DiagPlot.R 28.7 KB
Newer Older
svolant's avatar
svolant committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#@ This file contains all the functions for the 
#@ diagnostic plots of SHAMAN


##############################################################
##
##        Main function for the diagnostic plots
##
##############################################################

Plot_diag <- function(input,resDiff,getTable=FALSE)
{
  
  VarInt = input$VarInt
  dds = resDiff$dds
  counts = resDiff$raw_counts
  if(input$CountsType=="Normalized") counts = resDiff$countsNorm
  target = resDiff$target
  normFactors = resDiff$normFactors
  
  ## Counts at the OTU level
  CT = resDiff$CT_noNorm
  if(input$CountsType=="Normalized") CT = resDiff$CT_Norm
  
  group = as.data.frame(target[,VarInt])
  rownames(group) = rownames(target)
  res = NULL
  
  if(ncol(group)>0 && nrow(counts)>0 && !getTable)
  { 
    colors = rep(c("#1f77b4","#aec7e8","#ff7f0e","#ffbb78", "#2ca02c","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5","#8c564b",
                   "#c49c94","#e377c2","#f7b6d2","#7f7f7f", "#c7c7c7","#bcbd22","#dbdb8d","#17becf","#9edae5"),ceiling(nrow(target)/20))
    
    if(input$DiagPlot=="barplotTot") res = barplotTot(input,counts,group = group, col=colors)
    if(input$DiagPlot=="barplotNul") res = barPlotNul(input,counts, group = group, col=colors)
    if(input$DiagPlot=="densityPlot") res = densityPlotTot(input,counts, group = group, col=colors)
    if(input$DiagPlot=="boxplotNorm") res = boxplotNorm(input,CT,group = group, col=colors)
    if(input$DiagPlot=="DispPlot") res = plotDispEsts(dds)
    if(input$DiagPlot=="MajTax") res = majTaxPlot(input,counts, group = group, col=colors)
    if(input$DiagPlot=="SfactorsVStot") res = diagSFactors(input,normFactors,resDiff$raw_counts) 
    if(input$DiagPlot=="pcaPlot") res = PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors)
    if(input$DiagPlot=="pcoaPlot") res = PCoAPlot_meta(input,dds, group, col = colors) 
svolant's avatar
svolant committed
43
    if(input$DiagPlot=="nmdsPlot") res = NMDSPlot(input, dds, group, col = colors) 
svolant's avatar
svolant committed
44
45
46
    if(input$DiagPlot=="clustPlot") res = HCPlot(input,dds,group,type.trans=input$TransType,counts,col=colors)
  }
  if(getTable && input$DiagPlot=="pcaPlot") res = Get_pca_table(input,dds, group,  type.trans = input$TransType)
svolant's avatar
svolant committed
47
48
  if(getTable && input$DiagPlot=="pcoaPlot") res = Get_pcoa_table(input,dds, group)$table
  if(getTable && input$DiagPlot=="nmdsPlot") res = Get_nmds_table(input,dds, group)$table
svolant's avatar
svolant committed
49
50
51
52
53
  return(res)
}



svolant's avatar
svolant committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

##############################################################
##
##        Permanova test
##
##############################################################

Perma_test_Diag <- function(input,resDiff)
{
  
  VarInt = input$VarInt
  dds = resDiff$dds
  counts = resDiff$raw_counts
  if(input$CountsType=="Normalized") counts = resDiff$countsNorm
  target = resDiff$target
  normFactors = resDiff$normFactors
  
  ## Counts at the OTU level
  CT = resDiff$CT_noNorm
  if(input$CountsType=="Normalized") CT = resDiff$CT_Norm
  
  group = as.data.frame(target[,VarInt])
  rownames(group) = rownames(target)
  res = NULL
  
  if(ncol(group)>0 && !is.null(dds))
  { 
    
    if(input$DiagPlot=="pcoaPlot") res = Get_pcoa_table(input,dds, group)$test$aov.tab$`Pr(>F)`[1]
    if(input$DiagPlot=="nmdsPlot") res = Get_nmds_table(input,dds, group)$test$aov.tab$`Pr(>F)`[1]
  }

  return(res)
}


svolant's avatar
svolant committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
##############################################################
##
##          Plot functions 
##
##############################################################


## Hierarchical clustering
HCPlot <- function (input,dds,group,type.trans,counts,col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
{
  
  res = NULL
  
  ## Get the counts
  if (input$DistClust == "euclidean" && type.trans == "VST") counts <- assay(varianceStabilizingTransformation(dds))
  if (input$DistClust == "euclidean" && type.trans == "rlog") counts <- assay(rlogTransformation(dds))
  
  ## Get the group of leaf
  group = apply(group,1,paste, collapse = "-")    
  nb = length(unique((group)))
  
  ## Get the dendrogram
  if(input$DistClust!="sere") dist = vegdist(t(counts), method = input$DistClust)
  if(input$DistClust=="sere") dist = as.dist(SEREcoef(counts))
  hc <- hclust(dist, method = "ward.D")
  
  dend = as.dendrogram(hc)
  
  ## Get the type of dendrogram
  type <- input$typeHculst
  
  dend <- set(dend, "labels_cex", input$cexLabelDiag)
  if(input$colorHC) labels_colors(dend)<-col[as.integer(as.factor(group))][order.dendrogram(dend)]
  if(type=="hori") 
  { 
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
    res = plot(dend, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "),cex=input$cexLabelDiag)
  }  
  if(type!="hori")
  {
    par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
    res = circlize_dendrogram(dend, labels_track_height = 0.2, dend_track_height = .3, main = "Cluster dendrogram",xlab = paste(input$DistClust,"distance, Ward criterion",sep=" "))
  }
  return(res)
}


## PCA Eigen value
Plot_diag_Eigen <- function(input,resDiff)
{
  colors = c("dodgerblue","firebrick1","MediumVioletRed","SpringGreen")
  VarInt = input$VarInt
  dds = resDiff$dds
  counts = resDiff$counts
  target = resDiff$target
  group = as.data.frame(target[,VarInt])
  
  ## If more than 4 levels for one factor
  maxFact =max(sapply(group,FUN=function(x) length(levels(x))))
  if(maxFact>=4) colors = rainbow(maxFact) 
  
  PCAPlot_meta(input,dds, group,  type.trans = input$TransType, col = colors, plot = "eigen") 
}


## PCOA Eigen value
Plot_diag_pcoaEigen = function(input,resDiff)
{
  colors = c("SpringGreen","dodgerblue","black","firebrick1")
  VarInt = input$VarInt
  dds = resDiff$dds
  target = resDiff$target
  group = as.data.frame(target[,VarInt])
  rownames(group) = rownames(target)
  PCoAPlot_meta(input,dds, group, col = colors, plot = "eigen") 
}


## Boxplot for the counts normalized/no normalized
boxplotNorm <- function(input,CT, group, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
{
  
  ncol1 <- ncol(group) == 1
  par(cex=input$cexTitleDiag,mar=c(12,6,4,5))
  if(input$RemoveNullValue) CT[CT==0] = NA
  
  ### Boxplots of the counts
  my.boxplot(log2(CT+1), las = 2, pol.col = col[as.integer(group[,1])],
             pol.density = if (ncol1) {NULL}
             else {15}, 
             pol.angle = if (ncol1) {NULL}
             else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]},
             main = paste(input$CountsType, "counts distribution"), ylab = expression(log[2] ~ ( count + 1)))
  legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
  if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
  
}

## barplot total
barplotTot <- function(input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
{
  
  ncol1 <- ncol(group) == 1
  par(cex=input$cexTitleDiag,mar=c(12,6,4,5))
  barplot(colSums(counts), cex.names = cex.names, main = "Total mapped read count per sample", ylab = "Total mapped read count", 
          ylim = c(0, max(colSums(counts)) * 1.2), density = if (ncol1) {NULL}
          else {15}, 
          angle = if (ncol1) {NULL}
          else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]}, col = col[as.integer(group[, 1])], las = 2)
  legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
  if (!ncol1)  legend("topleft", levels(group[, 2]), density = 15,col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
  
}


## barplot Nul 
barPlotNul <-function (input,counts, group, cex.names = 1, col = c("lightblue","orange", "MediumVioletRed", "SpringGreen")) 
{
  
  percentage <- apply(counts, 2, function(x) {sum(x == 0)}) * 100/nrow(counts)
  percentage.allNull <- (nrow(counts) - nrow(removeNulCounts(counts))) * 100/nrow(counts)
  ncol1 <- ncol(group) == 1
  
  par(cex=input$cexTitleDiag,mar=c(12,6,4,5))
  
  barplot(percentage, las = 2, col = col[as.integer(group[,1])], 
          density = if (ncol1) {NULL}
          else {15}, 
          angle = if (ncol1) {NULL}
          else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]},
          cex.names = cex.names, ylab = "Proportion of null counts", 
          main = "Proportion of null counts per sample", 
          ylim = c(0, 1.2 * ifelse(max(percentage) == 0, 1, max(percentage))))
  
  abline(h = percentage.allNull, lty = 2, lwd = 2)
  legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
  if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
}


## Plot density
densityPlotTot <-function (input,counts, group, col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen")) 
{
  
  counts <- removeNulCounts(counts)
  ncol1 <- ncol(group) == 1
  par(cex=input$cexTitleDiag,mar=c(12,5,4,5))
  plot(density(log2(counts[, 1] + 1)), las = 1, lwd = 2, main = "Density of counts distribution", 
       xlab = expression(log[2] ~ (raw ~ count + 1)), 
       ylim = c(0, max(apply(counts, 2, function(x) {max(density(log2(x + 1))$y)})) * 1.05), 
       lty = if (ncol1) {1}
       else{rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[as.integer(group[, 2])[1]]}, 
       col = col[as.integer(group[, 1])[1]])
  
  for (i in 2:ncol(counts)) 
  {
    lines(density(log2(counts[, i] + 1)), col = col[as.integer(group[,1])[i]], lwd = 2, 
          lty = if (ncol1) {1}
          else{rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[as.integer(group[, 2])[i]]})
  }
  legend("topright", levels(group[, 1]), lty = 1, col = col[1:nlevels(group[,1])], lwd = 2, bty = "n")
  if (!ncol1) legend("topleft", levels(group[, 2]), lty = rep(seq(1:6),ceiling(nlevels(group[, 2])/6))[1:nlevels(group[, 2])], col = 1, lwd = 2, bty = "n")
  
}


## Table of maj. taxo
majTab <- function(input,counts,n)
{
  seqnames <- apply(counts, 2, function(x) {
    x <- sort(x, decreasing = TRUE)
    names(x)[1:n]
  })
  seqnames <- unique(unlist(as.character(seqnames)))
  sum <- apply(counts, 2, sum)
  counts <- counts[seqnames, ]
  sum <- matrix(sum, nrow(counts), ncol(counts), byrow = TRUE)
  p <- round(100 * counts/sum, digits = 3)
  return(p)
}


## Plot maj. taxo
majTaxPlot <-function (input,counts, n = 3, group, cex.names = 1, col = c("lightblue",  "orange", "MediumVioletRed", "SpringGreen")) 
{
  p = majTab(input,counts,n)
  maj <- apply(p, 2, max)
  seqname <- rownames(p)[apply(p, 2, which.max)]
  ncol1 <- ncol(group) == 1
  par(cex=input$cexTitleDiag,mar=c(12,6,4,5))
  x <- barplot(maj, col = col[as.integer(group[, 1])], main = "Proportion of mapped reads from\nmost expressed sequence",
               ylim = c(0, max(maj) * 1.2), cex.main = 1, 
               cex.names = cex.names, las = 2, ylab = "Proportion of mapped reads", 
               density = if (ncol1) {NULL}
               else {15}, 
               angle = if (ncol1) {NULL}
               else {seq(0,160,length.out =nlevels(group[, 2]))[as.integer(group[, 2])]})
  
  legend("topright", levels(group[, 1]), fill = col[1:nlevels(group[,1])], bty = "n")
  if (!ncol1) legend("topleft", levels(group[, 2]), density = 15, col = 1, 
                     angle = seq(0,160,length.out =nlevels(group[, 2]))[1:nlevels(group[, 2])], bty = "n")
  
  for (i in 1:length(seqname)) text(x[i], maj[i]/2, seqname[i], cex=input$cexLabelDiag, srt = 90, adj = 0)
}


## Get the SERE COEF
SEREcoef<-function(counts)
{
  counts = as.matrix(counts)
  sere <- matrix(0, ncol = ncol(counts), nrow = ncol(counts))
  for (i in 1:(ncol(counts)-1)) {
    for (j in (i+1):ncol(counts)) {
      sere[i, j] <- sigfun_Pearson_meta(counts[, c(i, j)])
    }
  }
  sere=sere+t(sere)
  colnames(sere) <- rownames(sere) <- colnames(counts)
  sere <- round(sere, digits = 3)
  
  return(sere) 
}


## function for the SERE coef
sigfun_Pearson_meta <- function(observed) {
  laneTotals <- colSums(observed)
  total <- sum(laneTotals)
  fullObserved <- observed[rowSums(observed) > 0, ]
  fullLambda <- rowSums(fullObserved)/total
  fullLhat <- fullLambda > 0
  fullExpected <- outer(fullLambda, laneTotals)
  fullKeep <- which(fullExpected > 0)
  oeFull <- (fullObserved[fullKeep] - fullExpected[fullKeep])^2/fullExpected[fullKeep]
  dfFull <- length(fullKeep) - sum(fullLhat != 0)
  sqrt(sum(oeFull)/dfFull)
}


## Plots of size factors
diagSFactors<-function (input,normFactors,counts) 
{
  geomeans <- exp(rowMeans(log(counts)))
  samples <- colnames(counts)
  par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
  plot(normFactors, colSums(counts), pch = 19, las = 1,cex = ifelse(input$addLabelSFact,0,input$cexLabelDiag),
       ylab = "Total number of reads", xlab = "Size factors", 
       main = "Diagnostic: size factors vs total number of reads")
  if(input$addLabelSFact) text(normFactors,colSums(counts),labels = samples,cex=input$cexLabelDiag)
  abline(lm(colSums(counts) ~ normFactors + 0), lty = 2, col = "grey")
}


### PCoA
PCoAPlot_meta <-function (input, dds, group_init, col = c("SpringGreen","dodgerblue","black","firebrick1"), plot = "pcoa") 
{
  cval=c()
  time_set = 0
  # Set of shape
  shape=c(19,17,15,18)
  
  ## Var of interest
  VarInt  = input$VarInt
  
  ## Group
  group = as.character(apply(group_init,1,paste, collapse = "-"))
  
  ## Keep only some sample 
  val = c()
  for(i in 1:length(VarInt))
  { 
    Tinput = paste("input$","Mod",VarInt[i],sep="")
    expr=parse(text=Tinput)
    ## All the modalities for all the var of interest
    val = c(val,eval(expr))
  }
  if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
  else Kval = val
  ind_kept = which(as.character(group)%in%Kval)
  
  ## Get the group corresponding to the modalities
  group = group[ind_kept]
  nb = length(unique((group)))
  group = as.factor(group)
  
  if(nlevels(group)!=0 && !is.null(input$PCaxe1) && !is.null(input$PCaxe2))
  { 
    ## Get the norm data
    counts.norm = as.data.frame(round(counts(dds)))
    if(input$CountsType=="Normalized") counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
    # was removed
    counts.norm = counts.norm[,ind_kept]
svolant's avatar
svolant committed
382
    # print(head(counts.norm))
svolant's avatar
svolant committed
383
384
385
386
387
    ## Get the distance
    if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
    if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
    
    
svolant's avatar
svolant committed
388
    # save(counts.norm,dist.counts.norm,file="testNMDS.RData")
svolant's avatar
svolant committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    ## Do PCoA
    pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=ncol(counts.norm))
    
    ## Get eigen values
    eigen=(pco.counts.norm$eig/sum(pco.counts.norm$eig))*100
    
    ## xlim and ylim of the plot
    min = min(pco.counts.norm$li)
    max = max(pco.counts.norm$li)
    
    ## get condition set
    condition_set=val[which(val %in% unique(group_init$condition))]
    time_set=val[which(val %in% unique(group_init$time))]
    
    ## Colors
    if(length(col)<length(condition_set) * length(time_set))# && !input$colorgroup)
    {
      col = rainbow(length(condition_set) * length(time_set))
    }
    #else if(length(col)<length(condition_set) * length(time_set) && input$colorgroup){
    #  col = rep(col[1:length(condition_set)], length(time_set))
    #}
    if (length(time_set) == 1 && length(condition_set) <= 4){
      cval = apply(expand.grid(condition_set,time_set),1,paste, collapse = "-")
      cval = sort(cval)
    }
    
    # to reactivate
    #pco.counts.norm$li = pco.counts.norm$li[ind_kept,]
    if (plot == "pcoa"){
      par(cex=input$cexTitleDiag,mar=c(6,6,4,5))
      ## Plot axis, label and circles
      v_axes = c(as.numeric(gsub("PC","",input$PCaxe1)),as.numeric(gsub("PC","",input$PCaxe2)))
      
      plot(pco.counts.norm$li[v_axes], 
           xlab=paste(input$PCaxe1, ": ",round(eigen[v_axes[1]],1),"%") , 
           ylab=paste(input$PCaxe2, ": ",round(eigen[v_axes[2]],1),"%"),
           xlim=c(min+0.25*min,max+0.25*max), ylim=c(min-0.1,max+0.1), 
           cex.axis=1, cex.lab=1,lwd=2, type="n",main='Principal Coordinates Analysis ')
      # Set different shapes
      if(input$labelPCOA == "Group"){
        if(!is.null(cval)){
          for (i in 1:length(cval)){
            points(pco.counts.norm$li[which(group==cval[i]),v_axes],pch=shape[i],col=col[i], cex=input$cexpoint)
          }
          s.class(dfxy = pco.counts.norm$li[v_axes], fac = group, col = col, label = levels(group),
                  add.plot = TRUE, cpoint = 0, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
        }else s.class(dfxy = pco.counts.norm$li[v_axes], fac = group, col = col, label = levels(group),
                      add.plot = TRUE, cpoint = input$cexpoint, cell=input$cexcircle, clabel=input$cexLabelDiag,  cstar = input$cexstar)
      }  
      else{
        s.label(pco.counts.norm$li, clabel = input$cexLabelDiag,boxes=FALSE, add.plot = TRUE)
        s.class(dfxy = pco.counts.norm$li, fac = group, col = col, label = levels(group), add.plot = TRUE, cpoint = 0, clabel = 0, cstar = input$cexstar, cell=input$cexcircle)
      }
    }else{
444
445
446
447
448
      v_axes = c(as.numeric(gsub("PC","",input$PCaxe1)),as.numeric(gsub("PC","",input$PCaxe2)))
      nbBar = max(7,max(v_axes))
      col = rep("grey",nbBar)
      col[v_axes] = "black"
      barplot(eigen[1:nbBar], xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:nbBar, col = col, ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)
svolant's avatar
svolant committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    }
  }
  
}


### PCA
PCAPlot_meta <-function(input,dds, group_init, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog"), 
                        col = c("lightblue", "orange", "MediumVioletRed", "SpringGreen"),plot="pca") 
{
  ## Var of interest
  VarInt  = input$VarInt
  
  group = as.character(apply(group_init,1,paste, collapse = "-"))
  group_init = group
  
  ## Keep only some sample 
  val = c()
  for(i in 1:length(VarInt))
  { 
    Tinput = paste("input$","Mod",VarInt[i],sep="")
    expr=parse(text=Tinput)
    ## All the modalities for all the var of interest
    val = c(val,eval(expr))
  }
  if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
  else Kval = val
  ind_kept = which(as.character(group)%in%Kval)
  
  ## Get the group corresponding to the modalities
  group = group[ind_kept]
  nb = length(unique((group)))
  group = as.factor(group)
  
  ## To select the colors
  indgrp =as.integer(as.factor(group_init))[ind_kept]
  
  
  if(nlevels(group)!=0 && !is.null(input$PCaxe1) && !is.null(input$PCaxe2))
  { 
    type.trans <- type.trans[1]
    
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    else counts.trans <- assay(rlogTransformation(dds))
    counts.trans = counts.trans[,ind_kept]
    
    rv = apply(counts.trans, 1, var, na.rm = TRUE)
    pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
    
    if(plot=="pca")
    { 
      prp <- pca$sdev^2 * 100/sum(pca$sdev^2)
      prp <- round(prp, 2)
      ncol1 <- ncol(group) == 1
      
svolant's avatar
svolant committed
504
      abs = range(proj[, as.numeric(gsub("PC","",input$PCaxe1))])
svolant's avatar
svolant committed
505
      abs = abs(abs[2] - abs[1])/25
svolant's avatar
svolant committed
506
      ord = range(proj[, as.numeric(gsub("PC","",input$PCaxe2))])
svolant's avatar
svolant committed
507
508
509
510
511
512
513
514
515
516
517
518
519
      ord = abs(ord[2] - ord[1])/25
      
      
      plot(pca$x[,as.numeric(gsub("PC","",input$PCaxe1))],pca$x[,as.numeric(gsub("PC","",input$PCaxe2))], las = 1, cex = input$cexTitleDiag, col = col[indgrp], 
           pch = 16,
           xlab = paste0(input$PCaxe1," (", prp[as.numeric(gsub("PC","",input$PCaxe1))], "%)"),
           ylab = paste0(input$PCaxe2," (", prp[as.numeric(gsub("PC","",input$PCaxe2))], "%)"),
           main = "Principal Component Analysis"
      )
      abline(h = 0, v = 0, lty = 2, col = "lightgray")
      text(pca$x[, as.numeric(gsub("PC","",input$PCaxe1))] - ifelse(pca$x[, as.numeric(gsub("PC","",input$PCaxe1))] > 0, abs, -abs), pca$x[,as.numeric(gsub("PC","",input$PCaxe2))] - ifelse(pca$x[,as.numeric(gsub("PC","",input$PCaxe2))] > 0, ord, -ord), colnames(counts.trans), col = col[indgrp],cex=input$cexLabelDiag)
      
    }
520
521
522
523
524
525
    if(plot=="eigen"){
      nbBar = max(7,max(c(as.numeric(gsub("PC","",input$PCaxe1)),as.numeric(gsub("PC","",input$PCaxe2)))))
      col = rep("grey",nbBar)
      eigen = pca$sdev[1:nbBar]^2
      col[c(as.numeric(gsub("PC","",input$PCaxe1)),as.numeric(gsub("PC","",input$PCaxe2)))] = "black"
      barplot(eigen, xlab="Dimensions", ylab="Eigenvalues (%)", names.arg = 1:nbBar, col = col, ylim=c(0,max(eigen)+5), cex.axis=1.2, cex.lab=1.4,cex.names=1.2)}
svolant's avatar
svolant committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    
  }
}



##############################################################
##
##          Useful functions
##
##############################################################

## Remove nul counts
removeNulCounts <-function (counts) 
{
  return(counts[rowSums(counts) > 0, ])
}


## Color for the horizontal dendro
colLabdendo <- function(n,group) {
  
  group = apply(group,1,paste, collapse = "-")
  
  nb = length(unique((group)))
  namesGrp = names(group)
  
  if (is.leaf(n)) {
    a <- attributes(n)
    labCol <- rainbow(nb)[as.integer(as.factor(group))[which(namesGrp == a$label)]]
    attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
  }
  return(n)
}

## Create your own boxplots to get hatched boxplots
my.boxplot <- function(x, pol.col = 1, pol.density = NULL, pol.angle = 45,
                       bxp.pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5), ...){
  res <- boxplot(x, pars = bxp.pars, ...) # que boxplot se d�merde avec ses arguments
  n <- ncol(res$stats) # nombre de boxplots
  density <- if(is.null(pol.density)){NULL}else{rep(pol.density, length = n)}
  angle <- if(is.null(pol.angle)){NULL}else{rep(pol.angle, length = n)}
  col <- if(is.null(pol.col)){NULL}else{rep(pol.col, length = n)}
  # Ajout des textures
  ex <- bxp.pars$boxwex/2 
  for(i in 1:n){
    polygon(c(i - ex, i - ex, i + ex, i + ex),
            c(res$stats[2, i], res$stats[4, i], res$stats[4, i], res$stats[2, i]),
            density = density[i], angle = angle[i], col = col[i])
    segments(i-ex,res$stats[3,i],i+ex,res$stats[3,i],lwd=3,col="black",lend=1)
  }
}


### Get PCOA table (useful to get the number of axes)
Get_pcoa_table <-function (input, dds, group_init) 
{
  cval=c()
  time_set = 0
  # Set of shape
  shape=c(19,17,15,18)
  
  ## Var of interest
  VarInt  = input$VarInt
  
  ## Group
  group = as.character(apply(group_init,1,paste, collapse = "-"))
  
  ## Keep only some sample 
  val = c()
  for(i in 1:length(VarInt))
  { 
    Tinput = paste("input$","Mod",VarInt[i],sep="")
    expr=parse(text=Tinput)
    ## All the modalities for all the var of interest
    val = c(val,eval(expr))
  }
  if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
  else Kval = val
  ind_kept = which(as.character(group)%in%Kval)
  
  ## Get the group corresponding to the modalities
  group = group[ind_kept]
  nb = length(unique((group)))
  group = as.factor(group)
  
  if(nlevels(group)!=0)
  { 
    ## Get the norm data
    counts.norm = as.data.frame(round(counts(dds)))
    if(input$CountsType=="Normalized") counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
    # was removed
    counts.norm = counts.norm[,ind_kept]
    
    ## Get the distance
    if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
    if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
    
svolant's avatar
svolant committed
624
625
    permanova_test = adonis(dist.counts.norm~group)
    print(permanova_test)
svolant's avatar
svolant committed
626
627
628
    ## Do PCoA
    pco.counts.norm = dudi.pco(d = dist.counts.norm, scannf = FALSE,nf=ncol(counts.norm))
    
svolant's avatar
svolant committed
629
    return(list(table = pco.counts.norm$li,test=permanova_test))
svolant's avatar
svolant committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
  }
}

### Get PCA table (useful to get the number of axes)
Get_pca_table <-function(input,dds, group_init, n = min(500, nrow(counts(dds))), type.trans = c("VST", "rlog")) 
{
  ## Var of interest
  VarInt  = input$VarInt
  
  group = as.character(apply(group_init,1,paste, collapse = "-"))
  group_init = group
  
  ## Keep only some sample 
  val = c()
  for(i in 1:length(VarInt))
  { 
    Tinput = paste("input$","Mod",VarInt[i],sep="")
    expr=parse(text=Tinput)
    ## All the modalities for all the var of interest
    val = c(val,eval(expr))
  }
  if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
  else Kval = val
  ind_kept = which(as.character(group)%in%Kval)
  
  ## Get the group corresponding to the modalities
  group = group[ind_kept]
  nb = length(unique((group)))
  group = as.factor(group)
  
  ## To select the colors
  indgrp =as.integer(as.factor(group_init))[ind_kept]
  
  
  if(nlevels(group)!=0)
  { 
    type.trans <- type.trans[1]
    
    if (type.trans == "VST") counts.trans <- assay(varianceStabilizingTransformation(dds))
    else counts.trans <- assay(rlogTransformation(dds))
    counts.trans = counts.trans[,ind_kept]
    
    rv = apply(counts.trans, 1, var, na.rm = TRUE)
    pca = prcomp(t(counts.trans[order(rv, decreasing = TRUE),][1:n, ]))
    return(pca$x)
  }
}


svolant's avatar
svolant committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
Get_nmds_table <-function(input,dds, group_init) 
{
  ## Var of interest
  VarInt  = input$VarInt
  
  group = as.character(apply(group_init,1,paste, collapse = "-"))
  group_init = group
  
  ## Keep only some sample 
  val = c()
  for(i in 1:length(VarInt))
  { 
    Tinput = paste("input$","Mod",VarInt[i],sep="")
    expr=parse(text=Tinput)
    ## All the modalities for all the var of interest
    val = c(val,eval(expr))
  }
  if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
  else Kval = val
  ind_kept = which(as.character(group)%in%Kval)
  
  ## Get the group corresponding to the modalities
  group = group[ind_kept]
  nb = length(unique((group)))
  group = as.factor(group)
  
  ## To select the colors
  indgrp =as.integer(as.factor(group_init))[ind_kept]
  
  
  if(nlevels(group)!=0)
  { 
    ## Get the norm data
    counts.norm = as.data.frame(round(counts(dds)))
    if(input$CountsType=="Normalized") counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
    # was removed
    counts.norm = counts.norm[,ind_kept]
    
    ## Get the distance
    if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
    if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
    
    permanova_test = adonis(dist.counts.norm~group)
    ## Do NMDS
    nmds.counts.norm = metaMDS(dist.counts.norm,k=min(round((nrow(counts.norm)-1)/2-1),round(ncol(counts.norm)/2)), trymax = 1)
    
    proj = nmds.counts.norm$points
    
    return(list(table = proj,test=permanova_test))
  }
}
svolant's avatar
svolant committed
730
731
732
733
734
735
736
737
738
739
740
741





### NMDS
NMDSPlot <-function (input, dds, group_init, col = c("SpringGreen","dodgerblue","black","firebrick1")) 
{
  ## Var of interest
  VarInt  = input$VarInt
  
  group = as.character(apply(group_init,1,paste, collapse = "-"))
svolant's avatar
svolant committed
742
  group_init = group
svolant's avatar
svolant committed
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
  
  ## Keep only some sample 
  val = c()
  for(i in 1:length(VarInt))
  { 
    Tinput = paste("input$","Mod",VarInt[i],sep="")
    expr=parse(text=Tinput)
    ## All the modalities for all the var of interest
    val = c(val,eval(expr))
  }
  if(length(VarInt)>1) Kval = apply(expand.grid(val,val),1,paste, collapse = "-")
  else Kval = val
  ind_kept = which(as.character(group)%in%Kval)
  
  ## Get the group corresponding to the modalities
  group = group[ind_kept]
  nb = length(unique((group)))
  group = as.factor(group)
  
svolant's avatar
svolant committed
762
763
764
765
  ## To select the colors
  indgrp =as.integer(as.factor(group_init))[ind_kept]
  
  
svolant's avatar
svolant committed
766
767
  if(nlevels(group)!=0 && !is.null(input$PCaxe1) && !is.null(input$PCaxe2))
  { 
svolant's avatar
svolant committed
768
    
svolant's avatar
svolant committed
769
770
771
772
773
774
775
776
777
778
    ## Get the norm data
    counts.norm = as.data.frame(round(counts(dds)))
    if(input$CountsType=="Normalized") counts.norm = as.data.frame(round(counts(dds, normalized = TRUE)))
    # was removed
    counts.norm = counts.norm[,ind_kept]
    
    ## Get the distance
    if(input$DistClust!="sere") dist.counts.norm = vegdist(t(counts.norm), method = input$DistClust)
    if(input$DistClust=="sere") dist.counts.norm = as.dist(SEREcoef(counts.norm))
    
svolant's avatar
svolant committed
779
    save(indgrp,counts.norm,dist.counts.norm,group,group_init,file="testNMDS.RData")
svolant's avatar
svolant committed
780
    ## Do NMDS
svolant's avatar
svolant committed
781
    nmds.counts.norm = metaMDS(dist.counts.norm,k=min(round((nrow(counts.norm)-1)/2-1),round(ncol(counts.norm)/2)), trymax = 25)
svolant's avatar
svolant committed
782
                               
svolant's avatar
svolant committed
783
    proj = nmds.counts.norm$points
svolant's avatar
svolant committed
784
785
    
    ## xlim and ylim of the plot
svolant's avatar
svolant committed
786
787
788
789
790
    min = min(proj); max = max(proj)
    abs = range(proj[, as.numeric(gsub("PC","",input$PCaxe1))])
    abs = abs(abs[2] - abs[1])/25
    ord = range(proj[, as.numeric(gsub("PC","",input$PCaxe2))])
    ord = abs(ord[2] - ord[1])/25
svolant's avatar
svolant committed
791
    
svolant's avatar
svolant committed
792
793
794
795
796
797
798
799
    plot(proj[,as.numeric(gsub("PC","",input$PCaxe1))],proj[,as.numeric(gsub("PC","",input$PCaxe2))], las = 1, cex = input$cexTitleDiag, col = col[indgrp], 
         pch = 16,
         xlab = paste("MDS",gsub("PC","",input$PCaxe1)),
         ylab = paste("MDS",gsub("PC","",input$PCaxe2)),
         main = "Non-metric multidimensional scaling"
    )
    abline(h = 0, v = 0, lty = 2, col = "lightgray")
    text(proj[,as.numeric(gsub("PC","",input$PCaxe1))] - ifelse(proj[,as.numeric(gsub("PC","",input$PCaxe1))] > 0, abs, -abs), proj[,as.numeric(gsub("PC","",input$PCaxe2))] - ifelse(proj[,as.numeric(gsub("PC","",input$PCaxe2))] > 0, ord, -ord), colnames(counts.norm), col = col[indgrp],cex=input$cexLabelDiag)
svolant's avatar
svolant committed
800
801
802
803
804
805
806
  }
  
}