diff --git a/src/main/java/plugins/nherve/matrix/CholeskyDecomposition.java b/src/main/java/plugins/nherve/matrix/CholeskyDecomposition.java
new file mode 100644
index 0000000000000000000000000000000000000000..d8ccd0272519e70eea2916a888acd1ee33300a12
--- /dev/null
+++ b/src/main/java/plugins/nherve/matrix/CholeskyDecomposition.java
@@ -0,0 +1,202 @@
+package plugins.nherve.matrix;
+
+
+   /** Cholesky Decomposition.
+   <P>
+   For a symmetric, positive definite matrix A, the Cholesky decomposition
+   is an lower triangular matrix L so that A = L*L'.
+   <P>
+   If the matrix is not symmetric or positive definite, the constructor
+   returns a partial decomposition and sets an internal flag that may
+   be queried by the isSPD() method.
+   */
+
+public class CholeskyDecomposition implements java.io.Serializable {
+
+/* ------------------------
+   Class variables
+ * ------------------------ */
+
+	private static final long serialVersionUID = 4992469433140406640L;
+
+/** Array for internal storage of decomposition.
+   @serial internal array storage.
+   */
+   private double[][] L;
+
+   /** Row and column dimension (square matrix).
+   @serial matrix dimension.
+   */
+   private int n;
+
+   /** Symmetric and positive definite flag.
+   @serial is symmetric and positive definite flag.
+   */
+   private boolean isspd;
+
+/* ------------------------
+   Constructor
+ * ------------------------ */
+
+   /** Cholesky algorithm for symmetric and positive definite matrix.
+   @param  A   Square, symmetric matrix.
+   @return     Structure to access L and isspd flag.
+   */
+
+   public CholeskyDecomposition (Matrix Arg) {
+
+
+     // Initialize.
+      double[][] A = Arg.getArray();
+      n = Arg.getRowDimension();
+      L = new double[n][n];
+      isspd = (Arg.getColumnDimension() == n);
+      // Main loop.
+      for (int j = 0; j < n; j++) {
+         double[] Lrowj = L[j];
+         double d = 0.0;
+         for (int k = 0; k < j; k++) {
+            double[] Lrowk = L[k];
+            double s = 0.0;
+            for (int i = 0; i < k; i++) {
+               s += Lrowk[i]*Lrowj[i];
+            }
+            Lrowj[k] = s = (A[j][k] - s)/L[k][k];
+            d = d + s*s;
+            isspd = isspd & (A[k][j] == A[j][k]); 
+         }
+         d = A[j][j] - d;
+         isspd = isspd & (d > 0.0);
+         L[j][j] = Math.sqrt(Math.max(d,0.0));
+         for (int k = j+1; k < n; k++) {
+            L[j][k] = 0.0;
+         }
+      }
+   }
+
+/* ------------------------
+   Temporary, experimental code.
+ * ------------------------ *\
+
+   \** Right Triangular Cholesky Decomposition.
+   <P>
+   For a symmetric, positive definite matrix A, the Right Cholesky
+   decomposition is an upper triangular matrix R so that A = R'*R.
+   This constructor computes R with the Fortran inspired column oriented
+   algorithm used in LINPACK and MATLAB.  In Java, we suspect a row oriented,
+   lower triangular decomposition is faster.  We have temporarily included
+   this constructor here until timing experiments confirm this suspicion.
+   *\
+
+   \** Array for internal storage of right triangular decomposition. **\
+   private transient double[][] R;
+
+   \** Cholesky algorithm for symmetric and positive definite matrix.
+   @param  A           Square, symmetric matrix.
+   @param  rightflag   Actual value ignored.
+   @return             Structure to access R and isspd flag.
+   *\
+
+   public CholeskyDecomposition (Matrix Arg, int rightflag) {
+      // Initialize.
+      double[][] A = Arg.getArray();
+      n = Arg.getColumnDimension();
+      R = new double[n][n];
+      isspd = (Arg.getColumnDimension() == n);
+      // Main loop.
+      for (int j = 0; j < n; j++) {
+         double d = 0.0;
+         for (int k = 0; k < j; k++) {
+            double s = A[k][j];
+            for (int i = 0; i < k; i++) {
+               s = s - R[i][k]*R[i][j];
+            }
+            R[k][j] = s = s/R[k][k];
+            d = d + s*s;
+            isspd = isspd & (A[k][j] == A[j][k]); 
+         }
+         d = A[j][j] - d;
+         isspd = isspd & (d > 0.0);
+         R[j][j] = Math.sqrt(Math.max(d,0.0));
+         for (int k = j+1; k < n; k++) {
+            R[k][j] = 0.0;
+         }
+      }
+   }
+
+   \** Return upper triangular factor.
+   @return     R
+   *\
+
+   public Matrix getR () {
+      return new Matrix(R,n,n);
+   }
+
+\* ------------------------
+   End of temporary code.
+ * ------------------------ */
+
+/* ------------------------
+   Public Methods
+ * ------------------------ */
+
+   /** Is the matrix symmetric and positive definite?
+   @return     true if A is symmetric and positive definite.
+   */
+
+   public boolean isSPD () {
+      return isspd;
+   }
+
+   /** Return triangular factor.
+   @return     L
+   */
+
+   public Matrix getL () {
+      return new Matrix(L,n,n);
+   }
+
+   /** Solve A*X = B
+   @param  B   A Matrix with as many rows as A and any number of columns.
+   @return     X so that L*L'*X = B
+   @exception  IllegalArgumentException  Matrix row dimensions must agree.
+   @exception  RuntimeException  Matrix is not symmetric positive definite.
+   */
+
+   public Matrix solve (Matrix B) {
+      if (B.getRowDimension() != n) {
+         throw new IllegalArgumentException("Matrix row dimensions must agree.");
+      }
+      if (!isspd) {
+         throw new RuntimeException("Matrix is not symmetric positive definite.");
+      }
+
+      // Copy right hand side.
+      double[][] X = B.getArrayCopy();
+      int nx = B.getColumnDimension();
+
+	      // Solve L*Y = B;
+	      for (int k = 0; k < n; k++) {
+	        for (int j = 0; j < nx; j++) {
+	           for (int i = 0; i < k ; i++) {
+	               X[k][j] -= X[i][j]*L[k][i];
+	           }
+	           X[k][j] /= L[k][k];
+	        }
+	      }
+	
+	      // Solve L'*X = Y;
+	      for (int k = n-1; k >= 0; k--) {
+	        for (int j = 0; j < nx; j++) {
+	           for (int i = k+1; i < n ; i++) {
+	               X[k][j] -= X[i][j]*L[i][k];
+	           }
+	           X[k][j] /= L[k][k];
+	        }
+	      }
+      
+      
+      return new Matrix(X,n,nx);
+   }
+}
+
diff --git a/src/main/java/plugins/nherve/matrix/EigenvalueDecomposition.java b/src/main/java/plugins/nherve/matrix/EigenvalueDecomposition.java
new file mode 100644
index 0000000000000000000000000000000000000000..35cf0dd583998362389b003210e1cd552e7b3aab
--- /dev/null
+++ b/src/main/java/plugins/nherve/matrix/EigenvalueDecomposition.java
@@ -0,0 +1,958 @@
+package plugins.nherve.matrix;
+
+import plugins.nherve.matrix.util.Maths;
+
+/** Eigenvalues and eigenvectors of a real matrix. 
+<P>
+    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
+    diagonal and the eigenvector matrix V is orthogonal.
+    I.e. A = V.times(D.times(V.transpose())) and 
+    V.times(V.transpose()) equals the identity matrix.
+<P>
+    If A is not symmetric, then the eigenvalue matrix D is block diagonal
+    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
+    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The
+    columns of V represent the eigenvectors in the sense that A*V = V*D,
+    i.e. A.times(V) equals V.times(D).  The matrix V may be badly
+    conditioned, or even singular, so the validity of the equation
+    A = V*D*inverse(V) depends upon V.cond().
+**/
+
+public class EigenvalueDecomposition implements java.io.Serializable {
+
+/* ------------------------
+   Class variables
+ * ------------------------ */
+
+	private static final long serialVersionUID = 1377631688565277746L;
+
+/** Row and column dimension (square matrix).
+   @serial matrix dimension.
+   */
+   private int n;
+
+   /** Symmetry flag.
+   @serial internal symmetry flag.
+   */
+   private boolean issymmetric;
+
+   /** Arrays for internal storage of eigenvalues.
+   @serial internal storage of eigenvalues.
+   */
+   private double[] d, e;
+
+   /** Array for internal storage of eigenvectors.
+   @serial internal storage of eigenvectors.
+   */
+   private double[][] V;
+
+   /** Array for internal storage of nonsymmetric Hessenberg form.
+   @serial internal storage of nonsymmetric Hessenberg form.
+   */
+   private double[][] H;
+
+   /** Working storage for nonsymmetric algorithm.
+   @serial working storage for nonsymmetric algorithm.
+   */
+   private double[] ort;
+
+/* ------------------------
+   Private Methods
+ * ------------------------ */
+
+   // Symmetric Householder reduction to tridiagonal form.
+
+   private void tred2 () {
+
+   //  This is derived from the Algol procedures tred2 by
+   //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
+   //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
+   //  Fortran subroutine in EISPACK.
+
+      for (int j = 0; j < n; j++) {
+         d[j] = V[n-1][j];
+      }
+
+      // Householder reduction to tridiagonal form.
+   
+      for (int i = n-1; i > 0; i--) {
+   
+         // Scale to avoid under/overflow.
+   
+         double scale = 0.0;
+         double h = 0.0;
+         for (int k = 0; k < i; k++) {
+            scale = scale + Math.abs(d[k]);
+         }
+         if (scale == 0.0) {
+            e[i] = d[i-1];
+            for (int j = 0; j < i; j++) {
+               d[j] = V[i-1][j];
+               V[i][j] = 0.0;
+               V[j][i] = 0.0;
+            }
+         } else {
+   
+            // Generate Householder vector.
+   
+            for (int k = 0; k < i; k++) {
+               d[k] /= scale;
+               h += d[k] * d[k];
+            }
+            double f = d[i-1];
+            double g = Math.sqrt(h);
+            if (f > 0) {
+               g = -g;
+            }
+            e[i] = scale * g;
+            h = h - f * g;
+            d[i-1] = f - g;
+            for (int j = 0; j < i; j++) {
+               e[j] = 0.0;
+            }
+   
+            // Apply similarity transformation to remaining columns.
+   
+            for (int j = 0; j < i; j++) {
+               f = d[j];
+               V[j][i] = f;
+               g = e[j] + V[j][j] * f;
+               for (int k = j+1; k <= i-1; k++) {
+                  g += V[k][j] * d[k];
+                  e[k] += V[k][j] * f;
+               }
+               e[j] = g;
+            }
+            f = 0.0;
+            for (int j = 0; j < i; j++) {
+               e[j] /= h;
+               f += e[j] * d[j];
+            }
+            double hh = f / (h + h);
+            for (int j = 0; j < i; j++) {
+               e[j] -= hh * d[j];
+            }
+            for (int j = 0; j < i; j++) {
+               f = d[j];
+               g = e[j];
+               for (int k = j; k <= i-1; k++) {
+                  V[k][j] -= (f * e[k] + g * d[k]);
+               }
+               d[j] = V[i-1][j];
+               V[i][j] = 0.0;
+            }
+         }
+         d[i] = h;
+      }
+   
+      // Accumulate transformations.
+   
+      for (int i = 0; i < n-1; i++) {
+         V[n-1][i] = V[i][i];
+         V[i][i] = 1.0;
+         double h = d[i+1];
+         if (h != 0.0) {
+            for (int k = 0; k <= i; k++) {
+               d[k] = V[k][i+1] / h;
+            }
+            for (int j = 0; j <= i; j++) {
+               double g = 0.0;
+               for (int k = 0; k <= i; k++) {
+                  g += V[k][i+1] * V[k][j];
+               }
+               for (int k = 0; k <= i; k++) {
+                  V[k][j] -= g * d[k];
+               }
+            }
+         }
+         for (int k = 0; k <= i; k++) {
+            V[k][i+1] = 0.0;
+         }
+      }
+      for (int j = 0; j < n; j++) {
+         d[j] = V[n-1][j];
+         V[n-1][j] = 0.0;
+      }
+      V[n-1][n-1] = 1.0;
+      e[0] = 0.0;
+   } 
+
+   // Symmetric tridiagonal QL algorithm.
+   
+   private void tql2 () {
+
+   //  This is derived from the Algol procedures tql2, by
+   //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
+   //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
+   //  Fortran subroutine in EISPACK.
+   
+      for (int i = 1; i < n; i++) {
+         e[i-1] = e[i];
+      }
+      e[n-1] = 0.0;
+   
+      double f = 0.0;
+      double tst1 = 0.0;
+      double eps = Math.pow(2.0,-52.0);
+      for (int l = 0; l < n; l++) {
+
+         // Find small subdiagonal element
+   
+         tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
+         int m = l;
+         while (m < n) {
+            if (Math.abs(e[m]) <= eps*tst1) {
+               break;
+            }
+            m++;
+         }
+   
+         // If m == l, d[l] is an eigenvalue,
+         // otherwise, iterate.
+   
+         if (m > l) {
+            int iter = 0;
+            do {
+               iter = iter + 1;  // (Could check iteration count here.)
+   
+               // Compute implicit shift
+   
+               double g = d[l];
+               double p = (d[l+1] - g) / (2.0 * e[l]);
+               double r = Maths.hypot(p,1.0);
+               if (p < 0) {
+                  r = -r;
+               }
+               d[l] = e[l] / (p + r);
+               d[l+1] = e[l] * (p + r);
+               double dl1 = d[l+1];
+               double h = g - d[l];
+               for (int i = l+2; i < n; i++) {
+                  d[i] -= h;
+               }
+               f = f + h;
+   
+               // Implicit QL transformation.
+   
+               p = d[m];
+               double c = 1.0;
+               double c2 = c;
+               double c3 = c;
+               double el1 = e[l+1];
+               double s = 0.0;
+               double s2 = 0.0;
+               for (int i = m-1; i >= l; i--) {
+                  c3 = c2;
+                  c2 = c;
+                  s2 = s;
+                  g = c * e[i];
+                  h = c * p;
+                  r = Maths.hypot(p,e[i]);
+                  e[i+1] = s * r;
+                  s = e[i] / r;
+                  c = p / r;
+                  p = c * d[i] - s * g;
+                  d[i+1] = h + s * (c * g + s * d[i]);
+   
+                  // Accumulate transformation.
+   
+                  for (int k = 0; k < n; k++) {
+                     h = V[k][i+1];
+                     V[k][i+1] = s * V[k][i] + c * h;
+                     V[k][i] = c * V[k][i] - s * h;
+                  }
+               }
+               p = -s * s2 * c3 * el1 * e[l] / dl1;
+               e[l] = s * p;
+               d[l] = c * p;
+   
+               // Check for convergence.
+   
+            } while (Math.abs(e[l]) > eps*tst1);
+         }
+         d[l] = d[l] + f;
+         e[l] = 0.0;
+      }
+     
+      // Sort eigenvalues and corresponding vectors.
+   
+      for (int i = 0; i < n-1; i++) {
+         int k = i;
+         double p = d[i];
+         for (int j = i+1; j < n; j++) {
+            if (d[j] < p) {
+               k = j;
+               p = d[j];
+            }
+         }
+         if (k != i) {
+            d[k] = d[i];
+            d[i] = p;
+            for (int j = 0; j < n; j++) {
+               p = V[j][i];
+               V[j][i] = V[j][k];
+               V[j][k] = p;
+            }
+         }
+      }
+   }
+
+   // Nonsymmetric reduction to Hessenberg form.
+
+   private void orthes () {
+   
+      //  This is derived from the Algol procedures orthes and ortran,
+      //  by Martin and Wilkinson, Handbook for Auto. Comp.,
+      //  Vol.ii-Linear Algebra, and the corresponding
+      //  Fortran subroutines in EISPACK.
+   
+      int low = 0;
+      int high = n-1;
+   
+      for (int m = low+1; m <= high-1; m++) {
+   
+         // Scale column.
+   
+         double scale = 0.0;
+         for (int i = m; i <= high; i++) {
+            scale = scale + Math.abs(H[i][m-1]);
+         }
+         if (scale != 0.0) {
+   
+            // Compute Householder transformation.
+   
+            double h = 0.0;
+            for (int i = high; i >= m; i--) {
+               ort[i] = H[i][m-1]/scale;
+               h += ort[i] * ort[i];
+            }
+            double g = Math.sqrt(h);
+            if (ort[m] > 0) {
+               g = -g;
+            }
+            h = h - ort[m] * g;
+            ort[m] = ort[m] - g;
+   
+            // Apply Householder similarity transformation
+            // H = (I-u*u'/h)*H*(I-u*u')/h)
+   
+            for (int j = m; j < n; j++) {
+               double f = 0.0;
+               for (int i = high; i >= m; i--) {
+                  f += ort[i]*H[i][j];
+               }
+               f = f/h;
+               for (int i = m; i <= high; i++) {
+                  H[i][j] -= f*ort[i];
+               }
+           }
+   
+           for (int i = 0; i <= high; i++) {
+               double f = 0.0;
+               for (int j = high; j >= m; j--) {
+                  f += ort[j]*H[i][j];
+               }
+               f = f/h;
+               for (int j = m; j <= high; j++) {
+                  H[i][j] -= f*ort[j];
+               }
+            }
+            ort[m] = scale*ort[m];
+            H[m][m-1] = scale*g;
+         }
+      }
+   
+      // Accumulate transformations (Algol's ortran).
+
+      for (int i = 0; i < n; i++) {
+         for (int j = 0; j < n; j++) {
+            V[i][j] = (i == j ? 1.0 : 0.0);
+         }
+      }
+
+      for (int m = high-1; m >= low+1; m--) {
+         if (H[m][m-1] != 0.0) {
+            for (int i = m+1; i <= high; i++) {
+               ort[i] = H[i][m-1];
+            }
+            for (int j = m; j <= high; j++) {
+               double g = 0.0;
+               for (int i = m; i <= high; i++) {
+                  g += ort[i] * V[i][j];
+               }
+               // Double division avoids possible underflow
+               g = (g / ort[m]) / H[m][m-1];
+               for (int i = m; i <= high; i++) {
+                  V[i][j] += g * ort[i];
+               }
+            }
+         }
+      }
+   }
+
+
+   // Complex scalar division.
+
+   private transient double cdivr, cdivi;
+   private void cdiv(double xr, double xi, double yr, double yi) {
+      double r,d;
+      if (Math.abs(yr) > Math.abs(yi)) {
+         r = yi/yr;
+         d = yr + r*yi;
+         cdivr = (xr + r*xi)/d;
+         cdivi = (xi - r*xr)/d;
+      } else {
+         r = yr/yi;
+         d = yi + r*yr;
+         cdivr = (r*xr + xi)/d;
+         cdivi = (r*xi - xr)/d;
+      }
+   }
+
+
+   // Nonsymmetric reduction from Hessenberg to real Schur form.
+
+   private void hqr2 () {
+   
+      //  This is derived from the Algol procedure hqr2,
+      //  by Martin and Wilkinson, Handbook for Auto. Comp.,
+      //  Vol.ii-Linear Algebra, and the corresponding
+      //  Fortran subroutine in EISPACK.
+   
+      // Initialize
+   
+      int nn = this.n;
+      int n = nn-1;
+      int low = 0;
+      int high = nn-1;
+      double eps = Math.pow(2.0,-52.0);
+      double exshift = 0.0;
+      double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
+   
+      // Store roots isolated by balanc and compute matrix norm
+   
+      double norm = 0.0;
+      for (int i = 0; i < nn; i++) {
+         if (i < low | i > high) {
+            d[i] = H[i][i];
+            e[i] = 0.0;
+         }
+         for (int j = Math.max(i-1,0); j < nn; j++) {
+            norm = norm + Math.abs(H[i][j]);
+         }
+      }
+   
+      // Outer loop over eigenvalue index
+   
+      int iter = 0;
+      while (n >= low) {
+   
+         // Look for single small sub-diagonal element
+   
+         int l = n;
+         while (l > low) {
+            s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
+            if (s == 0.0) {
+               s = norm;
+            }
+            if (Math.abs(H[l][l-1]) < eps * s) {
+               break;
+            }
+            l--;
+         }
+       
+         // Check for convergence
+         // One root found
+   
+         if (l == n) {
+            H[n][n] = H[n][n] + exshift;
+            d[n] = H[n][n];
+            e[n] = 0.0;
+            n--;
+            iter = 0;
+   
+         // Two roots found
+   
+         } else if (l == n-1) {
+            w = H[n][n-1] * H[n-1][n];
+            p = (H[n-1][n-1] - H[n][n]) / 2.0;
+            q = p * p + w;
+            z = Math.sqrt(Math.abs(q));
+            H[n][n] = H[n][n] + exshift;
+            H[n-1][n-1] = H[n-1][n-1] + exshift;
+            x = H[n][n];
+   
+            // Real pair
+   
+            if (q >= 0) {
+               if (p >= 0) {
+                  z = p + z;
+               } else {
+                  z = p - z;
+               }
+               d[n-1] = x + z;
+               d[n] = d[n-1];
+               if (z != 0.0) {
+                  d[n] = x - w / z;
+               }
+               e[n-1] = 0.0;
+               e[n] = 0.0;
+               x = H[n][n-1];
+               s = Math.abs(x) + Math.abs(z);
+               p = x / s;
+               q = z / s;
+               r = Math.sqrt(p * p+q * q);
+               p = p / r;
+               q = q / r;
+   
+               // Row modification
+   
+               for (int j = n-1; j < nn; j++) {
+                  z = H[n-1][j];
+                  H[n-1][j] = q * z + p * H[n][j];
+                  H[n][j] = q * H[n][j] - p * z;
+               }
+   
+               // Column modification
+   
+               for (int i = 0; i <= n; i++) {
+                  z = H[i][n-1];
+                  H[i][n-1] = q * z + p * H[i][n];
+                  H[i][n] = q * H[i][n] - p * z;
+               }
+   
+               // Accumulate transformations
+   
+               for (int i = low; i <= high; i++) {
+                  z = V[i][n-1];
+                  V[i][n-1] = q * z + p * V[i][n];
+                  V[i][n] = q * V[i][n] - p * z;
+               }
+   
+            // Complex pair
+   
+            } else {
+               d[n-1] = x + p;
+               d[n] = x + p;
+               e[n-1] = z;
+               e[n] = -z;
+            }
+            n = n - 2;
+            iter = 0;
+   
+         // No convergence yet
+   
+         } else {
+   
+            // Form shift
+   
+            x = H[n][n];
+            y = 0.0;
+            w = 0.0;
+            if (l < n) {
+               y = H[n-1][n-1];
+               w = H[n][n-1] * H[n-1][n];
+            }
+   
+            // Wilkinson's original ad hoc shift
+   
+            if (iter == 10) {
+               exshift += x;
+               for (int i = low; i <= n; i++) {
+                  H[i][i] -= x;
+               }
+               s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);
+               x = y = 0.75 * s;
+               w = -0.4375 * s * s;
+            }
+
+            // MATLAB's new ad hoc shift
+
+            if (iter == 30) {
+                s = (y - x) / 2.0;
+                s = s * s + w;
+                if (s > 0) {
+                    s = Math.sqrt(s);
+                    if (y < x) {
+                       s = -s;
+                    }
+                    s = x - w / ((y - x) / 2.0 + s);
+                    for (int i = low; i <= n; i++) {
+                       H[i][i] -= s;
+                    }
+                    exshift += s;
+                    x = y = w = 0.964;
+                }
+            }
+   
+            iter = iter + 1;   // (Could check iteration count here.)
+   
+            // Look for two consecutive small sub-diagonal elements
+   
+            int m = n-2;
+            while (m >= l) {
+               z = H[m][m];
+               r = x - z;
+               s = y - z;
+               p = (r * s - w) / H[m+1][m] + H[m][m+1];
+               q = H[m+1][m+1] - z - r - s;
+               r = H[m+2][m+1];
+               s = Math.abs(p) + Math.abs(q) + Math.abs(r);
+               p = p / s;
+               q = q / s;
+               r = r / s;
+               if (m == l) {
+                  break;
+               }
+               if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <
+                  eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +
+                  Math.abs(H[m+1][m+1])))) {
+                     break;
+               }
+               m--;
+            }
+   
+            for (int i = m+2; i <= n; i++) {
+               H[i][i-2] = 0.0;
+               if (i > m+2) {
+                  H[i][i-3] = 0.0;
+               }
+            }
+   
+            // Double QR step involving rows l:n and columns m:n
+   
+            for (int k = m; k <= n-1; k++) {
+               boolean notlast = (k != n-1);
+               if (k != m) {
+                  p = H[k][k-1];
+                  q = H[k+1][k-1];
+                  r = (notlast ? H[k+2][k-1] : 0.0);
+                  x = Math.abs(p) + Math.abs(q) + Math.abs(r);
+                  if (x != 0.0) {
+                     p = p / x;
+                     q = q / x;
+                     r = r / x;
+                  }
+               }
+               if (x == 0.0) {
+                  break;
+               }
+               s = Math.sqrt(p * p + q * q + r * r);
+               if (p < 0) {
+                  s = -s;
+               }
+               if (s != 0) {
+                  if (k != m) {
+                     H[k][k-1] = -s * x;
+                  } else if (l != m) {
+                     H[k][k-1] = -H[k][k-1];
+                  }
+                  p = p + s;
+                  x = p / s;
+                  y = q / s;
+                  z = r / s;
+                  q = q / p;
+                  r = r / p;
+   
+                  // Row modification
+   
+                  for (int j = k; j < nn; j++) {
+                     p = H[k][j] + q * H[k+1][j];
+                     if (notlast) {
+                        p = p + r * H[k+2][j];
+                        H[k+2][j] = H[k+2][j] - p * z;
+                     }
+                     H[k][j] = H[k][j] - p * x;
+                     H[k+1][j] = H[k+1][j] - p * y;
+                  }
+   
+                  // Column modification
+   
+                  for (int i = 0; i <= Math.min(n,k+3); i++) {
+                     p = x * H[i][k] + y * H[i][k+1];
+                     if (notlast) {
+                        p = p + z * H[i][k+2];
+                        H[i][k+2] = H[i][k+2] - p * r;
+                     }
+                     H[i][k] = H[i][k] - p;
+                     H[i][k+1] = H[i][k+1] - p * q;
+                  }
+   
+                  // Accumulate transformations
+   
+                  for (int i = low; i <= high; i++) {
+                     p = x * V[i][k] + y * V[i][k+1];
+                     if (notlast) {
+                        p = p + z * V[i][k+2];
+                        V[i][k+2] = V[i][k+2] - p * r;
+                     }
+                     V[i][k] = V[i][k] - p;
+                     V[i][k+1] = V[i][k+1] - p * q;
+                  }
+               }  // (s != 0)
+            }  // k loop
+         }  // check convergence
+      }  // while (n >= low)
+      
+      // Backsubstitute to find vectors of upper triangular form
+
+      if (norm == 0.0) {
+         return;
+      }
+   
+      for (n = nn-1; n >= 0; n--) {
+         p = d[n];
+         q = e[n];
+   
+         // Real vector
+   
+         if (q == 0) {
+            int l = n;
+            H[n][n] = 1.0;
+            for (int i = n-1; i >= 0; i--) {
+               w = H[i][i] - p;
+               r = 0.0;
+               for (int j = l; j <= n; j++) {
+                  r = r + H[i][j] * H[j][n];
+               }
+               if (e[i] < 0.0) {
+                  z = w;
+                  s = r;
+               } else {
+                  l = i;
+                  if (e[i] == 0.0) {
+                     if (w != 0.0) {
+                        H[i][n] = -r / w;
+                     } else {
+                        H[i][n] = -r / (eps * norm);
+                     }
+   
+                  // Solve real equations
+   
+                  } else {
+                     x = H[i][i+1];
+                     y = H[i+1][i];
+                     q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
+                     t = (x * s - z * r) / q;
+                     H[i][n] = t;
+                     if (Math.abs(x) > Math.abs(z)) {
+                        H[i+1][n] = (-r - w * t) / x;
+                     } else {
+                        H[i+1][n] = (-s - y * t) / z;
+                     }
+                  }
+   
+                  // Overflow control
+   
+                  t = Math.abs(H[i][n]);
+                  if ((eps * t) * t > 1) {
+                     for (int j = i; j <= n; j++) {
+                        H[j][n] = H[j][n] / t;
+                     }
+                  }
+               }
+            }
+   
+         // Complex vector
+   
+         } else if (q < 0) {
+            int l = n-1;
+
+            // Last vector component imaginary so matrix is triangular
+   
+            if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {
+               H[n-1][n-1] = q / H[n][n-1];
+               H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
+            } else {
+               cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
+               H[n-1][n-1] = cdivr;
+               H[n-1][n] = cdivi;
+            }
+            H[n][n-1] = 0.0;
+            H[n][n] = 1.0;
+            for (int i = n-2; i >= 0; i--) {
+               double ra,sa,vr,vi;
+               ra = 0.0;
+               sa = 0.0;
+               for (int j = l; j <= n; j++) {
+                  ra = ra + H[i][j] * H[j][n-1];
+                  sa = sa + H[i][j] * H[j][n];
+               }
+               w = H[i][i] - p;
+   
+               if (e[i] < 0.0) {
+                  z = w;
+                  r = ra;
+                  s = sa;
+               } else {
+                  l = i;
+                  if (e[i] == 0) {
+                     cdiv(-ra,-sa,w,q);
+                     H[i][n-1] = cdivr;
+                     H[i][n] = cdivi;
+                  } else {
+   
+                     // Solve complex equations
+   
+                     x = H[i][i+1];
+                     y = H[i+1][i];
+                     vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
+                     vi = (d[i] - p) * 2.0 * q;
+                     if (vr == 0.0 & vi == 0.0) {
+                        vr = eps * norm * (Math.abs(w) + Math.abs(q) +
+                        Math.abs(x) + Math.abs(y) + Math.abs(z));
+                     }
+                     cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
+                     H[i][n-1] = cdivr;
+                     H[i][n] = cdivi;
+                     if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
+                        H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
+                        H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
+                     } else {
+                        cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
+                        H[i+1][n-1] = cdivr;
+                        H[i+1][n] = cdivi;
+                     }
+                  }
+   
+                  // Overflow control
+
+                  t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));
+                  if ((eps * t) * t > 1) {
+                     for (int j = i; j <= n; j++) {
+                        H[j][n-1] = H[j][n-1] / t;
+                        H[j][n] = H[j][n] / t;
+                     }
+                  }
+               }
+            }
+         }
+      }
+   
+      // Vectors of isolated roots
+   
+      for (int i = 0; i < nn; i++) {
+         if (i < low | i > high) {
+            for (int j = i; j < nn; j++) {
+               V[i][j] = H[i][j];
+            }
+         }
+      }
+   
+      // Back transformation to get eigenvectors of original matrix
+   
+      for (int j = nn-1; j >= low; j--) {
+         for (int i = low; i <= high; i++) {
+            z = 0.0;
+            for (int k = low; k <= Math.min(j,high); k++) {
+               z = z + V[i][k] * H[k][j];
+            }
+            V[i][j] = z;
+         }
+      }
+   }
+
+
+/* ------------------------
+   Constructor
+ * ------------------------ */
+
+   /** Check for symmetry, then construct the eigenvalue decomposition
+   @param A    Square matrix
+   @return     Structure to access D and V.
+   */
+
+   public EigenvalueDecomposition (Matrix Arg) {
+      double[][] A = Arg.getArray();
+      n = Arg.getColumnDimension();
+      V = new double[n][n];
+      d = new double[n];
+      e = new double[n];
+
+      issymmetric = true;
+      for (int j = 0; (j < n) & issymmetric; j++) {
+         for (int i = 0; (i < n) & issymmetric; i++) {
+            issymmetric = (A[i][j] == A[j][i]);
+         }
+      }
+
+      if (issymmetric) {
+         for (int i = 0; i < n; i++) {
+            for (int j = 0; j < n; j++) {
+               V[i][j] = A[i][j];
+            }
+         }
+   
+         // Tridiagonalize.
+         tred2();
+   
+         // Diagonalize.
+         tql2();
+
+      } else {
+         H = new double[n][n];
+         ort = new double[n];
+         
+         for (int j = 0; j < n; j++) {
+            for (int i = 0; i < n; i++) {
+               H[i][j] = A[i][j];
+            }
+         }
+   
+         // Reduce to Hessenberg form.
+         orthes();
+   
+         // Reduce Hessenberg to real Schur form.
+         hqr2();
+      }
+   }
+
+/* ------------------------
+   Public Methods
+ * ------------------------ */
+
+   /** Return the eigenvector matrix
+   @return     V
+   */
+
+   public Matrix getV () {
+      return new Matrix(V,n,n);
+   }
+
+   /** Return the real parts of the eigenvalues
+   @return     real(diag(D))
+   */
+
+   public double[] getRealEigenvalues () {
+      return d;
+   }
+
+   /** Return the imaginary parts of the eigenvalues
+   @return     imag(diag(D))
+   */
+
+   public double[] getImagEigenvalues () {
+      return e;
+   }
+
+   /** Return the block diagonal eigenvalue matrix
+   @return     D
+   */
+
+   public Matrix getD () {
+      Matrix X = new Matrix(n,n);
+      double[][] D = X.getArray();
+      for (int i = 0; i < n; i++) {
+         for (int j = 0; j < n; j++) {
+            D[i][j] = 0.0;
+         }
+         D[i][i] = d[i];
+         if (e[i] > 0) {
+            D[i][i+1] = e[i];
+         } else if (e[i] < 0) {
+            D[i][i-1] = e[i];
+         }
+      }
+      return X;
+   }
+}
diff --git a/src/main/java/plugins/nherve/matrix/LUDecomposition.java b/src/main/java/plugins/nherve/matrix/LUDecomposition.java
new file mode 100644
index 0000000000000000000000000000000000000000..b7b536f4fb4bdcb84388ea4a8090681c15cf85b3
--- /dev/null
+++ b/src/main/java/plugins/nherve/matrix/LUDecomposition.java
@@ -0,0 +1,314 @@
+package plugins.nherve.matrix;
+
+
+   /** LU Decomposition.
+   <P>
+   For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
+   unit lower triangular matrix L, an n-by-n upper triangular matrix U,
+   and a permutation vector piv of length m so that A(piv,:) = L*U.
+   If m < n, then L is m-by-m and U is m-by-n.
+   <P>
+   The LU decompostion with pivoting always exists, even if the matrix is
+   singular, so the constructor will never fail.  The primary use of the
+   LU decomposition is in the solution of square systems of simultaneous
+   linear equations.  This will fail if isNonsingular() returns false.
+   */
+
+public class LUDecomposition implements java.io.Serializable {
+
+/* ------------------------
+   Class variables
+ * ------------------------ */
+
+	private static final long serialVersionUID = -181695365290691888L;
+
+/** Array for internal storage of decomposition.
+   @serial internal array storage.
+   */
+   private double[][] LU;
+
+   /** Row and column dimensions, and pivot sign.
+   @serial column dimension.
+   @serial row dimension.
+   @serial pivot sign.
+   */
+   private int m, n, pivsign; 
+
+   /** Internal storage of pivot vector.
+   @serial pivot vector.
+   */
+   private int[] piv;
+
+/* ------------------------
+   Constructor
+ * ------------------------ */
+
+   /** LU Decomposition
+   @param  A   Rectangular matrix
+   @return     Structure to access L, U and piv.
+   */
+
+   public LUDecomposition (Matrix A) {
+
+   // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
+
+      LU = A.getArrayCopy();
+      m = A.getRowDimension();
+      n = A.getColumnDimension();
+      piv = new int[m];
+      for (int i = 0; i < m; i++) {
+         piv[i] = i;
+      }
+      pivsign = 1;
+      double[] LUrowi;
+      double[] LUcolj = new double[m];
+
+      // Outer loop.
+
+      for (int j = 0; j < n; j++) {
+
+         // Make a copy of the j-th column to localize references.
+
+         for (int i = 0; i < m; i++) {
+            LUcolj[i] = LU[i][j];
+         }
+
+         // Apply previous transformations.
+
+         for (int i = 0; i < m; i++) {
+            LUrowi = LU[i];
+
+            // Most of the time is spent in the following dot product.
+
+            int kmax = Math.min(i,j);
+            double s = 0.0;
+            for (int k = 0; k < kmax; k++) {
+               s += LUrowi[k]*LUcolj[k];
+            }
+
+            LUrowi[j] = LUcolj[i] -= s;
+         }
+   
+         // Find pivot and exchange if necessary.
+
+         int p = j;
+         for (int i = j+1; i < m; i++) {
+            if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) {
+               p = i;
+            }
+         }
+         if (p != j) {
+            for (int k = 0; k < n; k++) {
+               double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
+            }
+            int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
+            pivsign = -pivsign;
+         }
+
+         // Compute multipliers.
+         
+         if (j < m & LU[j][j] != 0.0) {
+            for (int i = j+1; i < m; i++) {
+               LU[i][j] /= LU[j][j];
+            }
+         }
+      }
+   }
+
+/* ------------------------
+   Temporary, experimental code.
+   ------------------------ *\
+
+   \** LU Decomposition, computed by Gaussian elimination.
+   <P>
+   This constructor computes L and U with the "daxpy"-based elimination
+   algorithm used in LINPACK and MATLAB.  In Java, we suspect the dot-product,
+   Crout algorithm will be faster.  We have temporarily included this
+   constructor until timing experiments confirm this suspicion.
+   <P>
+   @param  A             Rectangular matrix
+   @param  linpackflag   Use Gaussian elimination.  Actual value ignored.
+   @return               Structure to access L, U and piv.
+   *\
+
+   public LUDecomposition (Matrix A, int linpackflag) {
+      // Initialize.
+      LU = A.getArrayCopy();
+      m = A.getRowDimension();
+      n = A.getColumnDimension();
+      piv = new int[m];
+      for (int i = 0; i < m; i++) {
+         piv[i] = i;
+      }
+      pivsign = 1;
+      // Main loop.
+      for (int k = 0; k < n; k++) {
+         // Find pivot.
+         int p = k;
+         for (int i = k+1; i < m; i++) {
+            if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {
+               p = i;
+            }
+         }
+         // Exchange if necessary.
+         if (p != k) {
+            for (int j = 0; j < n; j++) {
+               double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
+            }
+            int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
+            pivsign = -pivsign;
+         }
+         // Compute multipliers and eliminate k-th column.
+         if (LU[k][k] != 0.0) {
+            for (int i = k+1; i < m; i++) {
+               LU[i][k] /= LU[k][k];
+               for (int j = k+1; j < n; j++) {
+                  LU[i][j] -= LU[i][k]*LU[k][j];
+               }
+            }
+         }
+      }
+   }
+
+\* ------------------------
+   End of temporary code.
+ * ------------------------ */
+
+/* ------------------------
+   Public Methods
+ * ------------------------ */
+
+   /** Is the matrix nonsingular?
+   @return     true if U, and hence A, is nonsingular.
+   */
+
+   public boolean isNonsingular () {
+      for (int j = 0; j < n; j++) {
+         if (LU[j][j] == 0)
+            return false;
+      }
+      return true;
+   }
+
+   /** Return lower triangular factor
+   @return     L
+   */
+
+   public Matrix getL () {
+      Matrix X = new Matrix(m,n);
+      double[][] L = X.getArray();
+      for (int i = 0; i < m; i++) {
+         for (int j = 0; j < n; j++) {
+            if (i > j) {
+               L[i][j] = LU[i][j];
+            } else if (i == j) {
+               L[i][j] = 1.0;
+            } else {
+               L[i][j] = 0.0;
+            }
+         }
+      }
+      return X;
+   }
+
+   /** Return upper triangular factor
+   @return     U
+   */
+
+   public Matrix getU () {
+      Matrix X = new Matrix(n,n);
+      double[][] U = X.getArray();
+      for (int i = 0; i < n; i++) {
+         for (int j = 0; j < n; j++) {
+            if (i <= j) {
+               U[i][j] = LU[i][j];
+            } else {
+               U[i][j] = 0.0;
+            }
+         }
+      }
+      return X;
+   }
+
+   /** Return pivot permutation vector
+   @return     piv
+   */
+
+   public int[] getPivot () {
+      int[] p = new int[m];
+      for (int i = 0; i < m; i++) {
+         p[i] = piv[i];
+      }
+      return p;
+   }
+
+   /** Return pivot permutation vector as a one-dimensional double array
+   @return     (double) piv
+   */
+
+   public double[] getDoublePivot () {
+      double[] vals = new double[m];
+      for (int i = 0; i < m; i++) {
+         vals[i] = (double) piv[i];
+      }
+      return vals;
+   }
+
+   /** Determinant
+   @return     det(A)
+   @exception  IllegalArgumentException  Matrix must be square
+   */
+
+   public double det () {
+      if (m != n) {
+         throw new IllegalArgumentException("Matrix must be square.");
+      }
+      double d = (double) pivsign;
+      for (int j = 0; j < n; j++) {
+         d *= LU[j][j];
+      }
+      return d;
+   }
+
+   /** Solve A*X = B
+   @param  B   A Matrix with as many rows as A and any number of columns.
+   @return     X so that L*U*X = B(piv,:)
+   @exception  IllegalArgumentException Matrix row dimensions must agree.
+   @exception  RuntimeException  Matrix is singular.
+   */
+
+   public Matrix solve (Matrix B) {
+      if (B.getRowDimension() != m) {
+         throw new IllegalArgumentException("Matrix row dimensions must agree.");
+      }
+      if (!this.isNonsingular()) {
+         throw new RuntimeException("Matrix is singular.");
+      }
+
+      // Copy right hand side with pivoting
+      int nx = B.getColumnDimension();
+      Matrix Xmat = B.getMatrix(piv,0,nx-1);
+      double[][] X = Xmat.getArray();
+
+      // Solve L*Y = B(piv,:)
+      for (int k = 0; k < n; k++) {
+         for (int i = k+1; i < n; i++) {
+            for (int j = 0; j < nx; j++) {
+               X[i][j] -= X[k][j]*LU[i][k];
+            }
+         }
+      }
+      // Solve U*X = Y;
+      for (int k = n-1; k >= 0; k--) {
+         for (int j = 0; j < nx; j++) {
+            X[k][j] /= LU[k][k];
+         }
+         for (int i = 0; i < k; i++) {
+            for (int j = 0; j < nx; j++) {
+               X[i][j] -= X[k][j]*LU[i][k];
+            }
+         }
+      }
+      return Xmat;
+   }
+}
diff --git a/src/main/java/plugins/nherve/matrix/Matrix.java b/src/main/java/plugins/nherve/matrix/Matrix.java
new file mode 100644
index 0000000000000000000000000000000000000000..b38d648064c411376609d4fd85e75a2aeaf421ab
--- /dev/null
+++ b/src/main/java/plugins/nherve/matrix/Matrix.java
@@ -0,0 +1,1327 @@
+package plugins.nherve.matrix;
+
+
+import java.io.BufferedReader;
+import java.io.PrintWriter;
+import java.io.StreamTokenizer;
+import java.text.DecimalFormat;
+import java.text.DecimalFormatSymbols;
+import java.text.NumberFormat;
+import java.util.Locale;
+import java.util.Vector;
+
+import plugins.nherve.matrix.util.Maths;
+
+
+
+/**
+ * Jama = Java Matrix class.
+ * <P>
+ * The Java Matrix Class provides the fundamental operations of numerical linear
+ * algebra. Various constructors create Matrices from two dimensional arrays of
+ * double precision floating point numbers. Various "gets" and "sets" provide
+ * access to submatrices and matrix elements. Several methods implement basic
+ * matrix arithmetic, including matrix addition and multiplication, matrix
+ * norms, and element-by-element array operations. Methods for reading and
+ * printing matrices are also included. All the operations in this version of
+ * the Matrix Class involve real matrices. Complex matrices may be handled in a
+ * future version.
+ * <P>
+ * Five fundamental matrix decompositions, which consist of pairs or triples of
+ * matrices, permutation vectors, and the like, produce results in five
+ * decomposition classes. These decompositions are accessed by the Matrix class
+ * to compute solutions of simultaneous linear equations, determinants, inverses
+ * and other matrix functions. The five decompositions are:
+ * <P>
+ * <UL>
+ * <LI>Cholesky Decomposition of symmetric, positive definite matrices.
+ * <LI>LU Decomposition of rectangular matrices.
+ * <LI>QR Decomposition of rectangular matrices.
+ * <LI>Singular Value Decomposition of rectangular matrices.
+ * <LI>Eigenvalue Decomposition of both symmetric and nonsymmetric square
+ * matrices.
+ * </UL>
+ * <DL>
+ * <DT><B>Example of use:</B></DT>
+ * <P>
+ * <DD>Solve a linear system A x = b and compute the residual norm, ||b - A x||.
+ * <P>
+ * 
+ * <PRE>
+ * double[][] vals = { { 1., 2., 3 }, { 4., 5., 6. }, { 7., 8., 10. } };
+ * Matrix A = new Matrix(vals);
+ * Matrix b = Matrix.random(3, 1);
+ * Matrix x = A.solve(b);
+ * Matrix r = A.times(x).minus(b);
+ * double rnorm = r.normInf();
+ * </PRE>
+ * 
+ * </DD>
+ * </DL>
+ * 
+ * @author The MathWorks, Inc. and the National Institute of Standards and
+ *         Technology.
+ * @version 5 August 1998
+ */
+
+public class Matrix implements Cloneable, java.io.Serializable {
+
+	/*
+	 * ------------------------ Class variables ------------------------
+	 */
+
+	private static final long serialVersionUID = 3931280766651959467L;
+
+	public Matrix() {
+		super();
+		// TODO Auto-generated constructor stub
+	}
+
+	/**
+	 * Array for internal storage of elements.
+	 * 
+	 * @serial internal array storage.
+	 */
+	protected double[][] A;
+
+	/**
+	 * Row and column dimensions.
+	 * 
+	 * @serial row dimension.
+	 * @serial column dimension.
+	 */
+	protected int m, n;
+
+	/*
+	 * ------------------------ Constructors ------------------------
+	 */
+
+	/**
+	 * Construct an m-by-n matrix of zeros.
+	 * 
+	 * @param m
+	 *            Number of rows.
+	 * @param n
+	 *            Number of colums.
+	 */
+
+	public Matrix(int m, int n) {
+		this.m = m;
+		this.n = n;
+		A = new double[m][n];
+	}
+
+	/**
+	 * Construct an m-by-n constant matrix.
+	 * 
+	 * @param m
+	 *            Number of rows.
+	 * @param n
+	 *            Number of colums.
+	 * @param s
+	 *            Fill the matrix with this scalar value.
+	 */
+
+	public Matrix(int m, int n, double s) {
+		this.m = m;
+		this.n = n;
+		A = new double[m][n];
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				A[i][j] = s;
+			}
+		}
+	}
+
+	/**
+	 * Construct a matrix from a 2-D array.
+	 * 
+	 * @param A
+	 *            Two-dimensional array of doubles.
+	 * @exception IllegalArgumentException
+	 *                All rows must have the same length
+	 * @see #constructWithCopy
+	 */
+
+	public Matrix(double[][] A) {
+		m = A.length;
+		n = A[0].length;
+		for (int i = 0; i < m; i++) {
+			if (A[i].length != n) {
+				throw new IllegalArgumentException("All rows must have the same length.");
+			}
+		}
+		this.A = A;
+	}
+
+	/**
+	 * Construct a matrix quickly without checking arguments.
+	 * 
+	 * @param A
+	 *            Two-dimensional array of doubles.
+	 * @param m
+	 *            Number of rows.
+	 * @param n
+	 *            Number of colums.
+	 */
+
+	public Matrix(double[][] A, int m, int n) {
+		this.A = A;
+		this.m = m;
+		this.n = n;
+	}
+
+	/**
+	 * Construct a matrix from a one-dimensional packed array
+	 * 
+	 * @param vals
+	 *            One-dimensional array of doubles, packed by columns (ala
+	 *            Fortran).
+	 * @param m
+	 *            Number of rows.
+	 * @exception IllegalArgumentException
+	 *                Array length must be a multiple of m.
+	 */
+
+	public Matrix(double vals[], int m) {
+		this.m = m;
+		n = (m != 0 ? vals.length / m : 0);
+		if (m * n != vals.length) {
+			throw new IllegalArgumentException("Array length must be a multiple of m.");
+		}
+		A = new double[m][n];
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				A[i][j] = vals[i + j * m];
+			}
+		}
+	}
+
+	/*
+	 * ------------------------ Public Methods ------------------------
+	 */
+
+	/**
+	 * Construct a matrix from a copy of a 2-D array.
+	 * 
+	 * @param A
+	 *            Two-dimensional array of doubles.
+	 * @exception IllegalArgumentException
+	 *                All rows must have the same length
+	 */
+
+	public static Matrix constructWithCopy(double[][] A) {
+		int m = A.length;
+		int n = A[0].length;
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			if (A[i].length != n) {
+				throw new IllegalArgumentException("All rows must have the same length.");
+			}
+			for (int j = 0; j < n; j++) {
+				C[i][j] = A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * Make a deep copy of a matrix
+	 */
+
+	public Matrix copy() {
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * Clone the Matrix object.
+	 */
+
+	public Object clone() {
+		return this.copy();
+	}
+
+	/**
+	 * Access the internal two-dimensional array.
+	 * 
+	 * @return Pointer to the two-dimensional array of matrix elements.
+	 */
+
+	public double[][] getArray() {
+		return A;
+	}
+
+	/**
+	 * Copy the internal two-dimensional array.
+	 * 
+	 * @return Two-dimensional array copy of matrix elements.
+	 */
+
+	public double[][] getArrayCopy() {
+		double[][] C = new double[m][n];
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = A[i][j];
+			}
+		}
+		return C;
+	}
+
+	/**
+	 * Make a one-dimensional column packed copy of the internal array.
+	 * 
+	 * @return Matrix elements packed in a one-dimensional array by columns.
+	 */
+
+	public double[] getColumnPackedCopy() {
+		double[] vals = new double[m * n];
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				vals[i + j * m] = A[i][j];
+			}
+		}
+		return vals;
+	}
+
+	/**
+	 * Make a one-dimensional row packed copy of the internal array.
+	 * 
+	 * @return Matrix elements packed in a one-dimensional array by rows.
+	 */
+
+	public double[] getRowPackedCopy() {
+		double[] vals = new double[m * n];
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				vals[i * n + j] = A[i][j];
+			}
+		}
+		return vals;
+	}
+
+	/**
+	 * Get row dimension.
+	 * 
+	 * @return m, the number of rows.
+	 */
+
+	public int getRowDimension() {
+		return m;
+	}
+
+	/**
+	 * Get column dimension.
+	 * 
+	 * @return n, the number of columns.
+	 */
+
+	public int getColumnDimension() {
+		return n;
+	}
+
+	/**
+	 * Get a single element.
+	 * 
+	 * @param i
+	 *            Row index.
+	 * @param j
+	 *            Column index.
+	 * @return A(i,j)
+	 * @exception ArrayIndexOutOfBoundsException
+	 */
+
+	public double get(int i, int j) {
+		return A[i][j];
+	}
+
+	/**
+	 * Get a submatrix.
+	 * 
+	 * @param i0
+	 *            Initial row index
+	 * @param i1
+	 *            Final row index
+	 * @param j0
+	 *            Initial column index
+	 * @param j1
+	 *            Final column index
+	 * @return A(i0:i1,j0:j1)
+	 * @exception ArrayIndexOutOfBoundsException
+	 *                Submatrix indices
+	 */
+
+	public Matrix getMatrix(int i0, int i1, int j0, int j1) {
+		Matrix X = new Matrix(i1 - i0 + 1, j1 - j0 + 1);
+		double[][] B = X.getArray();
+		try {
+			for (int i = i0; i <= i1; i++) {
+				for (int j = j0; j <= j1; j++) {
+					B[i - i0][j - j0] = A[i][j];
+				}
+			}
+		} catch (ArrayIndexOutOfBoundsException e) {
+			throw new ArrayIndexOutOfBoundsException("Submatrix indices");
+		}
+		return X;
+	}
+
+	/**
+	 * Get a submatrix.
+	 * 
+	 * @param r
+	 *            Array of row indices.
+	 * @param c
+	 *            Array of column indices.
+	 * @return A(r(:),c(:))
+	 * @exception ArrayIndexOutOfBoundsException
+	 *                Submatrix indices
+	 */
+
+	public Matrix getMatrix(int[] r, int[] c) {
+		Matrix X = new Matrix(r.length, c.length);
+		double[][] B = X.getArray();
+		try {
+			for (int i = 0; i < r.length; i++) {
+				for (int j = 0; j < c.length; j++) {
+					B[i][j] = A[r[i]][c[j]];
+				}
+			}
+		} catch (ArrayIndexOutOfBoundsException e) {
+			throw new ArrayIndexOutOfBoundsException("Submatrix indices");
+		}
+		return X;
+	}
+
+	/**
+	 * Get a submatrix.
+	 * 
+	 * @param i0
+	 *            Initial row index
+	 * @param i1
+	 *            Final row index
+	 * @param c
+	 *            Array of column indices.
+	 * @return A(i0:i1,c(:))
+	 * @exception ArrayIndexOutOfBoundsException
+	 *                Submatrix indices
+	 */
+
+	public Matrix getMatrix(int i0, int i1, int[] c) {
+		Matrix X = new Matrix(i1 - i0 + 1, c.length);
+		double[][] B = X.getArray();
+		try {
+			for (int i = i0; i <= i1; i++) {
+				for (int j = 0; j < c.length; j++) {
+					B[i - i0][j] = A[i][c[j]];
+				}
+			}
+		} catch (ArrayIndexOutOfBoundsException e) {
+			throw new ArrayIndexOutOfBoundsException("Submatrix indices");
+		}
+		return X;
+	}
+
+	/**
+	 * Get a submatrix.
+	 * 
+	 * @param r
+	 *            Array of row indices.
+	 * @param i0
+	 *            Initial column index
+	 * @param i1
+	 *            Final column index
+	 * @return A(r(:),j0:j1)
+	 * @exception ArrayIndexOutOfBoundsException
+	 *                Submatrix indices
+	 */
+
+	public Matrix getMatrix(int[] r, int j0, int j1) {
+		Matrix X = new Matrix(r.length, j1 - j0 + 1);
+		double[][] B = X.getArray();
+		try {
+			for (int i = 0; i < r.length; i++) {
+				for (int j = j0; j <= j1; j++) {
+					B[i][j - j0] = A[r[i]][j];
+				}
+			}
+		} catch (ArrayIndexOutOfBoundsException e) {
+			throw new ArrayIndexOutOfBoundsException("Submatrix indices");
+		}
+		return X;
+	}
+
+	/**
+	 * Set a single element.
+	 * 
+	 * @param i
+	 *            Row index.
+	 * @param j
+	 *            Column index.
+	 * @param s
+	 *            A(i,j).
+	 * @exception ArrayIndexOutOfBoundsException
+	 */
+
+	public void set(int i, int j, double s) {
+		A[i][j] = s;
+	}
+	
+	public void add(int i, int j, double s) {
+		A[i][j] += s;
+	}
+
+	/**
+	 * Set a submatrix.
+	 * 
+	 * @param i0
+	 *            Initial row index
+	 * @param i1
+	 *            Final row index
+	 * @param j0
+	 *            Initial column index
+	 * @param j1
+	 *            Final column index
+	 * @param X
+	 *            A(i0:i1,j0:j1)
+	 * @exception ArrayIndexOutOfBoundsException
+	 *                Submatrix indices
+	 */
+
+	public void setMatrix(int i0, int i1, int j0, int j1, Matrix X) {
+		try {
+			for (int i = i0; i <= i1; i++) {
+				for (int j = j0; j <= j1; j++) {
+					A[i][j] = X.get(i - i0, j - j0);
+				}
+			}
+		} catch (ArrayIndexOutOfBoundsException e) {
+			throw new ArrayIndexOutOfBoundsException("Submatrix indices");
+		}
+	}
+
+	/**
+	 * Set a submatrix.
+	 * 
+	 * @param r
+	 *            Array of row indices.
+	 * @param c
+	 *            Array of column indices.
+	 * @param X
+	 *            A(r(:),c(:))
+	 * @exception ArrayIndexOutOfBoundsException
+	 *                Submatrix indices
+	 */
+
+	public void setMatrix(int[] r, int[] c, Matrix X) {
+		try {
+			for (int i = 0; i < r.length; i++) {
+				for (int j = 0; j < c.length; j++) {
+					A[r[i]][c[j]] = X.get(i, j);
+				}
+			}
+		} catch (ArrayIndexOutOfBoundsException e) {
+			throw new ArrayIndexOutOfBoundsException("Submatrix indices");
+		}
+	}
+
+	/**
+	 * Set a submatrix.
+	 * 
+	 * @param r
+	 *            Array of row indices.
+	 * @param j0
+	 *            Initial column index
+	 * @param j1
+	 *            Final column index
+	 * @param X
+	 *            A(r(:),j0:j1)
+	 * @exception ArrayIndexOutOfBoundsException
+	 *                Submatrix indices
+	 */
+
+	public void setMatrix(int[] r, int j0, int j1, Matrix X) {
+		try {
+			for (int i = 0; i < r.length; i++) {
+				for (int j = j0; j <= j1; j++) {
+					A[r[i]][j] = X.get(i, j - j0);
+				}
+			}
+		} catch (ArrayIndexOutOfBoundsException e) {
+			throw new ArrayIndexOutOfBoundsException("Submatrix indices");
+		}
+	}
+
+	/**
+	 * Set a submatrix.
+	 * 
+	 * @param i0
+	 *            Initial row index
+	 * @param i1
+	 *            Final row index
+	 * @param c
+	 *            Array of column indices.
+	 * @param X
+	 *            A(i0:i1,c(:))
+	 * @exception ArrayIndexOutOfBoundsException
+	 *                Submatrix indices
+	 */
+
+	public void setMatrix(int i0, int i1, int[] c, Matrix X) {
+		try {
+			for (int i = i0; i <= i1; i++) {
+				for (int j = 0; j < c.length; j++) {
+					A[i][c[j]] = X.get(i - i0, j);
+				}
+			}
+		} catch (ArrayIndexOutOfBoundsException e) {
+			throw new ArrayIndexOutOfBoundsException("Submatrix indices");
+		}
+	}
+
+	/**
+	 * Matrix transpose.
+	 * 
+	 * @return A'
+	 */
+
+	public Matrix transpose() {
+		Matrix X = new Matrix(n, m);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[j][i] = A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * One norm
+	 * 
+	 * @return maximum column sum.
+	 */
+
+	public double norm1() {
+		double f = 0;
+		for (int j = 0; j < n; j++) {
+			double s = 0;
+			for (int i = 0; i < m; i++) {
+				s += Math.abs(A[i][j]);
+			}
+			f = Math.max(f, s);
+		}
+		return f;
+	}
+
+	/**
+	 * Two norm
+	 * 
+	 * @return maximum singular value.
+	 */
+
+	public double norm2() {
+		return (new SingularValueDecomposition(this).norm2());
+	}
+
+	/**
+	 * Infinity norm
+	 * 
+	 * @return maximum row sum.
+	 */
+
+	public double normInf() {
+		double f = 0;
+		for (int i = 0; i < m; i++) {
+			double s = 0;
+			for (int j = 0; j < n; j++) {
+				s += Math.abs(A[i][j]);
+			}
+			f = Math.max(f, s);
+		}
+		return f;
+	}
+
+	/**
+	 * Frobenius norm
+	 * 
+	 * @return sqrt of sum of squares of all elements.
+	 */
+
+	public double normF() {
+		double f = 0;
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				f = Maths.hypot(f, A[i][j]);
+			}
+		}
+		return f;
+	}
+
+	/**
+	 * Unary minus
+	 * 
+	 * @return -A
+	 */
+
+	public Matrix uminus() {
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = -A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * C = A + B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A + B
+	 */
+
+	public Matrix plus(Matrix B) {
+		checkMatrixDimensions(B);
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = A[i][j] + B.A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * A = A + B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A + B
+	 */
+
+	public Matrix plusEquals(Matrix B) {
+		checkMatrixDimensions(B);
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				A[i][j] = A[i][j] + B.A[i][j];
+			}
+		}
+		return this;
+	}
+
+	/**
+	 * C = A - B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A - B
+	 */
+
+	public Matrix minus(Matrix B) {
+		checkMatrixDimensions(B);
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = A[i][j] - B.A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * A = A - B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A - B
+	 */
+
+	public Matrix minusEquals(Matrix B) {
+		checkMatrixDimensions(B);
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				A[i][j] = A[i][j] - B.A[i][j];
+			}
+		}
+		return this;
+	}
+
+	/**
+	 * Element-by-element multiplication, C = A.*B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A.*B
+	 */
+
+	public Matrix arrayTimes(Matrix B) {
+		checkMatrixDimensions(B);
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = A[i][j] * B.A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * Element-by-element multiplication in place, A = A.*B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A.*B
+	 */
+
+	public Matrix arrayTimesEquals(Matrix B) {
+		checkMatrixDimensions(B);
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				A[i][j] = A[i][j] * B.A[i][j];
+			}
+		}
+		return this;
+	}
+
+	/**
+	 * Element-by-element right division, C = A./B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A./B
+	 */
+
+	public Matrix arrayRightDivide(Matrix B) {
+		checkMatrixDimensions(B);
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = A[i][j] / B.A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * Element-by-element right division in place, A = A./B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A./B
+	 */
+
+	public Matrix arrayRightDivideEquals(Matrix B) {
+		checkMatrixDimensions(B);
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				A[i][j] = A[i][j] / B.A[i][j];
+			}
+		}
+		return this;
+	}
+
+	/**
+	 * Element-by-element left division, C = A.\B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A.\B
+	 */
+
+	public Matrix arrayLeftDivide(Matrix B) {
+		checkMatrixDimensions(B);
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = B.A[i][j] / A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * Element-by-element left division in place, A = A.\B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return A.\B
+	 */
+
+	public Matrix arrayLeftDivideEquals(Matrix B) {
+		checkMatrixDimensions(B);
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				A[i][j] = B.A[i][j] / A[i][j];
+			}
+		}
+		return this;
+	}
+
+	/**
+	 * Multiply a matrix by a scalar, C = s*A
+	 * 
+	 * @param s
+	 *            scalar
+	 * @return s*A
+	 */
+
+	public Matrix times(double s) {
+		Matrix X = new Matrix(m, n);
+		double[][] C = X.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				C[i][j] = s * A[i][j];
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * Multiply a matrix by a scalar in place, A = s*A
+	 * 
+	 * @param s
+	 *            scalar
+	 * @return replace A by s*A
+	 */
+
+	public Matrix timesEquals(double s) {
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				A[i][j] = s * A[i][j];
+			}
+		}
+		return this;
+	}
+
+	/**
+	 * Linear algebraic matrix multiplication, A * B
+	 * 
+	 * @param B
+	 *            another matrix
+	 * @return Matrix product, A * B
+	 * @exception IllegalArgumentException
+	 *                Matrix inner dimensions must agree.
+	 */
+
+	public Matrix times(Matrix B) {
+		if (B.m != n) {
+			throw new IllegalArgumentException("Matrix inner dimensions must agree.");
+		}
+		Matrix X = new Matrix(m, B.n);
+		double[][] C = X.getArray();
+		double[] Bcolj = new double[n];
+		for (int j = 0; j < B.n; j++) {
+			for (int k = 0; k < n; k++) {
+				Bcolj[k] = B.A[k][j];
+			}
+			for (int i = 0; i < m; i++) {
+				double[] Arowi = A[i];
+				double s = 0;
+				for (int k = 0; k < n; k++) {
+					s += Arowi[k] * Bcolj[k];
+				}
+				C[i][j] = s;
+			}
+		}
+		return X;
+	}
+
+	/**
+	 * LU Decomposition
+	 * 
+	 * @return LUDecomposition
+	 * @see LUDecomposition
+	 */
+
+	public LUDecomposition lu() {
+		return new LUDecomposition(this);
+	}
+
+	/**
+	 * QR Decomposition
+	 * 
+	 * @return QRDecomposition
+	 * @see QRDecomposition
+	 */
+
+	public QRDecomposition qr() {
+		return new QRDecomposition(this);
+	}
+
+	/**
+	 * Cholesky Decomposition
+	 * 
+	 * @return CholeskyDecomposition
+	 * @see CholeskyDecomposition
+	 */
+
+	public CholeskyDecomposition chol() {
+		return new CholeskyDecomposition(this);
+	}
+
+	/**
+	 * Singular Value Decomposition
+	 * 
+	 * @return SingularValueDecomposition
+	 * @see SingularValueDecomposition
+	 */
+
+	public SingularValueDecomposition svd() {
+		return new SingularValueDecomposition(this);
+	}
+
+	/**
+	 * Eigenvalue Decomposition
+	 * 
+	 * @return EigenvalueDecomposition
+	 * @see EigenvalueDecomposition
+	 */
+
+	public EigenvalueDecomposition eig() {
+		return new EigenvalueDecomposition(this);
+	}
+
+	/**
+	 * Solve A*X = B
+	 * 
+	 * @param B
+	 *            right hand side
+	 * @return solution if A is square, least squares solution otherwise
+	 */
+
+	public Matrix solve(Matrix B) {
+		return (m == n ? (new LUDecomposition(this)).solve(B) : (new QRDecomposition(this)).solve(B));
+	}
+
+	/**
+	 * Solve X*A = B, which is also A'*X' = B'
+	 * 
+	 * @param B
+	 *            right hand side
+	 * @return solution if A is square, least squares solution otherwise.
+	 */
+
+	public Matrix solveTranspose(Matrix B) {
+		return transpose().solve(B.transpose());
+	}
+
+	/**
+	 * Matrix inverse or pseudoinverse
+	 * 
+	 * @return inverse(A) if A is square, pseudoinverse otherwise.
+	 */
+
+	public Matrix inverse() {
+		return solve(identity(m, m));
+	}
+
+	/**
+	 * Matrix determinant
+	 * 
+	 * @return determinant
+	 */
+
+	public double det() {
+		return new LUDecomposition(this).det();
+	}
+
+	/**
+	 * Matrix rank
+	 * 
+	 * @return effective numerical rank, obtained from SVD.
+	 */
+
+	public int rank() {
+		return new SingularValueDecomposition(this).rank();
+	}
+
+	/**
+	 * Matrix condition (2 norm)
+	 * 
+	 * @return ratio of largest to smallest singular value.
+	 */
+
+	public double cond() {
+		return new SingularValueDecomposition(this).cond();
+	}
+
+	/**
+	 * Matrix trace.
+	 * 
+	 * @return sum of the diagonal elements.
+	 */
+
+	public double trace() {
+		double t = 0;
+		for (int i = 0; i < Math.min(m, n); i++) {
+			t += A[i][i];
+		}
+		return t;
+	}
+
+	/**
+	 * Generate matrix with random elements
+	 * 
+	 * @param m
+	 *            Number of rows.
+	 * @param n
+	 *            Number of colums.
+	 * @return An m-by-n matrix with uniformly distributed random elements.
+	 */
+
+	public static Matrix random(int m, int n) {
+		Matrix A = new Matrix(m, n);
+		double[][] X = A.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				X[i][j] = Math.random();
+			}
+		}
+		return A;
+	}
+
+	/**
+	 * Generate identity matrix
+	 * 
+	 * @param m
+	 *            Number of rows.
+	 * @param n
+	 *            Number of colums.
+	 * @return An m-by-n matrix with ones on the diagonal and zeros elsewhere.
+	 */
+
+	public static Matrix identity(int m, int n) {
+		Matrix A = new Matrix(m, n);
+		double[][] X = A.getArray();
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				X[i][j] = (i == j ? 1.0 : 0.0);
+			}
+		}
+		return A;
+	}
+
+	/**
+	 * Print the matrix to stdout. Line the elements up in columns with a
+	 * Fortran-like 'Fw.d' style format.
+	 * 
+	 * @param w
+	 *            Column width.
+	 * @param d
+	 *            Number of digits after the decimal.
+	 */
+
+	public void print(int w, int d) {
+		print(new PrintWriter(System.out, true), w, d);
+	}
+
+	/**
+	 * Print the matrix to the output stream. Line the elements up in columns
+	 * with a Fortran-like 'Fw.d' style format.
+	 * 
+	 * @param output
+	 *            Output stream.
+	 * @param w
+	 *            Column width.
+	 * @param d
+	 *            Number of digits after the decimal.
+	 */
+
+	public void print(PrintWriter output, int w, int d) {
+		DecimalFormat format = new DecimalFormat();
+		format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US));
+		format.setMinimumIntegerDigits(1);
+		format.setMaximumFractionDigits(d);
+		format.setMinimumFractionDigits(d);
+		format.setGroupingUsed(false);
+		print(output, format, w + 2);
+	}
+
+	/**
+	 * Print the matrix to stdout. Line the elements up in columns. Use the
+	 * format object, and right justify within columns of width characters. Note
+	 * that is the matrix is to be read back in, you probably will want to use a
+	 * NumberFormat that is set to US Locale.
+	 * 
+	 * @param format
+	 *            A Formatting object for individual elements.
+	 * @param width
+	 *            Field width for each column.
+	 * @see java.text.DecimalFormat#setDecimalFormatSymbols
+	 */
+
+	public void print(NumberFormat format, int width) {
+		print(new PrintWriter(System.out, true), format, width);
+	}
+
+	// DecimalFormat is a little disappointing coming from Fortran or C's
+	// printf.
+	// Since it doesn't pad on the left, the elements will come out different
+	// widths. Consequently, we'll pass the desired column width in as an
+	// argument and do the extra padding ourselves.
+
+	/**
+	 * Print the matrix to the output stream. Line the elements up in columns.
+	 * Use the format object, and right justify within columns of width
+	 * characters. Note that is the matrix is to be read back in, you probably
+	 * will want to use a NumberFormat that is set to US Locale.
+	 * 
+	 * @param output
+	 *            the output stream.
+	 * @param format
+	 *            A formatting object to format the matrix elements
+	 * @param width
+	 *            Column width.
+	 * @see java.text.DecimalFormat#setDecimalFormatSymbols
+	 */
+
+	public void print(PrintWriter output, NumberFormat format, int width) {
+		output.println(); // start on new line.
+		for (int i = 0; i < m; i++) {
+			for (int j = 0; j < n; j++) {
+				String s = format.format(A[i][j]); // format the number
+				int padding = Math.max(1, width - s.length()); // At _least_ 1
+																// space
+				for (int k = 0; k < padding; k++)
+					output.print(' ');
+				output.print(s);
+			}
+			output.println();
+		}
+		output.println(); // end with blank line.
+	}
+
+	/**
+	 * Read a matrix from a stream. The format is the same the print method, so
+	 * printed matrices can be read back in (provided they were printed using US
+	 * Locale). Elements are separated by whitespace, all the elements for each
+	 * row appear on a single line, the last row is followed by a blank line.
+	 * 
+	 * @param input
+	 *            the input stream.
+	 */
+
+	public static Matrix read(BufferedReader input) throws java.io.IOException {
+		StreamTokenizer tokenizer = new StreamTokenizer(input);
+
+		// Although StreamTokenizer will parse numbers, it doesn't recognize
+		// scientific notation (E or D); however, Double.valueOf does.
+		// The strategy here is to disable StreamTokenizer's number parsing.
+		// We'll only get whitespace delimited words, EOL's and EOF's.
+		// These words should all be numbers, for Double.valueOf to parse.
+
+		tokenizer.resetSyntax();
+		tokenizer.wordChars(0, 255);
+		tokenizer.whitespaceChars(0, ' ');
+		tokenizer.eolIsSignificant(true);
+		Vector<Double> v1 = new Vector<Double>();
+
+		// Ignore initial empty lines
+		while (tokenizer.nextToken() == StreamTokenizer.TT_EOL)
+			;
+		if (tokenizer.ttype == StreamTokenizer.TT_EOF)
+			throw new java.io.IOException("Unexpected EOF on matrix read.");
+		do {
+			v1.addElement(Double.valueOf(tokenizer.sval)); // Read & store 1st
+															// row.
+		} while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);
+
+		int n = v1.size(); // Now we've got the number of columns!
+		double row[] = new double[n];
+		for (int j = 0; j < n; j++)
+			// extract the elements of the 1st row.
+			row[j] = ((Double) v1.elementAt(j)).doubleValue();
+		
+		Vector<double[]> v = new Vector<double[]>();
+		v.addElement(row); // Start storing rows instead of columns.
+		while (tokenizer.nextToken() == StreamTokenizer.TT_WORD) {
+			// While non-empty lines
+			v.addElement(row = new double[n]);
+			int j = 0;
+			do {
+				if (j >= n)
+					throw new java.io.IOException("Row " + v.size() + " is too long.");
+				row[j++] = Double.valueOf(tokenizer.sval).doubleValue();
+			} while (tokenizer.nextToken() == StreamTokenizer.TT_WORD);
+			if (j < n)
+				throw new java.io.IOException("Row " + v.size() + " is too short.");
+		}
+		int m = v.size(); // Now we've got the number of rows.
+		double[][] A = new double[m][];
+		v.copyInto(A); // copy the rows out of the vector
+		return new Matrix(A);
+	}
+
+	/*
+	 * ------------------------ Private Methods ------------------------
+	 */
+
+	/** Check if size(A) == size(B) **/
+
+	private void checkMatrixDimensions(Matrix B) {
+		if (B.m != m || B.n != n) {
+			throw new IllegalArgumentException("Matrix dimensions must agree.");
+		}
+	}
+
+	public double[][] getA() {
+		return A;
+	}
+
+	public void setA(double[][] a) {
+		A = a;
+	}
+
+	public int getM() {
+		return m;
+	}
+
+	public void setM(int m) {
+		this.m = m;
+	}
+
+	public int getN() {
+		return n;
+	}
+
+	public void setN(int n) {
+		this.n = n;
+	}
+
+	public double sum() {
+		double s = 0;
+		for (int j = 0; j < n; j++) {
+			for (int i = 0; i < m; i++) {
+				s += A[i][j];
+			}
+		}
+		return s;
+	}
+
+	public void normalizeSumTo(double nrm) {
+		double s = sum() / nrm;
+		if (s != 0) {
+			for (int j = 0; j < n; j++) {
+				for (int i = 0; i < m; i++) {
+					A[i][j] /= s;
+				}
+			}
+		}
+	}
+
+}
diff --git a/src/main/java/plugins/nherve/matrix/NHerveMatrix.java b/src/main/java/plugins/nherve/matrix/NHerveMatrix.java
new file mode 100644
index 0000000000000000000000000000000000000000..6d5e44e7f06300a3be45c96c72086b542b275c96
--- /dev/null
+++ b/src/main/java/plugins/nherve/matrix/NHerveMatrix.java
@@ -0,0 +1,31 @@
+/*
+ * Copyright 2010, 2011 Institut Pasteur.
+ * 
+ * This file is part of NHerveMatrix, which is an ICY plugin.
+ * 
+ * NHerveMatrix is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ * 
+ * NHerveMatrix is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ * 
+ * You should have received a copy of the GNU General Public License
+ * along with NHerveMatrix. If not, see <http://www.gnu.org/licenses/>.
+ */
+package plugins.nherve.matrix;
+
+import icy.plugin.abstract_.Plugin;
+import icy.plugin.interface_.PluginLibrary;
+
+/**
+ * The Class NHerveMatrix.
+ * 
+ * @author Nicolas HERVE - nicolas.herve@pasteur.fr
+ */
+public class NHerveMatrix extends Plugin implements PluginLibrary {
+
+}
diff --git a/src/main/java/plugins/nherve/matrix/NHerveMatrix.png b/src/main/java/plugins/nherve/matrix/NHerveMatrix.png
new file mode 100644
index 0000000000000000000000000000000000000000..f75ef54feb679fe3d9f12c30d25765c38041db5c
Binary files /dev/null and b/src/main/java/plugins/nherve/matrix/NHerveMatrix.png differ
diff --git a/src/main/java/plugins/nherve/matrix/NHerveMatrix_icon.png b/src/main/java/plugins/nherve/matrix/NHerveMatrix_icon.png
new file mode 100644
index 0000000000000000000000000000000000000000..fff2b728c91caaffd518badbee2dedc791ef92ac
Binary files /dev/null and b/src/main/java/plugins/nherve/matrix/NHerveMatrix_icon.png differ
diff --git a/src/main/java/plugins/nherve/matrix/NHerveMatrix_miniscreen.png b/src/main/java/plugins/nherve/matrix/NHerveMatrix_miniscreen.png
new file mode 100644
index 0000000000000000000000000000000000000000..52d1e7d80530bf5bb3503f433402bc0b2e8536a5
Binary files /dev/null and b/src/main/java/plugins/nherve/matrix/NHerveMatrix_miniscreen.png differ
diff --git a/src/main/java/plugins/nherve/matrix/QRDecomposition.java b/src/main/java/plugins/nherve/matrix/QRDecomposition.java
new file mode 100644
index 0000000000000000000000000000000000000000..fc79248bd2abebe0dc941a9f4ddddbe8367b6203
--- /dev/null
+++ b/src/main/java/plugins/nherve/matrix/QRDecomposition.java
@@ -0,0 +1,221 @@
+package plugins.nherve.matrix;
+
+import plugins.nherve.matrix.util.Maths;
+
+/** QR Decomposition.
+<P>
+   For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
+   orthogonal matrix Q and an n-by-n upper triangular matrix R so that
+   A = Q*R.
+<P>
+   The QR decompostion always exists, even if the matrix does not have
+   full rank, so the constructor will never fail.  The primary use of the
+   QR decomposition is in the least squares solution of nonsquare systems
+   of simultaneous linear equations.  This will fail if isFullRank()
+   returns false.
+*/
+
+public class QRDecomposition implements java.io.Serializable {
+
+/* ------------------------
+   Class variables
+ * ------------------------ */
+
+	private static final long serialVersionUID = -8996621858744874937L;
+
+/** Array for internal storage of decomposition.
+   @serial internal array storage.
+   */
+   private double[][] QR;
+
+   /** Row and column dimensions.
+   @serial column dimension.
+   @serial row dimension.
+   */
+   private int m, n;
+
+   /** Array for internal storage of diagonal of R.
+   @serial diagonal of R.
+   */
+   private double[] Rdiag;
+
+/* ------------------------
+   Constructor
+ * ------------------------ */
+
+   /** QR Decomposition, computed by Householder reflections.
+   @param A    Rectangular matrix
+   @return     Structure to access R and the Householder vectors and compute Q.
+   */
+
+   public QRDecomposition (Matrix A) {
+      // Initialize.
+      QR = A.getArrayCopy();
+      m = A.getRowDimension();
+      n = A.getColumnDimension();
+      Rdiag = new double[n];
+
+      // Main loop.
+      for (int k = 0; k < n; k++) {
+         // Compute 2-norm of k-th column without under/overflow.
+         double nrm = 0;
+         for (int i = k; i < m; i++) {
+            nrm = Maths.hypot(nrm,QR[i][k]);
+         }
+
+         if (nrm != 0.0) {
+            // Form k-th Householder vector.
+            if (QR[k][k] < 0) {
+               nrm = -nrm;
+            }
+            for (int i = k; i < m; i++) {
+               QR[i][k] /= nrm;
+            }
+            QR[k][k] += 1.0;
+
+            // Apply transformation to remaining columns.
+            for (int j = k+1; j < n; j++) {
+               double s = 0.0; 
+               for (int i = k; i < m; i++) {
+                  s += QR[i][k]*QR[i][j];
+               }
+               s = -s/QR[k][k];
+               for (int i = k; i < m; i++) {
+                  QR[i][j] += s*QR[i][k];
+               }
+            }
+         }
+         Rdiag[k] = -nrm;
+      }
+   }
+
+/* ------------------------
+   Public Methods
+ * ------------------------ */
+
+   /** Is the matrix full rank?
+   @return     true if R, and hence A, has full rank.
+   */
+
+   public boolean isFullRank () {
+      for (int j = 0; j < n; j++) {
+         if (Rdiag[j] == 0)
+            return false;
+      }
+      return true;
+   }
+
+   /** Return the Householder vectors
+   @return     Lower trapezoidal matrix whose columns define the reflections
+   */
+
+   public Matrix getH () {
+      Matrix X = new Matrix(m,n);
+      double[][] H = X.getArray();
+      for (int i = 0; i < m; i++) {
+         for (int j = 0; j < n; j++) {
+            if (i >= j) {
+               H[i][j] = QR[i][j];
+            } else {
+               H[i][j] = 0.0;
+            }
+         }
+      }
+      return X;
+   }
+
+   /** Return the upper triangular factor
+   @return     R
+   */
+
+   public Matrix getR () {
+      Matrix X = new Matrix(n,n);
+      double[][] R = X.getArray();
+      for (int i = 0; i < n; i++) {
+         for (int j = 0; j < n; j++) {
+            if (i < j) {
+               R[i][j] = QR[i][j];
+            } else if (i == j) {
+               R[i][j] = Rdiag[i];
+            } else {
+               R[i][j] = 0.0;
+            }
+         }
+      }
+      return X;
+   }
+
+   /** Generate and return the (economy-sized) orthogonal factor
+   @return     Q
+   */
+
+   public Matrix getQ () {
+      Matrix X = new Matrix(m,n);
+      double[][] Q = X.getArray();
+      for (int k = n-1; k >= 0; k--) {
+         for (int i = 0; i < m; i++) {
+            Q[i][k] = 0.0;
+         }
+         Q[k][k] = 1.0;
+         for (int j = k; j < n; j++) {
+            if (QR[k][k] != 0) {
+               double s = 0.0;
+               for (int i = k; i < m; i++) {
+                  s += QR[i][k]*Q[i][j];
+               }
+               s = -s/QR[k][k];
+               for (int i = k; i < m; i++) {
+                  Q[i][j] += s*QR[i][k];
+               }
+            }
+         }
+      }
+      return X;
+   }
+
+   /** Least squares solution of A*X = B
+   @param B    A Matrix with as many rows as A and any number of columns.
+   @return     X that minimizes the two norm of Q*R*X-B.
+   @exception  IllegalArgumentException  Matrix row dimensions must agree.
+   @exception  RuntimeException  Matrix is rank deficient.
+   */
+
+   public Matrix solve (Matrix B) {
+      if (B.getRowDimension() != m) {
+         throw new IllegalArgumentException("Matrix row dimensions must agree.");
+      }
+      if (!this.isFullRank()) {
+         throw new RuntimeException("Matrix is rank deficient.");
+      }
+      
+      // Copy right hand side
+      int nx = B.getColumnDimension();
+      double[][] X = B.getArrayCopy();
+
+      // Compute Y = transpose(Q)*B
+      for (int k = 0; k < n; k++) {
+         for (int j = 0; j < nx; j++) {
+            double s = 0.0; 
+            for (int i = k; i < m; i++) {
+               s += QR[i][k]*X[i][j];
+            }
+            s = -s/QR[k][k];
+            for (int i = k; i < m; i++) {
+               X[i][j] += s*QR[i][k];
+            }
+         }
+      }
+      // Solve R*X = Y;
+      for (int k = n-1; k >= 0; k--) {
+         for (int j = 0; j < nx; j++) {
+            X[k][j] /= Rdiag[k];
+         }
+         for (int i = 0; i < k; i++) {
+            for (int j = 0; j < nx; j++) {
+               X[i][j] -= X[k][j]*QR[i][k];
+            }
+         }
+      }
+      return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1));
+   }
+}
diff --git a/src/main/java/plugins/nherve/matrix/SingularValueDecomposition.java b/src/main/java/plugins/nherve/matrix/SingularValueDecomposition.java
new file mode 100644
index 0000000000000000000000000000000000000000..70d26c85db944e745fb7f49ad765e572dccb5c5c
--- /dev/null
+++ b/src/main/java/plugins/nherve/matrix/SingularValueDecomposition.java
@@ -0,0 +1,550 @@
+package plugins.nherve.matrix;
+
+import plugins.nherve.matrix.util.Maths;
+
+   /** Singular Value Decomposition.
+   <P>
+   For an m-by-n matrix A with m >= n, the singular value decomposition is
+   an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
+   an n-by-n orthogonal matrix V so that A = U*S*V'.
+   <P>
+   The singular values, sigma[k] = S[k][k], are ordered so that
+   sigma[0] >= sigma[1] >= ... >= sigma[n-1].
+   <P>
+   The singular value decompostion always exists, so the constructor will
+   never fail.  The matrix condition number and the effective numerical
+   rank can be computed from this decomposition.
+   */
+
+public class SingularValueDecomposition implements java.io.Serializable {
+
+/* ------------------------
+   Class variables
+ * ------------------------ */
+
+	private static final long serialVersionUID = -3999731802305419225L;
+
+/** Arrays for internal storage of U and V.
+   @serial internal storage of U.
+   @serial internal storage of V.
+   */
+   private double[][] U, V;
+
+   /** Array for internal storage of singular values.
+   @serial internal storage of singular values.
+   */
+   private double[] s;
+
+   /** Row and column dimensions.
+   @serial row dimension.
+   @serial column dimension.
+   */
+   private int m, n;
+
+/* ------------------------
+   Constructor
+ * ------------------------ */
+
+   /** Construct the singular value decomposition
+   @param A    Rectangular matrix
+   @return     Structure to access U, S and V.
+   */
+
+   public SingularValueDecomposition (Matrix Arg) {
+
+      // Derived from LINPACK code.
+      // Initialize.
+      double[][] A = Arg.getArrayCopy();
+      m = Arg.getRowDimension();
+      n = Arg.getColumnDimension();
+
+      /* Apparently the failing cases are only a proper subset of (m<n), 
+	 so let's not throw error.  Correct fix to come later?
+      if (m<n) {
+	  throw new IllegalArgumentException("Jama SVD only works for m >= n"); }
+      */
+      int nu = Math.min(m,n);
+      s = new double [Math.min(m+1,n)];
+      U = new double [m][nu];
+      V = new double [n][n];
+      double[] e = new double [n];
+      double[] work = new double [m];
+      boolean wantu = true;
+      boolean wantv = true;
+
+      // Reduce A to bidiagonal form, storing the diagonal elements
+      // in s and the super-diagonal elements in e.
+
+      int nct = Math.min(m-1,n);
+      int nrt = Math.max(0,Math.min(n-2,m));
+      for (int k = 0; k < Math.max(nct,nrt); k++) {
+         if (k < nct) {
+
+            // Compute the transformation for the k-th column and
+            // place the k-th diagonal in s[k].
+            // Compute 2-norm of k-th column without under/overflow.
+            s[k] = 0;
+            for (int i = k; i < m; i++) {
+               s[k] = Maths.hypot(s[k],A[i][k]);
+            }
+            if (s[k] != 0.0) {
+               if (A[k][k] < 0.0) {
+                  s[k] = -s[k];
+               }
+               for (int i = k; i < m; i++) {
+                  A[i][k] /= s[k];
+               }
+               A[k][k] += 1.0;
+            }
+            s[k] = -s[k];
+         }
+         for (int j = k+1; j < n; j++) {
+            if ((k < nct) & (s[k] != 0.0))  {
+
+            // Apply the transformation.
+
+               double t = 0;
+               for (int i = k; i < m; i++) {
+                  t += A[i][k]*A[i][j];
+               }
+               t = -t/A[k][k];
+               for (int i = k; i < m; i++) {
+                  A[i][j] += t*A[i][k];
+               }
+            }
+
+            // Place the k-th row of A into e for the
+            // subsequent calculation of the row transformation.
+
+            e[j] = A[k][j];
+         }
+         if (wantu & (k < nct)) {
+
+            // Place the transformation in U for subsequent back
+            // multiplication.
+
+            for (int i = k; i < m; i++) {
+               U[i][k] = A[i][k];
+            }
+         }
+         if (k < nrt) {
+
+            // Compute the k-th row transformation and place the
+            // k-th super-diagonal in e[k].
+            // Compute 2-norm without under/overflow.
+            e[k] = 0;
+            for (int i = k+1; i < n; i++) {
+               e[k] = Maths.hypot(e[k],e[i]);
+            }
+            if (e[k] != 0.0) {
+               if (e[k+1] < 0.0) {
+                  e[k] = -e[k];
+               }
+               for (int i = k+1; i < n; i++) {
+                  e[i] /= e[k];
+               }
+               e[k+1] += 1.0;
+            }
+            e[k] = -e[k];
+            if ((k+1 < m) & (e[k] != 0.0)) {
+
+            // Apply the transformation.
+
+               for (int i = k+1; i < m; i++) {
+                  work[i] = 0.0;
+               }
+               for (int j = k+1; j < n; j++) {
+                  for (int i = k+1; i < m; i++) {
+                     work[i] += e[j]*A[i][j];
+                  }
+               }
+               for (int j = k+1; j < n; j++) {
+                  double t = -e[j]/e[k+1];
+                  for (int i = k+1; i < m; i++) {
+                     A[i][j] += t*work[i];
+                  }
+               }
+            }
+            if (wantv) {
+
+            // Place the transformation in V for subsequent
+            // back multiplication.
+
+               for (int i = k+1; i < n; i++) {
+                  V[i][k] = e[i];
+               }
+            }
+         }
+      }
+
+      // Set up the final bidiagonal matrix or order p.
+
+      int p = Math.min(n,m+1);
+      if (nct < n) {
+         s[nct] = A[nct][nct];
+      }
+      if (m < p) {
+         s[p-1] = 0.0;
+      }
+      if (nrt+1 < p) {
+         e[nrt] = A[nrt][p-1];
+      }
+      e[p-1] = 0.0;
+
+      // If required, generate U.
+
+      if (wantu) {
+         for (int j = nct; j < nu; j++) {
+            for (int i = 0; i < m; i++) {
+               U[i][j] = 0.0;
+            }
+            U[j][j] = 1.0;
+         }
+         for (int k = nct-1; k >= 0; k--) {
+            if (s[k] != 0.0) {
+               for (int j = k+1; j < nu; j++) {
+                  double t = 0;
+                  for (int i = k; i < m; i++) {
+                     t += U[i][k]*U[i][j];
+                  }
+                  t = -t/U[k][k];
+                  for (int i = k; i < m; i++) {
+                     U[i][j] += t*U[i][k];
+                  }
+               }
+               for (int i = k; i < m; i++ ) {
+                  U[i][k] = -U[i][k];
+               }
+               U[k][k] = 1.0 + U[k][k];
+               for (int i = 0; i < k-1; i++) {
+                  U[i][k] = 0.0;
+               }
+            } else {
+               for (int i = 0; i < m; i++) {
+                  U[i][k] = 0.0;
+               }
+               U[k][k] = 1.0;
+            }
+         }
+      }
+
+      // If required, generate V.
+
+      if (wantv) {
+         for (int k = n-1; k >= 0; k--) {
+            if ((k < nrt) & (e[k] != 0.0)) {
+               for (int j = k+1; j < nu; j++) {
+                  double t = 0;
+                  for (int i = k+1; i < n; i++) {
+                     t += V[i][k]*V[i][j];
+                  }
+                  t = -t/V[k+1][k];
+                  for (int i = k+1; i < n; i++) {
+                     V[i][j] += t*V[i][k];
+                  }
+               }
+            }
+            for (int i = 0; i < n; i++) {
+               V[i][k] = 0.0;
+            }
+            V[k][k] = 1.0;
+         }
+      }
+
+      // Main iteration loop for the singular values.
+
+      int pp = p-1;
+      int iter = 0;
+      double eps = Math.pow(2.0,-52.0);
+      double tiny = Math.pow(2.0,-966.0);
+      while (p > 0) {
+         int k,kase;
+
+         // Here is where a test for too many iterations would go.
+
+         // This section of the program inspects for
+         // negligible elements in the s and e arrays.  On
+         // completion the variables kase and k are set as follows.
+
+         // kase = 1     if s(p) and e[k-1] are negligible and k<p
+         // kase = 2     if s(k) is negligible and k<p
+         // kase = 3     if e[k-1] is negligible, k<p, and
+         //              s(k), ..., s(p) are not negligible (qr step).
+         // kase = 4     if e(p-1) is negligible (convergence).
+
+         for (k = p-2; k >= -1; k--) {
+            if (k == -1) {
+               break;
+            }
+            if (Math.abs(e[k]) <=
+                  tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {
+               e[k] = 0.0;
+               break;
+            }
+         }
+         if (k == p-2) {
+            kase = 4;
+         } else {
+            int ks;
+            for (ks = p-1; ks >= k; ks--) {
+               if (ks == k) {
+                  break;
+               }
+               double t = (ks != p ? Math.abs(e[ks]) : 0.) + 
+                          (ks != k+1 ? Math.abs(e[ks-1]) : 0.);
+               if (Math.abs(s[ks]) <= tiny + eps*t)  {
+                  s[ks] = 0.0;
+                  break;
+               }
+            }
+            if (ks == k) {
+               kase = 3;
+            } else if (ks == p-1) {
+               kase = 1;
+            } else {
+               kase = 2;
+               k = ks;
+            }
+         }
+         k++;
+
+         // Perform the task indicated by kase.
+
+         switch (kase) {
+
+            // Deflate negligible s(p).
+
+            case 1: {
+               double f = e[p-2];
+               e[p-2] = 0.0;
+               for (int j = p-2; j >= k; j--) {
+                  double t = Maths.hypot(s[j],f);
+                  double cs = s[j]/t;
+                  double sn = f/t;
+                  s[j] = t;
+                  if (j != k) {
+                     f = -sn*e[j-1];
+                     e[j-1] = cs*e[j-1];
+                  }
+                  if (wantv) {
+                     for (int i = 0; i < n; i++) {
+                        t = cs*V[i][j] + sn*V[i][p-1];
+                        V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
+                        V[i][j] = t;
+                     }
+                  }
+               }
+            }
+            break;
+
+            // Split at negligible s(k).
+
+            case 2: {
+               double f = e[k-1];
+               e[k-1] = 0.0;
+               for (int j = k; j < p; j++) {
+                  double t = Maths.hypot(s[j],f);
+                  double cs = s[j]/t;
+                  double sn = f/t;
+                  s[j] = t;
+                  f = -sn*e[j];
+                  e[j] = cs*e[j];
+                  if (wantu) {
+                     for (int i = 0; i < m; i++) {
+                        t = cs*U[i][j] + sn*U[i][k-1];
+                        U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
+                        U[i][j] = t;
+                     }
+                  }
+               }
+            }
+            break;
+
+            // Perform one qr step.
+
+            case 3: {
+
+               // Calculate the shift.
+   
+               double scale = Math.max(Math.max(Math.max(Math.max(
+                       Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), 
+                       Math.abs(s[k])),Math.abs(e[k]));
+               double sp = s[p-1]/scale;
+               double spm1 = s[p-2]/scale;
+               double epm1 = e[p-2]/scale;
+               double sk = s[k]/scale;
+               double ek = e[k]/scale;
+               double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
+               double c = (sp*epm1)*(sp*epm1);
+               double shift = 0.0;
+               if ((b != 0.0) | (c != 0.0)) {
+                  shift = Math.sqrt(b*b + c);
+                  if (b < 0.0) {
+                     shift = -shift;
+                  }
+                  shift = c/(b + shift);
+               }
+               double f = (sk + sp)*(sk - sp) + shift;
+               double g = sk*ek;
+   
+               // Chase zeros.
+   
+               for (int j = k; j < p-1; j++) {
+                  double t = Maths.hypot(f,g);
+                  double cs = f/t;
+                  double sn = g/t;
+                  if (j != k) {
+                     e[j-1] = t;
+                  }
+                  f = cs*s[j] + sn*e[j];
+                  e[j] = cs*e[j] - sn*s[j];
+                  g = sn*s[j+1];
+                  s[j+1] = cs*s[j+1];
+                  if (wantv) {
+                     for (int i = 0; i < n; i++) {
+                        t = cs*V[i][j] + sn*V[i][j+1];
+                        V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
+                        V[i][j] = t;
+                     }
+                  }
+                  t = Maths.hypot(f,g);
+                  cs = f/t;
+                  sn = g/t;
+                  s[j] = t;
+                  f = cs*e[j] + sn*s[j+1];
+                  s[j+1] = -sn*e[j] + cs*s[j+1];
+                  g = sn*e[j+1];
+                  e[j+1] = cs*e[j+1];
+                  if (wantu && (j < m-1)) {
+                     for (int i = 0; i < m; i++) {
+                        t = cs*U[i][j] + sn*U[i][j+1];
+                        U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
+                        U[i][j] = t;
+                     }
+                  }
+               }
+               e[p-2] = f;
+               iter = iter + 1;
+            }
+            break;
+
+            // Convergence.
+
+            case 4: {
+
+               // Make the singular values positive.
+   
+               if (s[k] <= 0.0) {
+                  s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
+                  if (wantv) {
+                     for (int i = 0; i <= pp; i++) {
+                        V[i][k] = -V[i][k];
+                     }
+                  }
+               }
+   
+               // Order the singular values.
+   
+               while (k < pp) {
+                  if (s[k] >= s[k+1]) {
+                     break;
+                  }
+                  double t = s[k];
+                  s[k] = s[k+1];
+                  s[k+1] = t;
+                  if (wantv && (k < n-1)) {
+                     for (int i = 0; i < n; i++) {
+                        t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
+                     }
+                  }
+                  if (wantu && (k < m-1)) {
+                     for (int i = 0; i < m; i++) {
+                        t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
+                     }
+                  }
+                  k++;
+               }
+               iter = 0;
+               p--;
+            }
+            break;
+         }
+      }
+   }
+
+/* ------------------------
+   Public Methods
+ * ------------------------ */
+
+   /** Return the left singular vectors
+   @return     U
+   */
+
+   public Matrix getU () {
+      return new Matrix(U,m,Math.min(m+1,n));
+   }
+
+   /** Return the right singular vectors
+   @return     V
+   */
+
+   public Matrix getV () {
+      return new Matrix(V,n,n);
+   }
+
+   /** Return the one-dimensional array of singular values
+   @return     diagonal of S.
+   */
+
+   public double[] getSingularValues () {
+      return s;
+   }
+
+   /** Return the diagonal matrix of singular values
+   @return     S
+   */
+
+   public Matrix getS () {
+      Matrix X = new Matrix(n,n);
+      double[][] S = X.getArray();
+      for (int i = 0; i < n; i++) {
+         for (int j = 0; j < n; j++) {
+            S[i][j] = 0.0;
+         }
+         S[i][i] = this.s[i];
+      }
+      return X;
+   }
+
+   /** Two norm
+   @return     max(S)
+   */
+
+   public double norm2 () {
+      return s[0];
+   }
+
+   /** Two norm condition number
+   @return     max(S)/min(S)
+   */
+
+   public double cond () {
+      return s[0]/s[Math.min(m,n)-1];
+   }
+
+   /** Effective numerical matrix rank
+   @return     Number of nonnegligible singular values.
+   */
+
+   public int rank () {
+      double eps = Math.pow(2.0,-52.0);
+      double tol = Math.max(m,n)*s[0]*eps;
+      int r = 0;
+      for (int i = 0; i < s.length; i++) {
+         if (s[i] > tol) {
+            r++;
+         }
+      }
+      return r;
+   }
+}
diff --git a/src/main/java/plugins/nherve/matrix/util/Maths.java b/src/main/java/plugins/nherve/matrix/util/Maths.java
new file mode 100644
index 0000000000000000000000000000000000000000..46ff5b81b6033f646290f383d2ba7c07c60bd107
--- /dev/null
+++ b/src/main/java/plugins/nherve/matrix/util/Maths.java
@@ -0,0 +1,20 @@
+package plugins.nherve.matrix.util;

+

+public class Maths {

+

+   /** sqrt(a^2 + b^2) without under/overflow. **/

+

+   public static double hypot(double a, double b) {

+      double r;

+      if (Math.abs(a) > Math.abs(b)) {

+         r = b/a;

+         r = Math.abs(a)*Math.sqrt(1+r*r);

+      } else if (b != 0) {

+         r = a/b;

+         r = Math.abs(b)*Math.sqrt(1+r*r);

+      } else {

+         r = 0.0;

+      }

+      return r;

+   }

+}