libhts.py 30.8 KB
Newer Older
Blaise Li's avatar
Blaise Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (C) 2020 Blaise Li
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.
15
from math import floor, ceil, sqrt, log
16
from functools import reduce
Blaise Li's avatar
Blaise Li committed
17
# from re import sub
Blaise Li's avatar
Blaise Li committed
18
import warnings
19
import numpy as np
20
import pandas as pd
21
22
# To compute bins in bigwig data
from scipy.stats import binned_statistic
Blaise Li's avatar
Blaise Li committed
23
24
# To compute correlation coefficient, and compute linear regression
from scipy.stats.stats import pearsonr, linregress
Blaise Li's avatar
Blaise Li committed
25
26
# To compute geometric mean
from scipy.stats.mstats import gmean
Blaise Li's avatar
Blaise Li committed
27
import matplotlib as mpl
28
import matplotlib.pyplot as plt
29
# TODO: set this at the "correct" place
Blaise Li's avatar
Blaise Li committed
30
# https://stackoverflow.com/a/42768093/1878788
31
32
33
34
35
36
37
38
39
40
41
#from matplotlib.backends.backend_pgf import FigureCanvasPgf
#mpl.backend_bases.register_backend('pdf', FigureCanvasPgf)
#TEX_PARAMS = {
#    "text.usetex": True,            # use LaTeX to write all text
#    "pgf.rcfonts": False,           # Ignore Matplotlibrc
#    "pgf.texsystem": "lualatex",  # hoping to avoid memory issues
#    "pgf.preamble": [
#        r'\usepackage{color}'     # xcolor for colours
#    ]
#}
#mpl.rcParams.update(TEX_PARAMS)
42
import seaborn as sns
43
44
45
46
47
# from rpy2.robjects import r, pandas2ri, Formula, StrVector
# as_df = r("as.data.frame")
# from rpy2.rinterface import RRuntimeError
# from rpy2.robjects.packages import importr
# deseq2 = importr("DESeq2")
48
from pybedtools import BedTool
49
import pyBigWig
50
import networkx as nx
Blaise Li's avatar
Blaise Li committed
51
52
53
54
55
56
57
from libworkflows import texscape


def formatwarning(
        message, category, filename, lineno, line):  # pylint: disable=W0613
    """Used to format warning messages."""
    return "%s:%s: %s: %s\n" % (filename, lineno, category.__name__, message)
58
59


Blaise Li's avatar
Blaise Li committed
60
61
62
63
64
65
warnings.formatwarning = formatwarning


# This might represent any type of genomic interval.
class Exon():
    """Object representing an exon."""
66
67
68
69
70
71
72
    __slots__ = ("chrom", "start", "end")
    def __init__(self, chrom, start, end):
        self.chrom = chrom
        self.start = start
        self.end = end

    def overlap(self, other):
Blaise Li's avatar
Blaise Li committed
73
74
75
        """
        Tell whether *self* and *other* overlap.
        """
76
77
78
79
80
        if self.chrom != other.chrom:
            return False
        return (self.start <= other.start < self.end) or (other.start <= self.start < other.end)

    def merge(self, other):
Blaise Li's avatar
Blaise Li committed
81
82
83
        """
        Create a new Exon object by merging *self* with *other*.
        """
84
85
86
87
88
89
90
        # Not necessary: can be indirectly linked
        #assert overlap(self, other)
        return Exon(self.chrom, min(self.start, other.start), max(self.end, other.end))

    def __len__(self):
        return self.end - self.start

Blaise Li's avatar
Blaise Li committed
91
92
OVERLAP = Exon.overlap
MERGE = Exon.merge
93

Blaise Li's avatar
Blaise Li committed
94
class Gene():
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    """This object contains information obtained from a gtf file."""
    __slots__ = ("gene_id", "exons", "union_exon_length")
    def __init__(self, gene_id):
        self.gene_id = gene_id
        #self.transcripts = {}
        self.exons = nx.Graph()
        self.union_exon_length = None

    #def add_transcript(self, feature):
    #    the_id = feature.attrs["transcript_id"]
    #    assert the_id not in self.transcripts
    #    self.transcripts[the_id] = feature

    def add_exon(self, feature):
Blaise Li's avatar
Blaise Li committed
109
110
111
112
        """
        Add one Exon object to the exon graph based in the information in gtf
        information *feature*.
        """
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        #the_id = feature.attrs["exon_id"]
        #assert the_id not in self.exons
        #self.exons[the_id] = feature
        exon = Exon(feature.chrom, feature.start, feature.end)
        if exon not in self.exons:
            self.exons.add_node(exon)

    # The merging cannot be done on the full BedTool because we dont want
    # to merge together exons not belonging to the same gene.
    def set_union_exon_length(self):
        """The exons are used to make a BedTool, which enables convenient merging of
        overlapping features. The sum of the lengths of the merged exons is returned."""
        if len(self.exons) == 1:
            # No need to merge when there is only one exon
            self.union_exon_length = len(next(iter(self.exons.nodes())))
        else:
            # Too slow
            #self.union_exon_length = sum(map(
            #    len, BedTool(self.exons.values()).merge().features()))
            #self.union_exon_length = 0
            # We group nodes that overlap, and merge them
Blaise Li's avatar
Blaise Li committed
134
            #overlapping_exons = nx.quotient_graph(self.exons, OVERLAP)
135
            #for node in overlapping_exons.nodes():
Blaise Li's avatar
Blaise Li committed
136
            #    mex = reduce(MERGE, node)
137
138
            #    self.union_exon_length += len(mex)
            self.union_exon_length = sum((len(reduce(
Blaise Li's avatar
Blaise Li committed
139
140
                MERGE, node)) for node in nx.quotient_graph(
                    self.exons, OVERLAP).nodes()))
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167


def gtf_2_genes_exon_lengths(gtf_filename):
    """Returns a pandas DataFrame where union exon lengths are associated to gene IDs."""
    gtf_file = open(gtf_filename, "r")
    gtf = BedTool(gtf_file)
    genes = {}
    for feature in gtf.features():
        feat_type = feature[2]
        if feat_type != "exon":
            continue
        attrs = feature.attrs
        gene_id = attrs["gene_id"]
        if gene_id not in genes:
            genes[gene_id] = Gene(gene_id)
        gene = genes[gene_id]
        try:
            gene.add_exon(feature)
        except AssertionError:
            # A given exon may be registered for several transcripts, hence several gtf entries
            already = gene.exons[feature.attrs["exon_id"]]
            assert already.attrs["transcript_id"] != feature.attrs["transcript_id"]
            assert (already.start, already.end) == (feature.start, feature.end)
    for gene in genes.values():
        gene.set_union_exon_length()
    return pd.DataFrame(pd.Series(
        {gene.gene_id : gene.union_exon_length for gene in genes.values()},
168
        name=("union_exon_len")).rename_axis("gene"))
169
170
171


def repeat_bed_2_lengths(repeat_bed):
Blaise Li's avatar
Blaise Li committed
172
    """Computes the lengths of repetitive elements in a bed file, grouped by families.
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    This assumes that the elements have their names composed of the family name,
    then a colon, then a number. For instance:
    Simple_repeat|Simple_repeat|(TTTTTTG)n:1
    Simple_repeat|Simple_repeat|(TTTTTTG)n:2
    Simple_repeat|Simple_repeat|(TTTTTTG)n:3
    Simple_repeat|Simple_repeat|(TTTTTTG)n:4
    -> Simple_repeat|Simple_repeat|(TTTTTTG)n
    Returns a DataFrame associating the summed lengths to the family names.
    """
    # usecols=[1, 2, 3]: start, end, id
    # index_col=2: id (relative to the selected columns)
    start_ends = pd.read_table(repeat_bed, usecols=[1, 2, 3], header=None, index_col=2)
    # bed lengths
    lens = start_ends[2] - start_ends[1]
    lens.name = "union_exon_len"
    repeat_families = [":".join(name.split(":")[:-1]) for name in start_ends.index]
    # The reads assigned to a repeated element can come
    # from the summed length of all the members of the family
    # We call this "gene" for convenience and compatibility
    return pd.DataFrame(lens).assign(gene=repeat_families).groupby("gene").sum()
193

Blaise Li's avatar
Blaise Li committed
194

195
196
def spikein_gtf_2_lengths(spikein_gtf):
    """Computes the lengths of spike-ins, grouped by families.
197
    Returns a DataFrame associating the summed lengths to the spike-in names.
198
199
200
201
202
203
204
205
206
207
208
    """
    spikein_ends = {}
    with open(spikein_gtf) as gtf_file:
        for line in gtf_file:
            fields = line.strip().split("\t")
            spikein_ends[fields[0]] = int(fields[4])
    return pd.DataFrame(pd.Series(
        spikein_ends,
        name=("union_exon_len")).rename_axis("gene"))


Blaise Li's avatar
Blaise Li committed
209
210
211
def id_list_gtf2bed(
        identifiers, gtf_filename,
        feature_type="transcript", id_kwd="gene_id"):
212
213
214
215
216
217
218
219
220
221
222
    """
    Extract bed coordinates of an iterable of identifiers from a gtf file.

    *identifiers* is the iterable of identifiers.
    *gtf_filename* is the name of the gtf file.
    *feature_type* is the type of feature to be considered
    in the gtf file (third columns).
    *id_kwd* is the keyword under which the feature ID is expected to be found
    in the feature annotations in the gtf_file. These feature IDs will be
    matched against the elements in *identifiers*.
    """
223
224
    if identifiers:
        ids = set(identifiers)
Blaise Li's avatar
Blaise Li committed
225

226
227
228
229
        def feature_filter(feature):
            return feature[2] == feature_type and feature[id_kwd] in ids
        gtf = BedTool(gtf_filename)
        return gtf.filter(feature_filter)
Blaise Li's avatar
Blaise Li committed
230
231
232
233
234
235

    # https://stackoverflow.com/a/13243870/1878788
    def empty_bed_generator():
        return
        yield  # pylint: disable=W0101
    return empty_bed_generator()
236
237


238
def make_empty_bigwig(filename, chrom_sizes):
239
240
241
242
    """Writes *filename* so that it is an empty bigwig file.
    *chrom_sizes is a dictionary giving chromosome sizes* given
    chomosome names.
    """
243
244
    bw_out = pyBigWig.open(filename, "w")
    bw_out.addHeader(list(chrom_sizes.items()))
245
246
    # for (chrom, chrom_len) in bw_out.chroms().items():
    for (chrom, chrom_len) in chrom_sizes.items():
247
248
249
250
        bw_out.addEntries(
            chrom, 0,
            values=np.nan_to_num(np.zeros(chrom_len)[0::10]),
            span=10, step=10)
251
252
253
    bw_out.close()


254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Possible improvements: use an itearble of (from_region, to_region) pairs,
# or two zippable iterables
def paste_bigwig_region(
        from_fname, to_fname, from_region, to_region,
        dest_fname, nanmean=False):
    """

    Take values from a region *from_region* in a bigwig file *from_fname* and
    paste them into a region *to_region* in another bigwig file *to_fname*, and
    write the results in a third bigwig file *dest_fname*.

    A region should be specified as a (chrom, start, stop) triplet, where start
    is zero-based and stop is 1-based (like BED coordinates or Python slices).

    *dest_fname* will have the same chromosomes as *to_fname*.
    The values in *to_region* are substituted.

    Current limitation: The regions should have the same length.
    Option *nanmean* is likely not working correctly.
    """
    (from_chrom, from_start, from_stop) = from_region
    from_len = from_stop - from_start
    (to_chrom, to_start, to_stop) = to_region
    assert to_stop - to_start == from_len, (
        "Regions should have the same lengths.")
    from_bw = pyBigWig.open(from_fname)
    to_bw = pyBigWig.open(to_fname)
    chrom_sizes = list(to_bw.chroms().items())
    dest_bw = pyBigWig.open(dest_fname, "w")
    dest_bw.addHeader(chrom_sizes)
    for (chrom, chrom_len) in chrom_sizes:
        nb_bins = ceil(chrom_len / 10)
        # values = to_bw.values(chrom, 0, chrom_len)
        # Original values, plus some nans for binned_statistics to properly set the bin boundaries
        values = np.pad(
            to_bw.values(chrom, 0, chrom_len),
            # pad zero on the left, and what is needed to complete the bin on the right
            (0, 10 * nb_bins - chrom_len),
292
            mode="constant",
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
            constant_values=np.nan)
        if chrom == to_chrom:
            # Replace the values in the desired region
            values[to_start:to_stop] = from_bw.values(
                from_chrom, from_start, from_stop)
        if nanmean:
            bin_means = binned_statistic(
                range(0, 10 * nb_bins), values,
                statistic=np.nanmean, bins=nb_bins).statistic
        else:
            bin_means = binned_statistic(
                # range(0, chrom_len), np.nan_to_num(values),
                range(0, 10 * nb_bins), values,
                statistic="mean", bins=nb_bins).statistic
        dest_bw.addEntries(
            chrom, 0,
            # Mean for each bin of size 10
            values=bin_means,
            # values=np.nan_to_num(np.zeros(chrom_len)[0::10]),
            span=10, step=10)
    dest_bw.close()
    to_bw.close()
    from_bw.close()


318
319
320
#################
# Bowtie2 stuff #
#################
Blaise Li's avatar
Blaise Li committed
321
322
def zero(value):  # pylint: disable=W0613
    """Constant zero."""
323
324
325
326
    return 0


def identity(value):
Blaise Li's avatar
Blaise Li committed
327
    """Identity function."""
328
329
330
    return value


Blaise Li's avatar
Blaise Li committed
331
BOWTIE2_FUNCTION_SELECTOR = {
332
333
334
335
336
337
338
339
340
    "C": zero,
    "L": identity,
    "S": sqrt,
    "G": log}


def make_seeding_function(seeding_string):
    """Generates a function that computes the seeding pattern given a
    string representing bowtie2 seeding settings (-L and -i options).
Blaise Li's avatar
Blaise Li committed
341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    >>> make_seeding_function("-L 6 -i S,1,0.8")(18)
    [[0, 6], [4, 10], [8, 14], [12, 18]]
    """
    [opt1, val1, opt2, val2] = seeding_string.split()
    if opt1 == "-L":
        assert opt2 == "-i"
        seed_len = int(val1)
        interval_string = val2
    else:
        assert opt2 == "-L"
        seed_len = int(val2)
        interval_string = val1
    [func_type, constant, coeff] = interval_string.split(",")
    constant = float(constant)
    coeff = float(coeff)
Blaise Li's avatar
Blaise Li committed
357
358
    func_type = BOWTIE2_FUNCTION_SELECTOR[func_type]

359
360
361
362
363
364
365
366
367
368
369
370
    def seeding_function(read_len):
        interval = floor(constant + (coeff * func_type(read_len)))
        seeds = []
        seed = [0, seed_len]
        while seed[1] <= read_len:
            seeds.append(seed)
            next_seed_start = seed[0] + interval
            seed = [next_seed_start, next_seed_start + seed_len]
        return seeds
    return seeding_function


371
372
373
374
375
376
def aligner2min_mapq(aligner, wildcards):
    """
    Option to filter on MAPQ value in featureCounts.

    What minimal MAPQ value should a read have to be considered uniquely mapped?
    See <https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-but-their-implementation-is-a-mess/>.
Blaise Li's avatar
Blaise Li committed
377
    """  # pylint: disable=C0301
378
    mapping_type = None
379
380
381
    try:
        mapping_type = wildcards.mapping_type
    except AttributeError:
382
383
384
385
386
387
388
389
390
391
392
393
        pass
    if mapping_type is None:
        try:
            mapping_type = wildcards.mapped_type
        except AttributeError:
            pass
    if mapping_type is None:
        try:
            mapping_type = wildcards.read_type
        except AttributeError:
            pass
    if mapping_type is None or mapping_type.startswith("unique_"):
394
395
        if aligner == "hisat2":
            return "-Q 60"
Blaise Li's avatar
Blaise Li committed
396
        if aligner == "bowtie2":
397
            return "-Q 23"
Blaise Li's avatar
Blaise Li committed
398
399
        raise NotImplementedError(f"{aligner} not handled (yet?)")
    return ""
400
401


Blaise Li's avatar
Blaise Li committed
402
# Not sure this is a good idea...
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# def masked_gmean(a, axis=0, dtype=None):
#     """Modified from stats.py."""
#     # Converts the data into a masked array
#     ma = np.ma.masked_invalid(a)
#     # Apply gmean
#     if not isinstance(ma, np.ndarray):
#         # if not an ndarray object attempt to convert it
#         log_a = np.log(np.array(ma, dtype=dtype))
#     elif dtype:
#         # Must change the default dtype allowing array type
#         if isinstance(ma, np.ma.MaskedArray):
#             log_a = np.log(np.ma.asarray(ma, dtype=dtype))
#         else:
#             log_a = np.log(np.asarray(ma, dtype=dtype))
#     else:
#         log_a = np.log(ma)
#     return np.exp(log_a.mean(axis=axis))


Blaise Li's avatar
Blaise Li committed
422
def median_ratio_to_pseudo_ref_size_factors(counts_data):
Blaise Li's avatar
Blaise Li committed
423
424
425
426
427
    """Adapted from DESeq paper (doi:10.1186/gb-2010-11-10-r106)
    All libraries are used to define a pseudo-reference, which has
    the geometric mean across libraries for a given gene in *counts_data*.
    For a given library, the median across genes of the ratios to the
    pseudo-reference is used as size factor."""
Blaise Li's avatar
Blaise Li committed
428
    # Add pseudo-count to compute the geometric mean, then remove it
Blaise Li's avatar
Blaise Li committed
429
    # pseudo_ref = (counts_data + 1).apply(gmean, axis=1) - 1
Blaise Li's avatar
Blaise Li committed
430
    # Ignore lines with zeroes instead (may be bad for IP: many zeroes expected):
Blaise Li's avatar
Blaise Li committed
431
    pseudo_ref = (counts_data[counts_data.prod(axis=1) > 0]).apply(gmean, axis=1)
432
433
    # Ignore lines with only zeroes
    # pseudo_ref = (counts_data[counts_data.sum(axis=1) > 0]).apply(masked_gmean, axis=1)
Blaise Li's avatar
Blaise Li committed
434

Blaise Li's avatar
Blaise Li committed
435
436
    def median_ratio_to_pseudo_ref(col):
        return (col / pseudo_ref).median()
Blaise Li's avatar
Blaise Li committed
437
    # size_factors = counts_data.apply(median_ratio_to_pseudo_ref, axis=0)
438
    median_ratios = counts_data[counts_data.prod(axis=1) > 0].apply(
Blaise Li's avatar
Blaise Li committed
439
        median_ratio_to_pseudo_ref, axis=0)
440
441
442
443
444
    # Not sure fillna(0) is appropriate
    if any(median_ratios.isna()):
        msg = "Could not compute median ratios to pseudo reference.\n"
        warnings.warn(msg)
        return median_ratios.fillna(1)
Blaise Li's avatar
Blaise Li committed
445
    return median_ratios
Blaise Li's avatar
Blaise Li committed
446

447
448
449
450
451
452
453
454
455

def size_factor_correlations(counts_data, summaries, normalizer):
    """Is there a correlation, across libraries, between normalized values and size factors?
    The size factor type *normalizer* is either computed or taken from *summaries*.
    The normalized data are computed by dividing *counts_data* by this size factor."""
    if normalizer == "median_ratio_to_pseudo_ref":
        size_factors = median_ratio_to_pseudo_ref_size_factors(counts_data)
    else:
        size_factors = summaries.loc[normalizer]
Blaise Li's avatar
Blaise Li committed
456
457
    # by_norm = counts_data / size_factors

458
459
    def compute_pearsonr_with_size_factor(row):
        return pearsonr(row, size_factors)[0]
Blaise Li's avatar
Blaise Li committed
460
    # return by_norm.apply(compute_pearsonr_with_size_factor, axis=1)
461
462
463
    return (counts_data / size_factors).apply(compute_pearsonr_with_size_factor, axis=1)


464
def plot_norm_correlations(correlations):
Blaise Li's avatar
Blaise Li committed
465
466
467
468
469
470
471
    """
    Make violin plots to represent data in *correlations*.
    """
    # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True)
    # correlations.plot.kde(ax=ax1)
    # sns.violinplot(data=correlations, orient="h", ax=ax2)
    # ax2.set_xlabel("Pearson correlation coefficient")
Blaise Li's avatar
Blaise Li committed
472
473
    usetex = mpl.rcParams.get("text.usetex", False)
    if usetex:
474
        correlations.columns = [texscape(colname) for colname in correlations.columns]
Blaise Li's avatar
Blaise Li committed
475
476
    axis = sns.violinplot(data=correlations, cut=0)
    axis.set_ylabel("Pearson correlation coefficient")
477
478
479


def plot_counts_distribution(data, xlabel):
Blaise Li's avatar
Blaise Li committed
480
481
482
    """
    Plot a kernel density estimate of the distribution of counts in *data*.
    """
483
    # TODO: try to plot with semilog x axis
Blaise Li's avatar
Blaise Li committed
484
485
486
    # axis = data.plot.kde(legend=None)
    # axis.set_xlabel(xlabel)
    # axis.legend(ncol=len(REPS))
Blaise Li's avatar
Blaise Li committed
487
488
    usetex = mpl.rcParams.get("text.usetex", False)
    if usetex:
489
490
        xlabel = texscape(xlabel)
        data.columns = [texscape(colname) for colname in data.columns]
491
    try:
Blaise Li's avatar
Blaise Li committed
492
        axis = data.plot.kde()
Blaise Li's avatar
Blaise Li committed
493
494
    # except ValueError as e:
    except ValueError:
495
496
497
498
499
        msg = "".join([
            "There seems to be a problem with the data.\n",
            "The data matrix has %d lines and %d columns.\n" % (len(data), len(data.columns))])
        warnings.warn(msg)
        raise
Blaise Li's avatar
Blaise Li committed
500
    axis.set_xlabel(xlabel)
501
502


503
def plot_histo(outfile, data, title=None):
Blaise Li's avatar
Blaise Li committed
504
505
506
507
508
509
510
    """
    Plot a histogram of *data* in file *outfile*.
    """
    fig = plt.figure(figsize=(15, 7))
    axis = fig.add_subplot(111)
    axis.set_xlim([data.index[0] - 0.5, data.index[-1] + 0.5])
    # axis.set_ylim([0, 100])
511
    bar_width = 0.8
Blaise Li's avatar
Blaise Li committed
512
    # letter2legend = dict(zip("ACGT", "ACGT"))
513
514
515
    usetex = mpl.rcParams.get("text.usetex", False)
    if usetex:
        data.columns = [texscape(colname) for colname in data.columns]
Blaise Li's avatar
Blaise Li committed
516
        title = texscape(title)
517
518
519
520
521
522
    for (read_len, count) in data.iterrows():
        plt.bar(
            read_len,
            count,
            align="center",
            width=bar_width)
Blaise Li's avatar
Blaise Li committed
523
524
525
526
527
528
529
530
            # color=letter2colour[letter],
            # label=letter2legend[letter])
    axis.legend()
    axis.set_xticks(data.index)
    axis.set_xticklabels(data.index)
    axis.set_xlabel("read length")
    axis.set_ylabel("number of reads")
    plt.setp(axis.get_xticklabels(), rotation=90)
531
532
    if title is not None:
        plt.title(title)
533
534
535
    ## debug
    try:
        plt.savefig(outfile)
Blaise Li's avatar
Blaise Li committed
536
537
    # except RuntimeError as e:
    except RuntimeError:
538
539
540
541
        print(data.index)
        print(title)
        raise
    ##
542
543


544
def plot_boxplots(data, ylabel):
Blaise Li's avatar
Blaise Li committed
545
546
547
    """
    Plot boxplots of data in *data* using *ylabel* as y-axis label.
    """
548
    fig = plt.figure(figsize=(6, 12))
Blaise Li's avatar
Blaise Li committed
549
    axis = fig.add_subplot(111)
Blaise Li's avatar
Blaise Li committed
550
551
    usetex = mpl.rcParams.get("text.usetex", False)
    if usetex:
552
553
        ylabel = texscape(ylabel)
        data.columns = [texscape(colname) for colname in data.columns]
Blaise Li's avatar
Blaise Li committed
554
555
556
    data.plot.box(ax=axis)
    axis.set_ylabel(ylabel)
    for label in axis.get_xticklabels():
557
        label.set_rotation(90)
558
    plt.tight_layout()
559
560


561
562
563
############
# DE stuff #
############
564
565
566
567
568
569
# Cutoffs in log fold change
LFC_CUTOFFS = [0.5, 1, 2]
UP_STATUSES = [f"up{cutoff}" for cutoff in LFC_CUTOFFS]
DOWN_STATUSES = [f"down{cutoff}" for cutoff in LFC_CUTOFFS]


570
571
572
def status_setter(lfc_cutoffs=None, fold_type="log2FoldChange"):
    """*fold_type* can also be "lfcMLE", which is based on uncorrected values.
    This may not be good for genes with low expression levels."""
573
    if lfc_cutoffs is None:
574
        lfc_cutoffs = LFC_CUTOFFS
575
576
577
578
    def set_status(row):
        """Determines the up- or down-regulation status corresponding to a given
        row of a deseq2 results table."""
        if row["padj"] < 0.05:
Blaise Li's avatar
Blaise Li committed
579
            # if row["log2FoldChange"] > 0:
580
            lfc = row[fold_type]
581
            if lfc > 0:
582
583
                # Start from the highest cutoff,
                # and decrease until below lfc
584
585
586
587
                for cutoff in sorted(lfc_cutoffs, reverse=True):
                    if lfc > cutoff:
                        return f"up{cutoff}"
                return "up"
Blaise Li's avatar
Blaise Li committed
588
589
590
591
592
            for cutoff in sorted(lfc_cutoffs, reverse=True):
                if lfc < -cutoff:
                    return f"down{cutoff}"
            return "down"
        return "NS"
593
    return set_status
Blaise Li's avatar
Blaise Li committed
594

595
596
597
598
599
600
601

# res = res.assign(is_DE=res.apply(set_de_status, axis=1))
def set_de_status(row):
    """Determines whether a gene is differentially expressed (DE) of not (NS)
    based on the adjusted p-value in row of a deseq2 results table."""
    if row["padj"] < 0.05:
        return "DE"
Blaise Li's avatar
Blaise Li committed
602
    return "NS"
603
604
DE2COLOUR = {
    # black
Blaise Li's avatar
Blaise Li committed
605
    "DE": "k",
606
    # pale grey
Blaise Li's avatar
Blaise Li committed
607
    "NS": "0.85"}
608
609


610
611
612
613
def plot_lfc_distribution(res, contrast, fold_type=None):
    """*fold_type* is "log2FoldChange" by default.
    It can also be "lfcMLE", which is based on uncorrected values.
    This may not be good for genes with low expression levels."""
Blaise Li's avatar
Blaise Li committed
614
    # lfc = res.lfcMLE.dropna()
615
616
617
    if fold_type is None:
        fold_type = "log2FoldChange"
    lfc = getattr(res, fold_type).dropna()
Blaise Li's avatar
Blaise Li committed
618
619
    usetex = mpl.rcParams.get("text.usetex", False)
    if usetex:
620
621
622
623
        lfc.name = texscape(contrast)
    else:
        lfc.name = contrast
        # lfc.columns = [texscape(colname) for colname in lfc.columns]
Blaise Li's avatar
Blaise Li committed
624
625
626
    axis = sns.kdeplot(lfc)
    axis.set_xlabel(fold_type)
    axis.set_ylabel("frequency")
627
628
629


def make_status2colour(down_statuses, up_statuses):
Blaise Li's avatar
Blaise Li committed
630
631
632
    """
    Generate a dictionary associating colours to statuses.
    """
633
634
635
636
    statuses = list(reversed(down_statuses)) + ["down", "NS", "up"] + up_statuses
    return dict(zip(statuses, sns.color_palette("coolwarm", len(statuses))))


637
STATUS2COLOUR = make_status2colour(DOWN_STATUSES, UP_STATUSES)
Blaise Li's avatar
Blaise Li committed
638
639


640
641
642
643
644
# TODO: use other labelling than logfold or gene lists, i.e. biotype
def plot_MA(res,
            grouping=None,
            group2colour=None,
            mean_range=None,
645
646
647
648
649
            lfc_range=None,
            fold_type=None):
    """*fold_type* is "log2FoldChange" by default.
    It can also be "lfcMLE", which is based on uncorrected values.
    This may not be good for genes with low expression levels."""
Blaise Li's avatar
Blaise Li committed
650
    # if not len(res):
Blaise Li's avatar
Blaise Li committed
651
652
    # if not res:
    if res.empty:
653
        raise ValueError("No data to plot.")
Blaise Li's avatar
Blaise Li committed
654
    fig, axis = plt.subplots()
655
    # Make a column indicating whether the gene is DE or NS
Blaise Li's avatar
Blaise Li committed
656
    data = res.assign(is_DE=res.apply(set_de_status, axis=1))
657
    x_column = "baseMean"
658
    data = data.assign(logx=np.log10(data[x_column]))
659
    if fold_type is None:
660
661
662
        y_column = "log2FoldChange"
    else:
        y_column = fold_type
663
    usetex = mpl.rcParams.get("text.usetex", False)
Blaise Li's avatar
Blaise Li committed
664

665
666
667
668
669
    def scatter_group(group, label, colour, size=1):
        """Plots the data in *group* on the scatterplot."""
        if usetex:
            label = texscape(label)
        group.plot.scatter(
Blaise Li's avatar
Blaise Li committed
670
            # x=x_column,
671
672
673
            x="logx",
            y=y_column,
            s=size,
Blaise Li's avatar
Blaise Li committed
674
            # logx=True,
675
            c=colour,
Blaise Li's avatar
Blaise Li committed
676
            label=label, ax=axis)
677
678
679
    if usetex:
        data.columns = [texscape(colname) for colname in data.columns]
        y_column = texscape(y_column)
Blaise Li's avatar
Blaise Li committed
680
        de_status_column = "is\_DE"  # pylint: disable=W1401
681
682
    else:
        de_status_column = "is_DE"
683
    # First plot the data in grey and black
684
685
686
687
    for (de_status, group) in data.groupby(de_status_column):
        label = f"{de_status} ({len(group)})"
        colour = DE2COLOUR[de_status]
        scatter_group(group, label, colour, size=2)
688
    if grouping is not None:
689
690
691
692
        if isinstance(grouping, str):
            # Overlay colours based on the "grouping" column
            if group2colour is None:
                group2colour = STATUS2COLOUR
Blaise Li's avatar
Blaise Li committed
693
            for status, group in data.groupby(grouping):
694
695
696
                label = f"{status} ({len(group)})"
                colour = group2colour[status]
                scatter_group(group, label, colour)
697
698
        else:
            (status, colour) = group2colour
Blaise Li's avatar
Blaise Li committed
699
            row_indices = data.index.intersection(grouping)
700
            try:
Blaise Li's avatar
Blaise Li committed
701
                label = f"{status} ({len(row_indices)})"
702
                scatter_group(data.ix[row_indices], label, colour)
Blaise Li's avatar
Blaise Li committed
703
704
            except ValueError as err:
                if str(err) != "scatter requires x column to be numeric":
705
706
                    print(data.ix[row_indices])
                    raise
Blaise Li's avatar
Blaise Li committed
707
708
709
                warnings.warn(f"Nothing to plot for {status}\n")
    axis.axhline(y=1, linewidth=0.5, color="0.5", linestyle="dashed")
    axis.axhline(y=-1, linewidth=0.5, color="0.5", linestyle="dashed")
710
    # TODO: check data basemean range
711
    if mean_range is not None:
Blaise Li's avatar
Blaise Li committed
712
713
        # axis.set_xlim(mean_range)
        axis.set_xlim(np.log10(mean_range))
714
    if lfc_range is not None:
715
        (lfc_min, lfc_max) = lfc_range
716
717
        lfc_here_min = getattr(data, y_column).min()
        lfc_here_max = getattr(data, y_column).max()
718
        if (lfc_here_min < lfc_min) or (lfc_here_max > lfc_max):
Blaise Li's avatar
Blaise Li committed
719
720
721
722
            warnings.warn(
                f"Cannot plot {y_column} data "
                f"([{lfc_here_min}, {lfc_here_max}]) in requested range "
                f"([{lfc_min}, {lfc_max}])\n")
723
        else:
Blaise Li's avatar
Blaise Li committed
724
            axis.set_ylim(lfc_range)
725
726
727
728
729
730
731
    # https://stackoverflow.com/a/24867320/1878788
    x_ticks = np.arange(
        floor(np.ma.masked_invalid(data["logx"]).min()),
        ceil(np.ma.masked_invalid(data["logx"]).max()),
        1)
    x_ticklabels = [r"$10^{{{}}}$".format(tick) for tick in x_ticks]
    plt.xticks(x_ticks, x_ticklabels)
Blaise Li's avatar
Blaise Li committed
732
    axis.set_xlabel(x_column)
733

734

Blaise Li's avatar
Blaise Li committed
735
736
737
738
739
740
741
def plot_scatter(data,
                 x_column,
                 y_column,
                 regression=False,
                 grouping=None,
                 group2colour=None,
                 x_range=None,
742
743
                 y_range=None,
                 axes_style=None):
Blaise Li's avatar
Blaise Li committed
744
745
746
747
748
749
    """
    Plot a scatterplot using data from *data*, using columns
    """
    # No rows
    # if not len(data):
    # Does it work like that too?
Blaise Li's avatar
Blaise Li committed
750
751
    # if not data:
    if data.empty:
752
        raise ValueError("No data to plot.")
Blaise Li's avatar
Blaise Li committed
753
754
755
    # fig, axis = plt.subplots()
    _, axis = plt.subplots()
    # axis.set_adjustable('box')
Blaise Li's avatar
Blaise Li committed
756
    # First plot the data in grey
757
758
759
    data.plot.scatter(
        x=x_column, y=y_column,
        s=2, c="black", alpha=0.15, edgecolors='none',
Blaise Li's avatar
Blaise Li committed
760
        ax=axis)
Blaise Li's avatar
Blaise Li committed
761
762
    if regression:
        linreg = linregress(data[[x_column, y_column]].dropna())
Blaise Li's avatar
Blaise Li committed
763
764
765
        a = linreg.slope  # pylint: disable=C0103
        b = linreg.intercept  # pylint: disable=C0103

Blaise Li's avatar
Blaise Li committed
766
767
768
769
770
771
772
        def fit(x):
            return (a * x) + b
        min_x = data[[x_column]].min()[0]
        max_x = data[[x_column]].max()[0]
        min_y = fit(min_x)
        max_y = fit(max_x)
        xfit, yfit = (min_x, max_x), (min_y, max_y)
Blaise Li's avatar
Blaise Li committed
773
774
775
        axis.plot(
            xfit, yfit,
            linewidth=0.5, color="0.5", linestyle="dashed")
Blaise Li's avatar
Blaise Li committed
776
777
778
779
780
781
    # Overlay colour points
    if grouping is not None:
        if isinstance(grouping, str):
            # Determine colours based on the "grouping" column
            if group2colour is None:
                statuses = data[grouping].unique()
Blaise Li's avatar
Blaise Li committed
782
783
784
                group2colour = dict(zip(
                    statuses,
                    sns.color_palette("colorblind", len(statuses))))
785
            for (status, group) in data.groupby(grouping):
Blaise Li's avatar
Blaise Li committed
786
787
                group.plot.scatter(
                    x=x_column, y=y_column, s=1, c=group2colour[status],
Blaise Li's avatar
Blaise Li committed
788
                    label=f"{status} ({len(group)})", ax=axis)
Blaise Li's avatar
Blaise Li committed
789
        else:
790
            # Apply a colour to a list of genes
Blaise Li's avatar
Blaise Li committed
791
792
            (status, colour) = group2colour
            row_indices = data.index.intersection(grouping)
793
794
795
            try:
                data.ix[row_indices].plot.scatter(
                    x=x_column, y=y_column, s=1, c=colour,
Blaise Li's avatar
Blaise Li committed
796
797
798
                    label=f"{status} ({len(row_indices)})", ax=axis)
            except ValueError as err:
                if str(err) != "scatter requires x column to be numeric":
799
800
                    print(data.ix[row_indices])
                    raise
Blaise Li's avatar
Blaise Li committed
801
                warnings.warn(f"Nothing to plot for {status}\n")
802
803
    if axes_style is None:
        axes_style = {"linewidth": 0.5, "color": "0.5", "linestyle": "dashed"}
Blaise Li's avatar
Blaise Li committed
804
805
806
807
    axis.axhline(y=0, **axes_style)
    axis.axvline(x=0, **axes_style)
    # axis.axhline(y=0, linewidth=0.5, color="0.5", linestyle="dashed")
    # axis.axvline(x=0, linewidth=0.5, color="0.5", linestyle="dashed")
Blaise Li's avatar
Blaise Li committed
808
809
810
811
812
813
    # Set axis limits
    if x_range is not None:
        (x_min, x_max) = x_range
        x_here_min = getattr(data, x_column).min()
        x_here_max = getattr(data, x_column).max()
        if (x_here_min < x_min) or (x_here_max > x_max):
Blaise Li's avatar
Blaise Li committed
814
815
816
817
            warnings.warn(
                f"Cannot plot {x_column} data "
                f"([{x_here_min}, {x_here_max}]) in requested range "
                f"([{x_min}, {x_max}])\n")
Blaise Li's avatar
Blaise Li committed
818
        else:
Blaise Li's avatar
Blaise Li committed
819
            axis.set_xlim(x_range)
Blaise Li's avatar
Blaise Li committed
820
821
822
823
824
    if y_range is not None:
        (y_min, y_max) = y_range
        y_here_min = getattr(data, y_column).min()
        y_here_max = getattr(data, y_column).max()
        if (y_here_min < y_min) or (y_here_max > y_max):
Blaise Li's avatar
Blaise Li committed
825
826
827
            warnings.warn(
                f"Cannot plot {y_column} data ([{y_here_min}, {y_here_max}]) "
                f"in requested range ([{y_min}, {y_max}])\n")
Blaise Li's avatar
Blaise Li committed
828
        else:
Blaise Li's avatar
Blaise Li committed
829
830
            axis.set_ylim(y_range)
    return axis
831

832

833
def plot_paired_scatters(data, columns=None, hue=None, log_log=False):
834
835
836
    """Alternative to pairplot, in order to avoid histograms on the diagonal."""
    if columns is None:
        columns = data.columns
Blaise Li's avatar
Blaise Li committed
837
838
    usetex = mpl.rcParams.get("text.usetex", False)
    if usetex:
839
840
        data.columns = [texscape(colname) for colname in data.columns]
        columns = [texscape(colname) for colname in columns]
Blaise Li's avatar
Blaise Li committed
841
842
843
    grid = sns.PairGrid(data, vars=columns, hue=hue, size=8)
    # grid.map_offdiag(plt.scatter, marker=".")
    grid.map_lower(plt.scatter, marker=".")
844
    if log_log:
Blaise Li's avatar
Blaise Li committed
845
846
847
848
        for axis in grid.axes.ravel():
            axis.set_xscale('log')
            axis.set_yscale('log')
    grid.add_legend()