diff --git a/README.md b/README.md index 292153229d9754bc7a688dc4e2fcd0abe3ae60c4..808d4500871c86dc24cc43ec04d6dd8ad6ce9312 100755 --- a/README.md +++ b/README.md @@ -146,7 +146,7 @@ Then run: ```bash # distant main.nf file -HOME="$ZEUSHOME/14985_loot/" ; nextflow run --modules ${MODULES} -hub pasteur gmillot/14985_loot -r v7.8.0 -c $HOME/nextflow.config ; HOME="/pasteur/appa/homes/gmillot/" +HOME="$ZEUSHOME/14985_loot/" ; nextflow run --modules ${MODULES} -hub pasteur gmillot/14985_loot -r v7.9.0 -c $HOME/nextflow.config ; HOME="/pasteur/appa/homes/gmillot/" # local main.nf file ($HOME changed to allow the creation of .nextflow into /$ZEUSHOME/14985_loot/. See NFX_HOME in the nextflow soft script) HOME="$ZEUSHOME/14985_loot/" ; nextflow run --modules ${MODULES} main.nf ; HOME="/pasteur/appa/homes/gmillot/" @@ -209,6 +209,11 @@ Gitlab developers ## WHAT'S NEW IN +### v7.10.0 + +1) Pointing to the singularity folder improved, new option "slurm_local" added better worflow report + + ### v7.9.0 1) Pipeline improved diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC1/test.fastq2_trim_fastqc.zip b/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC1/test.fastq2_trim_fastqc.zip deleted file mode 100644 index 6fb4f87f0d79e0d20bb61d5f90649b9518be8a6b..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC1/test.fastq2_trim_fastqc.zip and /dev/null differ diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_tot_zoom.png b/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_tot_zoom.png deleted file mode 100644 index 25004752892e269924e3d9180ae9b0343a2a00b6..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_tot_zoom.png and /dev/null differ diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_trace.txt b/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_trace.txt deleted file mode 100644 index c51b6ef8b9e8f3892d929ebed9e1cf8bf844523f..0000000000000000000000000000000000000000 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_trace.txt +++ /dev/null @@ -1,43 +0,0 @@ -task_id hash native_id name status exit submit duration realtime %cpu peak_rss peak_vmem rchar wchar -2 e7/424ee9 183 Nremove (1) CACHED 0 2022-02-22 15:19:14.426 4.8s 1.7s 46.8% 12 MB 70.6 MB 16.8 MB 14.5 MB -4 5c/9949b3 1152 trim (1) CACHED 0 2022-02-22 15:19:19.373 12.3s 9.1s 42.9% 62.8 MB 5.6 GB 16.4 MB 12 MB -7 1c/07097b 2902 kraken (1) CACHED 0 2022-02-22 15:19:31.771 385ms 36ms 72.1% 0 0 150.8 KB 216 B -6 71/e822e1 1618 fivep_filtering (1) CACHED 0 2022-02-22 20:10:48.915 3s 1.6s 26.0% 9.6 MB 61.4 MB 28 MB 15.3 MB -5 01/01ac2e 2923 fastqc1 (1) CACHED 0 2022-02-22 15:19:31.867 20.3s 17.6s 76.6% 196.5 MB 3.1 GB 13.9 MB 1.2 MB -8 74/0a40f9 2495 cutoff (1) CACHED 0 2022-02-22 20:10:52.062 1.7s 632ms 19.5% 9.6 MB 61.3 MB 7 MB 3.9 MB -10 d0/cf0991 8593 plot_fivep_filtering_stat (1) CACHED 0 2022-02-22 15:21:47.464 16.9s 15s 63.1% 203.2 MB 2.4 GB 19.1 MB 816.6 KB -9 7a/397d42 4382 fastqc2 (1) CACHED 0 2022-02-22 20:27:19.170 6.3s 5s 61.3% 150.4 MB 3.1 GB 12.3 MB 1.2 MB -11 91/8872f7 10025 bowtie2 (1) CACHED 0 2022-02-22 20:40:59.028 4.2s 3.3s 58.6% 111.6 MB 239.5 MB 35 MB 16.2 MB -12 9d/ad802f 271 motif CACHED 0 2022-02-22 15:19:14.758 57.3s 54.4s 45.6% 235.2 MB 2.4 GB 48.3 MB 39.7 MB -13 e7/0f8ca5 8799 plot_read_length (1) CACHED 0 2022-02-22 20:40:42.125 16.9s 15.6s 67.1% 307.6 MB 2.5 GB 19.7 MB 717.5 KB -17 70/4547a0 10486 Q20 (1) CACHED 0 2022-02-22 20:41:03.310 1.6s 375ms 17.2% 5.8 MB 42.8 MB 3.2 MB 2.2 MB -16 75/97cb47 10460 coverage (1) CACHED 0 2022-02-22 20:41:03.292 2s 809ms 15.7% 5.1 MB 44.6 MB 479.7 KB 91 KB -18 94/21967c 10518 multiQC CACHED 0 2022-02-22 20:41:03.330 8.5s 8s 40.2% 70.9 MB 81.4 MB 28.3 MB 2.3 MB -21 9b/c9d978 10927 no_soft_clipping (1) CACHED 0 2022-02-22 20:41:04.907 1.5s 301ms 15.5% 3.4 MB 38.4 MB 2.1 MB 1.5 MB -22 78/6a3590 11762 plot_coverage (1) CACHED 0 2022-02-22 20:41:07.165 15.5s 14.7s 62.2% 203.7 MB 2.4 GB 19.1 MB 464.3 KB -19 10/b42e02 11096 coverage (2) CACHED 0 2022-02-22 20:41:05.307 1.8s 741ms 16.5% 5 MB 44.6 MB 335 KB 82.4 KB -20 47/ef2076 10991 duplicate_removal (1) CACHED 0 2022-02-22 20:41:04.940 2.9s 1.8s 25.5% 7.4 MB 53 MB 12.8 MB 6.6 MB -23 1a/4b7041 12101 insertion (1) CACHED 0 2022-02-22 20:41:08.884 1.4s 482ms 19.7% 9.1 MB 65.6 MB 2.5 MB 1.7 MB -25 2b/d2a26d 13051 plot_coverage (2) CACHED 0 2022-02-22 20:41:22.625 14.8s 14.1s 64.5% 206.5 MB 2.4 GB 19.1 MB 455.9 KB -24 5e/1ca0b8 13773 coverage (3) CACHED 0 2022-02-22 20:41:37.445 1.5s 578ms 19.7% 5.1 MB 44.6 MB 310.2 KB 82.1 KB -27 f6/edb675 13925 seq_around_insertion (1) CACHED 0 2022-02-22 20:41:38.925 6.3s 5.6s 72.5% 156.5 MB 2.3 GB 17.9 MB 229.4 KB -26 9e/6e5dd6 14430 final_insertion_files (1) CACHED 0 2022-02-22 20:41:45.265 6.5s 5.8s 72.1% 173.5 MB 2.3 GB 18 MB 266 KB -28 55/2b9806 14883 plot_coverage (3) CACHED 0 2022-02-22 20:41:51.764 15s 14.3s 63.9% 206.4 MB 2.4 GB 19.1 MB 459.1 KB -29 ef/0f9c22 15606 extract_seq (1) CACHED 0 2022-02-22 20:42:06.756 1.7s 840ms 19.6% 5.8 MB 50.2 MB 9.1 MB 4.5 MB -34 93/91ac2a 15899 base_freq (1) CACHED 0 2022-02-22 20:42:08.578 1.7s 91ms 13.5% 0 0 279.6 KB 16.8 KB -33 9e/88bce3 15833 base_freq (4) CACHED 0 2022-02-22 20:42:08.530 1.7s 102ms 11.5% 0 0 281.8 KB 19 KB -32 dd/d59b9f 15868 base_freq (3) CACHED 0 2022-02-22 20:42:08.560 1.4s 103ms 12.1% 0 0 282.4 KB 19.7 KB -31 82/5592cb 15942 base_freq (2) CACHED 0 2022-02-22 20:42:08.599 1.5s 97ms 11.6% 0 0 281.6 KB 18.9 KB -30 ef/14c394 15793 random_insertion (1) CACHED 0 2022-02-22 20:42:08.476 13.1s 12.1s 61.6% 384.1 MB 2.7 GB 30.7 MB 1.2 MB -37 cb/7fbfc4 17176 logo (1) CACHED 0 2022-02-22 20:42:21.604 9.6s 8.8s 61.0% 202.1 MB 2.4 GB 14.6 MB 873.7 KB -40 53/74fd55 19631 global_logo CACHED 0 2022-02-22 20:43:00.113 9.7s 9s 63.6% 203.3 MB 2.4 GB 14.6 MB 850.3 KB -36 f6/b96d60 18408 logo (3) CACHED 0 2022-02-22 20:42:40.654 9.6s 8.9s 61.1% 204.1 MB 2.4 GB 14.6 MB 882.6 KB -35 54/42a221 19019 logo (4) CACHED 0 2022-02-22 20:42:50.233 9.9s 9.2s 59.9% 206.5 MB 2.4 GB 14.6 MB 1002.2 KB -38 13/c75c72 17797 logo (2) CACHED 0 2022-02-22 20:42:31.183 9.5s 8.8s 61.4% 229.3 MB 2.4 GB 14.6 MB 852.9 KB -41 b7/0ba328 20250 plot_insertion (1) CACHED 0 2022-02-22 20:43:09.794 36.7s 36s 74.6% 998.8 MB 3.2 GB 40.3 MB 9.7 MB -1 d1/d3302b 21389 init COMPLETED 0 2022-02-22 20:44:27.767 1.8s 12ms 6.2% 0 0 104.1 KB 669 B -3 6a/b7ac99 21417 report1 COMPLETED 0 2022-02-22 20:44:27.812 1.9s 18ms 6.0% 0 0 104.5 KB 683 B -14 3f/736771 21506 backup COMPLETED 0 2022-02-22 20:44:27.976 1.8s 13ms 6.1% 0 0 104.3 KB 518 B -39 cb/a45b2e 21670 report2 COMPLETED 0 2022-02-22 20:44:28.329 1.5s 26ms 8.5% 0 0 130.8 KB 1.3 KB -15 8d/8cfbe1 21537 workflowVersion COMPLETED 0 2022-02-22 20:44:28.024 2s 637ms 12.5% 4.8 MB 38.4 MB 135 KB 1.7 KB -42 41/e917b4 22159 print_report (1) COMPLETED 0 2022-02-22 20:44:30.332 10.5s 9.7s 54.9% 243.9 MB 1 TB 31.2 MB 11.6 MB diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC1/test.fastq2_trim_fastqc.html b/example_of_result/20220120_test_1645716342/fastQC1/test.fastq2_trim_fastqc.html similarity index 99% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC1/test.fastq2_trim_fastqc.html rename to example_of_result/20220120_test_1645716342/fastQC1/test.fastq2_trim_fastqc.html index 010cd0f8b56c5c28693a58b2144eade392010771..f8b3a5a0436c6ab1dee6fe35984e95cd3e54572c 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC1/test.fastq2_trim_fastqc.html +++ b/example_of_result/20220120_test_1645716342/fastQC1/test.fastq2_trim_fastqc.html @@ -184,4 +184,4 @@ padding-top: 0; margin-top: 0; } -</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Tue 22 Feb 2022<br/>test.fastq2_trim.fq</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M2">Per tile sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[PASS]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[WARNING]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[FAIL]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>test.fastq2_trim.fq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>8709</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>30-175</td></tr><tr><td>%GC</td><td>54</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M2"><img src="" alt="[OK]"/>Per tile sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[OK]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content" width="800" height="600"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[OK]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[WARN]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution" width="800" height="600"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[FAIL]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph" width="800" height="600"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>2628</td><td>30.17568033069239</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAT</td><td>1004</td><td>11.528304053278218</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG</td><td>139</td><td>1.59605006315306</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGGT</td><td>110</td><td>1.2630612010563786</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGCT</td><td>76</td><td>0.872660466184407</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTA</td><td>74</td><td>0.8496957170742909</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAGTTCAAGCGTT</td><td>74</td><td>0.8496957170742909</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGG</td><td>72</td><td>0.826730967964175</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTA</td><td>54</td><td>0.6200482259731313</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAGTTCAAGCGAT</td><td>38</td><td>0.4363302330922035</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGACGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>36</td><td>0.4133654839820875</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCG</td><td>35</td><td>0.40188310942702954</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGG</td><td>28</td><td>0.3215064875416236</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAT</td><td>26</td><td>0.29854173843150766</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGTCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>22</td><td>0.25261224021127565</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTGATTCAAGCGTT</td><td>21</td><td>0.24112986565621772</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATC</td><td>18</td><td>0.20668274199104375</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAGGCGTT</td><td>16</td><td>0.18371799288092777</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAG</td><td>15</td><td>0.17223561832586978</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTG</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGGGCGGCTTAATTCAAGCGTT</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGGTTAATTCAAGCGTT</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTG</td><td>13</td><td>0.14927086921575383</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGC</td><td>13</td><td>0.14927086921575383</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGG</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTGAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAG</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTA</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGGGGCGCGGCTTAATTCAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGGCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCACGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCGTAATTCAAGCGTT</td><td>11</td><td>0.12630612010563783</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGACGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAT</td><td>11</td><td>0.12630612010563783</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATA</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGC</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGGGGCTTAATTCAAGCGTT</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTGAATTCAAGCGTT</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCTGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATA</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAG</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCGAGCGTT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGGGGCTTAATTCAAGCGAT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTGATTCAAGCGAT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph" width="800" height="600"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a> (version 0.11.8)</div></body></html> \ No newline at end of file +</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Thu 24 Feb 2022<br/>test.fastq2_trim.fq</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M2">Per tile sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[PASS]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[WARNING]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[FAIL]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>test.fastq2_trim.fq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>8709</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>30-175</td></tr><tr><td>%GC</td><td>54</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M2"><img src="" alt="[OK]"/>Per tile sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[OK]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content" width="800" height="600"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[OK]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[WARN]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution" width="800" height="600"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[FAIL]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph" width="800" height="600"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>2628</td><td>30.17568033069239</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAT</td><td>1004</td><td>11.528304053278218</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG</td><td>139</td><td>1.59605006315306</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGGT</td><td>110</td><td>1.2630612010563786</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGCT</td><td>76</td><td>0.872660466184407</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTA</td><td>74</td><td>0.8496957170742909</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAGTTCAAGCGTT</td><td>74</td><td>0.8496957170742909</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGG</td><td>72</td><td>0.826730967964175</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTA</td><td>54</td><td>0.6200482259731313</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAGTTCAAGCGAT</td><td>38</td><td>0.4363302330922035</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGACGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>36</td><td>0.4133654839820875</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCG</td><td>35</td><td>0.40188310942702954</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGG</td><td>28</td><td>0.3215064875416236</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAT</td><td>26</td><td>0.29854173843150766</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGTCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>22</td><td>0.25261224021127565</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTGATTCAAGCGTT</td><td>21</td><td>0.24112986565621772</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATC</td><td>18</td><td>0.20668274199104375</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAGGCGTT</td><td>16</td><td>0.18371799288092777</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAG</td><td>15</td><td>0.17223561832586978</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTG</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGGGCGGCTTAATTCAAGCGTT</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGGTTAATTCAAGCGTT</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTG</td><td>13</td><td>0.14927086921575383</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGC</td><td>13</td><td>0.14927086921575383</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGG</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTGAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAG</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTA</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGGGGCGCGGCTTAATTCAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGGCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCACGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCGTAATTCAAGCGTT</td><td>11</td><td>0.12630612010563783</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGACGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAT</td><td>11</td><td>0.12630612010563783</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATA</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGC</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGGGGCTTAATTCAAGCGTT</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTGAATTCAAGCGTT</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCTGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATA</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAG</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCGAGCGTT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGGGGCTTAATTCAAGCGAT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTGATTCAAGCGAT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph" width="800" height="600"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a> (version 0.11.8)</div></body></html> \ No newline at end of file diff --git a/example_of_result/20220120_test_1645716342/fastQC1/test.fastq2_trim_fastqc.zip b/example_of_result/20220120_test_1645716342/fastQC1/test.fastq2_trim_fastqc.zip new file mode 100644 index 0000000000000000000000000000000000000000..bb571a3b93c06593bf8ae9553a5618e313ab6f37 Binary files /dev/null and b/example_of_result/20220120_test_1645716342/fastQC1/test.fastq2_trim_fastqc.zip differ diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC2/test.fastq2_5pAtccRm_fastqc.html b/example_of_result/20220120_test_1645716342/fastQC2/test.fastq2_5pAtccRm_fastqc.html similarity index 99% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC2/test.fastq2_5pAtccRm_fastqc.html rename to example_of_result/20220120_test_1645716342/fastQC2/test.fastq2_5pAtccRm_fastqc.html index fbd8005910937bcd44a240ce851e2fd4e7b04c27..1aabca1a085f40eba98481bff7c593aedfc8947b 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC2/test.fastq2_5pAtccRm_fastqc.html +++ b/example_of_result/20220120_test_1645716342/fastQC2/test.fastq2_5pAtccRm_fastqc.html @@ -184,4 +184,4 @@ padding-top: 0; margin-top: 0; } -</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Tue 22 Feb 2022<br/>test.fastq2_5pAtccRm.fq</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M2">Per tile sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[FAIL]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[WARNING]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[PASS]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>test.fastq2_5pAtccRm.fq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4391</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1-127</td></tr><tr><td>%GC</td><td>52</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M2"><img src="" alt="[OK]"/>Per tile sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[OK]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content" width="1020" height="600"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[FAIL]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[WARN]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution" width="800" height="600"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[OK]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph" width="800" height="600"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>TTAGACGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCCA</td><td>146</td><td>3.3249829196082894</td><td>No Hit</td></tr><tr><td>TT</td><td>92</td><td>2.0951947164654974</td><td>No Hit</td></tr><tr><td>TTATACAGCAAGCGCGCACCGACTCTGACAATCGGCATATCCGGTTCGCC</td><td>86</td><td>1.958551582782965</td><td>No Hit</td></tr><tr><td>TTAAAACCTCTTCAAATTTGCCGTGCAAATTTGGTAGGCCTGAGTGGACT</td><td>83</td><td>1.890230015941699</td><td>No Hit</td></tr><tr><td>TTA</td><td>74</td><td>1.6852653154179003</td><td>No Hit</td></tr><tr><td>TTGGCGAAGTAATCGCAACATCCGCATTAAAATCTAGCGAGGGCTTTACT</td><td>50</td><td>1.1386927806877705</td><td>No Hit</td></tr><tr><td>TTTACCAGCATTAAGGAACAGCTGCTTACGGTCGGCGTGGGTTGCCAGCA</td><td>32</td><td>0.7287633796401731</td><td>No Hit</td></tr><tr><td>ATCACAGGCGTAAACGTCGCCGTTGTGCTCAACAATCACCGAGCGCCCAC</td><td>30</td><td>0.6832156684126622</td><td>No Hit</td></tr><tr><td>TTAT</td><td>26</td><td>0.5921202459576406</td><td>No Hit</td></tr><tr><td>AT</td><td>23</td><td>0.5237986791163743</td><td>No Hit</td></tr><tr><td>GTACGATGTCACTGTGCACGACGATGGTCACTTCCAAGGCGCGGAGTGCC</td><td>19</td><td>0.43270325666135273</td><td>No Hit</td></tr><tr><td>ATCATCGTACGCAAGTGACCAACGCTGTCGATGGTGTCTTTGATGCCAAC</td><td>17</td><td>0.38715554543384195</td><td>No Hit</td></tr><tr><td>TTATCCAGCGCGAGCACTCGCTCTATCACCATTTCACGAGTTTCAAGGTT</td><td>16</td><td>0.36438168982008656</td><td>No Hit</td></tr><tr><td>ATGAGGAGCGAAGGCATGAAACCATATCAGCGCCAGTTTATTGAATTTGC</td><td>16</td><td>0.36438168982008656</td><td>No Hit</td></tr><tr><td>ATATAGAGCATTTTTGCCTCCTTTCGCGCCACAAGAAATTAACTGTAGCG</td><td>15</td><td>0.3416078342063311</td><td>No Hit</td></tr><tr><td>TTAGGCGACAACGTGATGGTTGCGCCGGTGTTCACTGAAGCGGGCGATGT</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTATCAATACTGCCTTCAATCAGTACATTGGTGGCAGGAACATCATTGAG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTATCCGAAGCGATGAGAGTTATCCCGTAACCGGGTCAGCCACTGCATAG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTACGCATAGTCATTTCTCCTTCTAAGAAGCGAGTAAGTACCTGCAAATC</td><td>13</td><td>0.2960601229788203</td><td>No Hit</td></tr><tr><td>TTACGCATAATCAATAGCTCCTGAAATCAGCGAGAATGTAAGACCTTCCA</td><td>12</td><td>0.2732862673650649</td><td>No Hit</td></tr><tr><td>TTAG</td><td>12</td><td>0.2732862673650649</td><td>No Hit</td></tr><tr><td>TTATCCGGCCAGGCGGGAACTGCAGTTCGGAGAGTGGCAGCGCAAAGACA</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>TTAACCTTCACCAGCGTGCGACCCTGGATCTGGTTATTAATGATGGCCTC</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>ATA</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>TTATCCAGATAGTTCGCCAGCTCTTCATTATTGAGTTTTTTCTTAAGCAC</td><td>9</td><td>0.20496470052379867</td><td>No Hit</td></tr><tr><td>TTAATTGGCATCAACACTGCAATCCTTGCGCCTGGCGGCGGGAGCGTCGG</td><td>9</td><td>0.20496470052379867</td><td>No Hit</td></tr><tr><td>TTATCCGGCGTGTAGGCATCGTCATGACGTAAACGGCGATCGGCGGTATA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>ATCTACCGCGAAGGTTTTACCGGACTGGATCTGGCTTCGTCTGCCGCACA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>TTAGGGATTAGCGTCTTAAGCTGGCGCGAGGACCAACGTATCAGCCAGGC</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>TTAA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>ATC</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>T</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTT</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTATGGCTACTGGCGGTGCGGGTCGCGTTTATCGTTACAACACCAACGGC</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTATCCGGCGTTGCAACCTGTGAGCTGTAGATCATATCGGTGATAGCCTG</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>ATG</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTAAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTC</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTAGCATGACTCACGCCGGGCGTCCAGTTTTTAGCGACGGGGCACCCGAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTAGTGCGCTGGTTAGCGTGCGGGATAACGCCTGTCAGGATTATCTCGCG</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTATCCATCAGGGAGTTACTGTAAGCGAGAATATATTTATCACTCAATGC</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>ATAACCAGCATCAGCATTGGCGCGTAGAGAAAGGTAAAGCCCAGCAGCAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTATGCACCGCATCGTGAGCATCTTTCCCCCAGGCGAACGGCCCGTGCTG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTATA</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>GT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTAAGCTGCACCACACCGATACCGAGCGTAGTGGCAATACCGAAGATAGT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTAAATACCGTCGGCGCGTTAATCGGCCCAACTGCGCCACCAACACCAAT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>ATCA</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTGATCGTCAAAACCAACATTGCGACCGACGGTGGCGATAGGCATCCGGG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTATATACCAGGCTTAGCTGGGGTTGCCCCTTAATCTCTGGAGAATAACG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTGAGTTTCAGCAGCCGCGGTTCCGCCAGCACTTTACTGAAACTGCCTTT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>ATCTACCGCGAGGTTAAGCTGCTGTTCAATCTGGGCGACGCTCAGTTCGG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph" width="945" height="600"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a> (version 0.11.8)</div></body></html> \ No newline at end of file +</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Thu 24 Feb 2022<br/>test.fastq2_5pAtccRm.fq</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M2">Per tile sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[FAIL]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[WARNING]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[PASS]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>test.fastq2_5pAtccRm.fq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4391</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1-127</td></tr><tr><td>%GC</td><td>52</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M2"><img src="" alt="[OK]"/>Per tile sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[OK]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content" width="1020" height="600"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[FAIL]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[WARN]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution" width="800" height="600"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[OK]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph" width="800" height="600"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>TTAGACGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCCA</td><td>146</td><td>3.3249829196082894</td><td>No Hit</td></tr><tr><td>TT</td><td>92</td><td>2.0951947164654974</td><td>No Hit</td></tr><tr><td>TTATACAGCAAGCGCGCACCGACTCTGACAATCGGCATATCCGGTTCGCC</td><td>86</td><td>1.958551582782965</td><td>No Hit</td></tr><tr><td>TTAAAACCTCTTCAAATTTGCCGTGCAAATTTGGTAGGCCTGAGTGGACT</td><td>83</td><td>1.890230015941699</td><td>No Hit</td></tr><tr><td>TTA</td><td>74</td><td>1.6852653154179003</td><td>No Hit</td></tr><tr><td>TTGGCGAAGTAATCGCAACATCCGCATTAAAATCTAGCGAGGGCTTTACT</td><td>50</td><td>1.1386927806877705</td><td>No Hit</td></tr><tr><td>TTTACCAGCATTAAGGAACAGCTGCTTACGGTCGGCGTGGGTTGCCAGCA</td><td>32</td><td>0.7287633796401731</td><td>No Hit</td></tr><tr><td>ATCACAGGCGTAAACGTCGCCGTTGTGCTCAACAATCACCGAGCGCCCAC</td><td>30</td><td>0.6832156684126622</td><td>No Hit</td></tr><tr><td>TTAT</td><td>26</td><td>0.5921202459576406</td><td>No Hit</td></tr><tr><td>AT</td><td>23</td><td>0.5237986791163743</td><td>No Hit</td></tr><tr><td>GTACGATGTCACTGTGCACGACGATGGTCACTTCCAAGGCGCGGAGTGCC</td><td>19</td><td>0.43270325666135273</td><td>No Hit</td></tr><tr><td>ATCATCGTACGCAAGTGACCAACGCTGTCGATGGTGTCTTTGATGCCAAC</td><td>17</td><td>0.38715554543384195</td><td>No Hit</td></tr><tr><td>TTATCCAGCGCGAGCACTCGCTCTATCACCATTTCACGAGTTTCAAGGTT</td><td>16</td><td>0.36438168982008656</td><td>No Hit</td></tr><tr><td>ATGAGGAGCGAAGGCATGAAACCATATCAGCGCCAGTTTATTGAATTTGC</td><td>16</td><td>0.36438168982008656</td><td>No Hit</td></tr><tr><td>ATATAGAGCATTTTTGCCTCCTTTCGCGCCACAAGAAATTAACTGTAGCG</td><td>15</td><td>0.3416078342063311</td><td>No Hit</td></tr><tr><td>TTAGGCGACAACGTGATGGTTGCGCCGGTGTTCACTGAAGCGGGCGATGT</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTATCAATACTGCCTTCAATCAGTACATTGGTGGCAGGAACATCATTGAG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTATCCGAAGCGATGAGAGTTATCCCGTAACCGGGTCAGCCACTGCATAG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTACGCATAGTCATTTCTCCTTCTAAGAAGCGAGTAAGTACCTGCAAATC</td><td>13</td><td>0.2960601229788203</td><td>No Hit</td></tr><tr><td>TTACGCATAATCAATAGCTCCTGAAATCAGCGAGAATGTAAGACCTTCCA</td><td>12</td><td>0.2732862673650649</td><td>No Hit</td></tr><tr><td>TTAG</td><td>12</td><td>0.2732862673650649</td><td>No Hit</td></tr><tr><td>TTATCCGGCCAGGCGGGAACTGCAGTTCGGAGAGTGGCAGCGCAAAGACA</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>TTAACCTTCACCAGCGTGCGACCCTGGATCTGGTTATTAATGATGGCCTC</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>ATA</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>TTATCCAGATAGTTCGCCAGCTCTTCATTATTGAGTTTTTTCTTAAGCAC</td><td>9</td><td>0.20496470052379867</td><td>No Hit</td></tr><tr><td>TTAATTGGCATCAACACTGCAATCCTTGCGCCTGGCGGCGGGAGCGTCGG</td><td>9</td><td>0.20496470052379867</td><td>No Hit</td></tr><tr><td>TTATCCGGCGTGTAGGCATCGTCATGACGTAAACGGCGATCGGCGGTATA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>ATCTACCGCGAAGGTTTTACCGGACTGGATCTGGCTTCGTCTGCCGCACA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>TTAGGGATTAGCGTCTTAAGCTGGCGCGAGGACCAACGTATCAGCCAGGC</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>TTAA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>ATC</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>T</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTT</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTATGGCTACTGGCGGTGCGGGTCGCGTTTATCGTTACAACACCAACGGC</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTATCCGGCGTTGCAACCTGTGAGCTGTAGATCATATCGGTGATAGCCTG</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>ATG</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTAAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTC</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTAGCATGACTCACGCCGGGCGTCCAGTTTTTAGCGACGGGGCACCCGAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTAGTGCGCTGGTTAGCGTGCGGGATAACGCCTGTCAGGATTATCTCGCG</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTATCCATCAGGGAGTTACTGTAAGCGAGAATATATTTATCACTCAATGC</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>ATAACCAGCATCAGCATTGGCGCGTAGAGAAAGGTAAAGCCCAGCAGCAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTATGCACCGCATCGTGAGCATCTTTCCCCCAGGCGAACGGCCCGTGCTG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTATA</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>GT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTAAGCTGCACCACACCGATACCGAGCGTAGTGGCAATACCGAAGATAGT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTAAATACCGTCGGCGCGTTAATCGGCCCAACTGCGCCACCAACACCAAT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>ATCA</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTGATCGTCAAAACCAACATTGCGACCGACGGTGGCGATAGGCATCCGGG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTATATACCAGGCTTAGCTGGGGTTGCCCCTTAATCTCTGGAGAATAACG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTGAGTTTCAGCAGCCGCGGTTCCGCCAGCACTTTACTGAAACTGCCTTT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>ATCTACCGCGAGGTTAAGCTGCTGTTCAATCTGGGCGACGCTCAGTTCGG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph" width="945" height="600"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a> (version 0.11.8)</div></body></html> \ No newline at end of file diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC2/test.fastq2_5pAtccRm_fastqc.zip b/example_of_result/20220120_test_1645716342/fastQC2/test.fastq2_5pAtccRm_fastqc.zip similarity index 50% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC2/test.fastq2_5pAtccRm_fastqc.zip rename to example_of_result/20220120_test_1645716342/fastQC2/test.fastq2_5pAtccRm_fastqc.zip index 7963e70312e143cd9aab21fb21c166a18a63a527..2f6d3be2ad532dfeed62a79b80b9aecc7059a76a 100644 Binary files a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/fastQC2/test.fastq2_5pAtccRm_fastqc.zip and b/example_of_result/20220120_test_1645716342/fastQC2/test.fastq2_5pAtccRm_fastqc.zip differ diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/global_logo_test.fastq2.png b/example_of_result/20220120_test_1645716342/figures/global_logo_test.fastq2.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/global_logo_test.fastq2.png rename to example_of_result/20220120_test_1645716342/figures/global_logo_test.fastq2.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/logo_test.fastq2_LAGGING_0.png b/example_of_result/20220120_test_1645716342/figures/logo_test.fastq2_LAGGING_0.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/logo_test.fastq2_LAGGING_0.png rename to example_of_result/20220120_test_1645716342/figures/logo_test.fastq2_LAGGING_0.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/logo_test.fastq2_LAGGING_16.png b/example_of_result/20220120_test_1645716342/figures/logo_test.fastq2_LAGGING_16.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/logo_test.fastq2_LAGGING_16.png rename to example_of_result/20220120_test_1645716342/figures/logo_test.fastq2_LAGGING_16.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/logo_test.fastq2_LEADING_0.png b/example_of_result/20220120_test_1645716342/figures/logo_test.fastq2_LEADING_0.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/logo_test.fastq2_LEADING_0.png rename to example_of_result/20220120_test_1645716342/figures/logo_test.fastq2_LEADING_0.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/logo_test.fastq2_LEADING_16.png b/example_of_result/20220120_test_1645716342/figures/logo_test.fastq2_LEADING_16.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/logo_test.fastq2_LEADING_16.png rename to example_of_result/20220120_test_1645716342/figures/logo_test.fastq2_LEADING_16.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_fivep_filtering_stat.png b/example_of_result/20220120_test_1645716342/figures/plot_fivep_filtering_stat.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_fivep_filtering_stat.png rename to example_of_result/20220120_test_1645716342/figures/plot_fivep_filtering_stat.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_fork.png b/example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_fork.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_fork.png rename to example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_fork.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_fork_and_strand.png b/example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_fork_and_strand.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_fork_and_strand.png rename to example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_fork_and_strand.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_fork_and_strand_prop.png b/example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_fork_and_strand_prop.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_fork_and_strand_prop.png rename to example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_fork_and_strand_prop.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_fork_prop.png b/example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_fork_prop.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_fork_prop.png rename to example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_fork_prop.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_strand.png b/example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_strand.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_strand.png rename to example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_strand.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_strand_prop.png b/example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_strand_prop.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_motif_insertion_per_strand_prop.png rename to example_of_result/20220120_test_1645716342/figures/plot_motif_insertion_per_strand_prop.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_read_length_cutoff.png b/example_of_result/20220120_test_1645716342/figures/plot_read_length_cutoff.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_read_length_cutoff.png rename to example_of_result/20220120_test_1645716342/figures/plot_read_length_cutoff.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_read_length_fivep_filtering.png b/example_of_result/20220120_test_1645716342/figures/plot_read_length_fivep_filtering.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_read_length_fivep_filtering.png rename to example_of_result/20220120_test_1645716342/figures/plot_read_length_fivep_filtering.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_read_length_fivep_filtering_cut.png b/example_of_result/20220120_test_1645716342/figures/plot_read_length_fivep_filtering_cut.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_read_length_fivep_filtering_cut.png rename to example_of_result/20220120_test_1645716342/figures/plot_read_length_fivep_filtering_cut.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_read_length_ini.png b/example_of_result/20220120_test_1645716342/figures/plot_read_length_ini.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_read_length_ini.png rename to example_of_result/20220120_test_1645716342/figures/plot_read_length_ini.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_bowtie2_mini.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_bowtie2_mini.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_bowtie2_mini.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_bowtie2_mini.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_bin_50000.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_bin_50000.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_bin_50000.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_bin_50000.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_forward.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_forward.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_forward.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_forward.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_reverse.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_reverse.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_reverse.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_reverse.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_tot.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_tot.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_hist_tot.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_tot.png diff --git a/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_tot_zoom.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_tot_zoom.png new file mode 100644 index 0000000000000000000000000000000000000000..d1779fde6c4f0befb597515c9770c0df6618050f Binary files /dev/null and b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_hist_tot_zoom.png differ diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_raw.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_raw.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_insertion_raw.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_insertion_raw.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_q20_mini.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_q20_mini.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_q20_mini.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_q20_mini.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_q20_nodup_mini.png b/example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_q20_nodup_mini.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/figures/plot_test.fastq2_q20_nodup_mini.png rename to example_of_result/20220120_test_1645716342/figures/plot_test.fastq2_q20_nodup_mini.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/motif_sites.pos b/example_of_result/20220120_test_1645716342/files/motif_sites.pos similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/motif_sites.pos rename to example_of_result/20220120_test_1645716342/files/motif_sites.pos diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/obs_rd_insertions.freq b/example_of_result/20220120_test_1645716342/files/obs_rd_insertions.freq similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/obs_rd_insertions.freq rename to example_of_result/20220120_test_1645716342/files/obs_rd_insertions.freq diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/obs_rd_insertions.pos b/example_of_result/20220120_test_1645716342/files/obs_rd_insertions.pos similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/obs_rd_insertions.pos rename to example_of_result/20220120_test_1645716342/files/obs_rd_insertions.pos diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2.pos b/example_of_result/20220120_test_1645716342/files/test.fastq2.pos similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2.pos rename to example_of_result/20220120_test_1645716342/files/test.fastq2.pos diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_5pAtccRm.stat b/example_of_result/20220120_test_1645716342/files/test.fastq2_5pAtccRm.stat similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_5pAtccRm.stat rename to example_of_result/20220120_test_1645716342/files/test.fastq2_5pAtccRm.stat diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_5pAttc.length b/example_of_result/20220120_test_1645716342/files/test.fastq2_5pAttc.length similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_5pAttc.length rename to example_of_result/20220120_test_1645716342/files/test.fastq2_5pAttc.length diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_5pAttc_1-51.stat b/example_of_result/20220120_test_1645716342/files/test.fastq2_5pAttc_1-51.stat similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_5pAttc_1-51.stat rename to example_of_result/20220120_test_1645716342/files/test.fastq2_5pAttc_1-51.stat diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LAGGING_0.seq b/example_of_result/20220120_test_1645716342/files/test.fastq2_LAGGING_0.seq similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LAGGING_0.seq rename to example_of_result/20220120_test_1645716342/files/test.fastq2_LAGGING_0.seq diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LAGGING_0.stat b/example_of_result/20220120_test_1645716342/files/test.fastq2_LAGGING_0.stat similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LAGGING_0.stat rename to example_of_result/20220120_test_1645716342/files/test.fastq2_LAGGING_0.stat diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LAGGING_16.seq b/example_of_result/20220120_test_1645716342/files/test.fastq2_LAGGING_16.seq similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LAGGING_16.seq rename to example_of_result/20220120_test_1645716342/files/test.fastq2_LAGGING_16.seq diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LAGGING_16.stat b/example_of_result/20220120_test_1645716342/files/test.fastq2_LAGGING_16.stat similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LAGGING_16.stat rename to example_of_result/20220120_test_1645716342/files/test.fastq2_LAGGING_16.stat diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LEADING_0.seq b/example_of_result/20220120_test_1645716342/files/test.fastq2_LEADING_0.seq similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LEADING_0.seq rename to example_of_result/20220120_test_1645716342/files/test.fastq2_LEADING_0.seq diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LEADING_0.stat b/example_of_result/20220120_test_1645716342/files/test.fastq2_LEADING_0.stat similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LEADING_0.stat rename to example_of_result/20220120_test_1645716342/files/test.fastq2_LEADING_0.stat diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LEADING_16.seq b/example_of_result/20220120_test_1645716342/files/test.fastq2_LEADING_16.seq similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LEADING_16.seq rename to example_of_result/20220120_test_1645716342/files/test.fastq2_LEADING_16.seq diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LEADING_16.stat b/example_of_result/20220120_test_1645716342/files/test.fastq2_LEADING_16.stat similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_LEADING_16.stat rename to example_of_result/20220120_test_1645716342/files/test.fastq2_LEADING_16.stat diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_annot.pos b/example_of_result/20220120_test_1645716342/files/test.fastq2_annot.pos similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_annot.pos rename to example_of_result/20220120_test_1645716342/files/test.fastq2_annot.pos diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_annot_insertion.freq b/example_of_result/20220120_test_1645716342/files/test.fastq2_annot_insertion.freq similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_annot_insertion.freq rename to example_of_result/20220120_test_1645716342/files/test.fastq2_annot_insertion.freq diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_around_insertion.bed b/example_of_result/20220120_test_1645716342/files/test.fastq2_around_insertion.bed similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_around_insertion.bed rename to example_of_result/20220120_test_1645716342/files/test.fastq2_around_insertion.bed diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_around_insertion.fasta b/example_of_result/20220120_test_1645716342/files/test.fastq2_around_insertion.fasta similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_around_insertion.fasta rename to example_of_result/20220120_test_1645716342/files/test.fastq2_around_insertion.fasta diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_bowtie2_mini.cov b/example_of_result/20220120_test_1645716342/files/test.fastq2_bowtie2_mini.cov similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_bowtie2_mini.cov rename to example_of_result/20220120_test_1645716342/files/test.fastq2_bowtie2_mini.cov diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_ini.length b/example_of_result/20220120_test_1645716342/files/test.fastq2_ini.length similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_ini.length rename to example_of_result/20220120_test_1645716342/files/test.fastq2_ini.length diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_q20_mini.cov b/example_of_result/20220120_test_1645716342/files/test.fastq2_q20_mini.cov similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_q20_mini.cov rename to example_of_result/20220120_test_1645716342/files/test.fastq2_q20_mini.cov diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_q20_nodup_mini.cov b/example_of_result/20220120_test_1645716342/files/test.fastq2_q20_nodup_mini.cov similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/files/test.fastq2_q20_nodup_mini.cov rename to example_of_result/20220120_test_1645716342/files/test.fastq2_q20_nodup_mini.cov diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/report.html b/example_of_result/20220120_test_1645716342/report.html similarity index 98% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/report.html rename to example_of_result/20220120_test_1645716342/report.html index 1f0f59e02c97edc2ba4be85c45a7fecc2cc449cf..37f48fd363494b5d21c6df20f2cd4b97d92ac7f6 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/report.html +++ b/example_of_result/20220120_test_1645716342/report.html @@ -1746,7 +1746,7 @@ div.tocify { </div> <div id="trim-of-the-read-for-the-primer-parts" class="section level3"> <h3>Trim of the read for the primer parts</h3> -<p>AlienTrimmer main options: -k 10 -l 30 -m 5 -q 20 -p 0 (Phred+33) / 26 alien sequence(s) / 810 k-mers (k=10) <br />[00:02] 8,932 reads processed: 4,767 trimmed 223 removed <br /><br />AlienTrimmer also removes reads according to quality criteria</p> +<p>AlienTrimmer main options: -k 10 -l 30 -m 5 -q 20 -p 0 (Phred+33) / 26 alien sequence(s) / 810 k-mers (k=10) <br />[00:00] 8,932 reads processed: 4,767 trimmed 223 removed <br /><br />AlienTrimmer also removes reads according to quality criteria</p> <p>Number of sequence before trimming: 8,932</p> <p>Number of sequences after trimming: 8,709</p> <p>Ratio: 0.98</p> @@ -2789,7 +2789,7 @@ N </div> <div id="bowtie2-alignment" class="section level3"> <h3>Bowtie2 alignment</h3> -<p>Time loading reference: 00:00:00 <br />Time loading forward index: 00:00:00 <br />Time loading mirror index: 00:00:00 <br />Multiseed full-index search: 00:00:00 <br />3742 reads; of these: <br /> 3742 (100.00%) were unpaired; of these: <br /> 1240 (33.14%) aligned 0 times <br /> 2308 (61.68%) aligned exactly 1 time <br /> 194 (5.18%) aligned >1 times <br />66.86% overall alignment rate <br />Time searching: 00:00:00 <br />Overall time: 00:00:00</p> +<p>Time loading reference: 00:00:00 <br />Time loading forward index: 00:00:00 <br />Time loading mirror index: 00:00:00 <br />Multiseed full-index search: 00:00:01 <br />3742 reads; of these: <br /> 3742 (100.00%) were unpaired; of these: <br /> 1240 (33.14%) aligned 0 times <br /> 2308 (61.68%) aligned exactly 1 time <br /> 194 (5.18%) aligned >1 times <br />66.86% overall alignment rate <br />Time searching: 00:00:01 <br />Overall time: 00:00:01</p> <p><br /><br /></p> </div> <div id="multiqc" class="section level3"> @@ -2855,29 +2855,29 @@ N <p><br /><br /></p> </center> <div class="figure"> -<img src="" width="600" alt /> -<p class="caption">Figure 9: test.fastq2_LEADING_0</p> +<img src="" width="600" alt /> +<p class="caption">Figure 9: test.fastq2_LAGGING_0</p> </div> </center> <p><br /><br /></p> </center> <div class="figure"> -<img src="" width="600" alt /> -<p class="caption">Figure 10: test.fastq2_LAGGING_16</p> +<img src="" width="600" alt /> +<p class="caption">Figure 10: test.fastq2_LEADING_0</p> </div> </center> <p><br /><br /></p> </center> <div class="figure"> -<img src="" width="600" alt /> -<p class="caption">Figure 11: test.fastq2_LAGGING_0</p> +<img src="" width="600" alt /> +<p class="caption">Figure 11: test.fastq2_LEADING_16</p> </div> </center> <p><br /><br /></p> </center> <div class="figure"> -<img src="" width="600" alt /> -<p class="caption">Figure 12: test.fastq2_LEADING_16</p> +<img src="" width="600" alt /> +<p class="caption">Figure 12: test.fastq2_LAGGING_16</p> </div> </center> <p><br /><br /></p> @@ -3390,7 +3390,7 @@ Sum </center> <p><br /><br /></p> <div class="figure"> -<img src="" width="600" alt /> +<img src="" width="600" alt /> <p class="caption">Figure 21: Insertion site usage zoomed for sites with few insertions (total insertions).</p> </div> </center> @@ -3444,23 +3444,127 @@ Sum <div id="backup" class="section level3"> <h3>Backup</h3> <p>See the <a href="./reports">reports</a> folder for all the details of the analysis, including the parameters used in the .config file</p> -<p><br /><br /></p> <p>Full .nextflow.log is in: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br />The one in the <a href="./reports">reports</a> folder is not complete (miss the end)</p> <p><br /><br /></p> </div> <div id="workflow-version" class="section level3"> <h3>Workflow Version</h3> -<p>Project (empty means no .git folder where the main.nf file is present): loot <a href="https://gitlab.pasteur.fr/gmillot/14985_loot" class="uri">https://gitlab.pasteur.fr/gmillot/14985_loot</a> (fetch) <br />Git info (empty means no .git folder where the main.nf file is present): v7.7.0-dirty <br />Cmd line: nextflow run main.nf -resume <br />execution mode: local <br />Manifest’s pipeline version: null <br />result path: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_res_CL14985_B4985_4_1645559065 <br />nextflow version: 21.04.2</p> +<div id="general" class="section level4"> +<h4>GENERAL</h4> +<table> +<colgroup> +<col width="50%"></col> +<col width="50%"></col> +</colgroup> +<thead> +<tr class="header"> +<th align="left">Variable</th> +<th align="left">Value</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">Project<br />(empty means no .git folder where the main.nf file is present)</td> +<td align="left">loot <a href="https://gitlab.pasteur.fr/gmillot/14985_loot" class="uri">https://gitlab.pasteur.fr/gmillot/14985_loot</a> (fetch)</td> +</tr> +<tr class="even"> +<td align="left">Git info<br />(empty means no .git folder where the main.nf file is present)</td> +<td align="left">v7.9.0-dirty</td> +</tr> +<tr class="odd"> +<td align="left">Cmd line</td> +<td align="left">nextflow run main.nf -resume</td> +</tr> +<tr class="even"> +<td align="left">execution mode</td> +<td align="left">local</td> +</tr> +<tr class="odd"> +<td align="left">Manifest’s pipeline version</td> +<td align="left">null</td> +</tr> +<tr class="even"> +<td align="left">result path</td> +<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1645716342</td> +</tr> +<tr class="odd"> +<td align="left">nextflow version</td> +<td align="left">21.04.2</td> +</tr> +</tbody> +</table> <p><br /><br /></p> -<p>IMPLICIT VARIABLES:</p> -<p>launchDir (directory where the workflow is run): /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br /> projectDir (directory where the main.nf script is located): /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br /> workDir (directory where tasks temporary files are created): /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/work</p> +</div> +<div id="implicit-variables" class="section level4"> +<h4>IMPLICIT VARIABLES</h4> +<table> +<colgroup> +<col width="33%"></col> +<col width="33%"></col> +<col width="33%"></col> +</colgroup> +<thead> +<tr class="header"> +<th align="left">Name</th> +<th align="left">Description</th> +<th align="left">Value</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">launchDir</td> +<td align="left">Directory where the workflow is run</td> +<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot</td> +</tr> +<tr class="even"> +<td align="left">nprojectDir</td> +<td align="left">Directory where the main.nf script is located</td> +<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot</td> +</tr> +<tr class="odd"> +<td align="left">workDir</td> +<td align="left">Directory where tasks temporary files are created</td> +<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/work</td> +</tr> +</tbody> +</table> <p><br /><br /></p> -<p>USER VARIABLES:<br /></p> -<p>out_path: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_res_CL14985_B4985_4_1645559065<br /> in_path: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/dataset</p> +</div> +<div id="user-variables" class="section level4"> +<h4>USER VARIABLES</h4> +<table> +<colgroup> +<col width="33%"></col> +<col width="33%"></col> +<col width="33%"></col> +</colgroup> +<thead> +<tr class="header"> +<th align="left">Name</th> +<th align="left">Description</th> +<th align="left">Value</th> +</tr> +</thead> +<tbody> +<tr class="odd"> +<td align="left">out_path</td> +<td align="left">output folder path</td> +<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1645716342</td> +</tr> +<tr class="even"> +<td align="left">in_path</td> +<td align="left">input folder path</td> +<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/dataset</td> +</tr> +</tbody> +</table> <p><br /><br /></p> -<p>WORKFLOW DIAGRAM:<br /></p> +</div> +<div id="workflow-diagram" class="section level4"> +<h4>WORKFLOW DIAGRAM</h4> <p>See the <a href="./reports/nf_dag.png">nf_dag.png</a> file</p> </div> +</div> diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/base_freq_report.txt b/example_of_result/20220120_test_1645716342/reports/base_freq_report.txt similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/base_freq_report.txt rename to example_of_result/20220120_test_1645716342/reports/base_freq_report.txt diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/bowtie2_report.txt b/example_of_result/20220120_test_1645716342/reports/bowtie2_report.txt similarity index 97% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/bowtie2_report.txt rename to example_of_result/20220120_test_1645716342/reports/bowtie2_report.txt index 0245b07296076d62dfefca7cc0e067bb30b7a793..ba99390478fe49c60c9621ca5eb71f9cbfb0440e 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/bowtie2_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/bowtie2_report.txt @@ -67,7 +67,7 @@ Getting block 1 of 1 No samples; assembling all-inclusive block Sorting block of length 4641652 for bucket 1 (Using difference cover) - Sorting block time: 00:00:00 + Sorting block time: 00:00:01 Returning block of 4641653 for bucket 1 Exited Ebwt loop fchr[A]: 0 @@ -150,7 +150,7 @@ Getting block 1 of 1 No samples; assembling all-inclusive block Sorting block of length 4641652 for bucket 1 (Using difference cover) - Sorting block time: 00:00:00 + Sorting block time: 00:00:01 Returning block of 4641653 for bucket 1 Exited Ebwt loop fchr[A]: 0 @@ -189,7 +189,7 @@ Headers: ebwtTotSz: 1547264 color: 0 reverse: 1 -Total time for backward call to driver() for mirror index: 00:00:00 +Total time for backward call to driver() for mirror index: 00:00:01 <br /><br /> @@ -200,15 +200,15 @@ Total time for backward call to driver() for mirror index: 00:00:00 Time loading reference: 00:00:00 Time loading forward index: 00:00:00 Time loading mirror index: 00:00:00 -Multiseed full-index search: 00:00:00 +Multiseed full-index search: 00:00:01 3742 reads; of these: 3742 (100.00%) were unpaired; of these: 1240 (33.14%) aligned 0 times 2308 (61.68%) aligned exactly 1 time 194 (5.18%) aligned >1 times 66.86% overall alignment rate -Time searching: 00:00:00 -Overall time: 00:00:00 +Time searching: 00:00:01 +Overall time: 00:00:01 <br /><br /> diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/cov_report.txt b/example_of_result/20220120_test_1645716342/reports/cov_report.txt similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/cov_report.txt rename to example_of_result/20220120_test_1645716342/reports/cov_report.txt diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/dup_report.txt b/example_of_result/20220120_test_1645716342/reports/dup_report.txt similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/dup_report.txt rename to example_of_result/20220120_test_1645716342/reports/dup_report.txt diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/extract_seq_report.txt b/example_of_result/20220120_test_1645716342/reports/extract_seq_report.txt similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/extract_seq_report.txt rename to example_of_result/20220120_test_1645716342/reports/extract_seq_report.txt diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/final_insertion_files_report.txt b/example_of_result/20220120_test_1645716342/reports/final_insertion_files_report.txt similarity index 97% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/final_insertion_files_report.txt rename to example_of_result/20220120_test_1645716342/reports/final_insertion_files_report.txt index d502970f964254969d17f3338aef4f4cc43fb5ea..d8cc9f99f1eb66969ffddf7ca35d5989905c5b3e 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/final_insertion_files_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/final_insertion_files_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:41:51 +2022-02-24 16:27:10 @@ -46,7 +46,7 @@ NUMBER OF OBS POSITIONS: -END TIME: 2022-02-22 20:41:51 +END TIME: 2022-02-24 16:27:10 @@ -132,7 +132,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:41:51 +TIME: 2022-02-24 16:27:10 TOTAL TIME LAPSE: 0S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/global_logo_report.txt b/example_of_result/20220120_test_1645716342/reports/global_logo_report.txt similarity index 93% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/global_logo_report.txt rename to example_of_result/20220120_test_1645716342/reports/global_logo_report.txt index 710a71143560abf47a787ef2fc8bfde250af6fbc..3fc7a3a5e3f43736e37ac3f8792f6653d45b3e3e 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/global_logo_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/global_logo_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:43:05 +2022-02-24 16:29:20 @@ -31,7 +31,7 @@ -END TIME: 2022-02-22 20:43:09 +END TIME: 2022-02-24 16:29:24 @@ -64,8 +64,8 @@ erase.objects TRUE erase.graphs TRUE script global_logo run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/global_logo.R,--args,test.fastq2_LAGGING_0.stat test.fastq2_LEADING_16.stat test.fastq2_LAGGING_16.stat test.fastq2_LEADING_0.stat,test.fastq2,20,https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R,global_logo_report.txt -freq test.fastq2_LAGGING_0.stat test.fastq2_LEADING_16.stat test.fastq2_LAGGING_16.stat test.fastq2_LEADING_0.stat +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/global_logo.R,--args,test.fastq2_LAGGING_0.stat test.fastq2_LEADING_0.stat test.fastq2_LEADING_16.stat test.fastq2_LAGGING_16.stat,test.fastq2,20,https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R,global_logo_report.txt +freq test.fastq2_LAGGING_0.stat test.fastq2_LEADING_0.stat test.fastq2_LEADING_16.stat test.fastq2_LAGGING_16.stat file_name test.fastq2 insertion_dist 20 cute https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R @@ -115,7 +115,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:43:09 +TIME: 2022-02-24 16:29:24 TOTAL TIME LAPSE: 4S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/insertion_report.txt b/example_of_result/20220120_test_1645716342/reports/insertion_report.txt similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/insertion_report.txt rename to example_of_result/20220120_test_1645716342/reports/insertion_report.txt diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/logo_report.txt b/example_of_result/20220120_test_1645716342/reports/logo_report.txt similarity index 89% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/logo_report.txt rename to example_of_result/20220120_test_1645716342/reports/logo_report.txt index 6798ebbaedde1576f49ed9fc49526ba654c85ad8..7dbcd58e42f070debe61ebaacd723b47496e4ce8 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/logo_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/logo_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:42:45 +2022-02-24 16:28:43 @@ -31,7 +31,7 @@ -END TIME: 2022-02-22 20:42:49 +END TIME: 2022-02-24 16:28:47 @@ -64,8 +64,8 @@ erase.objects TRUE erase.graphs TRUE script logo run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/logo.R,--args,test.fastq2_LAGGING_16.stat,20,https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R,logo_report.txt -freq test.fastq2_LAGGING_16.stat +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/logo.R,--args,test.fastq2_LAGGING_0.stat,20,https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R,logo_report.txt +freq test.fastq2_LAGGING_0.stat insertion_dist 20 cute https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R log logo_report.txt @@ -114,7 +114,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:42:49 +TIME: 2022-02-24 16:28:47 TOTAL TIME LAPSE: 4S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/motif_report.txt b/example_of_result/20220120_test_1645716342/reports/motif_report.txt similarity index 96% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/motif_report.txt rename to example_of_result/20220120_test_1645716342/reports/motif_report.txt index a907b0f9f1a703c481291468ced131fd2b98dad4..9795dcbe11a7a7830ef6410690d14caea3886967 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/motif_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/motif_report.txt @@ -12,7 +12,7 @@ -2022-02-22 15:19:47 +2022-02-24 16:26:56 @@ -78,12 +78,12 @@ fork and orient -END TIME: 2022-02-22 15:20:10 +END TIME: 2022-02-24 16:27:04 -TOTAL TIME LAPSE: 23S +TOTAL TIME LAPSE: 8S @@ -168,9 +168,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 15:20:10 +TIME: 2022-02-24 16:27:04 -TOTAL TIME LAPSE: 23S +TOTAL TIME LAPSE: 8S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/multiqc_report.html b/example_of_result/20220120_test_1645716342/reports/multiqc_report.html similarity index 99% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/multiqc_report.html rename to example_of_result/20220120_test_1645716342/reports/multiqc_report.html index efb976b9958c56eb7e00e1897b274b0e3024ebe1..7173cfe9cf388af573495bdafeda31184b366782 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/multiqc_report.html +++ b/example_of_result/20220120_test_1645716342/reports/multiqc_report.html @@ -6259,12 +6259,12 @@ function findPos(obj) { <div id="analysis_dirs_wrapper"> <p>Report - generated on 2022-02-22, 20:41 + generated on 2022-02-24, 16:26 based on data in: - <code class="mqc_analysis_path">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/work/94/21967ce4a85b02def4eb06915f6f80</code></p> + <code class="mqc_analysis_path">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/work/93/1153d4999b615ba1588b10ad731538</code></p> </div> diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nextflow.config b/example_of_result/20220120_test_1645716342/reports/nextflow.config similarity index 92% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nextflow.config rename to example_of_result/20220120_test_1645716342/reports/nextflow.config index 18806d4e654673e56512a9249e8a54064d699916..1354d0397f9f90bd27ca1086919b398ceb67ee9d 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nextflow.config +++ b/example_of_result/20220120_test_1645716342/reports/nextflow.config @@ -73,14 +73,14 @@ env { //////// variables that will be used below (and potentially in the main.nf file) //// must be also exported -system_exec = 'local' // the system that runs the workflow. Either 'local' or 'slurm' +system_exec = 'local' // the system that runs the workflow. Either 'local' or 'slurm' or 'slurm_local' (test using the head of the cluster) //docker_exe = true // true for docker and false for singularity //out_path="/mnt/c/Users/Gael/Desktop" // where the report file will be saved. Example report_path = '.' for where the main.nf run is executed or report_path = '/mnt/c/Users/Gael/Desktop' out_path="$baseDir/results" // where the report file will be saved. Example report_path = '.' for where the main.nf run is executed or report_path = '/mnt/c/Users/Gael/Desktop' //// end must be also exported //// general variables -result_folder_name="20220120_res_CL14985_B4985_4" +result_folder_name="20220120_test" //// end general variables //// slurm variables @@ -159,16 +159,18 @@ dag { singularity { enabled = true autoMounts = true // automatically mounts host paths in the executed container - if(system_exec == 'slurm'){ + if(system_exec == 'slurm' || system_exec == 'slurm_local'){ runOptions = '--no-home --bind /pasteur' }else{ - runOptions = '--no-home' + runOptions = '--no-home' // --no-home prevent singularity to mount the $HOME path and thus forces singularity to work with only what is inside the container } //runOptions = '--home $HOME:/home/$USER --bind /pasteur' // provide any extra command line options supported by the singularity exec. Here, fait un bind de tout /pasteur dans /pasteur du container. Sinon pas d accès if(system_exec == 'slurm'){ cacheDir = '/pasteur/zeus/projets/p01/BioIT/gmillot/14985_loot/singularity' // name of the directory where remote Singularity images are stored. When rerun, the exec directly uses these without redownloading them. When using a computing cluster it must be a shared folder accessible to all computing nodes + }else if(system_exec == 'slurm_local'){ + cacheDir = 'singularity' // "$baseDir/singularity" can be used but do not forget double quotes. }else{ - cacheDir = 'singularity' + cacheDir = '/mnt/c/Users/Gael/Documents/singularity' // "$baseDir/singularity" can be used but do not forget double quotes. } } diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_dag.png b/example_of_result/20220120_test_1645716342/reports/nf_dag.png similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_dag.png rename to example_of_result/20220120_test_1645716342/reports/nf_dag.png diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_report.html b/example_of_result/20220120_test_1645716342/reports/nf_report.html similarity index 95% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_report.html rename to example_of_result/20220120_test_1645716342/reports/nf_report.html index 3a56b4922d7f669e6888dce473c856bb708f67a2..f50a866671b2cd2b1a81836441c17edd38ff7875 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_report.html +++ b/example_of_result/20220120_test_1645716342/reports/nf_report.html @@ -18,11 +18,11 @@ <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> - <meta name="description" content="Nextflow workflow report for run id [scruffy_euler]"> + <meta name="description" content="Nextflow workflow report for run id [cheesy_heyrovsky]"> <meta name="author" content="Paolo Di Tommaso, Phil Ewels"> <link rel="icon" type="image/png" href="https://www.nextflow.io/img/favicon.png" /> - <title>[scruffy_euler] Nextflow Workflow Report</title> + <title>[cheesy_heyrovsky] Nextflow Workflow Report</title> <style type="text/css"> /*! @@ -137,7 +137,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <li class="nav-item"><a class="nav-link" href="#tasks">Tasks</a></li> </ul> <span class="navbar-text"> - [scruffy_euler] + [cheesy_heyrovsky] </span> </div> </nav> @@ -146,7 +146,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <div class="container"> <h1 class="display-3">Nextflow workflow report</h1> - <h2 class="text-muted mb-4"><samp>[scruffy_euler]</samp> <em>(resumed run)</em></h2> + <h2 class="text-muted mb-4"><samp>[cheesy_heyrovsky]</samp> <em>(resumed run)</em></h2> <div class="alert alert-success mb-4"> @@ -157,14 +157,14 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <dl> <dt>Run times</dt> <dd> - <span id="workflow_start">22-Feb-2022 20:44:26</span> - <span id="workflow_complete">22-Feb-2022 20:44:40</span> - (<span id="completed_fromnow"></span>duration: <strong>14.8s</strong>) + <span id="workflow_start">24-Feb-2022 16:25:42</span> - <span id="workflow_complete">24-Feb-2022 16:30:11</span> + (<span id="completed_fromnow"></span>duration: <strong>4m 29s</strong>) </dd> <dl> <div class="progress" style="height: 1.6rem; margin: 1.2rem auto; border-radius: 0.20rem;"> - <div style="width: 14.29%" class="progress-bar bg-success" data-toggle="tooltip" data-placement="top" title="6 tasks succeeded"><span class="text-truncate"> 6 succeeded </span></div> - <div style="width: 85.71%" class="progress-bar bg-secondary" data-toggle="tooltip" data-placement="top" title="36 tasks were cached"><span class="text-truncate"> 36 cached </span></div> + <div style="width: 100.0%" class="progress-bar bg-success" data-toggle="tooltip" data-placement="top" title="42 tasks succeeded"><span class="text-truncate"> 42 succeeded </span></div> + <div style="width: 0.0%" class="progress-bar bg-secondary" data-toggle="tooltip" data-placement="top" title="0 tasks were cached"><span class="text-truncate"> 0 cached </span></div> <div style="width: 0.0%" class="progress-bar bg-warning" data-toggle="tooltip" data-placement="top" title="0 tasks reported and error and were ignored"><span class="text-truncate"> 0 ignored </span></div> <div style="width: 0.0%" class="progress-bar bg-danger" data-toggle="tooltip" data-placement="top" title="0 tasks failed"><span class="text-truncate"> 0 failed </span></div> </div> @@ -176,7 +176,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <dl class="row small"> <dt class="col-sm-3">CPU-Hours</dt> - <dd class="col-sm-9"><samp>0.1 (97.1% cached)</samp></dd> + <dd class="col-sm-9"><samp>0.1</samp></dd> <dt class="col-sm-3">Launch directory</dt> <dd class="col-sm-9"><samp>/mnt/c/Users/Gael/Documents/Git_projects/14985_loot</samp></dd> @@ -194,7 +194,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <dt class="col-sm-3">Script ID</dt> - <dd class="col-sm-9"><code>78f3efb37d46152fe4a1aae3833f58d7</code></dd> + <dd class="col-sm-9"><code>f3870e96ad8a0e4ccb297fbb71eb4459</code></dd> <dt class="col-sm-3">Workflow session</dt> @@ -1029,7 +1029,7 @@ $(function() { // Nextflow report data window.data = { "trace":[ -{"task_id":"2","hash":"e7\/424ee9","native_id":"183","process":"Nremove","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"Nremove (1)","status":"CACHED","exit":"0","submit":"1645539554426","start":"1645539554480","complete":"1645539559269","duration":"4843","realtime":"1650","%cpu":"46.8","%mem":"0.0","rss":"12603392","vmem":"73981952","peak_rss":"12603392","peak_vmem":"73994240","rchar":"17604754","wchar":"15167114","syscr":"1863","syscw":"1271","read_bytes":"568320","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e7\/424ee9987bd6cc15e9f9d936c0cc43","script":"\n Nremove.sh test.fastq2.gz \"test.fastq2_Nremove.gz\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645539550\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"970","inv_ctxt":"8"},{"task_id":"1","hash":"d1\/d3302b","native_id":"21389","process":"init","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"init","status":"COMPLETED","exit":"0","submit":"1645559067767","start":"1645559067819","complete":"1645559069517","duration":"1750","realtime":"12","%cpu":"6.2","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106624","wchar":"669","syscr":"190","syscw":"26","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d1\/d3302b2b95419a2bd746915699ca1c","script":"\n echo \"---\n title: \'Insertion Sites Report\'\n author: \'Gael Millot\'\n date: \'`r Sys.Date()`\'\n output:\n html_document:\n toc: TRUE\n toc_float: TRUE\n ---\n\n \\n\\n<br \/><br \/>\\n\\n\n \" > report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645559065\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"4","hash":"5c\/9949b3","native_id":"1152","process":"trim","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-alien_trimmer_v0.4.0-gitlab_v8.1.img","tag":"-","name":"trim (1)","status":"CACHED","exit":"0","submit":"1645539559373","start":"1645539559469","complete":"1645539571656","duration":"12283","realtime":"9075","%cpu":"42.9","%mem":"0.1","rss":"65802240","vmem":"5908258816","peak_rss":"65802240","peak_vmem":"5970444288","rchar":"17145165","wchar":"12629476","syscr":"2381","syscw":"647","read_bytes":"9977856","write_bytes":"45056","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/5c\/9949b36aa24f474a2df13e02a07833","script":"\n trim.sh test.fastq2_Nremove.gz \"test.fastq2_trim.fq\" 20200520_adapters_TruSeq_B2699_14985_CL.fasta 30 \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645539550\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3268","inv_ctxt":"3"},{"task_id":"7","hash":"1c\/07097b","native_id":"2902","process":"kraken","module":"-","container":"-","tag":"-","name":"kraken (1)","status":"CACHED","exit":"0","submit":"1645539571771","start":"1645539571856","complete":"1645539572156","duration":"385","realtime":"36","%cpu":"72.1","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"154384","wchar":"216","syscr":"228","syscw":"13","read_bytes":"49152","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/1c\/07097b4b20d1e7ff8808cce0189972","script":"\n echo \"No kraken analysis performed in local running\" > test.fastq2_trim_kraken_std.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645539550\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"3","hash":"6a\/b7ac99","native_id":"21417","process":"report1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report1","status":"COMPLETED","exit":"0","submit":"1645559067812","start":"1645559067844","complete":"1645559069685","duration":"1873","realtime":"18","%cpu":"6.0","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106986","wchar":"683","syscr":"189","syscw":"54","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/6a\/b7ac99c6ef20f6ae94fd057eee7b64","script":"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n### Read coverage\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' > report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645559065\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"6","hash":"71\/e822e1","native_id":"1618","process":"fivep_filtering","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"fivep_filtering (1)","status":"CACHED","exit":"0","submit":"1645557048915","start":"1645557048986","complete":"1645557051955","duration":"3040","realtime":"1574","%cpu":"26.0","%mem":"0.0","rss":"10100736","vmem":"64393216","peak_rss":"10100736","peak_vmem":"64393216","rchar":"29336456","wchar":"16062031","syscr":"9150","syscw":"5787","read_bytes":"437248","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/71\/e822e1c9939386bf0005ec2fd48b82","script":"\n fivep_filtering.sh test.fastq2_trim.fq \"test.fastq2\" \"^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\" 48 3 51 \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"report.rmd\"\n echo \"Nucleotide frequencies of the 5\' part of reads:\n\n\" >> report.rmd\n echo \"\n\\`\\`\\`{r, echo = FALSE}\ntempo <- read.table(\'.\/files\/test.fastq2_5pAttc_1-51.stat\', header = TRUE, row.names = 1, colClasses = \'character\', sep = \'\\t\', check.names = FALSE) ; \nkableExtra::kable_styling(knitr::kable(head(tempo), row.names = TRUE, digits = 2, caption = NULL, format=\'html\'), c(\'striped\', \'bordered\', \'responsive\', \'condensed\'), font_size=10, full_width = FALSE, position = \'left\')\n\\`\\`\\`\n \n\n\n \" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645557046\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1140","inv_ctxt":"1"},{"task_id":"5","hash":"01\/01ac2e","native_id":"2923","process":"fastqc1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc1 (1)","status":"CACHED","exit":"0","submit":"1645539571867","start":"1645539571955","complete":"1645539592209","duration":"20342","realtime":"17587","%cpu":"76.6","%mem":"0.2","rss":"205987840","vmem":"3289473024","peak_rss":"206073856","peak_vmem":"3342659584","rchar":"14605079","wchar":"1278925","syscr":"7610","syscw":"5170","read_bytes":"19988480","write_bytes":"712704","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/01\/01ac2e093748236317e68c0fcda7fc","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Read QC n\u00B01\\n\\n\" > report.rmd\n echo -e \"Results are published in the [fastQC1](.\/fastQC1) folder\\n\\n\" >> report.rmd\n fastqc test.fastq2_trim.fq | tee tempo.txt\n cat tempo.txt >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645539550\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4333","inv_ctxt":"3"},{"task_id":"8","hash":"74\/0a40f9","native_id":"2495","process":"cutoff","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"cutoff (1)","status":"CACHED","exit":"0","submit":"1645557052062","start":"1645557052156","complete":"1645557053756","duration":"1694","realtime":"632","%cpu":"19.5","%mem":"0.0","rss":"10084352","vmem":"64229376","peak_rss":"10084352","peak_vmem":"64229376","rchar":"7307957","wchar":"4049152","syscr":"2784","syscw":"2034","read_bytes":"384000","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/74\/0a40f972f4b09da1338accdb6fa740","script":"\n cutoff.sh test.fastq2_5pAtccRm.fq 25 \"test.fastq2\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645557046\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1215","inv_ctxt":"0"},{"task_id":"10","hash":"d0\/cf0991","native_id":"8593","process":"plot_fivep_filtering_stat","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_fivep_filtering_stat (1)","status":"CACHED","exit":"0","submit":"1645539707464","start":"1645539707524","complete":"1645539724346","duration":"16882","realtime":"15015","%cpu":"63.1","%mem":"0.2","rss":"213090304","vmem":"2617372672","peak_rss":"213090304","peak_vmem":"2617397248","rchar":"20034416","wchar":"836207","syscr":"4344","syscw":"399","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d0\/cf09910750ce431a619151f0ae6453","script":"\n echo -e \"\n\\n\\n<br \/><br \/>\\n\\n### Base frequencies at the 5\' extremity of reads\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \" > report.rmd\n plot_fivep_filtering_stat.R \"test.fastq2_5pAttc_1-51.stat\" \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_fivep_filtering_stat_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645539550\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"49036","inv_ctxt":"11"},{"task_id":"9","hash":"7a\/397d42","native_id":"4382","process":"fastqc2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc2 (1)","status":"CACHED","exit":"0","submit":"1645558039170","start":"1645558039254","complete":"1645558045426","duration":"6256","realtime":"5000","%cpu":"61.3","%mem":"0.1","rss":"157659136","vmem":"3289473024","peak_rss":"157745152","peak_vmem":"3342659584","rchar":"12869452","wchar":"1245410","syscr":"7419","syscw":"5119","read_bytes":"19984384","write_bytes":"688128","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/7a\/397d42d2b189282c77f4f71a1116b8","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Read QC n\u00B02\\n\\n\" > report.rmd\n echo -e \"Results are published in the [fastQC2](.\/fastQC2) folder\\n\\n\" >> report.rmd\n fastqc test.fastq2_5pAtccRm.fq | tee tempo.txt\n cat tempo.txt >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558037\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4346","inv_ctxt":"10"},{"task_id":"11","hash":"91\/8872f7","native_id":"10025","process":"bowtie2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bowtie2_v2.3.4.3_extended_v2.0-gitlab_v8.0.img","tag":"-","name":"bowtie2 (1)","status":"CACHED","exit":"0","submit":"1645558859028","start":"1645558859117","complete":"1645558863236","duration":"4208","realtime":"3343","%cpu":"58.6","%mem":"0.0","rss":"64479232","vmem":"249081856","peak_rss":"117039104","peak_vmem":"251142144","rchar":"36678382","wchar":"17009938","syscr":"3391","syscw":"2514","read_bytes":"7209984","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/91\/8872f704ff4710085bb5f081a9cd78","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 indexing of the reference sequence\\n\\n\" >> bowtie2_report.txt\n bowtie2-build Ecoli-K12-MG1655_ORI_CENTERED.fasta Ecoli-K12-MG1655_ORI_CENTERED |& tee -a bowtie2_report.txt\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 alignment\\n\\n\" > report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 alignment\\n\\n\" >> bowtie2_report.txt\n bowtie2 --very-sensitive -x Ecoli-K12-MG1655_ORI_CENTERED -U test.fastq2_cutoff.fq -t -S test.fastq2_bowtie2.sam |& tee -a tempo.txt\n # --very-sensitive: no soft clipping allowed and very sensitive seed alignment\n # -t time displayed\n cat tempo.txt >> bowtie2_report.txt\n sed -i -e \':a;N;$!ba;s\/\\n\/\\n<br \\\/>\/g\' tempo.txt\n cat tempo.txt >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### samtools conversion\\n\\n\" >> bowtie2_report.txt\n # samtools faidx Ecoli-K12-MG1655_ORI_CENTERED.fasta\n samtools view -bh -o tempo.bam test.fastq2_bowtie2.sam |& tee -a bowtie2_report.txt\n samtools sort -o test.fastq2_bowtie2.bam tempo.bam |& tee -a bowtie2_report.txt\n samtools index test.fastq2_bowtie2.bam |& tee -a bowtie2_report.txt\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4244","inv_ctxt":"2"},{"task_id":"12","hash":"9d\/ad802f","native_id":"271","process":"motif","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"motif","status":"CACHED","exit":"0","submit":"1645539554758","start":"1645539554780","complete":"1645539612097","duration":"57339","realtime":"54369","%cpu":"45.6","%mem":"0.2","rss":"246657024","vmem":"2598617088","peak_rss":"246657024","peak_vmem":"2598641664","rchar":"50653025","wchar":"41640352","syscr":"6207","syscw":"34240","read_bytes":"32752640","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9d\/ad802f7d525c8496c31e355d53bcbc","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Motif detection\\n\\n\" > report.rmd\n echo -e \"\\n\\nThe forward motif is: G[AT]T\\n\\n\" >> report.rmd\n echo -e \"\\n\\nThe reverse motif is: A[AT]C\\n\\n\" >> report.rmd\n if [[ G[AT]T != \"NULL\" ]] ; then\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'G[AT]T\' > motif_fw.pos\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'A[AT]C\' > motif_rev.pos\n else\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_fw.pos\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_rev.pos\n fi\n echo -e \"\nINDICATED POSITIONS IN FILES START AT ZERO AND CORRESPOND TO THE FIRST LEFT BASE OF THE MOTIF\n\"\n motif.R \"motif_fw.pos\" \"motif_rev.pos\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"G[AT]T\" \"A[AT]C\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"motif_report.txt\" \"report.rmd\"\n\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645539550\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"59548","inv_ctxt":"452"},{"task_id":"14","hash":"3f\/736771","native_id":"21506","process":"backup","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"backup","status":"COMPLETED","exit":"0","submit":"1645559067976","start":"1645559068013","complete":"1645559069786","duration":"1810","realtime":"13","%cpu":"6.1","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106844","wchar":"518","syscr":"189","syscw":"25","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3f\/7367715b713eb5ed8096c95aaddbc5","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Backup\\n\\n\" > report.rmd\n echo -e \"See the [reports](.\/reports) folder for all the details of the analysis, including the parameters used in the .config file\" >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\nFull .nextflow.log is in: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot<br \/>The one in the [reports](.\/reports) folder is not complete (miss the end)\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645559065\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"13","hash":"e7\/0f8ca5","native_id":"8799","process":"plot_read_length","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_read_length (1)","status":"CACHED","exit":"0","submit":"1645558842125","start":"1645558842185","complete":"1645558859017","duration":"16892","realtime":"15626","%cpu":"67.1","%mem":"0.2","rss":"240742400","vmem":"2610106368","peak_rss":"322535424","peak_vmem":"2690592768","rchar":"20620729","wchar":"734696","syscr":"4655","syscw":"439","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e7\/0f8ca51abfd4baf7513f0d7bdf8e90","script":"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n### Length of initial reads\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Length of reads after selection of attC in 5 prime \\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Length of reads after trimming \\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Read length after cut-off\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' > report.rmd\n plot_read_length.R \"test.fastq2_ini.length\" \"test.fastq2_5pAttc.length\" \"test.fastq2_5pAtccRm.stat\" \"test.fastq2_cutoff.length\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_read_length_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"72941","inv_ctxt":"73"},{"task_id":"17","hash":"70\/4547a0","native_id":"10486","process":"Q20","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"Q20 (1)","status":"CACHED","exit":"0","submit":"1645558863310","start":"1645558863352","complete":"1645558864866","duration":"1556","realtime":"375","%cpu":"17.2","%mem":"0.0","rss":"6107136","vmem":"44822528","peak_rss":"6107136","peak_vmem":"44830720","rchar":"3392025","wchar":"2260606","syscr":"888","syscw":"567","read_bytes":"1301504","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/70\/4547a0b6884d719647810fe5a038b4","script":"\n samtools view -q 20 -b test.fastq2_bowtie2.bam > test.fastq2_q20.bam |& tee q20_report.txt\n samtools index test.fastq2_q20.bam\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Q20 filtering\\n\\n\" > report.rmd\n read_nb_before=$(samtools view test.fastq2_bowtie2.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n read_nb_after=$(samtools view test.fastq2_q20.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n echo -e \"\\n\\nNumber of sequences before Q20 filtering: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of sequences after Q20 filtering: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n echo $read_nb_before > read_nb_before # because nf cannot output values easily\n echo $read_nb_after > read_nb_after\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"879","inv_ctxt":"0"},{"task_id":"16","hash":"75\/97cb47","native_id":"10460","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (1)","status":"CACHED","exit":"0","submit":"1645558863292","start":"1645558863337","complete":"1645558865297","duration":"2005","realtime":"809","%cpu":"15.7","%mem":"0.0","rss":"5365760","vmem":"46727168","peak_rss":"5365760","peak_vmem":"46727168","rchar":"491178","wchar":"93146","syscr":"251","syscw":"3116","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/75\/97cb474869ed25f59b9bd63255debd","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_bowtie2.bam > test.fastq2_bowtie2_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"716","inv_ctxt":"0"},{"task_id":"15","hash":"8d\/8cfbe1","native_id":"21537","process":"workflowVersion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"workflowVersion","status":"COMPLETED","exit":"0","submit":"1645559068024","start":"1645559068113","complete":"1645559070066","duration":"2042","realtime":"637","%cpu":"12.5","%mem":"0.0","rss":"5009408","vmem":"40304640","peak_rss":"5009408","peak_vmem":"40304640","rchar":"138244","wchar":"1712","syscr":"298","syscw":"53","read_bytes":"1465344","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/8d\/8cfbe1c9236cf36acf38b7d0f7a960","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Workflow Version\\n\\n\" > report.rmd\n echo \"Project (empty means no .git folder where the main.nf file is present): \" $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot remote -v | head -n 1) >> report.rmd # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo\n echo \"<br \/>Git info (empty means no .git folder where the main.nf file is present): \" $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot describe --abbrev=10 --dirty --always --tags) >> report.rmd # idem. Provide the small commit number of the script and nextflow.config used in the execution\n echo \"<br \/>Cmd line: nextflow run main.nf -resume\" >> report.rmd\n echo \"<br \/>execution mode\": local >> report.rmd\n modules= # this is just to deal with variable interpretation during the creation of the .command.sh file by nextflow. See also $modules below\n if [[ ! -z $modules ]] ; then\n echo \"<br \/>loaded modules (according to specification by the user thanks to the --modules argument of main.nf)\": >> report.rmd\n fi\n echo \"<br \/>Manifest\'s pipeline version: null\" >> report.rmd\n echo \"<br \/>result path: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645559065\" >> report.rmd\n echo \"<br \/>nextflow version: 21.04.2\" >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\nIMPLICIT VARIABLES:\\n\\nlaunchDir (directory where the workflow is run): \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot<br \/>\\nprojectDir (directory where the main.nf script is located): \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot<br \/>\\nworkDir (directory where tasks temporary files are created): \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\" >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\nUSER VARIABLES:<br \/>\\n\\nout_path: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645559065<br \/>\\nin_path: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\" >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\nWORKFLOW DIAGRAM:<br \/>\\n\\nSee the [nf_dag.png](.\/reports\/nf_dag.png) file\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645559065\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"34","inv_ctxt":"3"},{"task_id":"18","hash":"94\/21967c","native_id":"10518","process":"multiQC","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/ewels-multiqc-1.10.1.img","tag":"-","name":"multiQC","status":"CACHED","exit":"0","submit":"1645558863330","start":"1645558863367","complete":"1645558871857","duration":"8527","realtime":"8000","%cpu":"40.2","%mem":"0.1","rss":"74358784","vmem":"85352448","peak_rss":"74358784","peak_vmem":"85352448","rchar":"29687055","wchar":"2404815","syscr":"9283","syscw":"289","read_bytes":"22943744","write_bytes":"1253376","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/94\/21967ce4a85b02def4eb06915f6f80","script":"\n multiqc . -n multiqc_report.html\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### MultiQC\\n\\n\" > report.rmd\n echo -e \"Results are published in the [Report](.\/reports\/multiqc_report.html) folder\\n\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"34333","inv_ctxt":"782"},{"task_id":"21","hash":"9b\/c9d978","native_id":"10927","process":"no_soft_clipping","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"no_soft_clipping (1)","status":"CACHED","exit":"0","submit":"1645558864907","start":"1645558864967","complete":"1645558866376","duration":"1469","realtime":"301","%cpu":"15.5","%mem":"0.0","rss":"3563520","vmem":"40296448","peak_rss":"3563520","peak_vmem":"40296448","rchar":"2188567","wchar":"1583809","syscr":"697","syscw":"417","read_bytes":"1152000","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9b\/c9d978822144da7c93f35321e99a6f","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Control that no more soft clipping in reads\\n\\n\" > report.rmd\n echo -e \"nb of reads with soft clipping (S) in CIGAR: $(printf \"%\'d\" $(samtools view test.fastq2_q20.bam | awk \'$6 ~ \/.*[S].*\/{print $0}\' | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n echo -e \"\\n\\ntotal nb of reads: $(printf \"%\'d\" $(samtools view test.fastq2_q20.bam | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"29","inv_ctxt":"0"},{"task_id":"22","hash":"78\/6a3590","native_id":"11762","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_coverage (1)","status":"CACHED","exit":"0","submit":"1645558867165","start":"1645558867256","complete":"1645558882617","duration":"15452","realtime":"14730","%cpu":"62.2","%mem":"0.2","rss":"213573632","vmem":"2620022784","peak_rss":"213573632","peak_vmem":"2620047360","rchar":"20065336","wchar":"475473","syscr":"4351","syscw":"303","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/78\/6a3590d204f71a0dcaf525b5c0a32e","script":"\n plot_coverage.R \"test.fastq2_bowtie2_mini\" \"read_nb_before\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"49155","inv_ctxt":"16"},{"task_id":"19","hash":"10\/b42e02","native_id":"11096","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (2)","status":"CACHED","exit":"0","submit":"1645558865307","start":"1645558865396","complete":"1645558867156","duration":"1849","realtime":"741","%cpu":"16.5","%mem":"0.0","rss":"5292032","vmem":"46727168","peak_rss":"5292032","peak_vmem":"46727168","rchar":"343047","wchar":"84345","syscr":"239","syscw":"2824","read_bytes":"1734656","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/10\/b42e02b3664fd8dbe682962cfcee1e","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_q20.bam > test.fastq2_q20_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"621","inv_ctxt":"1"},{"task_id":"20","hash":"47\/ef2076","native_id":"10991","process":"duplicate_removal","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"duplicate_removal (1)","status":"CACHED","exit":"0","submit":"1645558864940","start":"1645558864987","complete":"1645558867876","duration":"2936","realtime":"1792","%cpu":"25.5","%mem":"0.0","rss":"7753728","vmem":"55619584","peak_rss":"7753728","peak_vmem":"55619584","rchar":"13465166","wchar":"6908304","syscr":"7201","syscw":"5706","read_bytes":"1376256","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/47\/ef2076cd3d9f7e403e795fe6bdbfec","script":"\n duplicate_removal.sh test.fastq2_q20.bam Ecoli-K12-MG1655_ORI_CENTERED.fasta \"test.fastq2_q20_nodup.bam\" \"dup_report.txt\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3216","inv_ctxt":"2"},{"task_id":"23","hash":"1a\/4b7041","native_id":"12101","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (1)","status":"CACHED","exit":"0","submit":"1645558868884","start":"1645558868977","complete":"1645558870316","duration":"1432","realtime":"482","%cpu":"19.7","%mem":"0.0","rss":"9523200","vmem":"68771840","peak_rss":"9523200","peak_vmem":"68780032","rchar":"2612546","wchar":"1832054","syscr":"1550","syscw":"1165","read_bytes":"1236992","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/1a\/4b7041efd0c5f42fc6b1d707b34ae9","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n echo -e \"\\n\\nOne of the step is to correct insertion site read extremity for the reverse reads. It consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n # extraction of bam column 2, 4 and 10, i.e., FALG, POS and SEQ\n samtools view test.fastq2_q20_nodup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n cat tempo | head -60 | tail -20 >> insertion_report.txt\n # redefinition of POS according to FLAG\n awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n echo -e \"\\n\\nFinal fasta file\\n\\n\" >> insertion_report.txt\n cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2.pos\n echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n cat test.fastq2.pos | head -60 | tail -20 >> insertion_report.txt\n\n read_nb_before=$(samtools view test.fastq2_q20_nodup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n read_nb_after=$(wc -l test.fastq2.pos | cut -f1 -d\' \')\n echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"915","inv_ctxt":"0"},{"task_id":"25","hash":"2b\/d2a26d","native_id":"13051","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_coverage (2)","status":"CACHED","exit":"0","submit":"1645558882625","start":"1645558882717","complete":"1645558897437","duration":"14812","realtime":"14131","%cpu":"64.5","%mem":"0.2","rss":"216543232","vmem":"2620534784","peak_rss":"216543232","peak_vmem":"2620559360","rchar":"20056617","wchar":"466811","syscr":"4353","syscw":"301","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/2b\/d2a26dc2556edcdff2a3f9fbc617da","script":"\n plot_coverage.R \"test.fastq2_q20_mini\" \"read_nb_after\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"49206","inv_ctxt":"9"},{"task_id":"24","hash":"5e\/1ca0b8","native_id":"13773","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (3)","status":"CACHED","exit":"0","submit":"1645558897445","start":"1645558897537","complete":"1645558898902","duration":"1457","realtime":"578","%cpu":"19.7","%mem":"0.0","rss":"5332992","vmem":"46727168","peak_rss":"5332992","peak_vmem":"46727168","rchar":"317670","wchar":"84029","syscr":"235","syscw":"2820","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/5e\/1ca0b8fd32e8df18805ebc0f96f5a7","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_q20_nodup.bam > test.fastq2_q20_nodup_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"805","inv_ctxt":"0"},{"task_id":"27","hash":"f6\/edb675","native_id":"13925","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"seq_around_insertion (1)","status":"CACHED","exit":"0","submit":"1645558898925","start":"1645558899001","complete":"1645558905256","duration":"6331","realtime":"5608","%cpu":"72.5","%mem":"0.1","rss":"164118528","vmem":"2516324352","peak_rss":"164118528","peak_vmem":"2516348928","rchar":"18784250","wchar":"234914","syscr":"2734","syscw":"362","read_bytes":"32610304","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f6\/edb6752996bda63e72c1a7ac83117a","script":"\n seq_around_insertion.R \"test.fastq2.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"31251","inv_ctxt":"6"},{"task_id":"26","hash":"9e\/6e5dd6","native_id":"14430","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"final_insertion_files (1)","status":"CACHED","exit":"0","submit":"1645558905265","start":"1645558905357","complete":"1645558911756","duration":"6491","realtime":"5750","%cpu":"72.1","%mem":"0.2","rss":"181882880","vmem":"2515492864","peak_rss":"181882880","peak_vmem":"2515517440","rchar":"18856269","wchar":"272413","syscr":"2790","syscw":"510","read_bytes":"32802816","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9e\/6e5dd6b9f8d5957936a0c64405d265","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Final insertion site files\\n\\n\" > report.rmd\n echo -e \"\\n\\nSee the [test.fastq2_annot.pos](.\/files\/test.fastq2_annot.pos) and [test.fastq2_annot.freq](.\/files\/test.fastq2_annot.freq) files\\n\\n\" >> report.rmd\n final_insertion_files.R \"test.fastq2.pos\" \"2320711 2320942\" \"4627368 4627400\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n pos_nb=$(wc -l test.fastq2_annot.pos | cut -f1 -d\' \')\n echo -e \"\\n\\nNumber of different positions: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"31094","inv_ctxt":"1"},{"task_id":"28","hash":"55\/2b9806","native_id":"14883","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_coverage (3)","status":"CACHED","exit":"0","submit":"1645558911764","start":"1645558911856","complete":"1645558926747","duration":"14983","realtime":"14303","%cpu":"63.9","%mem":"0.2","rss":"216424448","vmem":"2620596224","peak_rss":"216424448","peak_vmem":"2620620800","rchar":"20056220","wchar":"470110","syscr":"4347","syscw":"302","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/55\/2b9806394422b358eadd7deddca6fc","script":"\n plot_coverage.R \"test.fastq2_q20_nodup_mini\" \"dup_read_nb\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"49193","inv_ctxt":"4"},{"task_id":"29","hash":"ef\/0f9c22","native_id":"15606","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (1)","status":"CACHED","exit":"0","submit":"1645558926756","start":"1645558926847","complete":"1645558928466","duration":"1710","realtime":"840","%cpu":"19.6","%mem":"0.0","rss":"6078464","vmem":"52637696","peak_rss":"6078464","peak_vmem":"52654080","rchar":"9503035","wchar":"4763828","syscr":"866","syscw":"3344","read_bytes":"6359040","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ef\/0f9c2238b3a6a5fb96f6863dc52f76","script":"\n # make a bed file from the reference genome\n echo \">ref\" > tempo.ref.fasta\n awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_around_insertion.bed -fo \"test.fastq2_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n rm tempo.ref.fasta\n rm tempo.ref.fasta.fai\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"555","inv_ctxt":"0"},{"task_id":"34","hash":"93\/91ac2a","native_id":"15899","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (1)","status":"CACHED","exit":"0","submit":"1645558928578","start":"1645558928666","complete":"1645558930238","duration":"1660","realtime":"91","%cpu":"13.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"286262","wchar":"17180","syscr":"526","syscw":"46","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/93\/91ac2a51a51a86700a55f190ca1e8d","script":"\n # file splitting into seq\n awk -v var1=LEADING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_around_insertion.fasta > test.fastq2_LEADING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_LEADING_0.seq > test.fastq2_LEADING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"33","hash":"9e\/88bce3","native_id":"15833","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (4)","status":"CACHED","exit":"0","submit":"1645558928530","start":"1645558928577","complete":"1645558930226","duration":"1696","realtime":"102","%cpu":"11.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288564","wchar":"19499","syscr":"531","syscw":"51","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9e\/88bce328f319e90a6bfdec34e54916","script":"\n # file splitting into seq\n awk -v var1=LAGGING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_around_insertion.fasta > test.fastq2_LAGGING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_LAGGING_16.seq > test.fastq2_LAGGING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"32","hash":"dd\/d59b9f","native_id":"15868","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (3)","status":"CACHED","exit":"0","submit":"1645558928560","start":"1645558928589","complete":"1645558929976","duration":"1416","realtime":"103","%cpu":"12.1","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"289213","wchar":"20167","syscr":"532","syscw":"52","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/dd\/d59b9f6cbd5cf7096a07b21239bac3","script":"\n # file splitting into seq\n awk -v var1=LAGGING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_around_insertion.fasta > test.fastq2_LAGGING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_LAGGING_0.seq > test.fastq2_LAGGING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"31","hash":"82\/5592cb","native_id":"15942","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (2)","status":"CACHED","exit":"0","submit":"1645558928599","start":"1645558928676","complete":"1645558930056","duration":"1457","realtime":"97","%cpu":"11.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288398","wchar":"19342","syscr":"530","syscw":"50","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/82\/5592cb0f173df9bb955ca03f13127a","script":"\n # file splitting into seq\n awk -v var1=LEADING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_around_insertion.fasta > test.fastq2_LEADING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_LEADING_16.seq > test.fastq2_LEADING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"30","hash":"ef\/14c394","native_id":"15793","process":"random_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"random_insertion (1)","status":"CACHED","exit":"0","submit":"1645558928476","start":"1645558928566","complete":"1645558941597","duration":"13121","realtime":"12103","%cpu":"61.6","%mem":"0.4","rss":"402747392","vmem":"2905137152","peak_rss":"402747392","peak_vmem":"2905161728","rchar":"32197873","wchar":"1288928","syscr":"6303","syscw":"1485","read_bytes":"60127232","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ef\/14c39442d7fb3abaaedb41efff3d24","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Random insertion sites\\n\\n\" > report.rmd\n random_insertion.R \"test.fastq2_annot.pos\" \"motif_sites.pos\" \"2320711 2320942\" \"4627368 4627400\" \"G[AT]T\" \"4641652\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"random_insertion_report.txt\" \"report.rmd\"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Insertion site counts\\n\\n\" > report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Insertion site proportions\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"62044","inv_ctxt":"83"},{"task_id":"39","hash":"cb\/a45b2e","native_id":"21670","process":"report2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report2","status":"COMPLETED","exit":"0","submit":"1645559068329","start":"1645559068413","complete":"1645559069796","duration":"1467","realtime":"26","%cpu":"8.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"133952","wchar":"1289","syscr":"245","syscw":"88","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/cb\/a45b2e53c4362caaa6669c72ad8f93","script":"\n echo -e \"\n\\n\\n<br \/><br \/>\\n\\n### Logos\\n\\n\n\\n\\nIn each sequence of length $((20 * 2)) <br \/>position $((20 + 1)) corresponds to the first nucleotide of the reference genome part of the read\n\" > report.rmd\n count=0\n for i in $(echo [test.fastq2_LEADING_0, test.fastq2_LAGGING_16, test.fastq2_LAGGING_0, test.fastq2_LEADING_16] | sed \'s\/^\\[\/\/\' | sed \'s\/\\]$\/\/\' | sed \'s\/,\/\/g\') ; do\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n done\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645559065\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"37","hash":"cb\/7fbfc4","native_id":"17176","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"logo (1)","status":"CACHED","exit":"0","submit":"1645558941604","start":"1645558941697","complete":"1645558951176","duration":"9572","realtime":"8824","%cpu":"61.0","%mem":"0.2","rss":"211927040","vmem":"2581889024","peak_rss":"211927040","peak_vmem":"2582429696","rchar":"15274134","wchar":"894677","syscr":"2841","syscw":"319","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/cb\/7fbfc4a56467231071b31d5fafc1d0","script":"\n logo.R \"test.fastq2_LAGGING_0.stat\" 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53022","inv_ctxt":"6"},{"task_id":"40","hash":"53\/74fd55","native_id":"19631","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"global_logo","status":"CACHED","exit":"0","submit":"1645558980113","start":"1645558980207","complete":"1645558989787","duration":"9674","realtime":"8967","%cpu":"63.6","%mem":"0.2","rss":"213176320","vmem":"2580549632","peak_rss":"213176320","peak_vmem":"2581069824","rchar":"15282864","wchar":"870727","syscr":"2850","syscw":"333","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/53\/74fd55808d8c6c5e6a89a46bf03baa","script":"\n global_logo.R \"test.fastq2_LAGGING_0.stat test.fastq2_LEADING_16.stat test.fastq2_LAGGING_16.stat test.fastq2_LEADING_0.stat\" test.fastq2 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"global_logo_report.txt\"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53159","inv_ctxt":"4"},{"task_id":"36","hash":"f6\/b96d60","native_id":"18408","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"logo (3)","status":"CACHED","exit":"0","submit":"1645558960654","start":"1645558960747","complete":"1645558970226","duration":"9572","realtime":"8876","%cpu":"61.1","%mem":"0.2","rss":"213983232","vmem":"2581954560","peak_rss":"213983232","peak_vmem":"2582523904","rchar":"15274126","wchar":"903827","syscr":"2839","syscw":"321","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f6\/b96d608d69d0c41707b7541fbf50f9","script":"\n logo.R \"test.fastq2_LAGGING_16.stat\" 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53020","inv_ctxt":"4"},{"task_id":"35","hash":"54\/42a221","native_id":"19019","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"logo (4)","status":"CACHED","exit":"0","submit":"1645558970233","start":"1645558970326","complete":"1645558980106","duration":"9873","realtime":"9163","%cpu":"59.9","%mem":"0.2","rss":"216498176","vmem":"2584637440","peak_rss":"216498176","peak_vmem":"2585157632","rchar":"15274102","wchar":"1026301","syscr":"2845","syscw":"337","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/54\/42a221f2ccf7068389597b30193203","script":"\n logo.R \"test.fastq2_LEADING_0.stat\" 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"52914","inv_ctxt":"7"},{"task_id":"38","hash":"13\/c75c72","native_id":"17797","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"logo (2)","status":"CACHED","exit":"0","submit":"1645558951183","start":"1645558951276","complete":"1645558960647","duration":"9464","realtime":"8756","%cpu":"61.4","%mem":"0.2","rss":"240406528","vmem":"2581323776","peak_rss":"240406528","peak_vmem":"2581856256","rchar":"15274075","wchar":"873353","syscr":"2837","syscw":"320","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/13\/c75c72ebe6b5033aecdee638e2fcb3","script":"\n logo.R \"test.fastq2_LEADING_16.stat\" 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53087","inv_ctxt":"12"},{"task_id":"41","hash":"b7\/0ba328","native_id":"20250","process":"plot_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_insertion (1)","status":"CACHED","exit":"0","submit":"1645558989794","start":"1645558989887","complete":"1645559026467","duration":"36673","realtime":"36002","%cpu":"74.6","%mem":"1.0","rss":"1047265280","vmem":"3413561344","peak_rss":"1047265280","peak_vmem":"3413585920","rchar":"42236034","wchar":"10194994","syscr":"11025","syscw":"1835","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b7\/0ba328f850a5bf8d897084806adfad","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion plots\\n\\n\" > report.rmd\n plot_insertion.R \"obs_rd_insertions.pos\" \"obs_rd_insertions.freq\" \"2320711 2320942\" \"4627368 4627400\" \"Ecoli Genome (bp)\" \"4641652\" \"50000\" \"100\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_insertion_report.txt\"\n echo -e \"\\n\\n#### Histograms\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Raw frequencies\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the CL Labbook section 24.7.3 to explain the limitation around 100 bp\\n\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Binned frequencies\\n\\n\" >> report.rmd\n count=1\n for i in 50000 ; do\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n done\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645558839\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"73352","inv_ctxt":"20"},{"task_id":"42","hash":"41\/e917b4","native_id":"22159","process":"print_report","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"print_report (1)","status":"COMPLETED","exit":"0","submit":"1645559070332","start":"1645559070367","complete":"1645559080807","duration":"10475","realtime":"9707","%cpu":"54.9","%mem":"0.3","rss":"255709184","vmem":"1102452711424","peak_rss":"255709184","peak_vmem":"1102518931456","rchar":"32733838","wchar":"12168741","syscr":"5146","syscw":"1052","read_bytes":"54798336","write_bytes":"4096","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/41\/e917b4bc1a6a96c455c1bbe84b9d14","script":"\n cp report.rmd report_file.rmd # this is to get hard files, not symlinks\n mkdir figures\n mkdir files\n mkdir reports\n cat stat_tempo > .\/files\/test.fastq2_5pAttc_1-51.stat # this is to get hard files, not symlinks\n cp head.fw.txt head.rv.txt table1.txt table2.txt table3.txt table4.txt table8.txt .\/files\/ # this is to get hard files, not symlinks\n cp plot_fivep_filtering_stat.png plot_read_length_cutoff.png plot_read_length_fivep_filtering.png plot_read_length_fivep_filtering_cut.png plot_read_length_ini.png plot_test.fastq2_bowtie2_mini.png plot_test.fastq2_q20_mini.png plot_test.fastq2_q20_nodup_mini.png logo_test.fastq2_LAGGING_0.png logo_test.fastq2_LAGGING_16.png logo_test.fastq2_LEADING_0.png logo_test.fastq2_LEADING_16.png global_logo_test.fastq2.png plot_motif_insertion_per_fork.png plot_motif_insertion_per_fork_and_strand.png plot_motif_insertion_per_fork_and_strand_prop.png plot_motif_insertion_per_fork_prop.png plot_motif_insertion_per_strand.png plot_motif_insertion_per_strand_prop.png plot_test.fastq2_insertion_bin_50000.png plot_test.fastq2_insertion_hist_forward.png plot_test.fastq2_insertion_hist_reverse.png plot_test.fastq2_insertion_hist_tot.png plot_test.fastq2_insertion_hist_tot_zoom.png plot_test.fastq2_insertion_raw.png plot_test.fastq2_lead_lag_insertion_bin_50000.png .\/figures\/ # Warning several files\n cp plot_fivep_filtering_stat.png .\/reports\/nf_dag.png # trick to delude the knitting during the print report\n cp multiqc_report.html .\/reports\/ # this is to get hard files, not symlinks\n print_report.R \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"report_file.rmd\" \"print_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_res_CL14985_B4985_4_1645559065\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"46374","inv_ctxt":"10"}], "summary":[{"cpuUsage":{"mean":46.8,"min":46.8,"q1":46.8,"q2":46.8,"q3":46.8,"max":46.8,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"process":"Nremove","mem":{"mean":12603392,"min":12603392,"q1":12603392,"q2":12603392,"q3":12603392,"max":12603392,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"memUsage":{"mean":0.39,"min":0.39,"q1":0.39,"q2":0.39,"q3":0.39,"max":0.39,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"timeUsage":null,"vmem":{"mean":73994240,"min":73994240,"q1":73994240,"q2":73994240,"q3":73994240,"max":73994240,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"reads":{"mean":17604754,"min":17604754,"q1":17604754,"q2":17604754,"q3":17604754,"max":17604754,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"cpu":{"mean":46.8,"min":46.8,"q1":46.8,"q2":46.8,"q3":46.8,"max":46.8,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"time":{"mean":1650,"min":1650,"q1":1650,"q2":1650,"q3":1650,"max":1650,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"writes":{"mean":15167114,"min":15167114,"q1":15167114,"q2":15167114,"q3":15167114,"max":15167114,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"}},{"cpuUsage":{"mean":42.9,"min":42.9,"q1":42.9,"q2":42.9,"q3":42.9,"max":42.9,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"process":"trim","mem":{"mean":65802240,"min":65802240,"q1":65802240,"q2":65802240,"q3":65802240,"max":65802240,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"memUsage":{"mean":2.04,"min":2.04,"q1":2.04,"q2":2.04,"q3":2.04,"max":2.04,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"timeUsage":null,"vmem":{"mean":5970444288,"min":5970444288,"q1":5970444288,"q2":5970444288,"q3":5970444288,"max":5970444288,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"reads":{"mean":17145165,"min":17145165,"q1":17145165,"q2":17145165,"q3":17145165,"max":17145165,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"cpu":{"mean":42.9,"min":42.9,"q1":42.9,"q2":42.9,"q3":42.9,"max":42.9,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"time":{"mean":9075,"min":9075,"q1":9075,"q2":9075,"q3":9075,"max":9075,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"writes":{"mean":12629476,"min":12629476,"q1":12629476,"q2":12629476,"q3":12629476,"max":12629476,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"}},{"cpuUsage":{"mean":72.1,"min":72.1,"q1":72.1,"q2":72.1,"q3":72.1,"max":72.1,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"process":"kraken","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":154384,"min":154384,"q1":154384,"q2":154384,"q3":154384,"max":154384,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"cpu":{"mean":72.1,"min":72.1,"q1":72.1,"q2":72.1,"q3":72.1,"max":72.1,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"time":{"mean":36,"min":36,"q1":36,"q2":36,"q3":36,"max":36,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"writes":{"mean":216,"min":216,"q1":216,"q2":216,"q3":216,"max":216,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"}},{"cpuUsage":{"mean":26,"min":26,"q1":26,"q2":26,"q3":26,"max":26,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"process":"fivep_filtering","mem":{"mean":10100736,"min":10100736,"q1":10100736,"q2":10100736,"q3":10100736,"max":10100736,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"timeUsage":null,"vmem":{"mean":64393216,"min":64393216,"q1":64393216,"q2":64393216,"q3":64393216,"max":64393216,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"reads":{"mean":29336456,"min":29336456,"q1":29336456,"q2":29336456,"q3":29336456,"max":29336456,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"cpu":{"mean":26,"min":26,"q1":26,"q2":26,"q3":26,"max":26,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"time":{"mean":1574,"min":1574,"q1":1574,"q2":1574,"q3":1574,"max":1574,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"writes":{"mean":16062031,"min":16062031,"q1":16062031,"q2":16062031,"q3":16062031,"max":16062031,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"}},{"cpuUsage":{"mean":76.6,"min":76.6,"q1":76.6,"q2":76.6,"q3":76.6,"max":76.6,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"process":"fastqc1","mem":{"mean":206073856,"min":206073856,"q1":206073856,"q2":206073856,"q3":206073856,"max":206073856,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3342659584,"min":3342659584,"q1":3342659584,"q2":3342659584,"q3":3342659584,"max":3342659584,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"reads":{"mean":14605079,"min":14605079,"q1":14605079,"q2":14605079,"q3":14605079,"max":14605079,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"cpu":{"mean":76.6,"min":76.6,"q1":76.6,"q2":76.6,"q3":76.6,"max":76.6,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"time":{"mean":17587,"min":17587,"q1":17587,"q2":17587,"q3":17587,"max":17587,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"writes":{"mean":1278925,"min":1278925,"q1":1278925,"q2":1278925,"q3":1278925,"max":1278925,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"}},{"cpuUsage":{"mean":19.5,"min":19.5,"q1":19.5,"q2":19.5,"q3":19.5,"max":19.5,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"process":"cutoff","mem":{"mean":10084352,"min":10084352,"q1":10084352,"q2":10084352,"q3":10084352,"max":10084352,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"timeUsage":null,"vmem":{"mean":64229376,"min":64229376,"q1":64229376,"q2":64229376,"q3":64229376,"max":64229376,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"reads":{"mean":7307957,"min":7307957,"q1":7307957,"q2":7307957,"q3":7307957,"max":7307957,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"cpu":{"mean":19.5,"min":19.5,"q1":19.5,"q2":19.5,"q3":19.5,"max":19.5,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"time":{"mean":632,"min":632,"q1":632,"q2":632,"q3":632,"max":632,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"writes":{"mean":4049152,"min":4049152,"q1":4049152,"q2":4049152,"q3":4049152,"max":4049152,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"}},{"cpuUsage":{"mean":63.1,"min":63.1,"q1":63.1,"q2":63.1,"q3":63.1,"max":63.1,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"process":"plot_fivep_filtering_stat","mem":{"mean":213090304,"min":213090304,"q1":213090304,"q2":213090304,"q3":213090304,"max":213090304,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"timeUsage":null,"vmem":{"mean":2617397248,"min":2617397248,"q1":2617397248,"q2":2617397248,"q3":2617397248,"max":2617397248,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"reads":{"mean":20034416,"min":20034416,"q1":20034416,"q2":20034416,"q3":20034416,"max":20034416,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"cpu":{"mean":63.1,"min":63.1,"q1":63.1,"q2":63.1,"q3":63.1,"max":63.1,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"time":{"mean":15015,"min":15015,"q1":15015,"q2":15015,"q3":15015,"max":15015,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"writes":{"mean":836207,"min":836207,"q1":836207,"q2":836207,"q3":836207,"max":836207,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"}},{"cpuUsage":{"mean":61.3,"min":61.3,"q1":61.3,"q2":61.3,"q3":61.3,"max":61.3,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"process":"fastqc2","mem":{"mean":157745152,"min":157745152,"q1":157745152,"q2":157745152,"q3":157745152,"max":157745152,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3342659584,"min":3342659584,"q1":3342659584,"q2":3342659584,"q3":3342659584,"max":3342659584,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"reads":{"mean":12869452,"min":12869452,"q1":12869452,"q2":12869452,"q3":12869452,"max":12869452,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"cpu":{"mean":61.3,"min":61.3,"q1":61.3,"q2":61.3,"q3":61.3,"max":61.3,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"time":{"mean":5000,"min":5000,"q1":5000,"q2":5000,"q3":5000,"max":5000,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"writes":{"mean":1245410,"min":1245410,"q1":1245410,"q2":1245410,"q3":1245410,"max":1245410,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"}},{"cpuUsage":{"mean":4.88,"min":4.88,"q1":4.88,"q2":4.88,"q3":4.88,"max":4.88,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"process":"bowtie2","mem":{"mean":117039104,"min":117039104,"q1":117039104,"q2":117039104,"q3":117039104,"max":117039104,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"memUsage":{"mean":0.17,"min":0.17,"q1":0.17,"q2":0.17,"q3":0.17,"max":0.17,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"timeUsage":null,"vmem":{"mean":251142144,"min":251142144,"q1":251142144,"q2":251142144,"q3":251142144,"max":251142144,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"reads":{"mean":36678382,"min":36678382,"q1":36678382,"q2":36678382,"q3":36678382,"max":36678382,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"cpu":{"mean":58.6,"min":58.6,"q1":58.6,"q2":58.6,"q3":58.6,"max":58.6,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"time":{"mean":3343,"min":3343,"q1":3343,"q2":3343,"q3":3343,"max":3343,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"writes":{"mean":17009938,"min":17009938,"q1":17009938,"q2":17009938,"q3":17009938,"max":17009938,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"}},{"cpuUsage":{"mean":45.6,"min":45.6,"q1":45.6,"q2":45.6,"q3":45.6,"max":45.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"process":"motif","mem":{"mean":246657024,"min":246657024,"q1":246657024,"q2":246657024,"q3":246657024,"max":246657024,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"memUsage":{"mean":0.36,"min":0.36,"q1":0.36,"q2":0.36,"q3":0.36,"max":0.36,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"timeUsage":null,"vmem":{"mean":2598641664,"min":2598641664,"q1":2598641664,"q2":2598641664,"q3":2598641664,"max":2598641664,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"reads":{"mean":50653025,"min":50653025,"q1":50653025,"q2":50653025,"q3":50653025,"max":50653025,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"cpu":{"mean":45.6,"min":45.6,"q1":45.6,"q2":45.6,"q3":45.6,"max":45.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"time":{"mean":54369,"min":54369,"q1":54369,"q2":54369,"q3":54369,"max":54369,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"writes":{"mean":41640352,"min":41640352,"q1":41640352,"q2":41640352,"q3":41640352,"max":41640352,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"}},{"cpuUsage":{"mean":67.1,"min":67.1,"q1":67.1,"q2":67.1,"q3":67.1,"max":67.1,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"process":"plot_read_length","mem":{"mean":322535424,"min":322535424,"q1":322535424,"q2":322535424,"q3":322535424,"max":322535424,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"memUsage":{"mean":0.47,"min":0.47,"q1":0.47,"q2":0.47,"q3":0.47,"max":0.47,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"timeUsage":null,"vmem":{"mean":2690592768,"min":2690592768,"q1":2690592768,"q2":2690592768,"q3":2690592768,"max":2690592768,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"reads":{"mean":20620729,"min":20620729,"q1":20620729,"q2":20620729,"q3":20620729,"max":20620729,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"cpu":{"mean":67.1,"min":67.1,"q1":67.1,"q2":67.1,"q3":67.1,"max":67.1,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"time":{"mean":15626,"min":15626,"q1":15626,"q2":15626,"q3":15626,"max":15626,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"writes":{"mean":734696,"min":734696,"q1":734696,"q2":734696,"q3":734696,"max":734696,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"}},{"cpuUsage":{"mean":17.2,"min":17.2,"q1":17.2,"q2":17.2,"q3":17.2,"max":17.2,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"process":"Q20","mem":{"mean":6107136,"min":6107136,"q1":6107136,"q2":6107136,"q3":6107136,"max":6107136,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"memUsage":{"mean":0.57,"min":0.57,"q1":0.57,"q2":0.57,"q3":0.57,"max":0.57,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"timeUsage":null,"vmem":{"mean":44830720,"min":44830720,"q1":44830720,"q2":44830720,"q3":44830720,"max":44830720,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"reads":{"mean":3392025,"min":3392025,"q1":3392025,"q2":3392025,"q3":3392025,"max":3392025,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"cpu":{"mean":17.2,"min":17.2,"q1":17.2,"q2":17.2,"q3":17.2,"max":17.2,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"time":{"mean":375,"min":375,"q1":375,"q2":375,"q3":375,"max":375,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"writes":{"mean":2260606,"min":2260606,"q1":2260606,"q2":2260606,"q3":2260606,"max":2260606,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"}},{"cpuUsage":{"mean":1.44,"min":1.31,"q1":1.34,"q2":1.38,"q3":1.51,"max":1.64,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"process":"coverage","mem":{"mean":5330261.33,"min":5292032,"q1":5312512,"q2":5332992,"q3":5349376,"max":5365760,"minLabel":"coverage (2)","maxLabel":"coverage (1)","q1Label":"coverage (2)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"memUsage":{"mean":0.01,"min":0.01,"q1":0.01,"q2":0.01,"q3":0.01,"max":0.01,"minLabel":"coverage (2)","maxLabel":"coverage (1)","q1Label":"coverage (2)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"timeUsage":null,"vmem":{"mean":46727168,"min":46727168,"q1":46727168,"q2":46727168,"q3":46727168,"max":46727168,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"reads":{"mean":383965,"min":317670,"q1":330358.5,"q2":343047,"q3":417112.5,"max":491178,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"cpu":{"mean":17.3,"min":15.7,"q1":16.1,"q2":16.5,"q3":18.1,"max":19.7,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"time":{"mean":709.33,"min":578,"q1":659.5,"q2":741,"q3":775,"max":809,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"writes":{"mean":87173.33,"min":84029,"q1":84187,"q2":84345,"q3":88745.5,"max":93146,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"}},{"cpuUsage":{"mean":40.2,"min":40.2,"q1":40.2,"q2":40.2,"q3":40.2,"max":40.2,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"process":"multiQC","mem":{"mean":74358784,"min":74358784,"q1":74358784,"q2":74358784,"q3":74358784,"max":74358784,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"memUsage":null,"timeUsage":null,"vmem":{"mean":85352448,"min":85352448,"q1":85352448,"q2":85352448,"q3":85352448,"max":85352448,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"reads":{"mean":29687055,"min":29687055,"q1":29687055,"q2":29687055,"q3":29687055,"max":29687055,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"cpu":{"mean":40.2,"min":40.2,"q1":40.2,"q2":40.2,"q3":40.2,"max":40.2,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"time":{"mean":8000,"min":8000,"q1":8000,"q2":8000,"q3":8000,"max":8000,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"writes":{"mean":2404815,"min":2404815,"q1":2404815,"q2":2404815,"q3":2404815,"max":2404815,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"}},{"cpuUsage":{"mean":15.5,"min":15.5,"q1":15.5,"q2":15.5,"q3":15.5,"max":15.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"process":"no_soft_clipping","mem":{"mean":3563520,"min":3563520,"q1":3563520,"q2":3563520,"q3":3563520,"max":3563520,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"memUsage":{"mean":0.33,"min":0.33,"q1":0.33,"q2":0.33,"q3":0.33,"max":0.33,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"timeUsage":null,"vmem":{"mean":40296448,"min":40296448,"q1":40296448,"q2":40296448,"q3":40296448,"max":40296448,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"reads":{"mean":2188567,"min":2188567,"q1":2188567,"q2":2188567,"q3":2188567,"max":2188567,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"cpu":{"mean":15.5,"min":15.5,"q1":15.5,"q2":15.5,"q3":15.5,"max":15.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"time":{"mean":301,"min":301,"q1":301,"q2":301,"q3":301,"max":301,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"writes":{"mean":1583809,"min":1583809,"q1":1583809,"q2":1583809,"q3":1583809,"max":1583809,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"}},{"cpuUsage":{"mean":63.53,"min":62.2,"q1":63.05,"q2":63.9,"q3":64.2,"max":64.5,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (2)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"process":"plot_coverage","mem":{"mean":215513770.67,"min":213573632,"q1":214999040,"q2":216424448,"q3":216483840,"max":216543232,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (2)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.32,"max":0.32,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (2)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"timeUsage":null,"vmem":{"mean":2620409173.33,"min":2620047360,"q1":2620303360,"q2":2620559360,"q3":2620590080,"max":2620620800,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"reads":{"mean":20059391,"min":20056220,"q1":20056418.5,"q2":20056617,"q3":20060976.5,"max":20065336,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"cpu":{"mean":63.53,"min":62.2,"q1":63.05,"q2":63.9,"q3":64.2,"max":64.5,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (2)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"time":{"mean":14388,"min":14131,"q1":14217,"q2":14303,"q3":14516.5,"max":14730,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"writes":{"mean":470798,"min":466811,"q1":468460.5,"q2":470110,"q3":472791.5,"max":475473,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"}},{"cpuUsage":{"mean":25.5,"min":25.5,"q1":25.5,"q2":25.5,"q3":25.5,"max":25.5,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"process":"duplicate_removal","mem":{"mean":7753728,"min":7753728,"q1":7753728,"q2":7753728,"q3":7753728,"max":7753728,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"memUsage":{"mean":0.72,"min":0.72,"q1":0.72,"q2":0.72,"q3":0.72,"max":0.72,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"timeUsage":null,"vmem":{"mean":55619584,"min":55619584,"q1":55619584,"q2":55619584,"q3":55619584,"max":55619584,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"reads":{"mean":13465166,"min":13465166,"q1":13465166,"q2":13465166,"q3":13465166,"max":13465166,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"cpu":{"mean":25.5,"min":25.5,"q1":25.5,"q2":25.5,"q3":25.5,"max":25.5,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"time":{"mean":1792,"min":1792,"q1":1792,"q2":1792,"q3":1792,"max":1792,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"writes":{"mean":6908304,"min":6908304,"q1":6908304,"q2":6908304,"q3":6908304,"max":6908304,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"}},{"cpuUsage":{"mean":19.7,"min":19.7,"q1":19.7,"q2":19.7,"q3":19.7,"max":19.7,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"process":"insertion","mem":{"mean":9523200,"min":9523200,"q1":9523200,"q2":9523200,"q3":9523200,"max":9523200,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"memUsage":{"mean":0.89,"min":0.89,"q1":0.89,"q2":0.89,"q3":0.89,"max":0.89,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"timeUsage":null,"vmem":{"mean":68780032,"min":68780032,"q1":68780032,"q2":68780032,"q3":68780032,"max":68780032,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"reads":{"mean":2612546,"min":2612546,"q1":2612546,"q2":2612546,"q3":2612546,"max":2612546,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"cpu":{"mean":19.7,"min":19.7,"q1":19.7,"q2":19.7,"q3":19.7,"max":19.7,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"time":{"mean":482,"min":482,"q1":482,"q2":482,"q3":482,"max":482,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"writes":{"mean":1832054,"min":1832054,"q1":1832054,"q2":1832054,"q3":1832054,"max":1832054,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"}},{"cpuUsage":{"mean":72.5,"min":72.5,"q1":72.5,"q2":72.5,"q3":72.5,"max":72.5,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"process":"seq_around_insertion","mem":{"mean":164118528,"min":164118528,"q1":164118528,"q2":164118528,"q3":164118528,"max":164118528,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"memUsage":{"mean":0.24,"min":0.24,"q1":0.24,"q2":0.24,"q3":0.24,"max":0.24,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"timeUsage":null,"vmem":{"mean":2516348928,"min":2516348928,"q1":2516348928,"q2":2516348928,"q3":2516348928,"max":2516348928,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"reads":{"mean":18784250,"min":18784250,"q1":18784250,"q2":18784250,"q3":18784250,"max":18784250,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"cpu":{"mean":72.5,"min":72.5,"q1":72.5,"q2":72.5,"q3":72.5,"max":72.5,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"time":{"mean":5608,"min":5608,"q1":5608,"q2":5608,"q3":5608,"max":5608,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"writes":{"mean":234914,"min":234914,"q1":234914,"q2":234914,"q3":234914,"max":234914,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"}},{"cpuUsage":{"mean":72.1,"min":72.1,"q1":72.1,"q2":72.1,"q3":72.1,"max":72.1,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"process":"final_insertion_files","mem":{"mean":181882880,"min":181882880,"q1":181882880,"q2":181882880,"q3":181882880,"max":181882880,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"memUsage":{"mean":0.26,"min":0.26,"q1":0.26,"q2":0.26,"q3":0.26,"max":0.26,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"timeUsage":null,"vmem":{"mean":2515517440,"min":2515517440,"q1":2515517440,"q2":2515517440,"q3":2515517440,"max":2515517440,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"reads":{"mean":18856269,"min":18856269,"q1":18856269,"q2":18856269,"q3":18856269,"max":18856269,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"cpu":{"mean":72.1,"min":72.1,"q1":72.1,"q2":72.1,"q3":72.1,"max":72.1,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"time":{"mean":5750,"min":5750,"q1":5750,"q2":5750,"q3":5750,"max":5750,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"writes":{"mean":272413,"min":272413,"q1":272413,"q2":272413,"q3":272413,"max":272413,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"}},{"cpuUsage":{"mean":1.63,"min":1.63,"q1":1.63,"q2":1.63,"q3":1.63,"max":1.63,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"process":"extract_seq","mem":{"mean":6078464,"min":6078464,"q1":6078464,"q2":6078464,"q3":6078464,"max":6078464,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"memUsage":{"mean":0.01,"min":0.01,"q1":0.01,"q2":0.01,"q3":0.01,"max":0.01,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"timeUsage":null,"vmem":{"mean":52654080,"min":52654080,"q1":52654080,"q2":52654080,"q3":52654080,"max":52654080,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"reads":{"mean":9503035,"min":9503035,"q1":9503035,"q2":9503035,"q3":9503035,"max":9503035,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"cpu":{"mean":19.6,"min":19.6,"q1":19.6,"q2":19.6,"q3":19.6,"max":19.6,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"time":{"mean":840,"min":840,"q1":840,"q2":840,"q3":840,"max":840,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"writes":{"mean":4763828,"min":4763828,"q1":4763828,"q2":4763828,"q3":4763828,"max":4763828,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"}},{"cpuUsage":{"mean":12.18,"min":11.5,"q1":11.58,"q2":11.85,"q3":12.45,"max":13.5,"minLabel":"base_freq (4)","maxLabel":"base_freq (1)","q1Label":"base_freq (4)","q2Label":"base_freq (2)","q3Label":"base_freq (3)"},"process":"base_freq","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":288109.25,"min":286262,"q1":287864,"q2":288481,"q3":288726.25,"max":289213,"minLabel":"base_freq (1)","maxLabel":"base_freq (3)","q1Label":"base_freq (1)","q2Label":"base_freq (2)","q3Label":"base_freq (4)"},"cpu":{"mean":12.18,"min":11.5,"q1":11.58,"q2":11.85,"q3":12.45,"max":13.5,"minLabel":"base_freq (4)","maxLabel":"base_freq (1)","q1Label":"base_freq (4)","q2Label":"base_freq (2)","q3Label":"base_freq (3)"},"time":{"mean":98.25,"min":91,"q1":95.5,"q2":99.5,"q3":102.25,"max":103,"minLabel":"base_freq (1)","maxLabel":"base_freq (3)","q1Label":"base_freq (1)","q2Label":"base_freq (2)","q3Label":"base_freq (4)"},"writes":{"mean":19047,"min":17180,"q1":18801.5,"q2":19420.5,"q3":19666,"max":20167,"minLabel":"base_freq (1)","maxLabel":"base_freq (3)","q1Label":"base_freq (1)","q2Label":"base_freq (2)","q3Label":"base_freq (4)"}},{"cpuUsage":{"mean":61.6,"min":61.6,"q1":61.6,"q2":61.6,"q3":61.6,"max":61.6,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"process":"random_insertion","mem":{"mean":402747392,"min":402747392,"q1":402747392,"q2":402747392,"q3":402747392,"max":402747392,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"memUsage":{"mean":0.59,"min":0.59,"q1":0.59,"q2":0.59,"q3":0.59,"max":0.59,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"timeUsage":null,"vmem":{"mean":2905161728,"min":2905161728,"q1":2905161728,"q2":2905161728,"q3":2905161728,"max":2905161728,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"reads":{"mean":32197873,"min":32197873,"q1":32197873,"q2":32197873,"q3":32197873,"max":32197873,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"cpu":{"mean":61.6,"min":61.6,"q1":61.6,"q2":61.6,"q3":61.6,"max":61.6,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"time":{"mean":12103,"min":12103,"q1":12103,"q2":12103,"q3":12103,"max":12103,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"writes":{"mean":1288928,"min":1288928,"q1":1288928,"q2":1288928,"q3":1288928,"max":1288928,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"}},{"cpuUsage":{"mean":60.85,"min":59.9,"q1":60.73,"q2":61.05,"q3":61.18,"max":61.4,"minLabel":"logo (4)","maxLabel":"logo (2)","q1Label":"logo (4)","q2Label":"logo (1)","q3Label":"logo (3)"},"process":"logo","mem":{"mean":220703744,"min":211927040,"q1":213469184,"q2":215240704,"q3":222475264,"max":240406528,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (4)"},"memUsage":{"mean":0.32,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.32,"max":0.35,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (4)"},"timeUsage":null,"vmem":{"mean":2582991872,"min":2581856256,"q1":2582286336,"q2":2582476800,"q3":2583182336,"max":2585157632,"minLabel":"logo (2)","maxLabel":"logo (4)","q1Label":"logo (2)","q2Label":"logo (1)","q3Label":"logo (3)"},"reads":{"mean":15274109.25,"min":15274075,"q1":15274095.25,"q2":15274114,"q3":15274128,"max":15274134,"minLabel":"logo (2)","maxLabel":"logo (1)","q1Label":"logo (2)","q2Label":"logo (4)","q3Label":"logo (3)"},"cpu":{"mean":60.85,"min":59.9,"q1":60.73,"q2":61.05,"q3":61.18,"max":61.4,"minLabel":"logo (4)","maxLabel":"logo (2)","q1Label":"logo (4)","q2Label":"logo (1)","q3Label":"logo (3)"},"time":{"mean":8904.75,"min":8756,"q1":8807,"q2":8850,"q3":8947.75,"max":9163,"minLabel":"logo (2)","maxLabel":"logo (4)","q1Label":"logo (2)","q2Label":"logo (1)","q3Label":"logo (3)"},"writes":{"mean":924539.5,"min":873353,"q1":889346,"q2":899252,"q3":934445.5,"max":1026301,"minLabel":"logo (2)","maxLabel":"logo (4)","q1Label":"logo (2)","q2Label":"logo (1)","q3Label":"logo (3)"}},{"cpuUsage":{"mean":63.6,"min":63.6,"q1":63.6,"q2":63.6,"q3":63.6,"max":63.6,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"process":"global_logo","mem":{"mean":213176320,"min":213176320,"q1":213176320,"q2":213176320,"q3":213176320,"max":213176320,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"timeUsage":null,"vmem":{"mean":2581069824,"min":2581069824,"q1":2581069824,"q2":2581069824,"q3":2581069824,"max":2581069824,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"reads":{"mean":15282864,"min":15282864,"q1":15282864,"q2":15282864,"q3":15282864,"max":15282864,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"cpu":{"mean":63.6,"min":63.6,"q1":63.6,"q2":63.6,"q3":63.6,"max":63.6,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"time":{"mean":8967,"min":8967,"q1":8967,"q2":8967,"q3":8967,"max":8967,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"writes":{"mean":870727,"min":870727,"q1":870727,"q2":870727,"q3":870727,"max":870727,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"}},{"cpuUsage":{"mean":74.6,"min":74.6,"q1":74.6,"q2":74.6,"q3":74.6,"max":74.6,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"process":"plot_insertion","mem":{"mean":1047265280,"min":1047265280,"q1":1047265280,"q2":1047265280,"q3":1047265280,"max":1047265280,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"memUsage":{"mean":1.52,"min":1.52,"q1":1.52,"q2":1.52,"q3":1.52,"max":1.52,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"timeUsage":null,"vmem":{"mean":3413585920,"min":3413585920,"q1":3413585920,"q2":3413585920,"q3":3413585920,"max":3413585920,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"reads":{"mean":42236034,"min":42236034,"q1":42236034,"q2":42236034,"q3":42236034,"max":42236034,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"cpu":{"mean":74.6,"min":74.6,"q1":74.6,"q2":74.6,"q3":74.6,"max":74.6,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"time":{"mean":36002,"min":36002,"q1":36002,"q2":36002,"q3":36002,"max":36002,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"writes":{"mean":10194994,"min":10194994,"q1":10194994,"q2":10194994,"q3":10194994,"max":10194994,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"}},{"cpuUsage":{"mean":6.2,"min":6.2,"q1":6.2,"q2":6.2,"q3":6.2,"max":6.2,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"process":"init","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106624,"min":106624,"q1":106624,"q2":106624,"q3":106624,"max":106624,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"cpu":{"mean":6.2,"min":6.2,"q1":6.2,"q2":6.2,"q3":6.2,"max":6.2,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"time":{"mean":12,"min":12,"q1":12,"q2":12,"q3":12,"max":12,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"writes":{"mean":669,"min":669,"q1":669,"q2":669,"q3":669,"max":669,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"}},{"cpuUsage":{"mean":6,"min":6,"q1":6,"q2":6,"q3":6,"max":6,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"process":"report1","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106986,"min":106986,"q1":106986,"q2":106986,"q3":106986,"max":106986,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"cpu":{"mean":6,"min":6,"q1":6,"q2":6,"q3":6,"max":6,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"time":{"mean":18,"min":18,"q1":18,"q2":18,"q3":18,"max":18,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"writes":{"mean":683,"min":683,"q1":683,"q2":683,"q3":683,"max":683,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"}},{"cpuUsage":{"mean":6.1,"min":6.1,"q1":6.1,"q2":6.1,"q3":6.1,"max":6.1,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"process":"backup","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106844,"min":106844,"q1":106844,"q2":106844,"q3":106844,"max":106844,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"cpu":{"mean":6.1,"min":6.1,"q1":6.1,"q2":6.1,"q3":6.1,"max":6.1,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"time":{"mean":13,"min":13,"q1":13,"q2":13,"q3":13,"max":13,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"writes":{"mean":518,"min":518,"q1":518,"q2":518,"q3":518,"max":518,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"}},{"cpuUsage":{"mean":8.5,"min":8.5,"q1":8.5,"q2":8.5,"q3":8.5,"max":8.5,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"process":"report2","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":133952,"min":133952,"q1":133952,"q2":133952,"q3":133952,"max":133952,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"cpu":{"mean":8.5,"min":8.5,"q1":8.5,"q2":8.5,"q3":8.5,"max":8.5,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"time":{"mean":26,"min":26,"q1":26,"q2":26,"q3":26,"max":26,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"writes":{"mean":1289,"min":1289,"q1":1289,"q2":1289,"q3":1289,"max":1289,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"}},{"cpuUsage":{"mean":12.5,"min":12.5,"q1":12.5,"q2":12.5,"q3":12.5,"max":12.5,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"process":"workflowVersion","mem":{"mean":5009408,"min":5009408,"q1":5009408,"q2":5009408,"q3":5009408,"max":5009408,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"memUsage":{"mean":0.16,"min":0.16,"q1":0.16,"q2":0.16,"q3":0.16,"max":0.16,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"timeUsage":null,"vmem":{"mean":40304640,"min":40304640,"q1":40304640,"q2":40304640,"q3":40304640,"max":40304640,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"reads":{"mean":138244,"min":138244,"q1":138244,"q2":138244,"q3":138244,"max":138244,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"cpu":{"mean":12.5,"min":12.5,"q1":12.5,"q2":12.5,"q3":12.5,"max":12.5,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"time":{"mean":637,"min":637,"q1":637,"q2":637,"q3":637,"max":637,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"writes":{"mean":1712,"min":1712,"q1":1712,"q2":1712,"q3":1712,"max":1712,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"}},{"cpuUsage":{"mean":54.9,"min":54.9,"q1":54.9,"q2":54.9,"q3":54.9,"max":54.9,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"process":"print_report","mem":{"mean":255709184,"min":255709184,"q1":255709184,"q2":255709184,"q3":255709184,"max":255709184,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"memUsage":{"mean":0.37,"min":0.37,"q1":0.37,"q2":0.37,"q3":0.37,"max":0.37,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"timeUsage":null,"vmem":{"mean":1102518931456,"min":1102518931456,"q1":1102518931456,"q2":1102518931456,"q3":1102518931456,"max":1102518931456,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"reads":{"mean":32733838,"min":32733838,"q1":32733838,"q2":32733838,"q3":32733838,"max":32733838,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"cpu":{"mean":54.9,"min":54.9,"q1":54.9,"q2":54.9,"q3":54.9,"max":54.9,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"time":{"mean":9707,"min":9707,"q1":9707,"q2":9707,"q3":9707,"max":9707,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"writes":{"mean":12168741,"min":12168741,"q1":12168741,"q2":12168741,"q3":12168741,"max":12168741,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"}}] }; +{"task_id":"5","hash":"6b\/c7fecc","native_id":"3736","process":"backup","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"backup","status":"COMPLETED","exit":"0","submit":"1645716348774","start":"1645716348848","complete":"1645716350250","duration":"1476","realtime":"13","%cpu":"5.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106759","wchar":"500","syscr":"189","syscw":"23","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/6b\/c7fecc89abb52ecc8b628440668057","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Backup\\n\\n\" > report.rmd\n echo -e \"See the [reports](.\/reports) folder for all the details of the analysis, including the parameters used in the .config file\" >> report.rmd\n echo -e \"\\n\\nFull .nextflow.log is in: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot<br \/>The one in the [reports](.\/reports) folder is not complete (miss the end)\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"2","hash":"0a\/e411b8","native_id":"3764","process":"Nremove","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"Nremove (1)","status":"COMPLETED","exit":"0","submit":"1645716348799","start":"1645716348863","complete":"1645716350697","duration":"1898","realtime":"435","%cpu":"45.9","%mem":"0.0","rss":"12656640","vmem":"73986048","peak_rss":"12656640","peak_vmem":"73998336","rchar":"17604810","wchar":"15167117","syscr":"1863","syscw":"1271","read_bytes":"568320","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/0a\/e411b8f53190b555df28ff3c9ad900","script":"\n Nremove.sh test.fastq2.gz \"test.fastq2_Nremove.gz\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"901","inv_ctxt":"3"},{"task_id":"1","hash":"bf\/506112","native_id":"3796","process":"init","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"init","status":"COMPLETED","exit":"0","submit":"1645716348822","start":"1645716348876","complete":"1645716350408","duration":"1586","realtime":"11","%cpu":"5.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106557","wchar":"665","syscr":"190","syscw":"26","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/bf\/506112e1cf202cedfd3307e8a24513","script":"\n echo \"---\n title: \'Insertion Sites Report\'\n author: \'Gael Millot\'\n date: \'`r Sys.Date()`\'\n output:\n html_document:\n toc: TRUE\n toc_float: TRUE\n ---\n\n \\n\\n<br \/><br \/>\\n\\n\n \" > report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"3","hash":"4b\/1f154d","native_id":"3854","process":"report1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report1","status":"COMPLETED","exit":"0","submit":"1645716348846","start":"1645716348890","complete":"1645716350548","duration":"1702","realtime":"20","%cpu":"4.9","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106922","wchar":"679","syscr":"189","syscw":"54","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/4b\/1f154d3495c00bcfbd4b578785097f","script":"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n### Read coverage\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' > report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"6","hash":"03\/f78123","native_id":"3906","process":"workflowVersion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"workflowVersion","status":"COMPLETED","exit":"0","submit":"1645716348869","start":"1645716348948","complete":"1645716351088","duration":"2219","realtime":"711","%cpu":"11.8","%mem":"0.0","rss":"5087232","vmem":"40304640","peak_rss":"5087232","peak_vmem":"40304640","rchar":"136509","wchar":"2131","syscr":"301","syscw":"67","read_bytes":"1481728","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/03\/f781239882e1c3237d15e01a47a3f1","script":"\n modules= # this is just to deal with variable interpretation during the creation of the .command.sh file by nextflow. See also $modules below\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Workflow Version\\n\\n\" > report.rmd\n echo -e \"\\n\\n#### GENERAL\\n\\n\n| Variable | Value |\n| :-- | :-- |\n| Project<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot remote -v | head -n 1) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo\n| Git info<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot describe --abbrev=10 --dirty --always --tags) | # idem. Provide the small commit number of the script and nextflow.config used in the execution\n| Cmd line | nextflow run main.nf -resume |\n| execution mode | local |\" >> report.rmd \n\n if [[ ! -z $modules ]] ; then\n echo \"| loaded modules (according to specification by the user thanks to the --modules argument of main.nf) | |\" >> report.rmd\n fi\n \n echo \"| Manifest\'s pipeline version | null |\n| result path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342 |\n| nextflow version | 21.04.2 |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### IMPLICIT VARIABLES\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| launchDir | Directory where the workflow is run | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| nprojectDir | Directory where the main.nf script is located | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| workDir | Directory where tasks temporary files are created | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### USER VARIABLES\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| out_path | output folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342 |\n| in_path | input folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### WORKFLOW DIAGRAM\\n\\nSee the [nf_dag.png](.\/reports\/nf_dag.png) file\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"29","inv_ctxt":"1"},{"task_id":"7","hash":"31\/65ff8a","native_id":"4579","process":"trim","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-alien_trimmer_v0.4.0-gitlab_v8.1.img","tag":"-","name":"trim (1)","status":"COMPLETED","exit":"0","submit":"1645716358514","start":"1645716358599","complete":"1645716361558","duration":"3044","realtime":"2110","%cpu":"44.2","%mem":"0.0","rss":"40587264","vmem":"5903626240","peak_rss":"40587264","peak_vmem":"5970448384","rchar":"17145212","wchar":"12629480","syscr":"2381","syscw":"647","read_bytes":"9977856","write_bytes":"32768","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/31\/65ff8abf7d1c75c59972a23fc8e361","script":"\n trim.sh test.fastq2_Nremove.gz \"test.fastq2_trim.fq\" 20200520_adapters_TruSeq_B2699_14985_CL.fasta 30 \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3267","inv_ctxt":"0"},{"task_id":"10","hash":"b2\/dfc998","native_id":"4993","process":"kraken","module":"-","container":"-","tag":"-","name":"kraken (1)","status":"COMPLETED","exit":"0","submit":"1645716361603","start":"1645716361657","complete":"1645716361692","duration":"89","realtime":"9","%cpu":"41.0","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"154433","wchar":"220","syscr":"228","syscw":"13","read_bytes":"159744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b2\/dfc998bc44eebc8510857af74ed894","script":"\n echo \"No kraken analysis performed in local running\" > test.fastq2_trim_kraken_std.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"9","hash":"fa\/c1fd48","native_id":"5007","process":"fivep_filtering","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"fivep_filtering (1)","status":"COMPLETED","exit":"0","submit":"1645716361621","start":"1645716361668","complete":"1645716364528","duration":"2907","realtime":"1958","%cpu":"21.5","%mem":"0.0","rss":"10018816","vmem":"64376832","peak_rss":"10018816","peak_vmem":"64376832","rchar":"29336512","wchar":"16062033","syscr":"9150","syscw":"5787","read_bytes":"437248","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/fa\/c1fd482e7170ed345cdc16d1c9ab66","script":"\n fivep_filtering.sh test.fastq2_trim.fq \"test.fastq2\" \"^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\" 48 3 51 \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"report.rmd\"\n echo \"Nucleotide frequencies of the 5\' part of reads:\n\n\" >> report.rmd\n echo \"\n\\`\\`\\`{r, echo = FALSE}\ntempo <- read.table(\'.\/files\/test.fastq2_5pAttc_1-51.stat\', header = TRUE, row.names = 1, colClasses = \'character\', sep = \'\\t\', check.names = FALSE) ; \nkableExtra::kable_styling(knitr::kable(head(tempo), row.names = TRUE, digits = 2, caption = NULL, format=\'html\'), c(\'striped\', \'bordered\', \'responsive\', \'condensed\'), font_size=10, full_width = FALSE, position = \'left\')\n\\`\\`\\`\n \n\n\n \" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"8220","inv_ctxt":"0"},{"task_id":"11","hash":"c9\/fb815c","native_id":"5361","process":"cutoff","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"cutoff (1)","status":"COMPLETED","exit":"0","submit":"1645716364576","start":"1645716364629","complete":"1645716366378","duration":"1802","realtime":"740","%cpu":"15.7","%mem":"0.0","rss":"10166272","vmem":"64229376","peak_rss":"10166272","peak_vmem":"64229376","rchar":"7308005","wchar":"4049154","syscr":"2784","syscw":"2034","read_bytes":"384000","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c9\/fb815cd30f073585191458f206dfce","script":"\n cutoff.sh test.fastq2_5pAtccRm.fq 25 \"test.fastq2\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1185","inv_ctxt":"0"},{"task_id":"8","hash":"dc\/1c3599","native_id":"5579","process":"fastqc1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc1 (1)","status":"COMPLETED","exit":"0","submit":"1645716369105","start":"1645716369181","complete":"1645716376788","duration":"7683","realtime":"6609","%cpu":"50.3","%mem":"0.2","rss":"167321600","vmem":"3289468928","peak_rss":"167321600","peak_vmem":"3289890816","rchar":"14603837","wchar":"1278925","syscr":"7605","syscw":"5170","read_bytes":"19984384","write_bytes":"712704","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/dc\/1c3599d32674f4e310ebcf6e9778ea","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Read QC n\u00B01\\n\\n\" > report.rmd\n echo -e \"Results are published in the [fastQC1](.\/fastQC1) folder\\n\\n\" >> report.rmd\n fastqc test.fastq2_trim.fq | tee tempo.txt\n cat tempo.txt >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4344","inv_ctxt":"0"},{"task_id":"12","hash":"16\/720a57","native_id":"5600","process":"fastqc2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc2 (1)","status":"COMPLETED","exit":"0","submit":"1645716369125","start":"1645716369205","complete":"1645716376867","duration":"7742","realtime":"6628","%cpu":"48.5","%mem":"0.1","rss":"157093888","vmem":"3289468928","peak_rss":"157093888","peak_vmem":"3342655488","rchar":"12766798","wchar":"1245411","syscr":"7360","syscw":"5096","read_bytes":"19984384","write_bytes":"688128","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/16\/720a57cb9b917c09ee8a57661ad65c","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Read QC n\u00B02\\n\\n\" > report.rmd\n echo -e \"Results are published in the [fastQC2](.\/fastQC2) folder\\n\\n\" >> report.rmd\n fastqc test.fastq2_5pAtccRm.fq | tee tempo.txt\n cat tempo.txt >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4344","inv_ctxt":"2"},{"task_id":"14","hash":"ea\/2dce38","native_id":"6271","process":"bowtie2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bowtie2_v2.3.4.3_extended_v2.0-gitlab_v8.0.img","tag":"-","name":"bowtie2 (1)","status":"COMPLETED","exit":"0","submit":"1645716372936","start":"1645716372987","complete":"1645716377778","duration":"4842","realtime":"3683","%cpu":"51.4","%mem":"0.0","rss":"66875392","vmem":"249085952","peak_rss":"120135680","peak_vmem":"251146240","rchar":"36678359","wchar":"17009937","syscr":"3393","syscw":"2520","read_bytes":"7209984","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ea\/2dce38b9fc4a9628a96e45160a9448","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 indexing of the reference sequence\\n\\n\" >> bowtie2_report.txt\n bowtie2-build Ecoli-K12-MG1655_ORI_CENTERED.fasta Ecoli-K12-MG1655_ORI_CENTERED |& tee -a bowtie2_report.txt\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 alignment\\n\\n\" > report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 alignment\\n\\n\" >> bowtie2_report.txt\n bowtie2 --very-sensitive -x Ecoli-K12-MG1655_ORI_CENTERED -U test.fastq2_cutoff.fq -t -S test.fastq2_bowtie2.sam |& tee -a tempo.txt\n # --very-sensitive: no soft clipping allowed and very sensitive seed alignment\n # -t time displayed\n cat tempo.txt >> bowtie2_report.txt\n sed -i -e \':a;N;$!ba;s\/\\n\/\\n<br \\\/>\/g\' tempo.txt\n cat tempo.txt >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### samtools conversion\\n\\n\" >> bowtie2_report.txt\n # samtools faidx Ecoli-K12-MG1655_ORI_CENTERED.fasta\n samtools view -bh -o tempo.bam test.fastq2_bowtie2.sam |& tee -a bowtie2_report.txt\n samtools sort -o test.fastq2_bowtie2.bam tempo.bam |& tee -a bowtie2_report.txt\n samtools index test.fastq2_bowtie2.bam |& tee -a bowtie2_report.txt\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"5851","inv_ctxt":"36"},{"task_id":"18","hash":"93\/1153d4","native_id":"7377","process":"multiQC","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/ewels-multiqc-1.10.1.img","tag":"-","name":"multiQC","status":"COMPLETED","exit":"0","submit":"1645716383461","start":"1645716383484","complete":"1645716392498","duration":"9037","realtime":"9000","%cpu":"37.1","%mem":"0.1","rss":"78508032","vmem":"89317376","peak_rss":"78708736","peak_vmem":"89489408","rchar":"29684849","wchar":"2404815","syscr":"9285","syscw":"289","read_bytes":"22820864","write_bytes":"1253376","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/93\/1153d4999b615ba1588b10ad731538","script":"\n multiqc . -n multiqc_report.html\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### MultiQC\\n\\n\" > report.rmd\n echo -e \"Results are published in the [Report](.\/reports\/multiqc_report.html) folder\\n\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"35805","inv_ctxt":"44"},{"task_id":"16","hash":"09\/3abd99","native_id":"7440","process":"Q20","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"Q20 (1)","status":"COMPLETED","exit":"0","submit":"1645716383680","start":"1645716383684","complete":"1645716385238","duration":"1558","realtime":"415","%cpu":"16.5","%mem":"0.0","rss":"6111232","vmem":"44822528","peak_rss":"6111232","peak_vmem":"44830720","rchar":"3392005","wchar":"2260606","syscr":"889","syscw":"567","read_bytes":"1229824","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/09\/3abd994fee0cb2d4325a541fd7d8ce","script":"\n samtools view -q 20 -b test.fastq2_bowtie2.bam > test.fastq2_q20.bam |& tee q20_report.txt\n samtools index test.fastq2_q20.bam\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Q20 filtering\\n\\n\" > report.rmd\n read_nb_before=$(samtools view test.fastq2_bowtie2.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n read_nb_after=$(samtools view test.fastq2_q20.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n echo -e \"\\n\\nNumber of sequences before Q20 filtering: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of sequences after Q20 filtering: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n echo $read_nb_before > read_nb_before # because nf cannot output values easily\n echo $read_nb_after > read_nb_after\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"811","inv_ctxt":"0"},{"task_id":"17","hash":"44\/53399e","native_id":"7603","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (1)","status":"COMPLETED","exit":"0","submit":"1645716384875","start":"1645716384885","complete":"1645716386798","duration":"1923","realtime":"885","%cpu":"15.7","%mem":"0.0","rss":"5210112","vmem":"46727168","peak_rss":"5210112","peak_vmem":"46727168","rchar":"491158","wchar":"93146","syscr":"251","syscw":"3116","read_bytes":"1734656","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/44\/53399e51aafb31a04837099720403d","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_bowtie2.bam > test.fastq2_bowtie2_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"640","inv_ctxt":"0"},{"task_id":"21","hash":"cd\/ab90a7","native_id":"7933","process":"no_soft_clipping","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"no_soft_clipping (1)","status":"COMPLETED","exit":"0","submit":"1645716386298","start":"1645716386340","complete":"1645716387937","duration":"1639","realtime":"340","%cpu":"10.8","%mem":"0.0","rss":"5578752","vmem":"60444672","peak_rss":"5578752","peak_vmem":"60444672","rchar":"2188546","wchar":"1583809","syscr":"702","syscw":"417","read_bytes":"1153024","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/cd\/ab90a7838af23e877e5e762da60a9e","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Control that no more soft clipping in reads\\n\\n\" > report.rmd\n echo -e \"nb of reads with soft clipping (S) in CIGAR: $(printf \"%\'d\" $(samtools view test.fastq2_q20.bam | awk \'$6 ~ \/.*[S].*\/{print $0}\' | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n echo -e \"\\n\\ntotal nb of reads: $(printf \"%\'d\" $(samtools view test.fastq2_q20.bam | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"31","inv_ctxt":"11"},{"task_id":"20","hash":"c1\/88ba17","native_id":"7953","process":"duplicate_removal","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"duplicate_removal (1)","status":"COMPLETED","exit":"0","submit":"1645716386318","start":"1645716386352","complete":"1645716389847","duration":"3529","realtime":"2207","%cpu":"23.3","%mem":"0.0","rss":"7925760","vmem":"55619584","peak_rss":"7925760","peak_vmem":"55619584","rchar":"13491554","wchar":"6912400","syscr":"7204","syscw":"5709","read_bytes":"1376256","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c1\/88ba173ae6c0c507a0a2ec13e80992","script":"\n duplicate_removal.sh test.fastq2_q20.bam Ecoli-K12-MG1655_ORI_CENTERED.fasta \"test.fastq2_q20_nodup.bam\" \"dup_report.txt\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1877","inv_ctxt":"3"},{"task_id":"19","hash":"36\/3097aa","native_id":"8065","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (2)","status":"COMPLETED","exit":"0","submit":"1645716386840","start":"1645716386898","complete":"1645716389018","duration":"2178","realtime":"913","%cpu":"13.8","%mem":"0.0","rss":"5287936","vmem":"46522368","peak_rss":"5287936","peak_vmem":"46538752","rchar":"343026","wchar":"84345","syscr":"239","syscw":"2824","read_bytes":"1734656","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/36\/3097aa0022fe90fe351bbae7862f46","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_q20.bam > test.fastq2_q20_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"600","inv_ctxt":"2"},{"task_id":"24","hash":"19\/def24f","native_id":"8911","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (1)","status":"COMPLETED","exit":"0","submit":"1645716389880","start":"1645716389948","complete":"1645716391698","duration":"1818","realtime":"609","%cpu":"17.5","%mem":"0.0","rss":"9392128","vmem":"68771840","peak_rss":"9392128","peak_vmem":"68780032","rchar":"2612524","wchar":"1832054","syscr":"1555","syscw":"1165","read_bytes":"1238016","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/19\/def24f728f89d1c12aca6f40c66369","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n echo -e \"\\n\\nOne of the step is to correct insertion site read extremity for the reverse reads. It consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n # extraction of bam column 2, 4 and 10, i.e., FALG, POS and SEQ\n samtools view test.fastq2_q20_nodup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n cat tempo | head -60 | tail -20 >> insertion_report.txt\n # redefinition of POS according to FLAG\n awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n echo -e \"\\n\\nFinal fasta file\\n\\n\" >> insertion_report.txt\n cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2.pos\n echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n cat test.fastq2.pos | head -60 | tail -20 >> insertion_report.txt\n\n read_nb_before=$(samtools view test.fastq2_q20_nodup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n read_nb_after=$(wc -l test.fastq2.pos | cut -f1 -d\' \')\n echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"954","inv_ctxt":"5"},{"task_id":"25","hash":"e4\/43c3da","native_id":"8932","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (3)","status":"COMPLETED","exit":"0","submit":"1645716389899","start":"1645716389959","complete":"1645716391917","duration":"2018","realtime":"844","%cpu":"14.8","%mem":"0.0","rss":"5378048","vmem":"46727168","peak_rss":"5378048","peak_vmem":"46727168","rchar":"317644","wchar":"84029","syscr":"235","syscw":"2820","read_bytes":"1734656","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e4\/43c3daebbb13968cd29b75012679de","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_q20_nodup.bam > test.fastq2_q20_nodup_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"638","inv_ctxt":"0"},{"task_id":"27","hash":"fa\/585809","native_id":"9449","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"seq_around_insertion (1)","status":"COMPLETED","exit":"0","submit":"1645716403767","start":"1645716403811","complete":"1645716410157","duration":"6390","realtime":"5648","%cpu":"70.2","%mem":"0.1","rss":"163962880","vmem":"2515849216","peak_rss":"163962880","peak_vmem":"2515873792","rchar":"18784458","wchar":"234915","syscr":"2762","syscw":"362","read_bytes":"32610304","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/fa\/5858092595430631e02b8d58efa3bd","script":"\n seq_around_insertion.R \"test.fastq2.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"31133","inv_ctxt":"2"},{"task_id":"4","hash":"64\/dc0f4b","native_id":"9899","process":"motif","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"motif","status":"COMPLETED","exit":"0","submit":"1645716410167","start":"1645716410257","complete":"1645716424798","duration":"14631","realtime":"13912","%cpu":"65.4","%mem":"0.2","rss":"228462592","vmem":"2580992000","peak_rss":"228462592","peak_vmem":"2581016576","rchar":"50653126","wchar":"41640350","syscr":"6186","syscw":"34240","read_bytes":"32752640","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/64\/dc0f4b44fc526b11bfb78866c88f8d","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Motif detection\\n\\n\" > report.rmd\n echo -e \"\\n\\nThe forward motif is: G[AT]T\\n\\n\" >> report.rmd\n echo -e \"\\n\\nThe reverse motif is: A[AT]C\\n\\n\" >> report.rmd\n if [[ G[AT]T != \"NULL\" ]] ; then\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'G[AT]T\' > motif_fw.pos\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'A[AT]C\' > motif_rev.pos\n else\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_fw.pos\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_rev.pos\n fi\n echo -e \"\nINDICATED POSITIONS IN FILES START AT ZERO AND CORRESPOND TO THE FIRST LEFT BASE OF THE MOTIF\n\"\n motif.R \"motif_fw.pos\" \"motif_rev.pos\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"G[AT]T\" \"A[AT]C\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"motif_report.txt\" \"report.rmd\"\n\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"54202","inv_ctxt":"32"},{"task_id":"26","hash":"95\/7e25d2","native_id":"10621","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"final_insertion_files (1)","status":"COMPLETED","exit":"0","submit":"1645716424805","start":"1645716424898","complete":"1645716431207","duration":"6402","realtime":"5647","%cpu":"70.8","%mem":"0.1","rss":"164904960","vmem":"2517241856","peak_rss":"164904960","peak_vmem":"2517266432","rchar":"18856193","wchar":"272414","syscr":"2800","syscw":"510","read_bytes":"32802816","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/95\/7e25d2205e4237c1ffa82814a07246","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Final insertion site files\\n\\n\" > report.rmd\n echo -e \"\\n\\nSee the [test.fastq2_annot.pos](.\/files\/test.fastq2_annot.pos) and [test.fastq2_annot.freq](.\/files\/test.fastq2_annot.freq) files\\n\\n\" >> report.rmd\n final_insertion_files.R \"test.fastq2.pos\" \"2320711 2320942\" \"4627368 4627400\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n pos_nb=$(wc -l test.fastq2_annot.pos | cut -f1 -d\' \')\n echo -e \"\\n\\nNumber of different positions: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"31539","inv_ctxt":"4"},{"task_id":"28","hash":"2c\/4408b4","native_id":"11081","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_coverage (3)","status":"COMPLETED","exit":"0","submit":"1645716431216","start":"1645716431308","complete":"1645716445468","duration":"14252","realtime":"13574","%cpu":"64.6","%mem":"0.2","rss":"261353472","vmem":"2628349952","peak_rss":"261353472","peak_vmem":"2628403200","rchar":"20056289","wchar":"470111","syscr":"4353","syscw":"302","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/2c\/4408b494e84c46a4e12c745b700514","script":"\n plot_coverage.R \"test.fastq2_q20_nodup_mini\" \"dup_read_nb\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"52629","inv_ctxt":"7"},{"task_id":"22","hash":"ba\/641b5b","native_id":"11803","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_coverage (1)","status":"COMPLETED","exit":"0","submit":"1645716445475","start":"1645716445568","complete":"1645716459657","duration":"14182","realtime":"13492","%cpu":"65.1","%mem":"0.2","rss":"262524928","vmem":"2629632000","peak_rss":"262524928","peak_vmem":"2629677056","rchar":"20065323","wchar":"475475","syscr":"4353","syscw":"303","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ba\/641b5b511701a55b3d8d5be47aabf2","script":"\n plot_coverage.R \"test.fastq2_bowtie2_mini\" \"read_nb_before\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53131","inv_ctxt":"7"},{"task_id":"23","hash":"80\/45c1c5","native_id":"12523","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_coverage (2)","status":"COMPLETED","exit":"0","submit":"1645716459664","start":"1645716459757","complete":"1645716473878","duration":"14214","realtime":"13570","%cpu":"64.7","%mem":"0.2","rss":"261111808","vmem":"2628239360","peak_rss":"261111808","peak_vmem":"2628280320","rchar":"20056608","wchar":"466811","syscr":"4353","syscw":"301","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/80\/45c1c5ed8f207e8e37089d7f4cd765","script":"\n plot_coverage.R \"test.fastq2_q20_mini\" \"read_nb_after\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"52674","inv_ctxt":"10"},{"task_id":"15","hash":"19\/cdb33c","native_id":"13248","process":"plot_read_length","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_read_length (1)","status":"COMPLETED","exit":"0","submit":"1645716473885","start":"1645716473979","complete":"1645716489628","duration":"15743","realtime":"15022","%cpu":"68.1","%mem":"0.2","rss":"243191808","vmem":"2610286592","peak_rss":"243191808","peak_vmem":"2610331648","rchar":"20620878","wchar":"734698","syscr":"4663","syscw":"439","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/19\/cdb33cb1bd91f9ba93b160feefbcb9","script":"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n### Length of initial reads\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Length of reads after selection of attC in 5 prime \\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Length of reads after trimming \\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Read length after cut-off\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' > report.rmd\n plot_read_length.R \"test.fastq2_ini.length\" \"test.fastq2_5pAttc.length\" \"test.fastq2_5pAtccRm.stat\" \"test.fastq2_cutoff.length\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_read_length_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53577","inv_ctxt":"9"},{"task_id":"13","hash":"26\/6dc1b9","native_id":"13971","process":"plot_fivep_filtering_stat","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_fivep_filtering_stat (1)","status":"COMPLETED","exit":"0","submit":"1645716489635","start":"1645716489729","complete":"1645716504108","duration":"14473","realtime":"13810","%cpu":"65.2","%mem":"0.2","rss":"255778816","vmem":"2622439424","peak_rss":"255778816","peak_vmem":"2622480384","rchar":"20034479","wchar":"836210","syscr":"4346","syscw":"399","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/26\/6dc1b980a8624b852450ebd1c8d7b8","script":"\n echo -e \"\n\\n\\n<br \/><br \/>\\n\\n### Base frequencies at the 5\' extremity of reads\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \" > report.rmd\n plot_fivep_filtering_stat.R \"test.fastq2_5pAttc_1-51.stat\" \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_fivep_filtering_stat_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"51189","inv_ctxt":"8"},{"task_id":"29","hash":"0d\/08f56c","native_id":"14700","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (1)","status":"COMPLETED","exit":"0","submit":"1645716504115","start":"1645716504208","complete":"1645716505757","duration":"1642","realtime":"792","%cpu":"19.8","%mem":"0.0","rss":"6266880","vmem":"52637696","peak_rss":"6266880","peak_vmem":"52654080","rchar":"9503033","wchar":"4763829","syscr":"866","syscw":"3344","read_bytes":"6359040","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/0d\/08f56cb4703fae27a555e31a4e7d7b","script":"\n # make a bed file from the reference genome\n echo \">ref\" > tempo.ref.fasta\n awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_around_insertion.bed -fo \"test.fastq2_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n rm tempo.ref.fasta\n rm tempo.ref.fasta.fai\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"557","inv_ctxt":"0"},{"task_id":"30","hash":"1f\/a416f5","native_id":"14888","process":"random_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"random_insertion (1)","status":"COMPLETED","exit":"0","submit":"1645716505765","start":"1645716505857","complete":"1645716518627","duration":"12862","realtime":"11901","%cpu":"61.1","%mem":"0.4","rss":"403791872","vmem":"2905751552","peak_rss":"403791872","peak_vmem":"2905776128","rchar":"32197723","wchar":"1288929","syscr":"6293","syscw":"1485","read_bytes":"60127232","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/1f\/a416f56b3ed538dfed3b62c52333b4","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Random insertion sites\\n\\n\" > report.rmd\n random_insertion.R \"test.fastq2_annot.pos\" \"motif_sites.pos\" \"2320711 2320942\" \"4627368 4627400\" \"G[AT]T\" \"4641652\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"random_insertion_report.txt\" \"report.rmd\"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Insertion site counts\\n\\n\" > report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Insertion site proportions\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"62067","inv_ctxt":"70"},{"task_id":"31","hash":"57\/efb944","native_id":"14926","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (1)","status":"COMPLETED","exit":"0","submit":"1645716505820","start":"1645716505868","complete":"1645716507386","duration":"1566","realtime":"88","%cpu":"11.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"286256","wchar":"17180","syscr":"526","syscw":"46","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/57\/efb94460322eaba9b4dc8af48daca3","script":"\n # file splitting into seq\n awk -v var1=LEADING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_around_insertion.fasta > test.fastq2_LEADING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_LEADING_0.seq > test.fastq2_LEADING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"33","hash":"eb\/7eacd6","native_id":"14959","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (3)","status":"COMPLETED","exit":"0","submit":"1645716505837","start":"1645716505878","complete":"1645716507237","duration":"1400","realtime":"93","%cpu":"9.7","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"289206","wchar":"20165","syscr":"532","syscw":"52","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/eb\/7eacd60e5cb69b25030f58d71d06e3","script":"\n # file splitting into seq\n awk -v var1=LAGGING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_around_insertion.fasta > test.fastq2_LAGGING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_LAGGING_0.seq > test.fastq2_LAGGING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"34","hash":"3a\/64690b","native_id":"14996","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (4)","status":"COMPLETED","exit":"0","submit":"1645716505855","start":"1645716505891","complete":"1645716507649","duration":"1794","realtime":"93","%cpu":"9.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288556","wchar":"19497","syscr":"531","syscw":"51","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3a\/64690b0eb4999e2ec36e7b519382f6","script":"\n # file splitting into seq\n awk -v var1=LAGGING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_around_insertion.fasta > test.fastq2_LAGGING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_LAGGING_16.seq > test.fastq2_LAGGING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"32","hash":"9d\/92f3fa","native_id":"15038","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (2)","status":"COMPLETED","exit":"0","submit":"1645716505873","start":"1645716505957","complete":"1645716507549","duration":"1676","realtime":"91","%cpu":"11.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288394","wchar":"19342","syscr":"530","syscw":"50","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9d\/92f3fafcb69540040a3e761ae165c2","script":"\n # file splitting into seq\n awk -v var1=LEADING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_around_insertion.fasta > test.fastq2_LEADING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_LEADING_16.seq > test.fastq2_LEADING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"39","hash":"f5\/61649c","native_id":"15636","process":"report2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report2","status":"COMPLETED","exit":"0","submit":"1645716508657","start":"1645716508750","complete":"1645716509547","duration":"890","realtime":"20","%cpu":"14.2","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"133936","wchar":"1289","syscr":"245","syscw":"88","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f5\/61649c0c7f840f663b69cce7d30a67","script":"\n echo -e \"\n\\n\\n<br \/><br \/>\\n\\n### Logos\\n\\n\n\\n\\nIn each sequence of length $((20 * 2)) <br \/>position $((20 + 1)) corresponds to the first nucleotide of the reference genome part of the read\n\" > report.rmd\n count=0\n for i in $(echo [test.fastq2_LAGGING_0, test.fastq2_LEADING_0, test.fastq2_LEADING_16, test.fastq2_LAGGING_16] | sed \'s\/^\\[\/\/\' | sed \'s\/\\]$\/\/\' | sed \'s\/,\/\/g\') ; do\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n done\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"35","hash":"e9\/5d7f6b","native_id":"16267","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"logo (1)","status":"COMPLETED","exit":"0","submit":"1645716518644","start":"1645716518727","complete":"1645716527997","duration":"9353","realtime":"8655","%cpu":"60.8","%mem":"0.2","rss":"214171648","vmem":"2581831680","peak_rss":"214171648","peak_vmem":"2582380544","rchar":"15274154","wchar":"894677","syscr":"2843","syscw":"319","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e9\/5d7f6b630f133ea41b0775c518c2ab","script":"\n logo.R \"test.fastq2_LAGGING_0.stat\" 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53175","inv_ctxt":"10"},{"task_id":"36","hash":"4a\/a4f272","native_id":"16887","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"logo (2)","status":"COMPLETED","exit":"0","submit":"1645716528003","start":"1645716528097","complete":"1645716537157","duration":"9154","realtime":"8437","%cpu":"63.7","%mem":"0.2","rss":"216649728","vmem":"2584612864","peak_rss":"216649728","peak_vmem":"2585165824","rchar":"15274179","wchar":"1026299","syscr":"2871","syscw":"337","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/4a\/a4f2724d73fbb88d0c824fd3f5885b","script":"\n logo.R \"test.fastq2_LEADING_0.stat\" 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"54038","inv_ctxt":"6"},{"task_id":"37","hash":"fe\/c071c5","native_id":"17500","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"logo (3)","status":"COMPLETED","exit":"0","submit":"1645716537173","start":"1645716537257","complete":"1645716546408","duration":"9235","realtime":"8562","%cpu":"62.3","%mem":"0.2","rss":"215310336","vmem":"2581274624","peak_rss":"215310336","peak_vmem":"2581843968","rchar":"15274094","wchar":"873352","syscr":"2839","syscw":"320","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/fe\/c071c5f5bca9d3ad4d2f467386cdf2","script":"\n logo.R \"test.fastq2_LEADING_16.stat\" 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53358","inv_ctxt":"10"},{"task_id":"38","hash":"af\/12f23f","native_id":"18109","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"logo (4)","status":"COMPLETED","exit":"0","submit":"1645716546415","start":"1645716546509","complete":"1645716555617","duration":"9202","realtime":"8543","%cpu":"61.6","%mem":"0.2","rss":"214044672","vmem":"2581942272","peak_rss":"214044672","peak_vmem":"2582519808","rchar":"15274057","wchar":"903827","syscr":"2835","syscw":"321","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/af\/12f23f76aa02d162d9c88d7d5f170d","script":"\n logo.R \"test.fastq2_LAGGING_16.stat\" 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53441","inv_ctxt":"6"},{"task_id":"40","hash":"62\/70e758","native_id":"18772","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"global_logo","status":"COMPLETED","exit":"0","submit":"1645716555624","start":"1645716555717","complete":"1645716565297","duration":"9673","realtime":"8950","%cpu":"63.1","%mem":"0.2","rss":"214941696","vmem":"2580537344","peak_rss":"215007232","peak_vmem":"2581057536","rchar":"15282794","wchar":"870708","syscr":"2848","syscw":"333","read_bytes":"55312384","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/62\/70e75873aad2f8ee5986ea076a6293","script":"\n global_logo.R \"test.fastq2_LAGGING_0.stat test.fastq2_LEADING_0.stat test.fastq2_LEADING_16.stat test.fastq2_LAGGING_16.stat\" test.fastq2 20 \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"global_logo_report.txt\"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"53159","inv_ctxt":"11"},{"task_id":"41","hash":"e9\/ea5890","native_id":"19392","process":"plot_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"plot_insertion (1)","status":"COMPLETED","exit":"0","submit":"1645716565306","start":"1645716565398","complete":"1645716601328","duration":"36022","realtime":"35316","%cpu":"74.7","%mem":"0.9","rss":"1018216448","vmem":"3384504320","peak_rss":"1018216448","peak_vmem":"3384528896","rchar":"42236606","wchar":"10201623","syscr":"11091","syscw":"1836","read_bytes":"74364928","write_bytes":"24576","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e9\/ea58902dc875e505f25b4dc8376a20","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion plots\\n\\n\" > report.rmd\n plot_insertion.R \"obs_rd_insertions.pos\" \"obs_rd_insertions.freq\" \"2320711 2320942\" \"4627368 4627400\" \"Ecoli Genome (bp)\" \"4641652\" \"50000\" \"100\" \"test.fastq2\" \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"plot_insertion_report.txt\"\n echo -e \"\\n\\n#### Histograms\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Raw frequencies\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the CL Labbook section 24.7.3 to explain the limitation around 100 bp\\n\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Binned frequencies\\n\\n\" >> report.rmd\n count=1\n for i in 50000 ; do\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n done\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"72034","inv_ctxt":"18"},{"task_id":"42","hash":"fe\/324ee1","native_id":"20358","process":"print_report","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.0.5_extended_v2.0-gitlab_v6.4.img","tag":"-","name":"print_report (1)","status":"COMPLETED","exit":"0","submit":"1645716601618","start":"1645716601628","complete":"1645716611407","duration":"9789","realtime":"9031","%cpu":"57.7","%mem":"0.3","rss":"237260800","vmem":"1102451912704","peak_rss":"237260800","peak_vmem":"1102518943744","rchar":"32759956","wchar":"12187216","syscr":"5119","syscw":"1054","read_bytes":"54798336","write_bytes":"4096","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/fe\/324ee16ee402fe906db95b0a4d8470","script":"\n cp report.rmd report_file.rmd # this is to get hard files, not symlinks\n mkdir figures\n mkdir files\n mkdir reports\n cat stat_tempo > .\/files\/test.fastq2_5pAttc_1-51.stat # this is to get hard files, not symlinks\n cp head.fw.txt head.rv.txt table1.txt table2.txt table3.txt table4.txt table8.txt .\/files\/ # this is to get hard files, not symlinks\n cp plot_fivep_filtering_stat.png plot_read_length_cutoff.png plot_read_length_fivep_filtering.png plot_read_length_fivep_filtering_cut.png plot_read_length_ini.png plot_test.fastq2_q20_nodup_mini.png plot_test.fastq2_bowtie2_mini.png plot_test.fastq2_q20_mini.png logo_test.fastq2_LAGGING_0.png logo_test.fastq2_LEADING_0.png logo_test.fastq2_LEADING_16.png logo_test.fastq2_LAGGING_16.png global_logo_test.fastq2.png plot_motif_insertion_per_fork.png plot_motif_insertion_per_fork_and_strand.png plot_motif_insertion_per_fork_and_strand_prop.png plot_motif_insertion_per_fork_prop.png plot_motif_insertion_per_strand.png plot_motif_insertion_per_strand_prop.png plot_test.fastq2_insertion_bin_50000.png plot_test.fastq2_insertion_hist_forward.png plot_test.fastq2_insertion_hist_reverse.png plot_test.fastq2_insertion_hist_tot.png plot_test.fastq2_insertion_hist_tot_zoom.png plot_test.fastq2_insertion_raw.png plot_test.fastq2_lead_lag_insertion_bin_50000.png .\/figures\/ # Warning several files\n cp plot_fivep_filtering_stat.png .\/reports\/nf_dag.png # trick to delude the knitting during the print report\n cp multiqc_report.html .\/reports\/ # this is to get hard files, not symlinks\n print_report.R \"https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\" \"report_file.rmd\" \"print_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000\nstep=100\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.0.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1645716342\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"44478","inv_ctxt":"11"}], "summary":[{"cpuUsage":{"mean":5.5,"min":5.5,"q1":5.5,"q2":5.5,"q3":5.5,"max":5.5,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"process":"backup","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106759,"min":106759,"q1":106759,"q2":106759,"q3":106759,"max":106759,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"cpu":{"mean":5.5,"min":5.5,"q1":5.5,"q2":5.5,"q3":5.5,"max":5.5,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"time":{"mean":13,"min":13,"q1":13,"q2":13,"q3":13,"max":13,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"writes":{"mean":500,"min":500,"q1":500,"q2":500,"q3":500,"max":500,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"}},{"cpuUsage":{"mean":5.3,"min":5.3,"q1":5.3,"q2":5.3,"q3":5.3,"max":5.3,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"process":"init","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106557,"min":106557,"q1":106557,"q2":106557,"q3":106557,"max":106557,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"cpu":{"mean":5.3,"min":5.3,"q1":5.3,"q2":5.3,"q3":5.3,"max":5.3,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"time":{"mean":11,"min":11,"q1":11,"q2":11,"q3":11,"max":11,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"writes":{"mean":665,"min":665,"q1":665,"q2":665,"q3":665,"max":665,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"}},{"cpuUsage":{"mean":4.9,"min":4.9,"q1":4.9,"q2":4.9,"q3":4.9,"max":4.9,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"process":"report1","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106922,"min":106922,"q1":106922,"q2":106922,"q3":106922,"max":106922,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"cpu":{"mean":4.9,"min":4.9,"q1":4.9,"q2":4.9,"q3":4.9,"max":4.9,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"time":{"mean":20,"min":20,"q1":20,"q2":20,"q3":20,"max":20,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"writes":{"mean":679,"min":679,"q1":679,"q2":679,"q3":679,"max":679,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"}},{"cpuUsage":{"mean":45.9,"min":45.9,"q1":45.9,"q2":45.9,"q3":45.9,"max":45.9,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"process":"Nremove","mem":{"mean":12656640,"min":12656640,"q1":12656640,"q2":12656640,"q3":12656640,"max":12656640,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"memUsage":{"mean":0.39,"min":0.39,"q1":0.39,"q2":0.39,"q3":0.39,"max":0.39,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"timeUsage":null,"vmem":{"mean":73998336,"min":73998336,"q1":73998336,"q2":73998336,"q3":73998336,"max":73998336,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"reads":{"mean":17604810,"min":17604810,"q1":17604810,"q2":17604810,"q3":17604810,"max":17604810,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"cpu":{"mean":45.9,"min":45.9,"q1":45.9,"q2":45.9,"q3":45.9,"max":45.9,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"time":{"mean":435,"min":435,"q1":435,"q2":435,"q3":435,"max":435,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"writes":{"mean":15167117,"min":15167117,"q1":15167117,"q2":15167117,"q3":15167117,"max":15167117,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"}},{"cpuUsage":{"mean":11.8,"min":11.8,"q1":11.8,"q2":11.8,"q3":11.8,"max":11.8,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"process":"workflowVersion","mem":{"mean":5087232,"min":5087232,"q1":5087232,"q2":5087232,"q3":5087232,"max":5087232,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"memUsage":{"mean":0.16,"min":0.16,"q1":0.16,"q2":0.16,"q3":0.16,"max":0.16,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"timeUsage":null,"vmem":{"mean":40304640,"min":40304640,"q1":40304640,"q2":40304640,"q3":40304640,"max":40304640,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"reads":{"mean":136509,"min":136509,"q1":136509,"q2":136509,"q3":136509,"max":136509,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"cpu":{"mean":11.8,"min":11.8,"q1":11.8,"q2":11.8,"q3":11.8,"max":11.8,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"time":{"mean":711,"min":711,"q1":711,"q2":711,"q3":711,"max":711,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"writes":{"mean":2131,"min":2131,"q1":2131,"q2":2131,"q3":2131,"max":2131,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"}},{"cpuUsage":{"mean":44.2,"min":44.2,"q1":44.2,"q2":44.2,"q3":44.2,"max":44.2,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"process":"trim","mem":{"mean":40587264,"min":40587264,"q1":40587264,"q2":40587264,"q3":40587264,"max":40587264,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"memUsage":{"mean":1.26,"min":1.26,"q1":1.26,"q2":1.26,"q3":1.26,"max":1.26,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"timeUsage":null,"vmem":{"mean":5970448384,"min":5970448384,"q1":5970448384,"q2":5970448384,"q3":5970448384,"max":5970448384,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"reads":{"mean":17145212,"min":17145212,"q1":17145212,"q2":17145212,"q3":17145212,"max":17145212,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"cpu":{"mean":44.2,"min":44.2,"q1":44.2,"q2":44.2,"q3":44.2,"max":44.2,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"time":{"mean":2110,"min":2110,"q1":2110,"q2":2110,"q3":2110,"max":2110,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"writes":{"mean":12629480,"min":12629480,"q1":12629480,"q2":12629480,"q3":12629480,"max":12629480,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"}},{"cpuUsage":{"mean":41,"min":41,"q1":41,"q2":41,"q3":41,"max":41,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"process":"kraken","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":154433,"min":154433,"q1":154433,"q2":154433,"q3":154433,"max":154433,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"cpu":{"mean":41,"min":41,"q1":41,"q2":41,"q3":41,"max":41,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"time":{"mean":9,"min":9,"q1":9,"q2":9,"q3":9,"max":9,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"writes":{"mean":220,"min":220,"q1":220,"q2":220,"q3":220,"max":220,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"}},{"cpuUsage":{"mean":21.5,"min":21.5,"q1":21.5,"q2":21.5,"q3":21.5,"max":21.5,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"process":"fivep_filtering","mem":{"mean":10018816,"min":10018816,"q1":10018816,"q2":10018816,"q3":10018816,"max":10018816,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"timeUsage":null,"vmem":{"mean":64376832,"min":64376832,"q1":64376832,"q2":64376832,"q3":64376832,"max":64376832,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"reads":{"mean":29336512,"min":29336512,"q1":29336512,"q2":29336512,"q3":29336512,"max":29336512,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"cpu":{"mean":21.5,"min":21.5,"q1":21.5,"q2":21.5,"q3":21.5,"max":21.5,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"time":{"mean":1958,"min":1958,"q1":1958,"q2":1958,"q3":1958,"max":1958,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"writes":{"mean":16062033,"min":16062033,"q1":16062033,"q2":16062033,"q3":16062033,"max":16062033,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"}},{"cpuUsage":{"mean":15.7,"min":15.7,"q1":15.7,"q2":15.7,"q3":15.7,"max":15.7,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"process":"cutoff","mem":{"mean":10166272,"min":10166272,"q1":10166272,"q2":10166272,"q3":10166272,"max":10166272,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"memUsage":{"mean":0.32,"min":0.32,"q1":0.32,"q2":0.32,"q3":0.32,"max":0.32,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"timeUsage":null,"vmem":{"mean":64229376,"min":64229376,"q1":64229376,"q2":64229376,"q3":64229376,"max":64229376,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"reads":{"mean":7308005,"min":7308005,"q1":7308005,"q2":7308005,"q3":7308005,"max":7308005,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"cpu":{"mean":15.7,"min":15.7,"q1":15.7,"q2":15.7,"q3":15.7,"max":15.7,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"time":{"mean":740,"min":740,"q1":740,"q2":740,"q3":740,"max":740,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"writes":{"mean":4049154,"min":4049154,"q1":4049154,"q2":4049154,"q3":4049154,"max":4049154,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"}},{"cpuUsage":{"mean":50.3,"min":50.3,"q1":50.3,"q2":50.3,"q3":50.3,"max":50.3,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"process":"fastqc1","mem":{"mean":167321600,"min":167321600,"q1":167321600,"q2":167321600,"q3":167321600,"max":167321600,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3289890816,"min":3289890816,"q1":3289890816,"q2":3289890816,"q3":3289890816,"max":3289890816,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"reads":{"mean":14603837,"min":14603837,"q1":14603837,"q2":14603837,"q3":14603837,"max":14603837,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"cpu":{"mean":50.3,"min":50.3,"q1":50.3,"q2":50.3,"q3":50.3,"max":50.3,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"time":{"mean":6609,"min":6609,"q1":6609,"q2":6609,"q3":6609,"max":6609,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"writes":{"mean":1278925,"min":1278925,"q1":1278925,"q2":1278925,"q3":1278925,"max":1278925,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"}},{"cpuUsage":{"mean":48.5,"min":48.5,"q1":48.5,"q2":48.5,"q3":48.5,"max":48.5,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"process":"fastqc2","mem":{"mean":157093888,"min":157093888,"q1":157093888,"q2":157093888,"q3":157093888,"max":157093888,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3342655488,"min":3342655488,"q1":3342655488,"q2":3342655488,"q3":3342655488,"max":3342655488,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"reads":{"mean":12766798,"min":12766798,"q1":12766798,"q2":12766798,"q3":12766798,"max":12766798,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"cpu":{"mean":48.5,"min":48.5,"q1":48.5,"q2":48.5,"q3":48.5,"max":48.5,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"time":{"mean":6628,"min":6628,"q1":6628,"q2":6628,"q3":6628,"max":6628,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"writes":{"mean":1245411,"min":1245411,"q1":1245411,"q2":1245411,"q3":1245411,"max":1245411,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"}},{"cpuUsage":{"mean":4.28,"min":4.28,"q1":4.28,"q2":4.28,"q3":4.28,"max":4.28,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"process":"bowtie2","mem":{"mean":120135680,"min":120135680,"q1":120135680,"q2":120135680,"q3":120135680,"max":120135680,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"memUsage":{"mean":0.17,"min":0.17,"q1":0.17,"q2":0.17,"q3":0.17,"max":0.17,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"timeUsage":null,"vmem":{"mean":251146240,"min":251146240,"q1":251146240,"q2":251146240,"q3":251146240,"max":251146240,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"reads":{"mean":36678359,"min":36678359,"q1":36678359,"q2":36678359,"q3":36678359,"max":36678359,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"cpu":{"mean":51.4,"min":51.4,"q1":51.4,"q2":51.4,"q3":51.4,"max":51.4,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"time":{"mean":3683,"min":3683,"q1":3683,"q2":3683,"q3":3683,"max":3683,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"writes":{"mean":17009937,"min":17009937,"q1":17009937,"q2":17009937,"q3":17009937,"max":17009937,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"}},{"cpuUsage":{"mean":16.5,"min":16.5,"q1":16.5,"q2":16.5,"q3":16.5,"max":16.5,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"process":"Q20","mem":{"mean":6111232,"min":6111232,"q1":6111232,"q2":6111232,"q3":6111232,"max":6111232,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"memUsage":{"mean":0.57,"min":0.57,"q1":0.57,"q2":0.57,"q3":0.57,"max":0.57,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"timeUsage":null,"vmem":{"mean":44830720,"min":44830720,"q1":44830720,"q2":44830720,"q3":44830720,"max":44830720,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"reads":{"mean":3392005,"min":3392005,"q1":3392005,"q2":3392005,"q3":3392005,"max":3392005,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"cpu":{"mean":16.5,"min":16.5,"q1":16.5,"q2":16.5,"q3":16.5,"max":16.5,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"time":{"mean":415,"min":415,"q1":415,"q2":415,"q3":415,"max":415,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"writes":{"mean":2260606,"min":2260606,"q1":2260606,"q2":2260606,"q3":2260606,"max":2260606,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"}},{"cpuUsage":{"mean":1.23,"min":1.15,"q1":1.19,"q2":1.23,"q3":1.27,"max":1.31,"minLabel":"coverage (2)","maxLabel":"coverage (1)","q1Label":"coverage (2)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"process":"coverage","mem":{"mean":5292032,"min":5210112,"q1":5249024,"q2":5287936,"q3":5332992,"max":5378048,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"memUsage":{"mean":0.01,"min":0.01,"q1":0.01,"q2":0.01,"q3":0.01,"max":0.01,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"timeUsage":null,"vmem":{"mean":46664362.67,"min":46538752,"q1":46632960,"q2":46727168,"q3":46727168,"max":46727168,"minLabel":"coverage (2)","maxLabel":"coverage (3)","q1Label":"coverage (2)","q2Label":"coverage (1)","q3Label":"coverage (1)"},"reads":{"mean":383942.67,"min":317644,"q1":330335,"q2":343026,"q3":417092,"max":491158,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"cpu":{"mean":14.77,"min":13.8,"q1":14.3,"q2":14.8,"q3":15.25,"max":15.7,"minLabel":"coverage (2)","maxLabel":"coverage (1)","q1Label":"coverage (2)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"time":{"mean":880.67,"min":844,"q1":864.5,"q2":885,"q3":899,"max":913,"minLabel":"coverage (3)","maxLabel":"coverage (2)","q1Label":"coverage (3)","q2Label":"coverage (1)","q3Label":"coverage (1)"},"writes":{"mean":87173.33,"min":84029,"q1":84187,"q2":84345,"q3":88745.5,"max":93146,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"}},{"cpuUsage":{"mean":10.8,"min":10.8,"q1":10.8,"q2":10.8,"q3":10.8,"max":10.8,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"process":"no_soft_clipping","mem":{"mean":5578752,"min":5578752,"q1":5578752,"q2":5578752,"q3":5578752,"max":5578752,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"memUsage":{"mean":0.52,"min":0.52,"q1":0.52,"q2":0.52,"q3":0.52,"max":0.52,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"timeUsage":null,"vmem":{"mean":60444672,"min":60444672,"q1":60444672,"q2":60444672,"q3":60444672,"max":60444672,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"reads":{"mean":2188546,"min":2188546,"q1":2188546,"q2":2188546,"q3":2188546,"max":2188546,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"cpu":{"mean":10.8,"min":10.8,"q1":10.8,"q2":10.8,"q3":10.8,"max":10.8,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"time":{"mean":340,"min":340,"q1":340,"q2":340,"q3":340,"max":340,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"writes":{"mean":1583809,"min":1583809,"q1":1583809,"q2":1583809,"q3":1583809,"max":1583809,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"}},{"cpuUsage":{"mean":23.3,"min":23.3,"q1":23.3,"q2":23.3,"q3":23.3,"max":23.3,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"process":"duplicate_removal","mem":{"mean":7925760,"min":7925760,"q1":7925760,"q2":7925760,"q3":7925760,"max":7925760,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"memUsage":{"mean":0.74,"min":0.74,"q1":0.74,"q2":0.74,"q3":0.74,"max":0.74,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"timeUsage":null,"vmem":{"mean":55619584,"min":55619584,"q1":55619584,"q2":55619584,"q3":55619584,"max":55619584,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"reads":{"mean":13491554,"min":13491554,"q1":13491554,"q2":13491554,"q3":13491554,"max":13491554,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"cpu":{"mean":23.3,"min":23.3,"q1":23.3,"q2":23.3,"q3":23.3,"max":23.3,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"time":{"mean":2207,"min":2207,"q1":2207,"q2":2207,"q3":2207,"max":2207,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"writes":{"mean":6912400,"min":6912400,"q1":6912400,"q2":6912400,"q3":6912400,"max":6912400,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"}},{"cpuUsage":{"mean":17.5,"min":17.5,"q1":17.5,"q2":17.5,"q3":17.5,"max":17.5,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"process":"insertion","mem":{"mean":9392128,"min":9392128,"q1":9392128,"q2":9392128,"q3":9392128,"max":9392128,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"memUsage":{"mean":0.87,"min":0.87,"q1":0.87,"q2":0.87,"q3":0.87,"max":0.87,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"timeUsage":null,"vmem":{"mean":68780032,"min":68780032,"q1":68780032,"q2":68780032,"q3":68780032,"max":68780032,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"reads":{"mean":2612524,"min":2612524,"q1":2612524,"q2":2612524,"q3":2612524,"max":2612524,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"cpu":{"mean":17.5,"min":17.5,"q1":17.5,"q2":17.5,"q3":17.5,"max":17.5,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"time":{"mean":609,"min":609,"q1":609,"q2":609,"q3":609,"max":609,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"writes":{"mean":1832054,"min":1832054,"q1":1832054,"q2":1832054,"q3":1832054,"max":1832054,"minLabel":"insertion (1)","maxLabel":"insertion (1)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"}},{"cpuUsage":{"mean":37.1,"min":37.1,"q1":37.1,"q2":37.1,"q3":37.1,"max":37.1,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"process":"multiQC","mem":{"mean":78708736,"min":78708736,"q1":78708736,"q2":78708736,"q3":78708736,"max":78708736,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"memUsage":null,"timeUsage":null,"vmem":{"mean":89489408,"min":89489408,"q1":89489408,"q2":89489408,"q3":89489408,"max":89489408,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"reads":{"mean":29684849,"min":29684849,"q1":29684849,"q2":29684849,"q3":29684849,"max":29684849,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"cpu":{"mean":37.1,"min":37.1,"q1":37.1,"q2":37.1,"q3":37.1,"max":37.1,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"time":{"mean":9000,"min":9000,"q1":9000,"q2":9000,"q3":9000,"max":9000,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"writes":{"mean":2404815,"min":2404815,"q1":2404815,"q2":2404815,"q3":2404815,"max":2404815,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"}},{"cpuUsage":{"mean":70.2,"min":70.2,"q1":70.2,"q2":70.2,"q3":70.2,"max":70.2,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"process":"seq_around_insertion","mem":{"mean":163962880,"min":163962880,"q1":163962880,"q2":163962880,"q3":163962880,"max":163962880,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"memUsage":{"mean":0.24,"min":0.24,"q1":0.24,"q2":0.24,"q3":0.24,"max":0.24,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"timeUsage":null,"vmem":{"mean":2515873792,"min":2515873792,"q1":2515873792,"q2":2515873792,"q3":2515873792,"max":2515873792,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"reads":{"mean":18784458,"min":18784458,"q1":18784458,"q2":18784458,"q3":18784458,"max":18784458,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"cpu":{"mean":70.2,"min":70.2,"q1":70.2,"q2":70.2,"q3":70.2,"max":70.2,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"time":{"mean":5648,"min":5648,"q1":5648,"q2":5648,"q3":5648,"max":5648,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"writes":{"mean":234915,"min":234915,"q1":234915,"q2":234915,"q3":234915,"max":234915,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"}},{"cpuUsage":{"mean":65.4,"min":65.4,"q1":65.4,"q2":65.4,"q3":65.4,"max":65.4,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"process":"motif","mem":{"mean":228462592,"min":228462592,"q1":228462592,"q2":228462592,"q3":228462592,"max":228462592,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"memUsage":{"mean":0.33,"min":0.33,"q1":0.33,"q2":0.33,"q3":0.33,"max":0.33,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"timeUsage":null,"vmem":{"mean":2581016576,"min":2581016576,"q1":2581016576,"q2":2581016576,"q3":2581016576,"max":2581016576,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"reads":{"mean":50653126,"min":50653126,"q1":50653126,"q2":50653126,"q3":50653126,"max":50653126,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"cpu":{"mean":65.4,"min":65.4,"q1":65.4,"q2":65.4,"q3":65.4,"max":65.4,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"time":{"mean":13912,"min":13912,"q1":13912,"q2":13912,"q3":13912,"max":13912,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"writes":{"mean":41640350,"min":41640350,"q1":41640350,"q2":41640350,"q3":41640350,"max":41640350,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"}},{"cpuUsage":{"mean":70.8,"min":70.8,"q1":70.8,"q2":70.8,"q3":70.8,"max":70.8,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"process":"final_insertion_files","mem":{"mean":164904960,"min":164904960,"q1":164904960,"q2":164904960,"q3":164904960,"max":164904960,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"memUsage":{"mean":0.24,"min":0.24,"q1":0.24,"q2":0.24,"q3":0.24,"max":0.24,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"timeUsage":null,"vmem":{"mean":2517266432,"min":2517266432,"q1":2517266432,"q2":2517266432,"q3":2517266432,"max":2517266432,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"reads":{"mean":18856193,"min":18856193,"q1":18856193,"q2":18856193,"q3":18856193,"max":18856193,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"cpu":{"mean":70.8,"min":70.8,"q1":70.8,"q2":70.8,"q3":70.8,"max":70.8,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"time":{"mean":5647,"min":5647,"q1":5647,"q2":5647,"q3":5647,"max":5647,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"writes":{"mean":272414,"min":272414,"q1":272414,"q2":272414,"q3":272414,"max":272414,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"}},{"cpuUsage":{"mean":64.8,"min":64.6,"q1":64.65,"q2":64.7,"q3":64.9,"max":65.1,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"process":"plot_coverage","mem":{"mean":261663402.67,"min":261111808,"q1":261232640,"q2":261353472,"q3":261939200,"max":262524928,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"memUsage":{"mean":0.38,"min":0.38,"q1":0.38,"q2":0.38,"q3":0.38,"max":0.38,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"timeUsage":null,"vmem":{"mean":2628786858.67,"min":2628280320,"q1":2628341760,"q2":2628403200,"q3":2629040128,"max":2629677056,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"reads":{"mean":20059406.67,"min":20056289,"q1":20056448.5,"q2":20056608,"q3":20060965.5,"max":20065323,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"cpu":{"mean":64.8,"min":64.6,"q1":64.65,"q2":64.7,"q3":64.9,"max":65.1,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"time":{"mean":13545.33,"min":13492,"q1":13531,"q2":13570,"q3":13572,"max":13574,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"writes":{"mean":470799,"min":466811,"q1":468461,"q2":470111,"q3":472793,"max":475475,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"}},{"cpuUsage":{"mean":68.1,"min":68.1,"q1":68.1,"q2":68.1,"q3":68.1,"max":68.1,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"process":"plot_read_length","mem":{"mean":243191808,"min":243191808,"q1":243191808,"q2":243191808,"q3":243191808,"max":243191808,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"memUsage":{"mean":0.35,"min":0.35,"q1":0.35,"q2":0.35,"q3":0.35,"max":0.35,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"timeUsage":null,"vmem":{"mean":2610331648,"min":2610331648,"q1":2610331648,"q2":2610331648,"q3":2610331648,"max":2610331648,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"reads":{"mean":20620878,"min":20620878,"q1":20620878,"q2":20620878,"q3":20620878,"max":20620878,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"cpu":{"mean":68.1,"min":68.1,"q1":68.1,"q2":68.1,"q3":68.1,"max":68.1,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"time":{"mean":15022,"min":15022,"q1":15022,"q2":15022,"q3":15022,"max":15022,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"writes":{"mean":734698,"min":734698,"q1":734698,"q2":734698,"q3":734698,"max":734698,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"}},{"cpuUsage":{"mean":65.2,"min":65.2,"q1":65.2,"q2":65.2,"q3":65.2,"max":65.2,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"process":"plot_fivep_filtering_stat","mem":{"mean":255778816,"min":255778816,"q1":255778816,"q2":255778816,"q3":255778816,"max":255778816,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"memUsage":{"mean":0.37,"min":0.37,"q1":0.37,"q2":0.37,"q3":0.37,"max":0.37,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"timeUsage":null,"vmem":{"mean":2622480384,"min":2622480384,"q1":2622480384,"q2":2622480384,"q3":2622480384,"max":2622480384,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"reads":{"mean":20034479,"min":20034479,"q1":20034479,"q2":20034479,"q3":20034479,"max":20034479,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"cpu":{"mean":65.2,"min":65.2,"q1":65.2,"q2":65.2,"q3":65.2,"max":65.2,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"time":{"mean":13810,"min":13810,"q1":13810,"q2":13810,"q3":13810,"max":13810,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"writes":{"mean":836210,"min":836210,"q1":836210,"q2":836210,"q3":836210,"max":836210,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"}},{"cpuUsage":{"mean":1.65,"min":1.65,"q1":1.65,"q2":1.65,"q3":1.65,"max":1.65,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"process":"extract_seq","mem":{"mean":6266880,"min":6266880,"q1":6266880,"q2":6266880,"q3":6266880,"max":6266880,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"memUsage":{"mean":0.01,"min":0.01,"q1":0.01,"q2":0.01,"q3":0.01,"max":0.01,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"timeUsage":null,"vmem":{"mean":52654080,"min":52654080,"q1":52654080,"q2":52654080,"q3":52654080,"max":52654080,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"reads":{"mean":9503033,"min":9503033,"q1":9503033,"q2":9503033,"q3":9503033,"max":9503033,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"cpu":{"mean":19.8,"min":19.8,"q1":19.8,"q2":19.8,"q3":19.8,"max":19.8,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"time":{"mean":792,"min":792,"q1":792,"q2":792,"q3":792,"max":792,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"writes":{"mean":4763829,"min":4763829,"q1":4763829,"q2":4763829,"q3":4763829,"max":4763829,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"}},{"cpuUsage":{"mean":10.47,"min":9.3,"q1":9.6,"q2":10.5,"q3":11.38,"max":11.6,"minLabel":"base_freq (4)","maxLabel":"base_freq (1)","q1Label":"base_freq (4)","q2Label":"base_freq (3)","q3Label":"base_freq (2)"},"process":"base_freq","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":288103,"min":286256,"q1":287859.5,"q2":288475,"q3":288718.5,"max":289206,"minLabel":"base_freq (1)","maxLabel":"base_freq (3)","q1Label":"base_freq (1)","q2Label":"base_freq (2)","q3Label":"base_freq (4)"},"cpu":{"mean":10.47,"min":9.3,"q1":9.6,"q2":10.5,"q3":11.38,"max":11.6,"minLabel":"base_freq (4)","maxLabel":"base_freq (1)","q1Label":"base_freq (4)","q2Label":"base_freq (3)","q3Label":"base_freq (2)"},"time":{"mean":91.25,"min":88,"q1":90.25,"q2":92,"q3":93,"max":93,"minLabel":"base_freq (1)","maxLabel":"base_freq (4)","q1Label":"base_freq (1)","q2Label":"base_freq (2)","q3Label":"base_freq (3)"},"writes":{"mean":19046,"min":17180,"q1":18801.5,"q2":19419.5,"q3":19664,"max":20165,"minLabel":"base_freq (1)","maxLabel":"base_freq (3)","q1Label":"base_freq (1)","q2Label":"base_freq (2)","q3Label":"base_freq (4)"}},{"cpuUsage":{"mean":14.2,"min":14.2,"q1":14.2,"q2":14.2,"q3":14.2,"max":14.2,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"process":"report2","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":133936,"min":133936,"q1":133936,"q2":133936,"q3":133936,"max":133936,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"cpu":{"mean":14.2,"min":14.2,"q1":14.2,"q2":14.2,"q3":14.2,"max":14.2,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"time":{"mean":20,"min":20,"q1":20,"q2":20,"q3":20,"max":20,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"writes":{"mean":1289,"min":1289,"q1":1289,"q2":1289,"q3":1289,"max":1289,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"}},{"cpuUsage":{"mean":61.1,"min":61.1,"q1":61.1,"q2":61.1,"q3":61.1,"max":61.1,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"process":"random_insertion","mem":{"mean":403791872,"min":403791872,"q1":403791872,"q2":403791872,"q3":403791872,"max":403791872,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"memUsage":{"mean":0.59,"min":0.59,"q1":0.59,"q2":0.59,"q3":0.59,"max":0.59,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"timeUsage":null,"vmem":{"mean":2905776128,"min":2905776128,"q1":2905776128,"q2":2905776128,"q3":2905776128,"max":2905776128,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"reads":{"mean":32197723,"min":32197723,"q1":32197723,"q2":32197723,"q3":32197723,"max":32197723,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"cpu":{"mean":61.1,"min":61.1,"q1":61.1,"q2":61.1,"q3":61.1,"max":61.1,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"time":{"mean":11901,"min":11901,"q1":11901,"q2":11901,"q3":11901,"max":11901,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"writes":{"mean":1288929,"min":1288929,"q1":1288929,"q2":1288929,"q3":1288929,"max":1288929,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"}},{"cpuUsage":{"mean":62.1,"min":60.8,"q1":61.4,"q2":61.95,"q3":62.65,"max":63.7,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (4)","q3Label":"logo (3)"},"process":"logo","mem":{"mean":215044096,"min":214044672,"q1":214139904,"q2":214740992,"q3":215645184,"max":216649728,"minLabel":"logo (4)","maxLabel":"logo (2)","q1Label":"logo (4)","q2Label":"logo (1)","q3Label":"logo (3)"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.32,"minLabel":"logo (4)","maxLabel":"logo (2)","q1Label":"logo (4)","q2Label":"logo (1)","q3Label":"logo (3)"},"timeUsage":null,"vmem":{"mean":2582977536,"min":2581843968,"q1":2582246400,"q2":2582450176,"q3":2583181312,"max":2585165824,"minLabel":"logo (3)","maxLabel":"logo (2)","q1Label":"logo (3)","q2Label":"logo (1)","q3Label":"logo (4)"},"reads":{"mean":15274121,"min":15274057,"q1":15274084.75,"q2":15274124,"q3":15274160.25,"max":15274179,"minLabel":"logo (4)","maxLabel":"logo (2)","q1Label":"logo (4)","q2Label":"logo (3)","q3Label":"logo (1)"},"cpu":{"mean":62.1,"min":60.8,"q1":61.4,"q2":61.95,"q3":62.65,"max":63.7,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (4)","q3Label":"logo (3)"},"time":{"mean":8549.25,"min":8437,"q1":8516.5,"q2":8552.5,"q3":8585.25,"max":8655,"minLabel":"logo (2)","maxLabel":"logo (1)","q1Label":"logo (2)","q2Label":"logo (4)","q3Label":"logo (3)"},"writes":{"mean":924538.75,"min":873352,"q1":889345.75,"q2":899252,"q3":934445,"max":1026299,"minLabel":"logo (3)","maxLabel":"logo (2)","q1Label":"logo (3)","q2Label":"logo (1)","q3Label":"logo (4)"}},{"cpuUsage":{"mean":63.1,"min":63.1,"q1":63.1,"q2":63.1,"q3":63.1,"max":63.1,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"process":"global_logo","mem":{"mean":215007232,"min":215007232,"q1":215007232,"q2":215007232,"q3":215007232,"max":215007232,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"timeUsage":null,"vmem":{"mean":2581057536,"min":2581057536,"q1":2581057536,"q2":2581057536,"q3":2581057536,"max":2581057536,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"reads":{"mean":15282794,"min":15282794,"q1":15282794,"q2":15282794,"q3":15282794,"max":15282794,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"cpu":{"mean":63.1,"min":63.1,"q1":63.1,"q2":63.1,"q3":63.1,"max":63.1,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"time":{"mean":8950,"min":8950,"q1":8950,"q2":8950,"q3":8950,"max":8950,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"},"writes":{"mean":870708,"min":870708,"q1":870708,"q2":870708,"q3":870708,"max":870708,"minLabel":"global_logo","maxLabel":"global_logo","q1Label":"global_logo","q2Label":"global_logo","q3Label":"global_logo"}},{"cpuUsage":{"mean":74.7,"min":74.7,"q1":74.7,"q2":74.7,"q3":74.7,"max":74.7,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"process":"plot_insertion","mem":{"mean":1018216448,"min":1018216448,"q1":1018216448,"q2":1018216448,"q3":1018216448,"max":1018216448,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"memUsage":{"mean":1.48,"min":1.48,"q1":1.48,"q2":1.48,"q3":1.48,"max":1.48,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"timeUsage":null,"vmem":{"mean":3384528896,"min":3384528896,"q1":3384528896,"q2":3384528896,"q3":3384528896,"max":3384528896,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"reads":{"mean":42236606,"min":42236606,"q1":42236606,"q2":42236606,"q3":42236606,"max":42236606,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"cpu":{"mean":74.7,"min":74.7,"q1":74.7,"q2":74.7,"q3":74.7,"max":74.7,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"time":{"mean":35316,"min":35316,"q1":35316,"q2":35316,"q3":35316,"max":35316,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"writes":{"mean":10201623,"min":10201623,"q1":10201623,"q2":10201623,"q3":10201623,"max":10201623,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"}},{"cpuUsage":{"mean":57.7,"min":57.7,"q1":57.7,"q2":57.7,"q3":57.7,"max":57.7,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"process":"print_report","mem":{"mean":237260800,"min":237260800,"q1":237260800,"q2":237260800,"q3":237260800,"max":237260800,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"memUsage":{"mean":0.35,"min":0.35,"q1":0.35,"q2":0.35,"q3":0.35,"max":0.35,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"timeUsage":null,"vmem":{"mean":1102518943744,"min":1102518943744,"q1":1102518943744,"q2":1102518943744,"q3":1102518943744,"max":1102518943744,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"reads":{"mean":32759956,"min":32759956,"q1":32759956,"q2":32759956,"q3":32759956,"max":32759956,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"cpu":{"mean":57.7,"min":57.7,"q1":57.7,"q2":57.7,"q3":57.7,"max":57.7,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"time":{"mean":9031,"min":9031,"q1":9031,"q2":9031,"q3":9031,"max":9031,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"writes":{"mean":12187216,"min":12187216,"q1":12187216,"q2":12187216,"q3":12187216,"max":12187216,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"}}] }; </script> diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_timeline.html b/example_of_result/20220120_test_1645716342/reports/nf_timeline.html similarity index 95% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_timeline.html rename to example_of_result/20220120_test_1645716342/reports/nf_timeline.html index 2802bf55aaab6aa07575c61de47dc05ce73a78ca..0a7f3a491da9a029401337ad0872dd097d4ea8dd 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/nf_timeline.html +++ b/example_of_result/20220120_test_1645716342/reports/nf_timeline.html @@ -205,52 +205,52 @@ $(function() { // Nextflow report data window.data = { - "elapsed": "15.4s", - "beginningMillis": 1645539554426, - "endingMillis": 1645559081560, + "elapsed": "4m 29s", + "beginningMillis": 1645716342912, + "endingMillis": 1645716612154, "processes": [ - {"label": "Nremove (1)", "cached": true, "index": 0, "times": [{"starting_time": 1645539554426, "ending_time": 1645539554480}, {"starting_time": 1645539554480, "ending_time": 1645539556130, "label": "4.8s \/ 12 MB \/ CACHED"}, {"starting_time": 1645539556130, "ending_time": 1645539559269}]}, - {"label": "trim (1)", "cached": true, "index": 1, "times": [{"starting_time": 1645539559373, "ending_time": 1645539559469}, {"starting_time": 1645539559469, "ending_time": 1645539568544, "label": "12.3s \/ 62.8 MB \/ CACHED"}, {"starting_time": 1645539568544, "ending_time": 1645539571656}]}, - {"label": "init", "cached": false, "index": 2, "times": [{"starting_time": 1645559067767, "ending_time": 1645559067819}, {"starting_time": 1645559067819, "ending_time": 1645559067831, "label": "1.8s \/ 0"}, {"starting_time": 1645559067831, "ending_time": 1645559069517}]}, - {"label": "kraken (1)", "cached": true, "index": 3, "times": [{"starting_time": 1645539571771, "ending_time": 1645539571856}, {"starting_time": 1645539571856, "ending_time": 1645539571892, "label": "385ms \/ 0 \/ CACHED"}, {"starting_time": 1645539571892, "ending_time": 1645539572156}]}, - {"label": "report1", "cached": false, "index": 4, "times": [{"starting_time": 1645559067812, "ending_time": 1645559067844}, {"starting_time": 1645559067844, "ending_time": 1645559067862, "label": "1.9s \/ 0"}, {"starting_time": 1645559067862, "ending_time": 1645559069685}]}, - {"label": "fivep_filtering (1)", "cached": true, "index": 5, "times": [{"starting_time": 1645557048915, "ending_time": 1645557048986}, {"starting_time": 1645557048986, "ending_time": 1645557050560, "label": "3s \/ 9.6 MB \/ CACHED"}, {"starting_time": 1645557050560, "ending_time": 1645557051955}]}, - {"label": "fastqc1 (1)", "cached": true, "index": 6, "times": [{"starting_time": 1645539571867, "ending_time": 1645539571955}, {"starting_time": 1645539571955, "ending_time": 1645539589542, "label": "20.3s \/ 196.5 MB \/ CACHED"}, {"starting_time": 1645539589542, "ending_time": 1645539592209}]}, - {"label": "cutoff (1)", "cached": true, "index": 7, "times": [{"starting_time": 1645557052062, "ending_time": 1645557052156}, {"starting_time": 1645557052156, "ending_time": 1645557052788, "label": "1.7s \/ 9.6 MB \/ CACHED"}, {"starting_time": 1645557052788, "ending_time": 1645557053756}]}, - {"label": "plot_fivep_filtering_stat (1)", "cached": true, "index": 8, "times": [{"starting_time": 1645539707464, "ending_time": 1645539707524}, {"starting_time": 1645539707524, "ending_time": 1645539722539, "label": "16.9s \/ 203.2 MB \/ CACHED"}, {"starting_time": 1645539722539, "ending_time": 1645539724346}]}, - {"label": "fastqc2 (1)", "cached": true, "index": 9, "times": [{"starting_time": 1645558039170, "ending_time": 1645558039254}, {"starting_time": 1645558039254, "ending_time": 1645558044254, "label": "6.3s \/ 150.4 MB \/ CACHED"}, {"starting_time": 1645558044254, "ending_time": 1645558045426}]}, - {"label": "bowtie2 (1)", "cached": true, "index": 10, "times": [{"starting_time": 1645558859028, "ending_time": 1645558859117}, {"starting_time": 1645558859117, "ending_time": 1645558862460, "label": "4.2s \/ 111.6 MB \/ CACHED"}, {"starting_time": 1645558862460, "ending_time": 1645558863236}]}, - {"label": "motif", "cached": true, "index": 11, "times": [{"starting_time": 1645539554758, "ending_time": 1645539554780}, {"starting_time": 1645539554780, "ending_time": 1645539609149, "label": "57.3s \/ 235.2 MB \/ CACHED"}, {"starting_time": 1645539609149, "ending_time": 1645539612097}]}, - {"label": "backup", "cached": false, "index": 12, "times": [{"starting_time": 1645559067976, "ending_time": 1645559068013}, {"starting_time": 1645559068013, "ending_time": 1645559068026, "label": "1.8s \/ 0"}, {"starting_time": 1645559068026, "ending_time": 1645559069786}]}, - {"label": "plot_read_length (1)", "cached": true, "index": 13, "times": [{"starting_time": 1645558842125, "ending_time": 1645558842185}, {"starting_time": 1645558842185, "ending_time": 1645558857811, "label": "16.9s \/ 307.6 MB \/ CACHED"}, {"starting_time": 1645558857811, "ending_time": 1645558859017}]}, - {"label": "Q20 (1)", "cached": true, "index": 14, "times": [{"starting_time": 1645558863310, "ending_time": 1645558863352}, {"starting_time": 1645558863352, "ending_time": 1645558863727, "label": "1.6s \/ 5.8 MB \/ CACHED"}, {"starting_time": 1645558863727, "ending_time": 1645558864866}]}, - {"label": "coverage (1)", "cached": true, "index": 15, "times": [{"starting_time": 1645558863292, "ending_time": 1645558863337}, {"starting_time": 1645558863337, "ending_time": 1645558864146, "label": "2s \/ 5.1 MB \/ CACHED"}, {"starting_time": 1645558864146, "ending_time": 1645558865297}]}, - {"label": "workflowVersion", "cached": false, "index": 16, "times": [{"starting_time": 1645559068024, "ending_time": 1645559068113}, {"starting_time": 1645559068113, "ending_time": 1645559068750, "label": "2s \/ 4.8 MB"}, {"starting_time": 1645559068750, "ending_time": 1645559070066}]}, - {"label": "multiQC", "cached": true, "index": 17, "times": [{"starting_time": 1645558863330, "ending_time": 1645558863367}, {"starting_time": 1645558863367, "ending_time": 1645558871367, "label": "8.5s \/ 70.9 MB \/ CACHED"}, {"starting_time": 1645558871367, "ending_time": 1645558871857}]}, - {"label": "no_soft_clipping (1)", "cached": true, "index": 18, "times": [{"starting_time": 1645558864907, "ending_time": 1645558864967}, {"starting_time": 1645558864967, "ending_time": 1645558865268, "label": "1.5s \/ 3.4 MB \/ CACHED"}, {"starting_time": 1645558865268, "ending_time": 1645558866376}]}, - {"label": "plot_coverage (1)", "cached": true, "index": 19, "times": [{"starting_time": 1645558867165, "ending_time": 1645558867256}, {"starting_time": 1645558867256, "ending_time": 1645558881986, "label": "15.5s \/ 203.7 MB \/ CACHED"}, {"starting_time": 1645558881986, "ending_time": 1645558882617}]}, - {"label": "coverage (2)", "cached": true, "index": 15, "times": [{"starting_time": 1645558865307, "ending_time": 1645558865396}, {"starting_time": 1645558865396, "ending_time": 1645558866137, "label": "1.8s \/ 5 MB \/ CACHED"}, {"starting_time": 1645558866137, "ending_time": 1645558867156}]}, - {"label": "duplicate_removal (1)", "cached": true, "index": 20, "times": [{"starting_time": 1645558864940, "ending_time": 1645558864987}, {"starting_time": 1645558864987, "ending_time": 1645558866779, "label": "2.9s \/ 7.4 MB \/ CACHED"}, {"starting_time": 1645558866779, "ending_time": 1645558867876}]}, - {"label": "insertion (1)", "cached": true, "index": 21, "times": [{"starting_time": 1645558868884, "ending_time": 1645558868977}, {"starting_time": 1645558868977, "ending_time": 1645558869459, "label": "1.4s \/ 9.1 MB \/ CACHED"}, {"starting_time": 1645558869459, "ending_time": 1645558870316}]}, - {"label": "plot_coverage (2)", "cached": true, "index": 19, "times": [{"starting_time": 1645558882625, "ending_time": 1645558882717}, {"starting_time": 1645558882717, "ending_time": 1645558896848, "label": "14.8s \/ 206.5 MB \/ CACHED"}, {"starting_time": 1645558896848, "ending_time": 1645558897437}]}, - {"label": "coverage (3)", "cached": true, "index": 15, "times": [{"starting_time": 1645558897445, "ending_time": 1645558897537}, {"starting_time": 1645558897537, "ending_time": 1645558898115, "label": "1.5s \/ 5.1 MB \/ CACHED"}, {"starting_time": 1645558898115, "ending_time": 1645558898902}]}, - {"label": "seq_around_insertion (1)", "cached": true, "index": 22, "times": [{"starting_time": 1645558898925, "ending_time": 1645558899001}, {"starting_time": 1645558899001, "ending_time": 1645558904609, "label": "6.3s \/ 156.5 MB \/ CACHED"}, {"starting_time": 1645558904609, "ending_time": 1645558905256}]}, - {"label": "final_insertion_files (1)", "cached": true, "index": 23, "times": [{"starting_time": 1645558905265, "ending_time": 1645558905357}, {"starting_time": 1645558905357, "ending_time": 1645558911107, "label": "6.5s \/ 173.5 MB \/ CACHED"}, {"starting_time": 1645558911107, "ending_time": 1645558911756}]}, - {"label": "plot_coverage (3)", "cached": true, "index": 19, "times": [{"starting_time": 1645558911764, "ending_time": 1645558911856}, {"starting_time": 1645558911856, "ending_time": 1645558926159, "label": "15s \/ 206.4 MB \/ CACHED"}, {"starting_time": 1645558926159, "ending_time": 1645558926747}]}, - {"label": "extract_seq (1)", "cached": true, "index": 24, "times": [{"starting_time": 1645558926756, "ending_time": 1645558926847}, {"starting_time": 1645558926847, "ending_time": 1645558927687, "label": "1.7s \/ 5.8 MB \/ CACHED"}, {"starting_time": 1645558927687, "ending_time": 1645558928466}]}, - {"label": "base_freq (1)", "cached": true, "index": 25, "times": [{"starting_time": 1645558928578, "ending_time": 1645558928666}, {"starting_time": 1645558928666, "ending_time": 1645558928757, "label": "1.7s \/ 0 \/ CACHED"}, {"starting_time": 1645558928757, "ending_time": 1645558930238}]}, - {"label": "base_freq (4)", "cached": true, "index": 25, "times": [{"starting_time": 1645558928530, "ending_time": 1645558928577}, {"starting_time": 1645558928577, "ending_time": 1645558928679, "label": "1.7s \/ 0 \/ CACHED"}, {"starting_time": 1645558928679, "ending_time": 1645558930226}]}, - {"label": "base_freq (3)", "cached": true, "index": 25, "times": [{"starting_time": 1645558928560, "ending_time": 1645558928589}, {"starting_time": 1645558928589, "ending_time": 1645558928692, "label": "1.4s \/ 0 \/ CACHED"}, {"starting_time": 1645558928692, "ending_time": 1645558929976}]}, - {"label": "base_freq (2)", "cached": true, "index": 25, "times": [{"starting_time": 1645558928599, "ending_time": 1645558928676}, {"starting_time": 1645558928676, "ending_time": 1645558928773, "label": "1.5s \/ 0 \/ CACHED"}, {"starting_time": 1645558928773, "ending_time": 1645558930056}]}, - {"label": "random_insertion (1)", "cached": true, "index": 26, "times": [{"starting_time": 1645558928476, "ending_time": 1645558928566}, {"starting_time": 1645558928566, "ending_time": 1645558940669, "label": "13.1s \/ 384.1 MB \/ CACHED"}, {"starting_time": 1645558940669, "ending_time": 1645558941597}]}, - {"label": "report2", "cached": false, "index": 27, "times": [{"starting_time": 1645559068329, "ending_time": 1645559068413}, {"starting_time": 1645559068413, "ending_time": 1645559068439, "label": "1.5s \/ 0"}, {"starting_time": 1645559068439, "ending_time": 1645559069796}]}, - {"label": "logo (1)", "cached": true, "index": 28, "times": [{"starting_time": 1645558941604, "ending_time": 1645558941697}, {"starting_time": 1645558941697, "ending_time": 1645558950521, "label": "9.6s \/ 202.1 MB \/ CACHED"}, {"starting_time": 1645558950521, "ending_time": 1645558951176}]}, - {"label": "global_logo", "cached": true, "index": 29, "times": [{"starting_time": 1645558980113, "ending_time": 1645558980207}, {"starting_time": 1645558980207, "ending_time": 1645558989174, "label": "9.7s \/ 203.3 MB \/ CACHED"}, {"starting_time": 1645558989174, "ending_time": 1645558989787}]}, - {"label": "logo (3)", "cached": true, "index": 28, "times": [{"starting_time": 1645558960654, "ending_time": 1645558960747}, {"starting_time": 1645558960747, "ending_time": 1645558969623, "label": "9.6s \/ 204.1 MB \/ CACHED"}, {"starting_time": 1645558969623, "ending_time": 1645558970226}]}, - {"label": "logo (4)", "cached": true, "index": 28, "times": [{"starting_time": 1645558970233, "ending_time": 1645558970326}, {"starting_time": 1645558970326, "ending_time": 1645558979489, "label": "9.9s \/ 206.5 MB \/ CACHED"}, {"starting_time": 1645558979489, "ending_time": 1645558980106}]}, - {"label": "logo (2)", "cached": true, "index": 28, "times": [{"starting_time": 1645558951183, "ending_time": 1645558951276}, {"starting_time": 1645558951276, "ending_time": 1645558960032, "label": "9.5s \/ 229.3 MB \/ CACHED"}, {"starting_time": 1645558960032, "ending_time": 1645558960647}]}, - {"label": "plot_insertion (1)", "cached": true, "index": 30, "times": [{"starting_time": 1645558989794, "ending_time": 1645558989887}, {"starting_time": 1645558989887, "ending_time": 1645559025889, "label": "36.7s \/ 998.8 MB \/ CACHED"}, {"starting_time": 1645559025889, "ending_time": 1645559026467}]}, - {"label": "print_report (1)", "cached": false, "index": 31, "times": [{"starting_time": 1645559070332, "ending_time": 1645559070367}, {"starting_time": 1645559070367, "ending_time": 1645559080074, "label": "10.5s \/ 243.9 MB"}, {"starting_time": 1645559080074, "ending_time": 1645559080807}]} + {"label": "backup", "cached": false, "index": 0, "times": [{"starting_time": 1645716348774, "ending_time": 1645716348848}, {"starting_time": 1645716348848, "ending_time": 1645716348861, "label": "1.5s \/ 0"}, {"starting_time": 1645716348861, "ending_time": 1645716350250}]}, + {"label": "Nremove (1)", "cached": false, "index": 1, "times": [{"starting_time": 1645716348799, "ending_time": 1645716348863}, {"starting_time": 1645716348863, "ending_time": 1645716349298, "label": "1.9s \/ 12.1 MB"}, {"starting_time": 1645716349298, "ending_time": 1645716350697}]}, + {"label": "init", "cached": false, "index": 2, "times": [{"starting_time": 1645716348822, "ending_time": 1645716348876}, {"starting_time": 1645716348876, "ending_time": 1645716348887, "label": "1.6s \/ 0"}, {"starting_time": 1645716348887, "ending_time": 1645716350408}]}, + {"label": "report1", "cached": false, "index": 3, "times": [{"starting_time": 1645716348846, "ending_time": 1645716348890}, {"starting_time": 1645716348890, "ending_time": 1645716348910, "label": "1.7s \/ 0"}, {"starting_time": 1645716348910, "ending_time": 1645716350548}]}, + {"label": "workflowVersion", "cached": false, "index": 4, "times": [{"starting_time": 1645716348869, "ending_time": 1645716348948}, {"starting_time": 1645716348948, "ending_time": 1645716349659, "label": "2.2s \/ 4.9 MB"}, {"starting_time": 1645716349659, "ending_time": 1645716351088}]}, + {"label": "trim (1)", "cached": false, "index": 5, "times": [{"starting_time": 1645716358514, "ending_time": 1645716358599}, {"starting_time": 1645716358599, "ending_time": 1645716360709, "label": "3s \/ 38.7 MB"}, {"starting_time": 1645716360709, "ending_time": 1645716361558}]}, + {"label": "kraken (1)", "cached": false, "index": 6, "times": [{"starting_time": 1645716361603, "ending_time": 1645716361657}, {"starting_time": 1645716361657, "ending_time": 1645716361666, "label": "89ms \/ 0"}, {"starting_time": 1645716361666, "ending_time": 1645716361692}]}, + {"label": "fivep_filtering (1)", "cached": false, "index": 7, "times": [{"starting_time": 1645716361621, "ending_time": 1645716361668}, {"starting_time": 1645716361668, "ending_time": 1645716363626, "label": "2.9s \/ 9.6 MB"}, {"starting_time": 1645716363626, "ending_time": 1645716364528}]}, + {"label": "cutoff (1)", "cached": false, "index": 8, "times": [{"starting_time": 1645716364576, "ending_time": 1645716364629}, {"starting_time": 1645716364629, "ending_time": 1645716365369, "label": "1.8s \/ 9.7 MB"}, {"starting_time": 1645716365369, "ending_time": 1645716366378}]}, + {"label": "fastqc1 (1)", "cached": false, "index": 9, "times": [{"starting_time": 1645716369105, "ending_time": 1645716369181}, {"starting_time": 1645716369181, "ending_time": 1645716375790, "label": "7.7s \/ 159.6 MB"}, {"starting_time": 1645716375790, "ending_time": 1645716376788}]}, + {"label": "fastqc2 (1)", "cached": false, "index": 10, "times": [{"starting_time": 1645716369125, "ending_time": 1645716369205}, {"starting_time": 1645716369205, "ending_time": 1645716375833, "label": "7.7s \/ 149.8 MB"}, {"starting_time": 1645716375833, "ending_time": 1645716376867}]}, + {"label": "bowtie2 (1)", "cached": false, "index": 11, "times": [{"starting_time": 1645716372936, "ending_time": 1645716372987}, {"starting_time": 1645716372987, "ending_time": 1645716376670, "label": "4.8s \/ 114.6 MB"}, {"starting_time": 1645716376670, "ending_time": 1645716377778}]}, + {"label": "multiQC", "cached": false, "index": 12, "times": [{"starting_time": 1645716383461, "ending_time": 1645716383484}, {"starting_time": 1645716383484, "ending_time": 1645716392484, "label": "9s \/ 75.1 MB"}, {"starting_time": 1645716392484, "ending_time": 1645716392498}]}, + {"label": "Q20 (1)", "cached": false, "index": 13, "times": [{"starting_time": 1645716383680, "ending_time": 1645716383684}, {"starting_time": 1645716383684, "ending_time": 1645716384099, "label": "1.6s \/ 5.8 MB"}, {"starting_time": 1645716384099, "ending_time": 1645716385238}]}, + {"label": "coverage (1)", "cached": false, "index": 14, "times": [{"starting_time": 1645716384875, "ending_time": 1645716384885}, {"starting_time": 1645716384885, "ending_time": 1645716385770, "label": "1.9s \/ 5 MB"}, {"starting_time": 1645716385770, "ending_time": 1645716386798}]}, + {"label": "no_soft_clipping (1)", "cached": false, "index": 15, "times": [{"starting_time": 1645716386298, "ending_time": 1645716386340}, {"starting_time": 1645716386340, "ending_time": 1645716386680, "label": "1.6s \/ 5.3 MB"}, {"starting_time": 1645716386680, "ending_time": 1645716387937}]}, + {"label": "duplicate_removal (1)", "cached": false, "index": 16, "times": [{"starting_time": 1645716386318, "ending_time": 1645716386352}, {"starting_time": 1645716386352, "ending_time": 1645716388559, "label": "3.5s \/ 7.6 MB"}, {"starting_time": 1645716388559, "ending_time": 1645716389847}]}, + {"label": "coverage (2)", "cached": false, "index": 14, "times": [{"starting_time": 1645716386840, "ending_time": 1645716386898}, {"starting_time": 1645716386898, "ending_time": 1645716387811, "label": "2.2s \/ 5 MB"}, {"starting_time": 1645716387811, "ending_time": 1645716389018}]}, + {"label": "insertion (1)", "cached": false, "index": 17, "times": [{"starting_time": 1645716389880, "ending_time": 1645716389948}, {"starting_time": 1645716389948, "ending_time": 1645716390557, "label": "1.8s \/ 9 MB"}, {"starting_time": 1645716390557, "ending_time": 1645716391698}]}, + {"label": "coverage (3)", "cached": false, "index": 14, "times": [{"starting_time": 1645716389899, "ending_time": 1645716389959}, {"starting_time": 1645716389959, "ending_time": 1645716390803, "label": "2s \/ 5.1 MB"}, {"starting_time": 1645716390803, "ending_time": 1645716391917}]}, + {"label": "seq_around_insertion (1)", "cached": false, "index": 18, "times": [{"starting_time": 1645716403767, "ending_time": 1645716403811}, {"starting_time": 1645716403811, "ending_time": 1645716409459, "label": "6.4s \/ 156.4 MB"}, {"starting_time": 1645716409459, "ending_time": 1645716410157}]}, + {"label": "motif", "cached": false, "index": 19, "times": [{"starting_time": 1645716410167, "ending_time": 1645716410257}, {"starting_time": 1645716410257, "ending_time": 1645716424169, "label": "14.6s \/ 217.9 MB"}, {"starting_time": 1645716424169, "ending_time": 1645716424798}]}, + {"label": "final_insertion_files (1)", "cached": false, "index": 20, "times": [{"starting_time": 1645716424805, "ending_time": 1645716424898}, {"starting_time": 1645716424898, "ending_time": 1645716430545, "label": "6.4s \/ 157.3 MB"}, {"starting_time": 1645716430545, "ending_time": 1645716431207}]}, + {"label": "plot_coverage (3)", "cached": false, "index": 21, "times": [{"starting_time": 1645716431216, "ending_time": 1645716431308}, {"starting_time": 1645716431308, "ending_time": 1645716444882, "label": "14.3s \/ 249.2 MB"}, {"starting_time": 1645716444882, "ending_time": 1645716445468}]}, + {"label": "plot_coverage (1)", "cached": false, "index": 21, "times": [{"starting_time": 1645716445475, "ending_time": 1645716445568}, {"starting_time": 1645716445568, "ending_time": 1645716459060, "label": "14.2s \/ 250.4 MB"}, {"starting_time": 1645716459060, "ending_time": 1645716459657}]}, + {"label": "plot_coverage (2)", "cached": false, "index": 21, "times": [{"starting_time": 1645716459664, "ending_time": 1645716459757}, {"starting_time": 1645716459757, "ending_time": 1645716473327, "label": "14.2s \/ 249 MB"}, {"starting_time": 1645716473327, "ending_time": 1645716473878}]}, + {"label": "plot_read_length (1)", "cached": false, "index": 22, "times": [{"starting_time": 1645716473885, "ending_time": 1645716473979}, {"starting_time": 1645716473979, "ending_time": 1645716489001, "label": "15.7s \/ 231.9 MB"}, {"starting_time": 1645716489001, "ending_time": 1645716489628}]}, + {"label": "plot_fivep_filtering_stat (1)", "cached": false, "index": 23, "times": [{"starting_time": 1645716489635, "ending_time": 1645716489729}, {"starting_time": 1645716489729, "ending_time": 1645716503539, "label": "14.5s \/ 243.9 MB"}, {"starting_time": 1645716503539, "ending_time": 1645716504108}]}, + {"label": "extract_seq (1)", "cached": false, "index": 24, "times": [{"starting_time": 1645716504115, "ending_time": 1645716504208}, {"starting_time": 1645716504208, "ending_time": 1645716505000, "label": "1.6s \/ 6 MB"}, {"starting_time": 1645716505000, "ending_time": 1645716505757}]}, + {"label": "random_insertion (1)", "cached": false, "index": 25, "times": [{"starting_time": 1645716505765, "ending_time": 1645716505857}, {"starting_time": 1645716505857, "ending_time": 1645716517758, "label": "12.9s \/ 385.1 MB"}, {"starting_time": 1645716517758, "ending_time": 1645716518627}]}, + {"label": "base_freq (1)", "cached": false, "index": 26, "times": [{"starting_time": 1645716505820, "ending_time": 1645716505868}, {"starting_time": 1645716505868, "ending_time": 1645716505956, "label": "1.6s \/ 0"}, {"starting_time": 1645716505956, "ending_time": 1645716507386}]}, + {"label": "base_freq (3)", "cached": false, "index": 26, "times": [{"starting_time": 1645716505837, "ending_time": 1645716505878}, {"starting_time": 1645716505878, "ending_time": 1645716505971, "label": "1.4s \/ 0"}, {"starting_time": 1645716505971, "ending_time": 1645716507237}]}, + {"label": "base_freq (4)", "cached": false, "index": 26, "times": [{"starting_time": 1645716505855, "ending_time": 1645716505891}, {"starting_time": 1645716505891, "ending_time": 1645716505984, "label": "1.8s \/ 0"}, {"starting_time": 1645716505984, "ending_time": 1645716507649}]}, + {"label": "base_freq (2)", "cached": false, "index": 26, "times": [{"starting_time": 1645716505873, "ending_time": 1645716505957}, {"starting_time": 1645716505957, "ending_time": 1645716506048, "label": "1.7s \/ 0"}, {"starting_time": 1645716506048, "ending_time": 1645716507549}]}, + {"label": "report2", "cached": false, "index": 27, "times": [{"starting_time": 1645716508657, "ending_time": 1645716508750}, {"starting_time": 1645716508750, "ending_time": 1645716508770, "label": "890ms \/ 0"}, {"starting_time": 1645716508770, "ending_time": 1645716509547}]}, + {"label": "logo (1)", "cached": false, "index": 28, "times": [{"starting_time": 1645716518644, "ending_time": 1645716518727}, {"starting_time": 1645716518727, "ending_time": 1645716527382, "label": "9.4s \/ 204.2 MB"}, {"starting_time": 1645716527382, "ending_time": 1645716527997}]}, + {"label": "logo (2)", "cached": false, "index": 28, "times": [{"starting_time": 1645716528003, "ending_time": 1645716528097}, {"starting_time": 1645716528097, "ending_time": 1645716536534, "label": "9.2s \/ 206.6 MB"}, {"starting_time": 1645716536534, "ending_time": 1645716537157}]}, + {"label": "logo (3)", "cached": false, "index": 28, "times": [{"starting_time": 1645716537173, "ending_time": 1645716537257}, {"starting_time": 1645716537257, "ending_time": 1645716545819, "label": "9.2s \/ 205.3 MB"}, {"starting_time": 1645716545819, "ending_time": 1645716546408}]}, + {"label": "logo (4)", "cached": false, "index": 28, "times": [{"starting_time": 1645716546415, "ending_time": 1645716546509}, {"starting_time": 1645716546509, "ending_time": 1645716555052, "label": "9.2s \/ 204.1 MB"}, {"starting_time": 1645716555052, "ending_time": 1645716555617}]}, + {"label": "global_logo", "cached": false, "index": 29, "times": [{"starting_time": 1645716555624, "ending_time": 1645716555717}, {"starting_time": 1645716555717, "ending_time": 1645716564667, "label": "9.7s \/ 205 MB"}, {"starting_time": 1645716564667, "ending_time": 1645716565297}]}, + {"label": "plot_insertion (1)", "cached": false, "index": 30, "times": [{"starting_time": 1645716565306, "ending_time": 1645716565398}, {"starting_time": 1645716565398, "ending_time": 1645716600714, "label": "36s \/ 971 MB"}, {"starting_time": 1645716600714, "ending_time": 1645716601328}]}, + {"label": "print_report (1)", "cached": false, "index": 31, "times": [{"starting_time": 1645716601618, "ending_time": 1645716601628}, {"starting_time": 1645716601628, "ending_time": 1645716610659, "label": "9.8s \/ 226.3 MB"}, {"starting_time": 1645716610659, "ending_time": 1645716611407}]} ] } ; diff --git a/example_of_result/20220120_test_1645716342/reports/nf_trace.txt b/example_of_result/20220120_test_1645716342/reports/nf_trace.txt new file mode 100644 index 0000000000000000000000000000000000000000..9ea13ed2fd18480b2580cce7dbd80f5750367967 --- /dev/null +++ b/example_of_result/20220120_test_1645716342/reports/nf_trace.txt @@ -0,0 +1,43 @@ +task_id hash native_id name status exit submit duration realtime %cpu peak_rss peak_vmem rchar wchar +5 6b/c7fecc 3736 backup COMPLETED 0 2022-02-24 16:25:48.774 1.5s 13ms 5.5% 0 0 104.3 KB 500 B +1 bf/506112 3796 init COMPLETED 0 2022-02-24 16:25:48.822 1.6s 11ms 5.3% 0 0 104.1 KB 665 B +3 4b/1f154d 3854 report1 COMPLETED 0 2022-02-24 16:25:48.846 1.7s 20ms 4.9% 0 0 104.4 KB 679 B +2 0a/e411b8 3764 Nremove (1) COMPLETED 0 2022-02-24 16:25:48.799 1.9s 435ms 45.9% 12.1 MB 70.6 MB 16.8 MB 14.5 MB +6 03/f78123 3906 workflowVersion COMPLETED 0 2022-02-24 16:25:48.869 2.2s 711ms 11.8% 4.9 MB 38.4 MB 133.3 KB 2.1 KB +7 31/65ff8a 4579 trim (1) COMPLETED 0 2022-02-24 16:25:58.514 3s 2.1s 44.2% 38.7 MB 5.6 GB 16.4 MB 12 MB +10 b2/dfc998 4993 kraken (1) COMPLETED 0 2022-02-24 16:26:01.603 89ms 9ms 41.0% 0 0 150.8 KB 220 B +9 fa/c1fd48 5007 fivep_filtering (1) COMPLETED 0 2022-02-24 16:26:01.621 2.9s 2s 21.5% 9.6 MB 61.4 MB 28 MB 15.3 MB +11 c9/fb815c 5361 cutoff (1) COMPLETED 0 2022-02-24 16:26:04.576 1.8s 740ms 15.7% 9.7 MB 61.3 MB 7 MB 3.9 MB +8 dc/1c3599 5579 fastqc1 (1) COMPLETED 0 2022-02-24 16:26:09.105 7.7s 6.6s 50.3% 159.6 MB 3.1 GB 13.9 MB 1.2 MB +12 16/720a57 5600 fastqc2 (1) COMPLETED 0 2022-02-24 16:26:09.125 7.7s 6.6s 48.5% 149.8 MB 3.1 GB 12.2 MB 1.2 MB +14 ea/2dce38 6271 bowtie2 (1) COMPLETED 0 2022-02-24 16:26:12.936 4.8s 3.7s 51.4% 114.6 MB 239.5 MB 35 MB 16.2 MB +16 09/3abd99 7440 Q20 (1) COMPLETED 0 2022-02-24 16:26:23.680 1.6s 415ms 16.5% 5.8 MB 42.8 MB 3.2 MB 2.2 MB +17 44/53399e 7603 coverage (1) COMPLETED 0 2022-02-24 16:26:24.875 1.9s 885ms 15.7% 5 MB 44.6 MB 479.6 KB 91 KB +21 cd/ab90a7 7933 no_soft_clipping (1) COMPLETED 0 2022-02-24 16:26:26.298 1.6s 340ms 10.8% 5.3 MB 57.6 MB 2.1 MB 1.5 MB +19 36/3097aa 8065 coverage (2) COMPLETED 0 2022-02-24 16:26:26.840 2.2s 913ms 13.8% 5 MB 44.4 MB 335 KB 82.4 KB +20 c1/88ba17 7953 duplicate_removal (1) COMPLETED 0 2022-02-24 16:26:26.318 3.5s 2.2s 23.3% 7.6 MB 53 MB 12.9 MB 6.6 MB +24 19/def24f 8911 insertion (1) COMPLETED 0 2022-02-24 16:26:29.880 1.8s 609ms 17.5% 9 MB 65.6 MB 2.5 MB 1.7 MB +25 e4/43c3da 8932 coverage (3) COMPLETED 0 2022-02-24 16:26:29.899 2s 844ms 14.8% 5.1 MB 44.6 MB 310.2 KB 82.1 KB +18 93/1153d4 7377 multiQC COMPLETED 0 2022-02-24 16:26:23.461 9s 9s 37.1% 75.1 MB 85.3 MB 28.3 MB 2.3 MB +27 fa/585809 9449 seq_around_insertion (1) COMPLETED 0 2022-02-24 16:26:43.767 6.4s 5.6s 70.2% 156.4 MB 2.3 GB 17.9 MB 229.4 KB +4 64/dc0f4b 9899 motif COMPLETED 0 2022-02-24 16:26:50.167 14.6s 13.9s 65.4% 217.9 MB 2.4 GB 48.3 MB 39.7 MB +26 95/7e25d2 10621 final_insertion_files (1) COMPLETED 0 2022-02-24 16:27:04.805 6.4s 5.6s 70.8% 157.3 MB 2.3 GB 18 MB 266 KB +28 2c/4408b4 11081 plot_coverage (3) COMPLETED 0 2022-02-24 16:27:11.216 14.3s 13.6s 64.6% 249.2 MB 2.4 GB 19.1 MB 459.1 KB +22 ba/641b5b 11803 plot_coverage (1) COMPLETED 0 2022-02-24 16:27:25.475 14.2s 13.5s 65.1% 250.4 MB 2.4 GB 19.1 MB 464.3 KB +23 80/45c1c5 12523 plot_coverage (2) COMPLETED 0 2022-02-24 16:27:39.664 14.2s 13.6s 64.7% 249 MB 2.4 GB 19.1 MB 455.9 KB +15 19/cdb33c 13248 plot_read_length (1) COMPLETED 0 2022-02-24 16:27:53.885 15.7s 15s 68.1% 231.9 MB 2.4 GB 19.7 MB 717.5 KB +13 26/6dc1b9 13971 plot_fivep_filtering_stat (1) COMPLETED 0 2022-02-24 16:28:09.635 14.5s 13.8s 65.2% 243.9 MB 2.4 GB 19.1 MB 816.6 KB +29 0d/08f56c 14700 extract_seq (1) COMPLETED 0 2022-02-24 16:28:24.115 1.6s 792ms 19.8% 6 MB 50.2 MB 9.1 MB 4.5 MB +33 eb/7eacd6 14959 base_freq (3) COMPLETED 0 2022-02-24 16:28:25.837 1.4s 93ms 9.7% 0 0 282.4 KB 19.7 KB +31 57/efb944 14926 base_freq (1) COMPLETED 0 2022-02-24 16:28:25.820 1.6s 88ms 11.6% 0 0 279.5 KB 16.8 KB +32 9d/92f3fa 15038 base_freq (2) COMPLETED 0 2022-02-24 16:28:25.873 1.7s 91ms 11.3% 0 0 281.6 KB 18.9 KB +34 3a/64690b 14996 base_freq (4) COMPLETED 0 2022-02-24 16:28:25.855 1.8s 93ms 9.3% 0 0 281.8 KB 19 KB +39 f5/61649c 15636 report2 COMPLETED 0 2022-02-24 16:28:28.657 890ms 20ms 14.2% 0 0 130.8 KB 1.3 KB +30 1f/a416f5 14888 random_insertion (1) COMPLETED 0 2022-02-24 16:28:25.765 12.9s 11.9s 61.1% 385.1 MB 2.7 GB 30.7 MB 1.2 MB +35 e9/5d7f6b 16267 logo (1) COMPLETED 0 2022-02-24 16:28:38.644 9.4s 8.7s 60.8% 204.2 MB 2.4 GB 14.6 MB 873.7 KB +36 4a/a4f272 16887 logo (2) COMPLETED 0 2022-02-24 16:28:48.003 9.2s 8.4s 63.7% 206.6 MB 2.4 GB 14.6 MB 1002.2 KB +37 fe/c071c5 17500 logo (3) COMPLETED 0 2022-02-24 16:28:57.173 9.2s 8.6s 62.3% 205.3 MB 2.4 GB 14.6 MB 852.9 KB +38 af/12f23f 18109 logo (4) COMPLETED 0 2022-02-24 16:29:06.415 9.2s 8.5s 61.6% 204.1 MB 2.4 GB 14.6 MB 882.6 KB +40 62/70e758 18772 global_logo COMPLETED 0 2022-02-24 16:29:15.624 9.7s 9s 63.1% 205 MB 2.4 GB 14.6 MB 850.3 KB +41 e9/ea5890 19392 plot_insertion (1) COMPLETED 0 2022-02-24 16:29:25.306 36s 35.3s 74.7% 971 MB 3.2 GB 40.3 MB 9.7 MB +42 fe/324ee1 20358 print_report (1) COMPLETED 0 2022-02-24 16:30:01.618 9.8s 9s 57.7% 226.3 MB 1 TB 31.2 MB 11.6 MB diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_cov_report.txt b/example_of_result/20220120_test_1645716342/reports/plot_cov_report.txt similarity index 96% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_cov_report.txt rename to example_of_result/20220120_test_1645716342/reports/plot_cov_report.txt index 39f7b79c1ceffc4a1b502c801f5b80d603aef4c9..c7df686c59d61aa5b8a49262c11ea8b2861bf8c3 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_cov_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/plot_cov_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:41:57 +2022-02-24 16:27:16 @@ -31,12 +31,12 @@ -END TIME: 2022-02-22 20:42:06 +END TIME: 2022-02-24 16:27:25 -TOTAL TIME LAPSE: 9S +TOTAL TIME LAPSE: 8S @@ -120,9 +120,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:42:06 +TIME: 2022-02-24 16:27:25 -TOTAL TIME LAPSE: 9S +TOTAL TIME LAPSE: 8S @@ -140,7 +140,7 @@ TOTAL TIME LAPSE: 9S -2022-02-22 20:41:13 +2022-02-24 16:27:45 @@ -159,12 +159,12 @@ TOTAL TIME LAPSE: 9S -END TIME: 2022-02-22 20:41:22 +END TIME: 2022-02-24 16:27:53 -TOTAL TIME LAPSE: 9S +TOTAL TIME LAPSE: 8S @@ -192,9 +192,9 @@ erase.objects TRUE erase.graphs TRUE script plot_coverage run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_bowtie2_mini,read_nb_before,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R,plot_coverage_report.txt -cov test.fastq2_bowtie2_mini -read_nb read_nb_before +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_q20_mini,read_nb_after,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R,plot_coverage_report.txt +cov test.fastq2_q20_mini +read_nb read_nb_after ori_coord 2320711 2320942 ter_coord 4627368 4627400 color_coverage 5 @@ -248,9 +248,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:41:22 +TIME: 2022-02-24 16:27:53 -TOTAL TIME LAPSE: 9S +TOTAL TIME LAPSE: 8S @@ -268,7 +268,7 @@ TOTAL TIME LAPSE: 9S -2022-02-22 20:41:28 +2022-02-24 16:27:31 @@ -287,12 +287,12 @@ TOTAL TIME LAPSE: 9S -END TIME: 2022-02-22 20:41:37 +END TIME: 2022-02-24 16:27:39 -TOTAL TIME LAPSE: 9S +TOTAL TIME LAPSE: 8S @@ -320,9 +320,9 @@ erase.objects TRUE erase.graphs TRUE script plot_coverage run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_q20_mini,read_nb_after,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R,plot_coverage_report.txt -cov test.fastq2_q20_mini -read_nb read_nb_after +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_bowtie2_mini,read_nb_before,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,https://gitlab.pasteur.fr/gmillot/cute_little_R_functions/-/raw/v11.0.0/cute_little_R_functions.R,plot_coverage_report.txt +cov test.fastq2_bowtie2_mini +read_nb read_nb_before ori_coord 2320711 2320942 ter_coord 4627368 4627400 color_coverage 5 @@ -376,9 +376,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:41:37 +TIME: 2022-02-24 16:27:39 -TOTAL TIME LAPSE: 9S +TOTAL TIME LAPSE: 8S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_fivep_filtering_stat_report.txt b/example_of_result/20220120_test_1645716342/reports/plot_fivep_filtering_stat_report.txt similarity index 96% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_fivep_filtering_stat_report.txt rename to example_of_result/20220120_test_1645716342/reports/plot_fivep_filtering_stat_report.txt index 022c05811c55bc9d500e9db5cad22cd34808c015..acc666b6c96d6e679732052385e1c0e9808c4c60 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_fivep_filtering_stat_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/plot_fivep_filtering_stat_report.txt @@ -12,7 +12,7 @@ -2022-02-22 15:21:55 +2022-02-24 16:28:15 @@ -31,12 +31,12 @@ -END TIME: 2022-02-22 15:22:03 +END TIME: 2022-02-24 16:28:23 -TOTAL TIME LAPSE: 9S +TOTAL TIME LAPSE: 8S @@ -115,9 +115,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 15:22:03 +TIME: 2022-02-24 16:28:23 -TOTAL TIME LAPSE: 9S +TOTAL TIME LAPSE: 8S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_insertion_report.txt b/example_of_result/20220120_test_1645716342/reports/plot_insertion_report.txt similarity index 97% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_insertion_report.txt rename to example_of_result/20220120_test_1645716342/reports/plot_insertion_report.txt index 4e7dd6b12764040a9f6c3fc8239d7c1f6249f4ca..027d7141a96fdd8b136904cc89dc7f54c1c50f9f 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_insertion_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/plot_insertion_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:43:15 +2022-02-24 16:29:30 @@ -31,7 +31,7 @@ -END TIME: 2022-02-22 20:43:46 +END TIME: 2022-02-24 16:30:00 @@ -122,7 +122,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:43:46 +TIME: 2022-02-24 16:30:00 TOTAL TIME LAPSE: 30S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_read_length_report.txt b/example_of_result/20220120_test_1645716342/reports/plot_read_length_report.txt similarity index 97% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_read_length_report.txt rename to example_of_result/20220120_test_1645716342/reports/plot_read_length_report.txt index 5ba0bb128d0817e99d9b1617da46f3611a42c3b9..a9078b4936c076395229258c75a1a5c22384773e 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/plot_read_length_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/plot_read_length_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:40:48 +2022-02-24 16:27:59 @@ -31,7 +31,7 @@ -END TIME: 2022-02-22 20:40:58 +END TIME: 2022-02-24 16:28:09 @@ -117,7 +117,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:40:58 +TIME: 2022-02-24 16:28:09 TOTAL TIME LAPSE: 10S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/print_report.txt b/example_of_result/20220120_test_1645716342/reports/print_report.txt similarity index 97% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/print_report.txt rename to example_of_result/20220120_test_1645716342/reports/print_report.txt index f3cb917aed3d69ebe31ef96f9905e67968f997e7..e92dcdfeb426b6da121052e189c60ce6b3e82b49 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/print_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/print_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:44:35 +2022-02-24 16:30:06 @@ -31,7 +31,7 @@ -END TIME: 2022-02-22 20:44:40 +END TIME: 2022-02-24 16:30:10 @@ -113,7 +113,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:44:40 +TIME: 2022-02-24 16:30:10 TOTAL TIME LAPSE: 4S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/q20_report.txt b/example_of_result/20220120_test_1645716342/reports/q20_report.txt similarity index 100% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/q20_report.txt rename to example_of_result/20220120_test_1645716342/reports/q20_report.txt diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/random_insertion_report.txt b/example_of_result/20220120_test_1645716342/reports/random_insertion_report.txt similarity index 97% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/random_insertion_report.txt rename to example_of_result/20220120_test_1645716342/reports/random_insertion_report.txt index 4a417d698b00a02e68f99fe68ac98057a29dc947..7f145d7756e542332a4871cb231268481e9709a8 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/random_insertion_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/random_insertion_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:42:14 +2022-02-24 16:28:32 @@ -31,7 +31,7 @@ -END TIME: 2022-02-22 20:42:21 +END TIME: 2022-02-24 16:28:38 @@ -121,7 +121,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:42:21 +TIME: 2022-02-24 16:28:38 TOTAL TIME LAPSE: 6S diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/report.rmd b/example_of_result/20220120_test_1645716342/reports/report.rmd similarity index 86% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/report.rmd rename to example_of_result/20220120_test_1645716342/reports/report.rmd index 2c06de6711a251c40a122dc1dbc961c4be2bcdb6..40af493fb4f5ee2dac7d41ee55506fea37bd5ba7 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/report.rmd +++ b/example_of_result/20220120_test_1645716342/reports/report.rmd @@ -32,7 +32,7 @@ Ratio: AlienTrimmer main options: -k 10 -l 30 -m 5 -q 20 -p 0 (Phred+33) / 26 alien sequence(s) / 810 k-mers (k=10) -<br />[00:02] 8,932 reads processed: 4,767 trimmed 223 removed +<br />[00:00] 8,932 reads processed: 4,767 trimmed 223 removed <br /><br />AlienTrimmer also removes reads according to quality criteria Number of sequence before trimming: 8,932 @@ -231,15 +231,15 @@ Analysis complete for test.fastq2_5pAtccRm.fq Time loading reference: 00:00:00 <br />Time loading forward index: 00:00:00 <br />Time loading mirror index: 00:00:00 -<br />Multiseed full-index search: 00:00:00 +<br />Multiseed full-index search: 00:00:01 <br />3742 reads; of these: <br /> 3742 (100.00%) were unpaired; of these: <br /> 1240 (33.14%) aligned 0 times <br /> 2308 (61.68%) aligned exactly 1 time <br /> 194 (5.18%) aligned >1 times <br />66.86% overall alignment rate -<br />Time searching: 00:00:00 -<br />Overall time: 00:00:00 +<br />Time searching: 00:00:01 +<br />Overall time: 00:00:01 <br /><br /> @@ -384,7 +384,7 @@ In each sequence of length 40 <br />position 21 corresponds to the first nucleot </center> -{width=600} +{width=600} </center> @@ -399,7 +399,7 @@ In each sequence of length 40 <br />position 21 corresponds to the first nucleot </center> -{width=600} +{width=600} </center> @@ -414,7 +414,7 @@ In each sequence of length 40 <br />position 21 corresponds to the first nucleot </center> -{width=600} +{width=600} </center> @@ -429,7 +429,7 @@ In each sequence of length 40 <br />position 21 corresponds to the first nucleot </center> -{width=600} +{width=600} </center> @@ -854,8 +854,6 @@ See the CL Labbook section 24.7.3 to explain the limitation around 100 bp See the [reports](./reports) folder for all the details of the analysis, including the parameters used in the .config file -<br /><br /> - Full .nextflow.log is in: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br />The one in the [reports](./reports) folder is not complete (miss the end) @@ -864,34 +862,50 @@ Full .nextflow.log is in: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br ### Workflow Version -Project (empty means no .git folder where the main.nf file is present): loot https://gitlab.pasteur.fr/gmillot/14985_loot (fetch) -<br />Git info (empty means no .git folder where the main.nf file is present): v7.7.0-dirty -<br />Cmd line: nextflow run main.nf -resume -<br />execution mode: local -<br />Manifest's pipeline version: null -<br />result path: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_res_CL14985_B4985_4_1645559065 -<br />nextflow version: 21.04.2 + + +#### GENERAL + + +| Variable | Value | +| :-- | :-- | +| Project<br />(empty means no .git folder where the main.nf file is present) | loot https://gitlab.pasteur.fr/gmillot/14985_loot (fetch) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo +| Git info<br />(empty means no .git folder where the main.nf file is present) | v7.9.0-dirty | # idem. Provide the small commit number of the script and nextflow.config used in the execution +| Cmd line | nextflow run main.nf -resume | +| execution mode | local | +| Manifest's pipeline version | null | +| result path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1645716342 | +| nextflow version | 21.04.2 | + <br /><br /> -IMPLICIT VARIABLES: +#### IMPLICIT VARIABLES + -launchDir (directory where the workflow is run): /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br /> -projectDir (directory where the main.nf script is located): /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br /> -workDir (directory where tasks temporary files are created): /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/work +| Name | Description | Value | +| :-- | :-- | :-- | +| launchDir | Directory where the workflow is run | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot | +| nprojectDir | Directory where the main.nf script is located | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot | +| workDir | Directory where tasks temporary files are created | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/work | + <br /><br /> -USER VARIABLES:<br /> +#### USER VARIABLES -out_path: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_res_CL14985_B4985_4_1645559065<br /> -in_path: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/dataset + +| Name | Description | Value | +| :-- | :-- | :-- | +| out_path | output folder path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1645716342 | +| in_path | input folder path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/dataset | + <br /><br /> -WORKFLOW DIAGRAM:<br /> +#### WORKFLOW DIAGRAM See the [nf_dag.png](./reports/nf_dag.png) file diff --git a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/seq_around_insertion_report.txt b/example_of_result/20220120_test_1645716342/reports/seq_around_insertion_report.txt similarity index 97% rename from example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/seq_around_insertion_report.txt rename to example_of_result/20220120_test_1645716342/reports/seq_around_insertion_report.txt index d35209b3ec428a5f3cb4493450167dc38565875b..53d3a5b48609f77228cfa9374e4cca47556caa40 100644 --- a/example_of_result/20220120_res_CL14985_B4985_4_1645559065/reports/seq_around_insertion_report.txt +++ b/example_of_result/20220120_test_1645716342/reports/seq_around_insertion_report.txt @@ -12,7 +12,7 @@ -2022-02-22 20:41:44 +2022-02-24 16:26:49 @@ -31,7 +31,7 @@ -END TIME: 2022-02-22 20:41:44 +END TIME: 2022-02-24 16:26:49 @@ -118,7 +118,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-02-22 20:41:44 +TIME: 2022-02-24 16:26:49 TOTAL TIME LAPSE: 0S diff --git a/main.nf b/main.nf index 86d60a84045107c7eac6b6a19c5caed8eae29333..f15bc2c070a03220aa99b97b70e7e0d33e20eec9 100755 --- a/main.nf +++ b/main.nf @@ -1057,21 +1057,41 @@ process workflowVersion { // create a file with the workflow version in out_path script: """ - echo -e "\\n\\n<br /><br />\\n\\n### Workflow Version\\n\\n" > report.rmd - echo -e "\\n\\nGENERAL:\\n\\nProject (empty means no .git folder where the main.nf file is present): " \$(git -C ${projectDir} remote -v | head -n 1) >> report.rmd # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo - echo "<br />Git info (empty means no .git folder where the main.nf file is present): " \$(git -C ${projectDir} describe --abbrev=10 --dirty --always --tags) >> report.rmd # idem. Provide the small commit number of the script and nextflow.config used in the execution - echo "<br />Cmd line: ${workflow.commandLine}" >> report.rmd - echo "<br />execution mode": ${system_exec} >> report.rmd modules=$modules # this is just to deal with variable interpretation during the creation of the .command.sh file by nextflow. See also \$modules below + echo -e "\\n\\n<br /><br />\\n\\n### Workflow Version\\n\\n" > report.rmd + echo -e "\\n\\n#### General\\n\\n +| Variable | Value | +| :-- | :-- | +| Project<br />(empty means no .git folder where the main.nf file is present) | \$(git -C ${projectDir} remote -v | head -n 1) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo +| Git info<br />(empty means no .git folder where the main.nf file is present) | \$(git -C ${projectDir} describe --abbrev=10 --dirty --always --tags) | # idem. Provide the small commit number of the script and nextflow.config used in the execution +| Cmd line | ${workflow.commandLine} | +| execution mode | ${system_exec} |" >> report.rmd + if [[ ! -z \$modules ]] ; then - echo "<br />loaded modules (according to specification by the user thanks to the --modules argument of main.nf)": ${modules} >> report.rmd + echo "| loaded modules (according to specification by the user thanks to the --modules argument of main.nf) | ${modules} |" >> report.rmd fi - echo "<br />Manifest's pipeline version: ${workflow.manifest.version}" >> report.rmd - echo "<br />result path: ${out_path}" >> report.rmd - echo "<br />nextflow version: ${nextflow.version}" >> report.rmd - echo -e "\\n\\n<br /><br />\\n\\nIMPLICIT VARIABLES:\\n\\nlaunchDir (directory where the workflow is run): ${launchDir}<br />\\nprojectDir (directory where the main.nf script is located): ${projectDir}<br />\\nworkDir (directory where tasks temporary files are created): ${workDir}" >> report.rmd - echo -e "\\n\\n<br /><br />\\n\\nUSER VARIABLES:<br />\\n\\nout_path: ${out_path}<br />\\nin_path: ${in_path}" >> report.rmd - echo -e "\\n\\n<br /><br />\\n\\nWORKFLOW DIAGRAM:<br />\\n\\nSee the [nf_dag.png](./reports/nf_dag.png) file" >> report.rmd + + echo "| Manifest's pipeline version | ${workflow.manifest.version} | +| result path | ${out_path} | +| nextflow version | ${nextflow.version} | + " >> report.rmd + + echo -e "\\n\\n<br /><br />\\n\\n#### Implicit variables\\n\\n +| Name | Description | Value | +| :-- | :-- | :-- | +| launchDir | Directory where the workflow is run | ${launchDir} | +| nprojectDir | Directory where the main.nf script is located | ${projectDir} | +| workDir | Directory where tasks temporary files are created | ${workDir} | + " >> report.rmd + + echo -e "\\n\\n<br /><br />\\n\\n#### User variables\\n\\n +| Name | Description | Value | +| :-- | :-- | :-- | +| out_path | output folder path | ${out_path} | +| in_path | input folder path | ${in_path} | + " >> report.rmd + + echo -e "\\n\\n<br /><br />\\n\\n#### Workflow diagram\\n\\nSee the [nf_dag.png](./reports/nf_dag.png) file" >> report.rmd """ } //${projectDir} nextflow variable diff --git a/nextflow.config b/nextflow.config index 18806d4e654673e56512a9249e8a54064d699916..1354d0397f9f90bd27ca1086919b398ceb67ee9d 100755 --- a/nextflow.config +++ b/nextflow.config @@ -73,14 +73,14 @@ env { //////// variables that will be used below (and potentially in the main.nf file) //// must be also exported -system_exec = 'local' // the system that runs the workflow. Either 'local' or 'slurm' +system_exec = 'local' // the system that runs the workflow. Either 'local' or 'slurm' or 'slurm_local' (test using the head of the cluster) //docker_exe = true // true for docker and false for singularity //out_path="/mnt/c/Users/Gael/Desktop" // where the report file will be saved. Example report_path = '.' for where the main.nf run is executed or report_path = '/mnt/c/Users/Gael/Desktop' out_path="$baseDir/results" // where the report file will be saved. Example report_path = '.' for where the main.nf run is executed or report_path = '/mnt/c/Users/Gael/Desktop' //// end must be also exported //// general variables -result_folder_name="20220120_res_CL14985_B4985_4" +result_folder_name="20220120_test" //// end general variables //// slurm variables @@ -159,16 +159,18 @@ dag { singularity { enabled = true autoMounts = true // automatically mounts host paths in the executed container - if(system_exec == 'slurm'){ + if(system_exec == 'slurm' || system_exec == 'slurm_local'){ runOptions = '--no-home --bind /pasteur' }else{ - runOptions = '--no-home' + runOptions = '--no-home' // --no-home prevent singularity to mount the $HOME path and thus forces singularity to work with only what is inside the container } //runOptions = '--home $HOME:/home/$USER --bind /pasteur' // provide any extra command line options supported by the singularity exec. Here, fait un bind de tout /pasteur dans /pasteur du container. Sinon pas d accès if(system_exec == 'slurm'){ cacheDir = '/pasteur/zeus/projets/p01/BioIT/gmillot/14985_loot/singularity' // name of the directory where remote Singularity images are stored. When rerun, the exec directly uses these without redownloading them. When using a computing cluster it must be a shared folder accessible to all computing nodes + }else if(system_exec == 'slurm_local'){ + cacheDir = 'singularity' // "$baseDir/singularity" can be used but do not forget double quotes. }else{ - cacheDir = 'singularity' + cacheDir = '/mnt/c/Users/Gael/Documents/singularity' // "$baseDir/singularity" can be used but do not forget double quotes. } }