBarPlot_mat, type = Sens, id = 'barplotTaxo',height = input$heightVisu,width=input$widthVisu)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
919
920
921
922
923
924
        plotd3$chart(stacked = TRUE)
    } 
    else{ 
      ## Pb affichage quand data NULL
      dataNull = data.frame(x=c(1,2),y=c(1,2))
      plotd3 = nvd3Plot(x ~ y , data = dataNull, type = "multiBarChart", id = 'barplotTaxoNyll',height = input$heightVisu,width=input$widthVisu)
stevenn's avatar
stevenn committed
925
    }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    return(plotd3)
  }
  
  
  
######################################################
##
##            HEATMAP
##
######################################################
  
  
  Plot_Visu_Heatmap <- function(input,resDiff){
  
940
941
  VarInt = input$VisuVarInt
  ind_taxo = input$selectTaxoPlot
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
942
943
944
945
946
947
948
949
950
951
952
953
954
  
  counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
  
  if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
  { 
    ## Transform to log2
    counts_tmp_combined = log2(GetDataToPlot(resDiff,VarInt,ind_taxo)$counts+1)
   
    col <- switch(input$colors,
                  "green-blue"=colorRampPalette(brewer.pal(9,"GnBu"))(200),
                  "blue-white-red"=colorRampPalette(rev(brewer.pal(9, "RdBu")))(200),
                  "purple-white-orange"=colorRampPalette(rev(brewer.pal(9, "PuOr")))(200),
                  "red-yellow-green"= colorRampPalette(rev(brewer.pal(9,"RdYlGn")))(200))
stevenn's avatar
stevenn committed
955
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
956
    ## Transpose matrix if Horizontal
957
    if(input$SensPlotVisu=="Horizontal") counts_tmp_combined = t(as.matrix(counts_tmp_combined))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
958
         #print(counts_tmp_combined)
959
960
961
962
963
    #return(heatmap.2(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE, density.info="none", margins=c(12,8),trace="none",srtCol=45,
                    #col = col, scale = input$scaleHeatmap,cexRow = 0.6))
     return(d3heatmap(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE, 
                      width = input$widthVisu, height = input$heightVisu, show_grid = FALSE, colors = col, scale = input$scaleHeatmap,
                      cexRow = 0.6))
stevenn's avatar
stevenn committed
964
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
965

stevenn's avatar
stevenn committed
966
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
967
968
969
970
971
972
973
974
975
976
  }

  ######################################################
  ##
  ##            BOXPLOT
  ##
  ######################################################
  
  
  Plot_Visu_Boxplot <- function(input,resDiff){
stevenn's avatar
stevenn committed
977
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
978
979
    gg = NULL
    ## Get Input for BoxPlot
980
981
    VarInt = input$VisuVarInt
    ind_taxo = input$selectTaxoPlot
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
    
    tmp_merge = GetDataToPlot(resDiff,VarInt,ind_taxo,aggregate=FALSE)
    counts_tmp_combined = tmp_merge$counts

    nbKept = length(ind_taxo)
    
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
    { 
      Taxonomy = rownames(counts_tmp_combined)
    
      if(input$typeDataBox == "Relative") 
      { 
        counts_tmp_combined = tmp_merge$prop
      }
      if(input$typeDataBox == "Log2") counts_tmp_combined = log2(counts_tmp_combined+1)
stevenn's avatar
stevenn committed
997
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
998
999
1000
      if(nbKept==1) colnames(counts_tmp_combined)=ind_taxo