internal.R 49.2 KB
Newer Older
stevenn's avatar
stevenn committed
1

Stevenn Volant's avatar
Stevenn Volant committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
## Function for the rdp format
getval <- function(annotation_rdp, interest, threshold_annot){
  annotation_rdp = unlist(strsplit(annotation_rdp,"\t"))
  annotation = c(annotation_rdp[1])
  for(level in interest){
    idlevel=which(annotation_rdp == level)
    if(length(idlevel)>0){
      if(as.numeric(annotation_rdp[idlevel+1]) >= threshold_annot){
        annotation = c(annotation, gsub("\"", "", annotation_rdp[idlevel-1]))
      }
      else annotation = c(annotation, "NA")
    }
    else annotation = c(annotation, "NA")  
  }
  return(annotation)
}

## Read rdp file
read_rdp <- function(filename, threshold_annot)
{
  interest=c("phylum", "class", "order", "family", "genus")
  conn <- file(filename,open="r")
  linn <-readLines(conn)
  tab=t(sapply(1:length(linn), function(i) getval(linn[i], interest, threshold_annot)))
  close(conn)
  
  if(!TRUE%in%duplicated(tab[,1])) rownames(tab)=tab[,1];tab=tab[,-1]
  colnames(tab) = c("Phylum","Class","Order","Family","Genus")
  
  return(tab)
}









CheckCountsTable <- function(counts)
  {
    Error = NULL
    Warning = NULL
    numTest = FALSE%in%sapply(counts,is.numeric)
    if(ncol(counts)<=1){Error = "The number of columns of the counts table must be at least 2" }
    if(nrow(counts)<=1){Error = "The number of rows of the counts table must be at least 2" }
    if(numTest){Error = "The counts table must contain only numeric values" }
    if(!numTest)
    {
      if(0%in%colSums(counts)){Error = "At least one of the column of the counts table is 0" }
      if(min(counts)<0){Error = "The counts table must contain only positive values" }
    }
    if(TRUE%in%sapply(counts,is.na)){Warning = "NA values are considered as 0 is the counts table"; counts[sapply(counts,is.na)]=0}
    
  
    return(list(Error=Error,Warning=Warning,counts=counts))
  }
  
  CheckTaxoTable <- function(taxo)
stevenn's avatar
stevenn committed
62
  {
Stevenn Volant's avatar
Stevenn Volant committed
63
64
65
66
67
68
69
70
71
72
73
74
    Error = NULL
    Warning = NULL
    if(ncol(taxo)<=1){Error = "The number of columns of the taxonomy table must be at least 2" }
    if(nrow(taxo)<=1){Error = "The number of rows if the taxonomy table must be at least 2" }
    if(TRUE%in%is.numeric(taxo)){Error = "The taxonomy table must contain only character" }

    for(i in 1:ncol(taxo))
    {
      level = levels(taxo[,i])
      nb = length(level)
      if(nb==1 && level=="NA"){ Error = "At least one column contains only NA"}
    }
stevenn's avatar
stevenn committed
75
    
Stevenn Volant's avatar
Stevenn Volant committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    return(list(Error=Error,Warning=Warning))
  }
  
  PercentAnnot <- function(counts,taxo)
  {
    Error = NULL  
    tmp = table(rownames(counts)%in%rownames(taxo))
    Percent = tmp["TRUE"]/sum(tmp)
    if(is.na(Percent)) Percent = 0
    if(Percent==0){Error = "Counts table and annotation do not matched" }
       
    return(list(Error=Error,Percent=Percent))
  }
  
  
  GetDataFromBIOM <-function(dataBIOM)
  {
    ## Counts table
stevenn's avatar
stevenn committed
94
    counts = biom_data(dataBIOM)
stevenn's avatar
stevenn committed
95
96
    counts = as.matrix(counts)
    counts = as.data.frame(counts)
Stevenn Volant's avatar
Stevenn Volant committed
97
98
99
100
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
stevenn's avatar
stevenn committed
101
    taxo = as.data.frame(observation_metadata(dataBIOM))
Stevenn Volant's avatar
Stevenn Volant committed
102
103
104
105
106
107
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
108
  }
stevenn's avatar
stevenn committed
109
110
  
  
stevenn's avatar
stevenn committed
111
112
113
  GetDataFromCT <-function(dataC,dataT)
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
114
    ## Counts table
stevenn's avatar
stevenn committed
115
    counts = dataC
Stevenn Volant's avatar
Stevenn Volant committed
116
117
118
119
120
121
122
123
124
125
126
    CheckCounts = CheckCountsTable(counts)
    counts = CheckCounts$counts
    
    ## Taxonomy table
    taxo = as.data.frame(dataT)
    CheckTaxo = CheckTaxoTable(taxo)
    
    ## Pourcentage of annotation
    tmp = PercentAnnot(counts,taxo)
    
    return(list(counts=counts,taxo=taxo,CheckCounts=CheckCounts,CheckTaxo=CheckTaxo,Percent=tmp$Percent,CheckPercent=tmp$Error))
stevenn's avatar
stevenn committed
127
128
129
  }
  
  GetInteraction2 <- function(target)
stevenn's avatar
stevenn committed
130
  { 
stevenn's avatar
stevenn committed
131
132
133
134
    res=c()
    namesTarget = colnames(target)[2:ncol(target)]
    k=1
    for(i in 1:(length(namesTarget)-1))
stevenn's avatar
stevenn committed
135
    { 
stevenn's avatar
stevenn committed
136
137
138
139
140
      for(j in (i+1):length(namesTarget))
      { 
        res[k] = paste(namesTarget[i],":",namesTarget[j],sep="")
        k = k+1
      }
stevenn's avatar
stevenn committed
141
    }
stevenn's avatar
stevenn committed
142
143
    
    return(res)
stevenn's avatar
stevenn committed
144
145
146
147
  }
  


Amine  GHOZLANE's avatar
Amine GHOZLANE committed
148
  ## Print the contrasts
stevenn's avatar
stevenn committed
149
150
151
152
153
154
155
156
157
158
  PrintContrasts <- function (coefs, contrasts,contnames) 
  {
    contrasts = as.matrix(contrasts)
    out <-""
    
    for (i in 1:ncol(contrasts)) 
    {
      contrast <- contrasts[,i]
      contrast <- paste(ifelse(contrast > 0, "+ ", ""), contrast, sep = "")
      contrast <- gsub("( 1)|(1)", "", contrast)
159
      out = paste(out,paste("<b>",contnames[i], "</b> <br/>", paste(contrast[contrast != 0], coefs[contrast != 0], collapse = " ", sep = " ")),"<br/>")
stevenn's avatar
stevenn committed
160
161
162
163
    }
    return(out)
    
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
164
165

  
stevenn's avatar
stevenn committed
166
167
  
  ## Get the counts for the selected taxonomy
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
168
  GetCountsMerge <- function(input,dataInput,taxoSelect,target,design)
stevenn's avatar
stevenn committed
169
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
170
171
    counts= NULL
    CheckTarget = FALSE
Stevenn Volant's avatar
Stevenn Volant committed
172
173
    CT_noNorm = NULL
    normFactors = NULL
stevenn's avatar
stevenn committed
174
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
175
    ## Counts and taxo tables
stevenn's avatar
stevenn committed
176
177
    CT = dataInput$counts
    taxo = dataInput$taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
178
179
180
181
        
    ## Select cols in the target
    labels = target[,1]
    ind = which(colnames(CT)%in%labels)
stevenn's avatar
stevenn committed
182
    
stevenn's avatar
stevenn committed
183
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
184
185
186
187
188
    if(length(ind)==length(labels))
    { 
      CT = CT[,ind]
      
      ## Order CT according to the target
189
      CT = OrderCounts(counts=CT,labels=labels)$CountsOrder
Stevenn Volant's avatar
Stevenn Volant committed
190
      CT_noNorm = CT
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
191
192
193
194
#       ind0 = which(rowSums(CT)==0)
#       if(length(ind0)>0) CT = CT[-ind0,]
      
      ## Counts normalisation
Stevenn Volant's avatar
Stevenn Volant committed
195

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
196
197
      dds <- DESeqDataSetFromMatrix(countData=CT, colData=target, design=design)
      dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
Stevenn Volant's avatar
Stevenn Volant committed
198
199
      normFactors = sizeFactors(dds)

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
200
201
202
203
      CT = as.data.frame(round(counts(dds, normalized = TRUE)))
      ordOTU = order(rownames(taxo))
      indOTU_annot = which(rownames(CT)%in%rownames(taxo))
      counts_annot = CT[indOTU_annot[ordOTU],]
204

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
205
206
      if(taxoSelect=="OTU") counts = counts_annot
      else{
Stevenn Volant's avatar
Stevenn Volant committed
207
208
209
        taxoS = taxo[ordOTU,taxoSelect]
        counts = aggregate(counts_annot,by=list(Taxonomy = taxoS),sum)
        rownames(counts)=counts[,1];counts=counts[,-1]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
210
211
212
      }
      
      ## Ordering the counts table according to the target labels 
213
214
215
      tmpOrder = OrderCounts(counts,normFactors,labels)
      counts = tmpOrder$CountsOrder
      normFactors = tmpOrder$normFactorsOrder
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
216
217
      CheckTarget = TRUE
    }
Stevenn Volant's avatar
Stevenn Volant committed
218
    return(list(counts=counts,CheckTarget=CheckTarget,normFactors=normFactors, CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
219
220
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
221
  ## Order the counts 
222
  OrderCounts <- function(counts,normFactors=NULL,labels)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
223
224
225
  {
    n = length(labels)
    CountsOrder = counts
226
    normFactorsOrder = normFactors
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
227
228
229
230
231
    for(i in 1:n)
    {
      
      ind = which(labels[i]==colnames(counts))
      CountsOrder[,i] = counts[,ind]
232
      if(!is.null(normFactors)) normFactorsOrder[i] = normFactors[ind]
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
233
234
    }
    colnames(CountsOrder) = labels
235
    return(list(CountsOrder=CountsOrder,normFactorsOrder = normFactorsOrder))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
236
237
238
  }
  
  
stevenn's avatar
stevenn committed
239
  ## Get the dds object of DESeq2
Stevenn Volant's avatar
Stevenn Volant committed
240
  Get_dds_object <- function(input,counts,target,design,normFactorsOTU,CT_noNorm)
stevenn's avatar
stevenn committed
241
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
242
    
stevenn's avatar
stevenn committed
243
    dds <- DESeqDataSetFromMatrix(countData=counts, colData=target, design=design)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
244
    normFactors = rep(1,nrow(target))
stevenn's avatar
stevenn committed
245
    ## Size factor estimation
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
246
247
248
    #dds <- estimateSizeFactors(dds,locfunc=eval(as.name(input$locfunc)))
    #normalizationFactors(dds) <- normFactors
    sizeFactors(dds)<- normFactors
stevenn's avatar
stevenn committed
249
    dds <- estimateDispersions(dds, fitType=input$fitType)
Stevenn Volant's avatar
Stevenn Volant committed
250
    dds <- nbinomWaldTest(dds)
Stevenn Volant's avatar
Stevenn Volant committed
251
    return(list(dds = dds,counts=counts,target=target,design=design,normFactors = normFactorsOTU,CT_noNorm=CT_noNorm))
stevenn's avatar
stevenn committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
  }

  ## Get the design according to the input
  GetDesign <- function(input)
  {
    InterVar = input$InterestVar
    Interaction = input$Interaction2
    alltmp = c(InterVar,Interaction)
    design = as.formula(paste("~", paste0(alltmp, collapse= "+")))
    return(design)
  }
  


  ## Diagnostic Plots
  Plot_diag <- function(input,resDiff)
  {
Stevenn Volant's avatar
Stevenn Volant committed
269
    
stevenn's avatar
stevenn committed
270
271
272
273
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
274
    normFactors = resDiff$normFactors
Stevenn Volant's avatar
Stevenn Volant committed
275
    CT_noNorm = resDiff$CT_noNorm
stevenn's avatar
stevenn committed
276
    group = as.data.frame(target[,VarInt])
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
277
    rownames(group) = rownames(target)
Stevenn Volant's avatar
Stevenn Volant committed
278
    res = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
279
    
Stevenn Volant's avatar
Stevenn Volant committed
280
281
    if(ncol(group)>0 && nrow(counts)>0)
    { 
Stevenn Volant's avatar
Stevenn Volant committed
282
283
      colors = rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                     "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nrow(target)/20))
Stevenn Volant's avatar
Stevenn Volant committed
284
285
286
287
288
      
      if(input$DiagPlot=="barplotTot") res = barplotTot(input,counts,group = group, col=colors)
      if(input$DiagPlot=="barplotNul") res = barPlotNul(input,counts, group = group, col=colors)
      if(input$DiagPlot=="densityPlot") res = densityPlotTot(input,counts, group = group, col=colors)
      if(input$DiagPlot=="MajTax") res = majTaxPlot(input,counts, group = group, col=colors)
Stevenn Volant's avatar
Stevenn Volant committed
289
      #if(input$DiagPlot=="SERE") res = SEREplot(input,counts)
Stevenn Volant's avatar
Stevenn Volant committed
290
291
292
      #if(input$DiagPlot=="Sfactors") diagSFactors(input,dds,frame=1) 
      if(input$DiagPlot=="SfactorsVStot") res = diagSFactors(input,dds,normFactors,CT_noNorm,frame=2) 
      if(input$DiagPlot=="pcaPlot") res = PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
Stevenn Volant's avatar
Stevenn Volant committed
293
      if(input$DiagPlot=="pcoaPlot") res = PCoAPlot_meta(input,dds, group, col = colors) 
Stevenn Volant's avatar
Stevenn Volant committed
294
295
      if(input$DiagPlot=="clustPlot") res = HCPlot(input,dds,group,type.trans=input$TransType)
    }
296
    
Stevenn Volant's avatar
Stevenn Volant committed
297
    return(res)
stevenn's avatar
stevenn committed
298
299
  }

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
  
#   HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
#   {
#     counts = as.data.frame(round(counts(dds, normalized = TRUE)))
#     if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
#     if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
#     
#     hc <- hclust(dist(t(counts.trans)), method = "ward.D")
#     
#     type <- switch(input$typeHculst,
#                   "radial"="radial",
#                   "fan"="fan",
#                   "triangle"="cladogram",,
#                   "hori"= "hori",
#                   "verti"=NULL)
#     
#     par(cex=input$cexLabelDiag,mar=c(12,5,8,5))
#     if(input$colorHC && type=="hori") 
#     {
#       hc = dendrapply(as.dendrogram(hc),colLabdendo,group) 
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram")
#     }
#     
#     if(!input$colorHC && type=="hori") 
#     {
#       plot(hc, xlab = "Euclidean distance, Ward criterion", main = "Cluster dendrogram",hang=-1)
#     }
#     
#     if(type!="hori") 
#     { 
#       group = apply(group,1,paste, collapse = "-")
#       nb = length(unique(group))
#       plot(as.phylo(hc), type= type,label.offset = 1, tip.color = ifelse(input$colorHC, rainbow(nb)[as.integer(as.factor(group))], rep(1,nb)))
#     }
#     dev.off() 
#   }
  
  HCPlot <- function (input,dds,group,type.trans,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
  {
    
Stevenn Volant's avatar
Stevenn Volant committed
340
341
    res = NULL
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
342
343
344
345
346
347
348
349
350
351
    ## Get the counts
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    if (type.trans == "rlog") counts.trans <- assay(rlogTransformation(dds))
    
    ## Get the group of leaf
    group = apply(group,1,paste, collapse = "-")    
    nb = length(unique((group)))
    
    ## Get the dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
352
353
354
355
    if(input$DistClust!="sere") dist = vegdist(t(counts), method = input$DistClust)
    if(input$DistClust=="sere") dist = as.dist(SEREcoef(counts))
    hc <- hclust(dist, method = "ward.D")
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
356
357
358
    dend = as.dendrogram(hc)
    
    ## Get the type of dendrogram
Stevenn Volant's avatar
Stevenn Volant committed
359
    type <- input$typeHculst
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
360
361
362
363
364
365
    
    dend <- set(dend, "labels_cex", input$cexLabelDiag)
    if(input$colorHC) labels_colors(dend)<-rainbow(nb)[as.integer(as.factor(group))][order.dendrogram(dend)]
    
    if(type=="hori") 
    { 
366
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
367
      res = plot(dend, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "),cex=input$cexLabelDiag)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
368
369
370
    }  
    if(type!="hori")
    {
371
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
372
      res = circlize_dendrogram(dend, labels_track_height = 0.2, dend_track_height = .3, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
373
    }
Stevenn Volant's avatar
Stevenn Volant committed
374
    return(res)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
375
376
377
378
379
380
381
382
383
384
  }
  
  
  ## Color for the horizontal dendro
  colLabdendo <- function(n,group) {
    
    group = apply(group,1,paste, collapse = "-")
    
    nb = length(unique((group)))
    namesGrp = names(group)
stevenn's avatar
stevenn committed
385

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    if (is.leaf(n)) {
      a <- attributes(n)
      labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
      attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
    }
    return(n)
  }
  
  ## Diagnostic Plots Eigen value
  Plot_diag_Eigen <- function(input,resDiff)
  {
    colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
    VarInt = input$VarInt
    dds = resDiff$dds
    counts = resDiff$counts
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    
    ## If more than 4 levels for one factor
    maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
    if(maxFact>=4) colors = rainbow(maxFact) 
    
    PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
  }
  
  Plot_diag_pcoaEigen = function(input,resDiff)
  {
    colors = c("SpringGreen","dodgerblue","black","firebrick1")
    VarInt = input$VarInt
    dds = resDiff$dds
    target = resDiff$target
    group = as.data.frame(target[,VarInt])
    rownames(group) = rownames(target)
    PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
  }
  
  
  
stevenn's avatar
stevenn committed
424
425

  ## barplot total
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
426
  barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
427
  {
Stevenn Volant's avatar
Stevenn Volant committed
428

stevenn's avatar
stevenn committed
429
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
430
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
431
    barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
stevenn's avatar
stevenn committed
432
433
434
            ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
435
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
stevenn's avatar
stevenn committed
436
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
Stevenn Volant's avatar
Stevenn Volant committed
437
    if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
438
439
440
441
442
  
  }


  ## barplot Nul 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
443
  barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
444
445
446
  {
    
    percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
447
    percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
stevenn's avatar
stevenn committed
448
449
    ncol1 <- ncol(group) == 1
    
Stevenn Volant's avatar
Stevenn Volant committed
450
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
451

stevenn's avatar
stevenn committed
452
453
454
455
    barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
            density = if (ncol1) {NULL}
            else {15}, 
            angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
456
            else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]},
stevenn's avatar
stevenn committed
457
458
459
460
461
462
            cex.names = cex.names, ylab = "Proportion of null counts", 
            main = "Proportion of null counts per sample", 
            ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
    
    abline(h = percentage.allNull, lty = 2, lwd = 2)
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
Stevenn Volant's avatar
Stevenn Volant committed
463
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
464
465
466
467
  }


  ## Plot density
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
468
  densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
469
470
471
472
  {
    
    counts <- removeNulCounts(counts)
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
473
    par(cex=input$cexTitleDiag,mar=c(8,5,4,5))
stevenn's avatar
stevenn committed
474
475
    plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
         xlab = expression(log[2] ~ (raw ~ count + 1)), 
476
         ylim = c(-0.2, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
stevenn's avatar
stevenn committed
477
         lty = if (ncol1) {1}
478
         else{rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[as.integer(group[, 2])[1]]}, 
stevenn's avatar
stevenn committed
479
480
481
482
483
484
         col = col[as.integer(group[, 1])[1]])
    
    for (i in 2:ncol(counts)) 
    {
      lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
            lty = if (ncol1) {1}
485
            else{rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[as.integer(group[, 2])[i]]})
stevenn's avatar
stevenn committed
486
487
    }
    legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
488
    if (!ncol1) legend("topleft", levels(group[, 2]), lty = rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
stevenn's avatar
stevenn committed
489
490
491
492
493
    
  }


  ## Table of maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
494
  majTab <- function(input,counts,n)
stevenn's avatar
stevenn committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
  {
    seqnames <- apply(counts, 2, function(x) {
      x <- sort(x, decreasing = TRUE)
      names(x)[1:n]
    })
    seqnames <- unique(unlist(as.character(seqnames)))
    sum <- apply(counts, 2, sum)
    counts <- counts[seqnames, ]
    sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
    p <- round(100 * counts/sum, digits = 3)
    return(p)
  }


  ## Plot maj. taxo
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
510
  majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
stevenn's avatar
stevenn committed
511
  {
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
512
    p = majTab(input,counts,n)
stevenn's avatar
stevenn committed
513
514
515
    maj <- apply(p, 2, max)
    seqname <- rownames(p)[apply(p, 2, which.max)]
    ncol1 <- ncol(group) == 1
Stevenn Volant's avatar
Stevenn Volant committed
516
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
517
    x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
stevenn's avatar
stevenn committed
518
                 ylim = c(0, max(maj) * 1.2), cex.main = 1, 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
519
                 cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
stevenn's avatar
stevenn committed
520
521
522
                 density = if (ncol1) {NULL}
                 else {15}, 
                 angle = if (ncol1) {NULL}
Stevenn Volant's avatar
Stevenn Volant committed
523
                 else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]})
stevenn's avatar
stevenn committed
524
525
526
    
    legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
    if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
Stevenn Volant's avatar
Stevenn Volant committed
527
                       angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
stevenn's avatar
stevenn committed
528
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
529
    for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
stevenn's avatar
stevenn committed
530
531
532
533
  }
  

  ## plot SERE Coefs
Stevenn Volant's avatar
Stevenn Volant committed
534
535
536
537
538
539
540
#   SEREplot<-function(input,counts) 
#   {
#     sere = SEREcoef(counts)
#     hc <- hclust(as.dist(sere), method = "ward.D")
#     plot(hc, las = 2, hang = -1, xlab = "SERE distance, Ward criterion",main = "Cluster dendrogram\non SERE values")
#     
#   }
stevenn's avatar
stevenn committed
541
542
543
544
545
  
  
  ## Get the SERE COEF
  SEREcoef<-function(counts)
  {
Stevenn Volant's avatar
Stevenn Volant committed
546
547
548
549
    counts = as.matrix(counts)
    sere <- matrix(0, ncol = ncol(counts), nrow = ncol(counts))
    for (i in 1:(ncol(counts)-1)) {
      for (j in (i+1):ncol(counts)) {
stevenn's avatar
stevenn committed
550
551
552
        sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
      }
    }
Stevenn Volant's avatar
Stevenn Volant committed
553
    sere=sere+t(sere)
stevenn's avatar
stevenn committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    colnames(sere) <- rownames(sere) <- colnames(counts)
    sere <- round(sere, digits = 3)
    
    return(sere) 
  }
  

  ## function for the SERE coef
  sigfun_Pearson_meta <- function(observed) {
    laneTotals <- colSums(observed)
    total <- sum(laneTotals)
    fullObserved <- observed[rowSums(observed) > 0, ]
    fullLambda <- rowSums(fullObserved)/total
    fullLhat <- fullLambda > 0
    fullExpected <- outer(fullLambda, laneTotals)
    fullKeep <- which(fullExpected > 0)
    oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
    dfFull <- length(fullKeep) - sum(fullLhat != 0)
    sqrt(sum(oeFull)/dfFull)
  }
stevenn's avatar
stevenn committed
574
575


stevenn's avatar
stevenn committed
576
  ## Plots of size factors
Stevenn Volant's avatar
Stevenn Volant committed
577
  diagSFactors<-function (input,dds,normFactors,CT_noNorm,frame=1) 
stevenn's avatar
stevenn committed
578
  {
Stevenn Volant's avatar
Stevenn Volant committed
579
580
581
582
583
584
    counts = CT_noNorm
    geomeans <- exp(rowMeans(log(counts)))
    samples <- colnames(counts)
#     counts.trans <- log2(counts/geomeans)
#     xmin <- min(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
#     xmax <- max(counts.trans[is.finite(counts.trans)], na.rm = TRUE)
585
#     
Stevenn Volant's avatar
Stevenn Volant committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# #     if(!is.na(input$NbcolSfactors)) parCols = as.numeric(input$NbcolSfactors)
# #     else parCols = ceiling(ncol(counts.trans)/3)
# #     
# #     parRows = ceiling(ncol(counts.trans)/parCols)
# 
#     if(frame==1)
#     {
#       par(mfrow=c(parRows,parCols))
#       for (j in 1:ncol(dds)) {
#         hist(log2(counts[, j]/geomeans), nclass = 100, 
#              xlab = expression(log[2] ~ (counts/geometric ~ mean)), las = 1, xlim = c(xmin, xmax), 
#              main = paste("Size factors diagnostic - Sample ",samples[j], sep = ""), col = "skyblue")
#         
#         abline(v = log2(normFactors[j]), col = "red", lwd = 1.5)
#       }
#     }
stevenn's avatar
stevenn committed
602
603
604
    
    if(frame==2)
    {
Stevenn Volant's avatar
Stevenn Volant committed
605
606
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
      plot(normFactors, colSums(counts), pch = 19, las = 1,cex = ifelse(input$addLabelSFact,0,input$cexLabelDiag),
stevenn's avatar
stevenn committed
607
608
           ylab = "Total number of reads", xlab = "Size factors", 
           main = "Diagnostic: size factors vs total number of reads")
Stevenn Volant's avatar
Stevenn Volant committed
609
      if(input$addLabelSFact) text(normFactors,colSums(counts),labels = samples,cex=input$cexLabelDiag)
Stevenn Volant's avatar
Stevenn Volant committed
610
      abline(lm(colSums(counts) ~ normFactors + 0), lty = 2, col = "grey")
stevenn's avatar
stevenn committed
611
612
    }
  }
stevenn's avatar
stevenn committed
613

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
614
615
616
617
618
  
  ### PCoA
  PCoAPlot_meta <-function (input,dds, group_init,col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
  {
    cval=c()
Stevenn Volant's avatar
Stevenn Volant committed
619
    time_set = 0
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
620
621
    # Set of shape
    shape=c(19,17,15,18)
Stevenn Volant's avatar
Stevenn Volant committed
622
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
623
624
    ## Var of interest
    VarInt  = input$VarInt
Stevenn Volant's avatar
Stevenn Volant committed
625
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    ## Group
    group = as.character(apply(group_init,1,paste, collapse = "-"))
    
    ## Keep only some sample 
    val = c()
    for(i in 1:length(VarInt))
    { 
      Tinput = paste("input$","Mod",VarInt[i],sep="")
      expr=parse(text=Tinput)
      ## All the modalities for all the var of interest
      val = c(val,eval(expr))
    }
    if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
    else Kval = val
    ind_kept = which(as.character(group)%in%Kval)
Stevenn Volant's avatar
Stevenn Volant committed
641
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
642
643
644
645
646
    ## Get the group corresponding to the modalities
    group = group[ind_kept]
    nb = length(unique((group)))
    group = as.factor(group)
    
Stevenn Volant's avatar
Stevenn Volant committed
647
648
649
650
651
652
653
654
655
    if(nlevels(group)!=0)
    { 
      ## Get the norm data
      counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
      
      # was removed
      counts.norm = counts.norm[,ind_kept]
  
      ## Get the distance
Stevenn Volant's avatar
Stevenn Volant committed
656
657
658
      if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
      if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
      
Stevenn Volant's avatar
Stevenn Volant committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
      ## Do PCoA
      pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=3)
      
      ## Get eigen values
      eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
      
      ## xlim and ylim of the plot
      min = min(pco.counts.norm$li)
      max = max(pco.counts.norm$li)
      
      ## get condition set
      condition_set=val[which(val %in% unique(group_init$condition))]
      time_set=val[which(val %in% unique(group_init$time))]
      
      ## Colors
      if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
      {
        col = rainbow(length(condition_set) * length(time_set))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
677
      }
Stevenn Volant's avatar
Stevenn Volant committed
678
679
680
681
682
683
684
685
686
687
688
      #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
      #  col = rep(col[1:length(condition_set)], length(time_set))
      #}
      if (length(time_set) == 1 && length(condition_set) <= 4){
        cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
        cval = sort(cval)
      }
      
      # to reactivate
      #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
      if (plot == "pcoa"){
Stevenn Volant's avatar
Stevenn Volant committed
689
        par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
690
691
        ## Plot axis, label and circles
        plot(pco.counts.norm$li[1:2], xlab=paste("PC1 : ",round(eigen[1],1),"%") , ylab=paste("PC2 : ",round(eigen[2],1),"%"),
Stevenn Volant's avatar
Stevenn Volant committed
692
             xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), cex.axis=1, cex.lab=1,lwd=2, type="n",main='Principal Coordinates Analysis ')
Stevenn Volant's avatar
Stevenn Volant committed
693
694
695
696
697
698
699
700
701
        # Set different shapes
        if(input$labelPCOA == "Group"){
          if(!is.null(cval)){
            for (i in 1:length(cval)){
              points(pco.counts.norm$li[which(group==cval[i]),1:2],pch=shape[i],col=col[i], cex=input$cexpoint)
            }
            s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
                    add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
          }else s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group),
Stevenn Volant's avatar
Stevenn Volant committed
702
                        add.plot = TRUE, cpoint = input$cexTitleDiag, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
Stevenn Volant's avatar
Stevenn Volant committed
703
704
705
706
707
708
709
710
711
712
        }  
        else{
          s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
          s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
        }
      }else{
        barplot(eigen[1:7], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:7, col = c(rep("black", 2), rep("grey", 5)), ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
      }
  }
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
  }
  
  ### PCA
  PCAPlot_meta <-function (input,dds, group, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
                           col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
  {
    type.trans <- type.trans[1]
    
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    else counts.trans <- assay(rlogTransformation(dds))
    
    rv = apply(counts.trans, 1, var, na.rm = TRUE)
    pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
    
    if(plot=="pca")
    { 
      prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
      prp <- round(prp, 2)
      ncol1 <- ncol(group) == 1
      
Stevenn Volant's avatar
Stevenn Volant committed
733
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
734
735
736
737
738
739
      
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 2])
      ord = abs(ord[2] - ord[1])/25
      
Stevenn Volant's avatar
Stevenn Volant committed
740
      par(mfrow = c(1, 2),cex=input$cexTitleDiag,mar=c(6,6,4,5))
Stevenn Volant's avatar
Stevenn Volant committed
741
      plot(pca$x[, 1], pca$x[, 2], las = 1, cex = input$cexTitleDiag, col = col[as.integer(group[,1])], 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
742
743
744
745
746
747
748
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]},
           xlab = paste0("PC1 (", prp[1], "%)"),
           ylab = paste0("PC2 (", prp[2], "%)"), 
           main = "Principal Component Analysis",
            )
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
Stevenn Volant's avatar
Stevenn Volant committed
749
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,2] - ifelse(pca$x[, 2] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
750
751
752
753
      abs = range(pca$x[, 1])
      abs = abs(abs[2] - abs[1])/25
      ord = range(pca$x[, 3])
      ord = abs(ord[2] - ord[1])/25
Stevenn Volant's avatar
Stevenn Volant committed
754
      plot(pca$x[, 1], pca$x[, 3], las = 1, cex = input$cexTitleDiag, col = col[as.integer(group[, 1])], 
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
           pch = if (ncol1) {16}
           else {c(16:18, 25)[as.integer(group[, 2])]}, 
           xlab = paste0("PC1 (", prp[1], "%)"), 
           ylab = paste0("PC3 (", prp[3], "%)"), 
           main = "Principal Component Analysis")
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, 1] - ifelse(pca$x[, 1] > 0, abs, -abs), pca$x[,3] - ifelse(pca$x[, 3] > 0, ord, -ord), colnames(counts.trans), col = col[as.integer(group[, 1])],cex=input$cexLabelDiag)
    }
    
    if(plot=="eigen") barplot(pca$sdev^2, main = "Eigen values of the PCA", names.arg = 1:length(pca$sdev), xlab = "Axes")
  }
  
  
  
stevenn's avatar
stevenn committed
769

stevenn's avatar
stevenn committed
770
771
772
773
774
  ############################################################
  ##
  ##              CREATE THE CONTRAST DATABASE
  ##
  ############################################################
stevenn's avatar
stevenn committed
775

stevenn's avatar
stevenn committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
  
  BaseContrast <- function(input,names,namesfile)
  {  

    v_tmp = c()
    filesize = file.info(namesfile)[,"size"]
    
    for(i in 1:length(names))
    {  
      Tinput = paste("input$",names[i],sep="")
      expr=parse(text=Tinput)
      val = eval(expr) 
      v_tmp[i] = as.numeric(val)
    }
    
    if(filesize!=0)
    { 
      oldContrast = read.table(namesfile,header=TRUE)
      colnamesTmp = c(colnames(oldContrast),input$ContrastName)
      mat = cbind(oldContrast,v_tmp)
    }
    else{ colnamesTmp = input$ContrastName; mat = v_tmp}
    
    write.table(mat,namesfile,row.names=FALSE,col.names = colnamesTmp)
  }
  
  
  ## Remove nul counts
  removeNulCounts <-function (counts) 
  {
    return(counts[rowSums(counts) > 0, ])
  }
stevenn's avatar
stevenn committed
808
809

  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
810
811
812
813
814
  ############################################################
  ##
  ##              VISUALISATION PLOTS
  ##
  ############################################################
stevenn's avatar
stevenn committed
815
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
816
817
818
819
820
821
822
823
  GetDataToPlot <- function(resDiff,VarInt,ind_taxo,aggregate=TRUE)
  {
    dds = resDiff$dds
    counts = as.data.frame(round(counts(dds, normalized = TRUE)))
    target = resDiff$target
    counts_tmp_combined = NULL
    prop_tmp_combined = NULL
    targetInt = NULL
Stevenn Volant's avatar
Stevenn Volant committed
824
    namesCounts = NULL
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
825
826
827
    ## Select a subset within the taxonomy level (default is the 12 most abundant)
    nbKept = length(ind_taxo)
    Taxonomy = rownames(counts)
stevenn's avatar
stevenn committed
828
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
829
830
831
832
833
834
835
836
837
838
    if (length(VarInt)>0 && nbKept>0)
    { 
      ## Create the variable to plot
      targetInt = as.data.frame(target[,VarInt])
      rownames(targetInt)=target[,1]  
      if(length(VarInt)>1) targetInt$AllVar = apply(targetInt,1,paste, collapse = "-")
      if(length(VarInt)<=1)  targetInt$AllVar = target[,VarInt]
      colnames(targetInt) = c(VarInt,"AllVar")
      ## Create the counts matrix only for the selected subset
      counts_tmp = counts[Taxonomy%in%ind_taxo,]
stevenn's avatar
stevenn committed
839

Amine  GHOZLANE's avatar
Amine GHOZLANE committed
840
841
842
843
844
      ## Be careful transposition !
      if(aggregate)
      { 
        counts_tmp_combined = aggregate(t(counts_tmp),by=list(targetInt$AllVar),sum)
        rownames(counts_tmp_combined) = counts_tmp_combined$Group.1
Stevenn Volant's avatar
Stevenn Volant committed
845
        namesCounts = counts_tmp_combined$Group.1
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
846
847
848
849
850
851
852
        counts_tmp_combined = as.matrix(counts_tmp_combined[,-1])
      }
      if(!aggregate)
      {  
        counts_tmp_combined = t(counts_tmp)
        prop_tmp_combined = counts_tmp_combined/colSums(counts)
        rownames(counts_tmp_combined) = targetInt$AllVar
Stevenn Volant's avatar
Stevenn Volant committed
853
        namesCounts = targetInt$AllVar
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
854
855
        rownames(prop_tmp_combined) = targetInt$AllVar
      }
Stevenn Volant's avatar
Stevenn Volant committed
856
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
857
858
859
860
861
862
863
      ## Ordering the counts
      MeanCounts = apply(counts_tmp_combined,2,mean)
      ord = order(MeanCounts,decreasing=TRUE)
      counts_tmp_combined = as.matrix(counts_tmp_combined[,ord])
      if(!aggregate) prop_tmp_combined = as.matrix(prop_tmp_combined[,ord])
    }
    
Stevenn Volant's avatar
Stevenn Volant committed
864
      return(list(counts = counts_tmp_combined,targetInt=targetInt,prop=prop_tmp_combined,namesCounts=namesCounts))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
865
866
867
    
    
  }
stevenn's avatar
stevenn committed
868
869
  
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
870
871
872
873
874
875
  
  ###########################
  ## Plots for visualisation
  ###########################
  
  Plot_Visu_Barplot <- function(input,resDiff)
stevenn's avatar
stevenn committed
876
  {
877
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
878
    ## Get Input for BarPlot
879
880
    VarInt = input$VisuVarInt
    ind_taxo = input$selectTaxoPlot
stevenn's avatar
stevenn committed
881
    
Stevenn Volant's avatar
Stevenn Volant committed
882
883
    tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)
    counts_tmp_combined = tmp_combined$counts
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
884
    nbKept = length(ind_taxo)
Stevenn Volant's avatar
Stevenn Volant committed
885
886
887
888
    SamplesNames = tmp_combined$namesCounts
    
    if(nbKept>1) namesTax = colnames(counts_tmp_combined)
    if(nbKept==1) namesTax = ind_taxo
stevenn's avatar
stevenn committed
889
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
890
891
    if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
    { 
Stevenn Volant's avatar
Stevenn Volant committed
892
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
893
894
895
896
      ## Create the data frame for the plot function
      dataBarPlot_mat = c()
      tmp_mat = matrix(0,ncol=3,nrow=nbKept)
      tmp_counts = c()
stevenn's avatar
stevenn committed
897
      
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
898
899
900
        for(i in 1:(nrow(counts_tmp_combined)))
        {
          ## Taxo
Stevenn Volant's avatar
Stevenn Volant committed
901
          tmp_mat[1:nbKept,1] = namesTax
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
902
903
904
905
906
907
908
909
910
911
912
913
          
          ## Counts
  
          tmpProp = counts_tmp_combined[i,]
          if(input$CountsOrProp=="prop")
          { 
            tmpProp = round(tmpProp/sum(tmpProp),3)
            tmpProp = as.numeric(tmpProp/sum(tmpProp) * 100)
          }
          tmp_counts = c(tmp_counts,tmpProp)      
          
          ## Meta data
Stevenn Volant's avatar
Stevenn Volant committed
914
          tmp_mat[1:nbKept,3] = as.character(rep(SamplesNames[i],nbKept))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
915
916
917
918
919
920
921
922
923
924
925
          
          ## Conbined the sample
          dataBarPlot_mat = rbind(dataBarPlot_mat,tmp_mat)
        }
        
        
        ## Add numeric vector to the dataframe
        dataBarPlot_mat = as.data.frame(dataBarPlot_mat)
        
        colnames(dataBarPlot_mat) = c("Taxonomy","Proportions","AllVar")
        dataBarPlot_mat[,2] = tmp_counts
926
927
928
929
        if(input$SensPlotVisu == "Vertical") Sens = "multiBarChart"
        if(input$SensPlotVisu == "Horizontal") Sens = "multiBarHorizontalChart"
      
        plotd3 <- nvd3Plot(Proportions ~ AllVar | Taxonomy, data = dataBarPlot_mat, type = Sens, id = 'barplotTaxo',height = input$heightVisu,width=input$widthVisu)
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
930
        plotd3$chart(stacked = TRUE)
Stevenn Volant's avatar
Stevenn Volant committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
      
        ##################################
        ## Same plot in ggplot2 for export
        ##################################
      
        tax.colors=rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                         "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nbKept/20))
        
        dataBarPlot_mat$Taxonomy = factor(dataBarPlot_mat$Taxonomy,levels = namesTax)
      
        gg= ggplot(dataBarPlot_mat, aes(x=AllVar, y=Proportions, fill=Taxonomy)) 
        gg= gg + geom_bar(stat="identity")
        gg= gg + theme_bw()+ scale_fill_manual(values=tax.colors)
        gg = gg +theme(panel.grid.minor.x=element_blank(),panel.grid.major.x=element_blank()) 
        if(input$CountsOrProp=="prop") gg = gg+labs(y="Relative abundance (%)",x="")
        if(input$CountsOrProp=="counts") gg = gg+labs(y="Abundance",x="")
        if(input$SensPlotVisu == "Horizontal") gg = gg + coord_flip()
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
948
949
950
951
952
    } 
    else{ 
      ## Pb affichage quand data NULL
      dataNull = data.frame(x=c(1,2),y=c(1,2))
      plotd3 = nvd3Plot(x ~ y , data = dataNull, type = "multiBarChart", id = 'barplotTaxoNyll',height = input$heightVisu,width=input$widthVisu)
Stevenn Volant's avatar
Stevenn Volant committed
953
954
      plotd3 = NULL
      gg = NULL
stevenn's avatar
stevenn committed
955
    }
Stevenn Volant's avatar
Stevenn Volant committed
956
    return(list(plotd3=plotd3,gg=gg))
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
957
958
959
960
961
962
963
964
965
966
967
  }
  
  
  
######################################################
##
##            HEATMAP
##
######################################################
  
  
Stevenn Volant's avatar
Stevenn Volant committed
968
  Plot_Visu_Heatmap <- function(input,resDiff,export=FALSE){
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
969
  
970
971
  VarInt = input$VisuVarInt
  ind_taxo = input$selectTaxoPlot
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
972
973
974
975
976
977
978
979
980
981
982
983
984
  
  counts_tmp_combined = GetDataToPlot(resDiff,VarInt,ind_taxo)$counts
  
  if(!is.null(counts_tmp_combined) && nrow(counts_tmp_combined)>0)
  { 
    ## Transform to log2
    counts_tmp_combined = log2(GetDataToPlot(resDiff,VarInt,ind_taxo)$counts+1)
   
    col <- switch(input$colors,
                  "green-blue"=colorRampPalette(brewer.pal(9,"GnBu"))(200),
                  "blue-white-red"=colorRampPalette(rev(brewer.pal(9, "RdBu")))(200),
                  "purple-white-orange"=colorRampPalette(rev(brewer.pal(9, "PuOr")))(200),
                  "red-yellow-green"= colorRampPalette(rev(brewer.pal(9,"RdYlGn")))(200))
stevenn's avatar
stevenn committed
985
    
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
986
    ## Transpose matrix if Horizontal
987
    if(input$SensPlotVisu=="Horizontal") counts_tmp_combined = t(as.matrix(counts_tmp_combined))
Stevenn Volant's avatar
Stevenn Volant committed
988
989
990
991
992
    
    if(!export) plot = d3heatmap(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE,width = input$widthVisu, height = input$heightVisu, show_grid = FALSE, colors = col, scale = input$scaleHeatmap,cexRow = 0.6)
    
    if(export) plot = heatmap.2(counts_tmp_combined, dendrogram = "none", Rowv = NA, Colv = NA, na.rm = TRUE, density.info="none", margins=c(12,8),trace="none",srtCol=45,col = col, scale = input$scaleHeatmap,cexRow = 0.6)
    return(plot)
stevenn's avatar
stevenn committed
993
  }
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
994

stevenn's avatar
stevenn committed
995
  
Amine  GHOZLANE's avatar
Amine GHOZLANE committed
996
997
998
999
1000
  }

  ######################################################
  ##
  ##            BOXPLOT