diff --git a/README.md b/README.md
index 4b55a42859cceb936b75cd2780f25c1d1a22867b..81deb4bdea6c4f9d3bf9c2058e508d27ed43aaaa 100755
--- a/README.md
+++ b/README.md
@@ -209,6 +209,11 @@ Gitlab developers
 
 ## WHAT'S NEW IN
 
+### v8.6.0
+
+1) Figure 21 and 44 modified.
+
+
 ### v8.5.0
 
 1) Some figures corrected, computations of number of insertions also and the duplicated part is now ok
diff --git a/bin/dup_insertion_and_logo.R b/bin/dup_insertion_and_logo.R
index 313bfb1edb356145b8d526b780ffe60447816a84..af6448cd9245e1453b7e6c6983d98c9e0e69b1a0 100755
--- a/bin/dup_insertion_and_logo.R
+++ b/bin/dup_insertion_and_logo.R
@@ -493,9 +493,10 @@ if(ncol(freq) > 0){
         y.bottom.extra.margin = 0, 
         x.right.extra.margin = 0.05, 
         x.second.tick.nb = NULL, 
+        y.lim = c(0, 10), 
         y.lab = "Site number", 
         x.log = "log10", 
-        y.log = "log10", 
+        y.log = "no", 
         y.second.tick.nb = 5, 
         text.size = text.size, 
         title.text.size = title.text.size
diff --git a/bin/plot_insertion.R b/bin/plot_insertion.R
index 69da0df268e7332cb07a1151ec236154b42b9338..2baddf51d23f4e8238d9426c53d15de00958f0d1 100755
--- a/bin/plot_insertion.R
+++ b/bin/plot_insertion.R
@@ -570,7 +570,7 @@ if(ncol(obs.freq) > 0){
         x.second.tick.nb = NULL, 
         y.top.extra.margin = 0.05, 
         y.bottom.extra.margin = 0, 
-        y.lim = c(0, 500), 
+        y.lim = c(0, 200), 
         y.lab = "Site number", 
         y.log = "no", 
         y.second.tick.nb = 5, 
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_tot_selected.png b/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_tot_selected.png
deleted file mode 100644
index 6d7cefe1b69e5c3a79ebea827b600cab1dcc412f..0000000000000000000000000000000000000000
Binary files a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_tot_selected.png and /dev/null differ
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_tot_zoom.png b/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_tot_zoom.png
deleted file mode 100644
index c08f0234de8585d3f577e029a034b0f68569d5f6..0000000000000000000000000000000000000000
Binary files a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_tot_zoom.png and /dev/null differ
diff --git a/example_of_result/20220120_test_1649701145/reports/nf_dag.png b/example_of_result/20220120_test_1649701145/reports/nf_dag.png
deleted file mode 100644
index 66f5a3537448b09dc51e0c4681846ddf0c6e1b6f..0000000000000000000000000000000000000000
Binary files a/example_of_result/20220120_test_1649701145/reports/nf_dag.png and /dev/null differ
diff --git a/example_of_result/20220120_test_1649701145/fastQC1/test.fastq2_trim_fastqc.html b/example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.html
similarity index 100%
rename from example_of_result/20220120_test_1649701145/fastQC1/test.fastq2_trim_fastqc.html
rename to example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.html
diff --git a/example_of_result/20220120_test_1649701145/fastQC1/test.fastq2_trim_fastqc.zip b/example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.zip
similarity index 100%
rename from example_of_result/20220120_test_1649701145/fastQC1/test.fastq2_trim_fastqc.zip
rename to example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.zip
diff --git a/example_of_result/20220120_test_1649701145/fastQC2/test.fastq2_5pAtccRm_fastqc.html b/example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.html
similarity index 100%
rename from example_of_result/20220120_test_1649701145/fastQC2/test.fastq2_5pAtccRm_fastqc.html
rename to example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.html
diff --git a/example_of_result/20220120_test_1649701145/fastQC2/test.fastq2_5pAtccRm_fastqc.zip b/example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.zip
similarity index 100%
rename from example_of_result/20220120_test_1649701145/fastQC2/test.fastq2_5pAtccRm_fastqc.zip
rename to example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.zip
diff --git a/example_of_result/20220120_test_1649701145/figures/alignment.html b/example_of_result/20220120_test_1649703168/figures/alignment.html
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/alignment.html
rename to example_of_result/20220120_test_1649703168/figures/alignment.html
diff --git a/example_of_result/20220120_test_1649701145/figures/barplot_test.fastq2_all.png b/example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_all.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/barplot_test.fastq2_all.png
rename to example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_all.png
diff --git a/example_of_result/20220120_test_1649701145/figures/barplot_test.fastq2_all_relative.png b/example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_all_relative.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/barplot_test.fastq2_all_relative.png
rename to example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_all_relative.png
diff --git a/example_of_result/20220120_test_1649701145/figures/barplot_test.fastq2_ess_uness.png b/example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_ess_uness.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/barplot_test.fastq2_ess_uness.png
rename to example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_ess_uness.png
diff --git a/example_of_result/20220120_test_1649701145/figures/barplot_test.fastq2_inside_outside.png b/example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_inside_outside.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/barplot_test.fastq2_inside_outside.png
rename to example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_inside_outside.png
diff --git a/example_of_result/20220120_test_1649701145/figures/boxplot_test.fastq2_cds.png b/example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_cds.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/boxplot_test.fastq2_cds.png
rename to example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_cds.png
diff --git a/example_of_result/20220120_test_1649701145/figures/boxplot_test.fastq2_cds_wo_unknown.png b/example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_cds_wo_unknown.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/boxplot_test.fastq2_cds_wo_unknown.png
rename to example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_cds_wo_unknown.png
diff --git a/example_of_result/20220120_test_1649701145/figures/boxplot_test.fastq2_tss.png b/example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_tss.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/boxplot_test.fastq2_tss.png
rename to example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_tss.png
diff --git a/example_of_result/20220120_test_1649701145/figures/boxplot_test.fastq2_tss_wo_unknown.png b/example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_tss_wo_unknown.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/boxplot_test.fastq2_tss_wo_unknown.png
rename to example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_tss_wo_unknown.png
diff --git a/example_of_result/20220120_test_1649701145/figures/global_logo_dup_test.fastq2.png b/example_of_result/20220120_test_1649703168/figures/global_logo_dup_test.fastq2.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/global_logo_dup_test.fastq2.png
rename to example_of_result/20220120_test_1649703168/figures/global_logo_dup_test.fastq2.png
diff --git a/example_of_result/20220120_test_1649701145/figures/global_logo_nodup_test.fastq2.png b/example_of_result/20220120_test_1649703168/figures/global_logo_nodup_test.fastq2.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/global_logo_nodup_test.fastq2.png
rename to example_of_result/20220120_test_1649703168/figures/global_logo_nodup_test.fastq2.png
diff --git a/example_of_result/20220120_test_1649701145/figures/hist_test.fastq2_tss_distance_freq.png b/example_of_result/20220120_test_1649703168/figures/hist_test.fastq2_tss_distance_freq.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/hist_test.fastq2_tss_distance_freq.png
rename to example_of_result/20220120_test_1649703168/figures/hist_test.fastq2_tss_distance_freq.png
diff --git a/example_of_result/20220120_test_1649701145/figures/hist_test.fastq2_tss_distance_freq_Nlaw.png b/example_of_result/20220120_test_1649703168/figures/hist_test.fastq2_tss_distance_freq_Nlaw.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/hist_test.fastq2_tss_distance_freq_Nlaw.png
rename to example_of_result/20220120_test_1649703168/figures/hist_test.fastq2_tss_distance_freq_Nlaw.png
diff --git a/example_of_result/20220120_test_1649701145/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png b/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png
rename to example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png
diff --git a/example_of_result/20220120_test_1649701145/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png b/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png
rename to example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png
diff --git a/example_of_result/20220120_test_1649701145/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png b/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png
rename to example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png
diff --git a/example_of_result/20220120_test_1649701145/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png b/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png
rename to example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_fivep_filtering_stat.png b/example_of_result/20220120_test_1649703168/figures/plot_fivep_filtering_stat.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_fivep_filtering_stat.png
rename to example_of_result/20220120_test_1649703168/figures/plot_fivep_filtering_stat.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_fork.png b/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_fork.png
rename to example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_fork_and_strand.png b/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_and_strand.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_fork_and_strand.png
rename to example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_and_strand.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_fork_and_strand_prop.png b/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_and_strand_prop.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_fork_and_strand_prop.png
rename to example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_and_strand_prop.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_fork_prop.png b/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_prop.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_fork_prop.png
rename to example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_prop.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_strand.png b/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_strand.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_strand.png
rename to example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_strand.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_strand_prop.png b/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_strand_prop.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_motif_insertion_per_strand_prop.png
rename to example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_strand_prop.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_read_length_cutoff.png b/example_of_result/20220120_test_1649703168/figures/plot_read_length_cutoff.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_read_length_cutoff.png
rename to example_of_result/20220120_test_1649703168/figures/plot_read_length_cutoff.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_read_length_fivep_filtering.png b/example_of_result/20220120_test_1649703168/figures/plot_read_length_fivep_filtering.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_read_length_fivep_filtering.png
rename to example_of_result/20220120_test_1649703168/figures/plot_read_length_fivep_filtering.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_read_length_fivep_filtering_cut.png b/example_of_result/20220120_test_1649703168/figures/plot_read_length_fivep_filtering_cut.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_read_length_fivep_filtering_cut.png
rename to example_of_result/20220120_test_1649703168/figures/plot_read_length_fivep_filtering_cut.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_read_length_ini.png b/example_of_result/20220120_test_1649703168/figures/plot_read_length_ini.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_read_length_ini.png
rename to example_of_result/20220120_test_1649703168/figures/plot_read_length_ini.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_bowtie2_mini.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_bowtie2_mini.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_bowtie2_mini.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_bowtie2_mini.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_bin_200000.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_200000.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_bin_200000.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_200000.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_bin_50000.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_50000.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_bin_50000.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_50000.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_bin_500000.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_500000.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_bin_500000.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_500000.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_dup_raw.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_dup_raw.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_dup_raw.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_dup_raw.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_dup_selected.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_dup_selected.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_dup_selected.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_dup_selected.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_forward.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_forward.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_forward.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_forward.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_reverse.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_reverse.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_reverse.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_reverse.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_tot.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_hist_tot.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot.png
diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_selected.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_selected.png
new file mode 100644
index 0000000000000000000000000000000000000000..c090a51fd75c718f5d2cc670a01ede144e16798a
Binary files /dev/null and b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_selected.png differ
diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_zoom.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_zoom.png
new file mode 100644
index 0000000000000000000000000000000000000000..29778ef7604b555cf08c95ac0fb3f5f3e19980e6
Binary files /dev/null and b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_zoom.png differ
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_raw.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_raw.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_insertion_raw.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_raw.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_lead_lag_insertion_bin_200000.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_200000.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_lead_lag_insertion_bin_200000.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_200000.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_lead_lag_insertion_bin_500000.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_500000.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_lead_lag_insertion_bin_500000.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_500000.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_promoter_per_genes.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_promoter_per_genes.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_promoter_per_genes.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_promoter_per_genes.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_q20_dup_mini.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_q20_dup_mini.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_q20_dup_mini.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_q20_dup_mini.png
diff --git a/example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_q20_nodup_mini.png b/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_q20_nodup_mini.png
similarity index 100%
rename from example_of_result/20220120_test_1649701145/figures/plot_test.fastq2_q20_nodup_mini.png
rename to example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_q20_nodup_mini.png
diff --git a/example_of_result/20220120_test_1649701145/files/motif_sites.pos b/example_of_result/20220120_test_1649703168/files/motif_sites.pos
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/motif_sites.pos
rename to example_of_result/20220120_test_1649703168/files/motif_sites.pos
diff --git a/example_of_result/20220120_test_1649701145/files/obs_rd_insertions.freq b/example_of_result/20220120_test_1649703168/files/obs_rd_insertions.freq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/obs_rd_insertions.freq
rename to example_of_result/20220120_test_1649703168/files/obs_rd_insertions.freq
diff --git a/example_of_result/20220120_test_1649701145/files/obs_rd_insertions.pos b/example_of_result/20220120_test_1649703168/files/obs_rd_insertions.pos
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/obs_rd_insertions.pos
rename to example_of_result/20220120_test_1649703168/files/obs_rd_insertions.pos
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_5pAtccRm.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_5pAtccRm.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_5pAtccRm.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_5pAtccRm.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_5pAttc.length b/example_of_result/20220120_test_1649703168/files/test.fastq2_5pAttc.length
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_5pAttc.length
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_5pAttc.length
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_5pAttc_1-51.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_5pAttc_1-51.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_5pAttc_1-51.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_5pAttc_1-51.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_bowtie2_mini.cov b/example_of_result/20220120_test_1649703168/files/test.fastq2_bowtie2_mini.cov
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_bowtie2_mini.cov
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_bowtie2_mini.cov
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_ini.length b/example_of_result/20220120_test_1649703168/files/test.fastq2_ini.length
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_ini.length
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_ini.length
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup.pos b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup.pos
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup.pos
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup.pos
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_annot.freq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot.freq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_annot.freq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot.freq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_annot.pos b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot.pos
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_annot.pos
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot.pos
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_annot_selected.freq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot_selected.freq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_annot_selected.freq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot_selected.freq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_mini.cov b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_mini.cov
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_mini.cov
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_mini.cov
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup.pos b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup.pos
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup.pos
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup.pos
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.bed b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.bed
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.bed
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.bed
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup.pos b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup.pos
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup.pos
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup.pos
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_annot.freq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot.freq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_annot.freq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot.freq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_annot.pos b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot.pos
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_annot.pos
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot.pos
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_annot_selected.freq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot_selected.freq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_annot_selected.freq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot_selected.freq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_mini.cov b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_mini.cov
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_mini.cov
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_mini.cov
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup.pos b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup.pos
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup.pos
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup.pos
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq
diff --git a/example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat b/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat
similarity index 100%
rename from example_of_result/20220120_test_1649701145/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat
rename to example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat
diff --git a/example_of_result/20220120_test_1649701145/report.html b/example_of_result/20220120_test_1649703168/report.html
similarity index 98%
rename from example_of_result/20220120_test_1649701145/report.html
rename to example_of_result/20220120_test_1649703168/report.html
index 1e26443e9c9167620d392ba23f1f44e42a0c9046..2eb4046e36c999d386e3b887fa072232e0a5e93d 100644
--- a/example_of_result/20220120_test_1649701145/report.html
+++ b/example_of_result/20220120_test_1649703168/report.html
@@ -2434,7 +2434,7 @@ Sum
 </center>
 <p><br /><br /></p>
 <div class="figure">
-<img src="" alt="Figure 21: Insertion site usage zoomed for sites with few insertions (total insertions)." width="600" />
+<img src="" alt="Figure 21: Insertion site usage zoomed for sites with few insertions (total insertions)." width="600" />
 <p class="caption">Figure 21: Insertion site usage zoomed for sites with few insertions (total insertions).</p>
 </div>
 </center>
@@ -2623,7 +2623,7 @@ Sum
 <p><br /><br /></p>
 </center>
 <div class="figure">
-<img src="" alt="Figure 44: Insertion site usage (total insertions)." width="600" />
+<img src="" alt="Figure 44: Insertion site usage (total insertions)." width="600" />
 <p class="caption">Figure 44: Insertion site usage (total insertions).</p>
 </div>
 <p><br /><br /></p>
@@ -2910,7 +2910,7 @@ Reverse
 </tr>
 <tr class="even">
 <td align="left">Git info<br />(empty means no .git folder where the main.nf file is present)</td>
-<td align="left">v8.4.0-dirty</td>
+<td align="left">v8.5.0-dirty</td>
 </tr>
 <tr class="odd">
 <td align="left">Cmd line</td>
@@ -2926,7 +2926,7 @@ Reverse
 </tr>
 <tr class="even">
 <td align="left">result path</td>
-<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649701145</td>
+<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649703168</td>
 </tr>
 <tr class="odd">
 <td align="left">nextflow version</td>
@@ -2990,7 +2990,7 @@ Reverse
 <tr class="odd">
 <td align="left">out_path</td>
 <td align="left">output folder path</td>
-<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649701145</td>
+<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649703168</td>
 </tr>
 <tr class="even">
 <td align="left">in_path</td>
diff --git a/example_of_result/20220120_test_1649701145/reports/base_freq_report.txt b/example_of_result/20220120_test_1649703168/reports/base_freq_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/base_freq_report.txt
rename to example_of_result/20220120_test_1649703168/reports/base_freq_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/bowtie2_report.txt b/example_of_result/20220120_test_1649703168/reports/bowtie2_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/bowtie2_report.txt
rename to example_of_result/20220120_test_1649703168/reports/bowtie2_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/cov_report.txt b/example_of_result/20220120_test_1649703168/reports/cov_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/cov_report.txt
rename to example_of_result/20220120_test_1649703168/reports/cov_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/dup_insertion_and_logo_report.txt b/example_of_result/20220120_test_1649703168/reports/dup_insertion_and_logo_report.txt
similarity index 97%
rename from example_of_result/20220120_test_1649701145/reports/dup_insertion_and_logo_report.txt
rename to example_of_result/20220120_test_1649703168/reports/dup_insertion_and_logo_report.txt
index e8e08ebe482d0160c239b3023bc94116c104d4a5..2333f378db67e4cb8800b08b446d1ef24aad6f11 100644
--- a/example_of_result/20220120_test_1649701145/reports/dup_insertion_and_logo_report.txt
+++ b/example_of_result/20220120_test_1649703168/reports/dup_insertion_and_logo_report.txt
@@ -12,7 +12,7 @@
 
 
 
-2022-04-11 17:26:24
+2022-04-11 18:52:56
 
 
 
@@ -31,7 +31,7 @@
 
 
 
-END TIME: 2022-04-11 17:26:31
+END TIME: 2022-04-11 18:53:03
 
 
 
@@ -121,7 +121,7 @@ loaded via a namespace (and not attached):
 
 ################################ JOB END
 
-TIME: 2022-04-11 17:26:31
+TIME: 2022-04-11 18:53:03
 
 TOTAL TIME LAPSE: 7S
 
diff --git a/example_of_result/20220120_test_1649701145/reports/dup_report.txt b/example_of_result/20220120_test_1649703168/reports/dup_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/dup_report.txt
rename to example_of_result/20220120_test_1649703168/reports/dup_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/extract_seq_report.txt b/example_of_result/20220120_test_1649703168/reports/extract_seq_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/extract_seq_report.txt
rename to example_of_result/20220120_test_1649703168/reports/extract_seq_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/final_insertion_files_report.txt b/example_of_result/20220120_test_1649703168/reports/final_insertion_files_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/final_insertion_files_report.txt
rename to example_of_result/20220120_test_1649703168/reports/final_insertion_files_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/global_logo_report.txt b/example_of_result/20220120_test_1649703168/reports/global_logo_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/global_logo_report.txt
rename to example_of_result/20220120_test_1649703168/reports/global_logo_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/goalign_report.txt b/example_of_result/20220120_test_1649703168/reports/goalign_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/goalign_report.txt
rename to example_of_result/20220120_test_1649703168/reports/goalign_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/insertion_report.txt b/example_of_result/20220120_test_1649703168/reports/insertion_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/insertion_report.txt
rename to example_of_result/20220120_test_1649703168/reports/insertion_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/logo_report.txt b/example_of_result/20220120_test_1649703168/reports/logo_report.txt
similarity index 93%
rename from example_of_result/20220120_test_1649701145/reports/logo_report.txt
rename to example_of_result/20220120_test_1649703168/reports/logo_report.txt
index 11d23ef4c3c040ced0e41466cbb17732ae3afed7..df916e5a47ff224b96064d1312599649f3f44ba3 100644
--- a/example_of_result/20220120_test_1649701145/reports/logo_report.txt
+++ b/example_of_result/20220120_test_1649703168/reports/logo_report.txt
@@ -12,7 +12,7 @@
 
 
 
-2022-04-09 15:27:47
+2022-04-09 15:26:56
 
 
 
@@ -31,7 +31,7 @@
 
 
 
-END TIME: 2022-04-09 15:27:51
+END TIME: 2022-04-09 15:27:00
 
 
 
@@ -64,8 +64,8 @@ erase.objects      TRUE
 erase.graphs       TRUE 
 script             logo 
 run.way            SCRIPT 
-command            /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/logo.R,--args,test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat,20,cute_little_R_functions.R,logo_report.txt 
-freq               test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat 
+command            /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/logo.R,--args,test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat,20,cute_little_R_functions.R,logo_report.txt 
+freq               test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat 
 insertion_dist     20 
 cute               cute_little_R_functions.R 
 log                logo_report.txt
@@ -114,7 +114,7 @@ loaded via a namespace (and not attached):
 
 ################################ JOB END
 
-TIME: 2022-04-09 15:27:51
+TIME: 2022-04-09 15:27:00
 
 TOTAL TIME LAPSE: 4S
 
diff --git a/example_of_result/20220120_test_1649701145/reports/motif_report.txt b/example_of_result/20220120_test_1649703168/reports/motif_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/motif_report.txt
rename to example_of_result/20220120_test_1649703168/reports/motif_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/multiqc_report.html b/example_of_result/20220120_test_1649703168/reports/multiqc_report.html
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/multiqc_report.html
rename to example_of_result/20220120_test_1649703168/reports/multiqc_report.html
diff --git a/example_of_result/20220120_test_1649701145/reports/nextflow.config b/example_of_result/20220120_test_1649703168/reports/nextflow.config
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/nextflow.config
rename to example_of_result/20220120_test_1649703168/reports/nextflow.config
diff --git a/example_of_result/20220120_test_1649703168/reports/nf_dag.png b/example_of_result/20220120_test_1649703168/reports/nf_dag.png
new file mode 100644
index 0000000000000000000000000000000000000000..f292ac5f76c0cb831a343933530558edf31ff912
Binary files /dev/null and b/example_of_result/20220120_test_1649703168/reports/nf_dag.png differ
diff --git a/example_of_result/20220120_test_1649701145/reports/nf_report.html b/example_of_result/20220120_test_1649703168/reports/nf_report.html
similarity index 94%
rename from example_of_result/20220120_test_1649701145/reports/nf_report.html
rename to example_of_result/20220120_test_1649703168/reports/nf_report.html
index 99c77efd45aa72a3a18f68fcfb31fb9399030e63..a7bac14a955fe0a1f68458399aa65a724c0675c9 100644
--- a/example_of_result/20220120_test_1649701145/reports/nf_report.html
+++ b/example_of_result/20220120_test_1649703168/reports/nf_report.html
@@ -18,11 +18,11 @@
 <head>
   <meta charset="utf-8">
   <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
-  <meta name="description" content="Nextflow workflow report for run id [condescending_crick]">
+  <meta name="description" content="Nextflow workflow report for run id [determined_hoover]">
   <meta name="author" content="Paolo Di Tommaso, Phil Ewels">
   <link rel="icon" type="image/png" href="https://www.nextflow.io/img/favicon.png" />
 
-  <title>[condescending_crick] Nextflow Workflow Report</title>
+  <title>[determined_hoover] Nextflow Workflow Report</title>
 
   <style type="text/css">
   /*!
@@ -137,7 +137,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r
         <li class="nav-item"><a class="nav-link" href="#tasks">Tasks</a></li>
       </ul>
       <span class="navbar-text">
-        [condescending_crick]
+        [determined_hoover]
       </span>
     </div>
   </nav>
@@ -146,7 +146,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r
     <div class="container">
 
       <h1 class="display-3">Nextflow workflow report</h1>
-      <h2 class="text-muted mb-4"><samp>[condescending_crick]</samp> <em>(resumed run)</em></h2>
+      <h2 class="text-muted mb-4"><samp>[determined_hoover]</samp> <em>(resumed run)</em></h2>
 
       
           <div class="alert alert-success mb-4">
@@ -157,14 +157,14 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r
       <dl>
         <dt>Run times</dt>
         <dd>
-          <span id="workflow_start">11-Apr-2022 20:19:05</span> - <span id="workflow_complete">11-Apr-2022 20:23:24</span>
-          (<span id="completed_fromnow"></span>duration: <strong>4m 19s</strong>)
+          <span id="workflow_start">11-Apr-2022 20:52:48</span> - <span id="workflow_complete">11-Apr-2022 20:57:15</span>
+          (<span id="completed_fromnow"></span>duration: <strong>4m 26s</strong>)
         </dd>
 
         <dl>
           <div class="progress" style="height: 1.6rem; margin: 1.2rem auto; border-radius: 0.20rem;">
-            <div style="width: 9.26%" class="progress-bar bg-success" data-toggle="tooltip" data-placement="top" title="5 tasks succeeded"><span class="text-truncate">&nbsp; 5 succeeded &nbsp;</span></div>
-            <div style="width: 90.74%" class="progress-bar bg-secondary" data-toggle="tooltip" data-placement="top" title="49 tasks were cached"><span class="text-truncate">&nbsp; 49 cached &nbsp;</span></div>
+            <div style="width: 11.11%" class="progress-bar bg-success" data-toggle="tooltip" data-placement="top" title="6 tasks succeeded"><span class="text-truncate">&nbsp; 6 succeeded &nbsp;</span></div>
+            <div style="width: 88.89%" class="progress-bar bg-secondary" data-toggle="tooltip" data-placement="top" title="48 tasks were cached"><span class="text-truncate">&nbsp; 48 cached &nbsp;</span></div>
             <div style="width: 0.0%" class="progress-bar bg-warning" data-toggle="tooltip" data-placement="top" title="0 tasks reported and error and were ignored"><span class="text-truncate">&nbsp; 0 ignored &nbsp;</span></div>
             <div style="width: 0.0%" class="progress-bar bg-danger" data-toggle="tooltip" data-placement="top" title="0 tasks failed"><span class="text-truncate">&nbsp; 0 failed &nbsp;</span></div>
           </div>
@@ -176,7 +176,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r
 
       <dl class="row small">
         <dt class="col-sm-3">CPU-Hours</dt>
-        <dd class="col-sm-9"><samp>1.0 (19% cached)</samp></dd>
+        <dd class="col-sm-9"><samp>1.0 (18.9% cached)</samp></dd>
 
         <dt class="col-sm-3">Launch directory</dt>
         <dd class="col-sm-9"><samp>/mnt/c/Users/Gael/Documents/Git_projects/14985_loot</samp></dd>
@@ -1029,7 +1029,7 @@ $(function() {
 
   // Nextflow report data
   window.data = { "trace":[
-{"task_id":"2","hash":"25\/7b2ed6","native_id":"281","process":"Nremove","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"Nremove (1)","status":"CACHED","exit":"0","submit":"1649517331366","start":"1649517331460","complete":"1649517336786","duration":"5420","realtime":"1273","%cpu":"37.7","%mem":"0.0","rss":"12468224","vmem":"73990144","peak_rss":"12468224","peak_vmem":"74002432","rchar":"17604799","wchar":"15167118","syscr":"1863","syscw":"1271","read_bytes":"568320","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/25\/7b2ed6336bab428544e9b702e6a042","script":"\n    Nremove.sh test.fastq2.gz \"test.fastq2_Nremove.gz\" \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"853","inv_ctxt":"19"},{"task_id":"3","hash":"f3\/638b7c","native_id":"308","process":"report1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report1","status":"CACHED","exit":"0","submit":"1649517331415","start":"1649517331494","complete":"1649517336099","duration":"4684","realtime":"85","%cpu":"6.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106909","wchar":"684","syscr":"189","syscw":"54","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f3\/638b7c1225ea438db495aefc16a905","script":"\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n###  Read coverage\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 6: After Bowtie2 alignment](.\/figures\/plot_test.fastq2_bowtie2_mini.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 7: After Mapping Quality Q20 (1%) filtering](.\/figures\/plot_test.fastq2_q20_dup_mini.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 8: After removal of reads with identical 5\' and 3\' coordinates](.\/figures\/plot_test.fastq2_q20_nodup_mini.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \' > report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"4","hash":"e9\/33684c","native_id":"1241","process":"trim","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-alien_trimmer_v0.4.0-gitlab_v8.1.img","tag":"-","name":"trim (1)","status":"CACHED","exit":"0","submit":"1649517336960","start":"1649517336984","complete":"1649517347469","duration":"10509","realtime":"7348","%cpu":"44.5","%mem":"0.1","rss":"66617344","vmem":"5908262912","peak_rss":"66617344","peak_vmem":"5970448384","rchar":"17145211","wchar":"12629480","syscr":"2381","syscw":"647","read_bytes":"9981952","write_bytes":"32768","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e9\/33684ce0818a231e05632f82b2dcdb","script":"\n    trim.sh test.fastq2_Nremove.gz \"test.fastq2_trim.fq\" 20200520_adapters_TruSeq_B2699_14985_CL.fasta 30 \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3272","inv_ctxt":"9"},{"task_id":"1","hash":"95\/5055ef","native_id":"26995","process":"init","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"init","status":"COMPLETED","exit":"0","submit":"1649701147908","start":"1649701147920","complete":"1649701149658","duration":"1750","realtime":"13","%cpu":"5.2","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106638","wchar":"669","syscr":"190","syscw":"26","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/95\/5055efd821eb17be9fb4814a4a206f","script":"\n    echo \"---\n    title: \'Insertion Sites Report\'\n    author: \'Gael Millot\'\n    date: \'`r Sys.Date()`\'\n    output:\n      html_document:\n        toc: TRUE\n        toc_float: TRUE\n    ---\n\n    \\n\\n<br \/><br \/>\\n\\n\n    \" > report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649701145\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"7","hash":"d5\/d15b46","native_id":"2771","process":"kraken","module":"-","container":"-","tag":"-","name":"kraken (1)","status":"CACHED","exit":"0","submit":"1649517347569","start":"1649517347669","complete":"1649517347880","duration":"311","realtime":"34","%cpu":"81.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"154429","wchar":"220","syscr":"228","syscw":"13","read_bytes":"49152","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d5\/d15b46d768587b15d4a43e3e1416bd","script":"\n        echo \"No kraken analysis performed in local running\" > test.fastq2_trim_kraken_std.txt\n        ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"6","hash":"f8\/e48213","native_id":"2908","process":"fivep_filtering","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"fivep_filtering (1)","status":"CACHED","exit":"0","submit":"1649517347765","start":"1649517347828","complete":"1649517355984","duration":"8219","realtime":"6176","%cpu":"27.1","%mem":"0.0","rss":"12136448","vmem":"70533120","peak_rss":"12136448","peak_vmem":"70533120","rchar":"29337231","wchar":"16061720","syscr":"9149","syscw":"5789","read_bytes":"437248","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f8\/e482130c484e578853920aef7381bf","script":"\n    fivep_filtering.sh test.fastq2_trim.fq \"test.fastq2\" \"^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\" 48 3 51 \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"6135","inv_ctxt":"2"},{"task_id":"5","hash":"59\/2dbb6e","native_id":"2819","process":"fastqc1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc1 (1)","status":"CACHED","exit":"0","submit":"1649517347681","start":"1649517347770","complete":"1649517366659","duration":"18978","realtime":"17027","%cpu":"52.0","%mem":"0.2","rss":"173170688","vmem":"3289477120","peak_rss":"173256704","peak_vmem":"3342663680","rchar":"14605630","wchar":"1278924","syscr":"7612","syscw":"5170","read_bytes":"19996672","write_bytes":"712704","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/59\/2dbb6e3e89d63b886cbd5e4cc01ec1","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Read QC n\u00B01\\n\\n\" > report.rmd\n    echo -e \"Results are published in the [fastQC1](.\/fastQC1) folder\\n\\n\" >> report.rmd\n    fastqc test.fastq2_trim.fq | tee tempo.txt\n    cat tempo.txt >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4333","inv_ctxt":"39"},{"task_id":"8","hash":"c8\/fa65a5","native_id":"4175","process":"cutoff","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"cutoff (1)","status":"CACHED","exit":"0","submit":"1649517356282","start":"1649517356311","complete":"1649517359645","duration":"3363","realtime":"988","%cpu":"14.5","%mem":"0.0","rss":"10223616","vmem":"64237568","peak_rss":"10223616","peak_vmem":"64237568","rchar":"7308009","wchar":"4049154","syscr":"2784","syscw":"2034","read_bytes":"384000","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c8\/fa65a502fe7569089ad77729a27d36","script":"\n    cutoff.sh test.fastq2_5pAtccRm.fq 25 \"test.fastq2\" \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1167","inv_ctxt":"1"},{"task_id":"10","hash":"b4\/13acb3","native_id":"4147","process":"fastqc2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc2 (1)","status":"CACHED","exit":"0","submit":"1649517356193","start":"1649517356286","complete":"1649517370882","duration":"14689","realtime":"12798","%cpu":"69.2","%mem":"0.2","rss":"184655872","vmem":"3289477120","peak_rss":"184655872","peak_vmem":"3289899008","rchar":"12768081","wchar":"1245410","syscr":"7365","syscw":"5096","read_bytes":"19984384","write_bytes":"688128","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b4\/13acb3ca013c26eb96eb0cbf07abdd","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Read QC n\u00B02\\n\\n\" > report.rmd\n    echo -e \"Results are published in the [fastQC2](.\/fastQC2) folder\\n\\n\" >> report.rmd\n    fastqc test.fastq2_5pAtccRm.fq | tee tempo.txt\n    cat tempo.txt >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4333","inv_ctxt":"2"},{"task_id":"11","hash":"96\/3945da","native_id":"5033","process":"bowtie2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bowtie2_v2.3.4.3_extended_v2.0-gitlab_v8.0.img","tag":"-","name":"bowtie2 (1)","status":"CACHED","exit":"0","submit":"1649517360685","start":"1649517360746","complete":"1649517374142","duration":"13457","realtime":"9333","%cpu":"40.6","%mem":"0.1","rss":"68902912","vmem":"249094144","peak_rss":"120336384","peak_vmem":"251154432","rchar":"36678363","wchar":"17009938","syscr":"3392","syscw":"2516","read_bytes":"7209984","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/96\/3945da1d9d4a1f8976a45bb56ea6e2","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Bowtie2 indexing of the reference sequence\\n\\n\" >> bowtie2_report.txt\n    bowtie2-build Ecoli-K12-MG1655_ORI_CENTERED.fasta Ecoli-K12-MG1655_ORI_CENTERED |& tee -a bowtie2_report.txt\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Bowtie2 alignment\\n\\n\" > report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Bowtie2 alignment\\n\\n\" >> bowtie2_report.txt\n    bowtie2 --very-sensitive -x Ecoli-K12-MG1655_ORI_CENTERED -U test.fastq2_cutoff.fq -t -S test.fastq2_bowtie2.sam |& tee -a tempo.txt\n    # --very-sensitive: no soft clipping allowed and very sensitive seed alignment\n    # -t time displayed\n    cat tempo.txt >> bowtie2_report.txt\n    sed -i -e \':a;N;$!ba;s\/\\n\/\\n<br \\\/>\/g\' tempo.txt\n    cat tempo.txt >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n####  samtools conversion\\n\\n\" >> bowtie2_report.txt\n    # samtools faidx Ecoli-K12-MG1655_ORI_CENTERED.fasta\n    samtools view -bh -o tempo.bam test.fastq2_bowtie2.sam |& tee -a bowtie2_report.txt\n    samtools sort -o test.fastq2_bowtie2.bam tempo.bam |& tee -a bowtie2_report.txt\n    samtools index test.fastq2_bowtie2.bam |& tee -a bowtie2_report.txt\n    ","scratch":"-","queue":"-","cpus":"12","memory":"17179869184","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"5701","inv_ctxt":"9"},{"task_id":"13","hash":"50\/34788a","native_id":"6971","process":"Q20","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"Q20 (1)","status":"CACHED","exit":"0","submit":"1649517375154","start":"1649517375243","complete":"1649517377849","duration":"2695","realtime":"707","%cpu":"17.8","%mem":"0.0","rss":"4722688","vmem":"44826624","peak_rss":"4722688","peak_vmem":"44834816","rchar":"3392035","wchar":"2260606","syscr":"897","syscw":"567","read_bytes":"1230848","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/50\/34788aeb175a22a1d913b583847a61","script":"\n    samtools view -q 20 -b test.fastq2_bowtie2.bam > test.fastq2_q20_dup.bam |& tee q20_report.txt\n    samtools index test.fastq2_q20_dup.bam\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Q20 filtering\\n\\n\" > report.rmd\n    read_nb_before=$(samtools view test.fastq2_bowtie2.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n    read_nb_after=$(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n    echo -e \"\\n\\nNumber of sequences before Q20 filtering: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n    echo -e \"\\n\\nNumber of sequences after Q20 filtering: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n    echo -e \"Ratio: \" >> report.rmd\n    echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n    echo -e \"\\n\\n\" >> report.rmd\n    echo $read_nb_before > read_nb_before # because nf cannot output values easily\n    echo $read_nb_after > read_nb_after\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"806","inv_ctxt":"0"},{"task_id":"14","hash":"a8\/f98ebd","native_id":"11174","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (1)","status":"CACHED","exit":"0","submit":"1649517438784","start":"1649517438890","complete":"1649517443338","duration":"4554","realtime":"2000","%cpu":"18.3","%mem":"0.0","rss":"45502464","vmem":"83861504","peak_rss":"45502464","peak_vmem":"83996672","rchar":"491183","wchar":"93148","syscr":"251","syscw":"3116","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/a8\/f98ebde5137cd4a4569ccc04fc89c5","script":"\n    # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n    # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n    bedtools genomecov -bga -ibam test.fastq2_bowtie2.bam  > test.fastq2_bowtie2_mini.cov |& tee cov_report.txt\n    # -g ${ref} not required when inputs are bam files\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3958","inv_ctxt":"1"},{"task_id":"15","hash":"8f\/71ec44","native_id":"6997","process":"multiQC","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/ewels-multiqc-1.10.1.img","tag":"-","name":"multiQC","status":"CACHED","exit":"0","submit":"1649517375192","start":"1649517375268","complete":"1649517398413","duration":"23221","realtime":"23000","%cpu":"36.5","%mem":"0.1","rss":"74149888","vmem":"85012480","peak_rss":"74149888","peak_vmem":"85012480","rchar":"29716377","wchar":"2404869","syscr":"9278","syscw":"295","read_bytes":"22820864","write_bytes":"1253376","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/8f\/71ec4485b2780844d80f43234a84d9","script":"\n    multiqc . -n multiqc_report.html\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  MultiQC\\n\\n\" > report.rmd\n    if [[ local == \"local\" ]] ; then\n        echo -e \"\\n\\nWarning: no Kraken performed when using local run\\n\" >> report.rmd\n    fi\n    echo -e \"\\n\\nResults are published in the [Report](.\/reports\/multiqc_report.html) folder\\n\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"34782","inv_ctxt":"285"},{"task_id":"16","hash":"41\/75981b","native_id":"7462","process":"no_soft_clipping","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"no_soft_clipping (1)","status":"CACHED","exit":"0","submit":"1649517378863","start":"1649517379002","complete":"1649517383173","duration":"4310","realtime":"1228","%cpu":"14.5","%mem":"0.0","rss":"5394432","vmem":"60452864","peak_rss":"5394432","peak_vmem":"60452864","rchar":"2188565","wchar":"1583809","syscr":"718","syscw":"417","read_bytes":"1153024","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/41\/75981b0207214e9680f067f4eccfbd","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Control that no more soft clipping in reads\\n\\n\" > report.rmd\n    echo -e \"nb of reads with soft clipping (S) in CIGAR: $(printf \"%\'d\" $(samtools view test.fastq2_q20_dup.bam | awk \'$6 ~ \/.*[S].*\/{print $0}\' | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n    echo -e \"\\n\\ntotal nb of reads: $(printf \"%\'d\" $(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"28","inv_ctxt":"1"},{"task_id":"17","hash":"da\/6b7a6c","native_id":"11388","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (2)","status":"CACHED","exit":"0","submit":"1649517443376","start":"1649517443438","complete":"1649517447638","duration":"4262","realtime":"1911","%cpu":"19.1","%mem":"0.0","rss":"45707264","vmem":"83861504","peak_rss":"45707264","peak_vmem":"83996672","rchar":"343061","wchar":"84347","syscr":"239","syscw":"2824","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/da\/6b7a6c60ccfee9229a0531b342010e","script":"\n    # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n    # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n    bedtools genomecov -bga -ibam test.fastq2_q20_dup.bam  > test.fastq2_q20_dup_mini.cov |& tee cov_report.txt\n    # -g ${ref} not required when inputs are bam files\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3888","inv_ctxt":"0"},{"task_id":"18","hash":"0a\/40301f","native_id":"7482","process":"duplicate_removal","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"duplicate_removal (1)","status":"CACHED","exit":"0","submit":"1649517378891","start":"1649517379023","complete":"1649517388551","duration":"9660","realtime":"6625","%cpu":"24.6","%mem":"0.0","rss":"13029376","vmem":"89198592","peak_rss":"13029376","peak_vmem":"89198592","rchar":"13491677","wchar":"6912516","syscr":"7202","syscw":"5709","read_bytes":"1376256","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/0a\/40301fd02966cf17f1eabcfffba711","script":"\n    duplicate_removal.sh test.fastq2_q20_dup.bam Ecoli-K12-MG1655_ORI_CENTERED.fasta \"test.fastq2_q20_nodup.bam\" \"dup_report.txt\" \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"2449","inv_ctxt":"4"},{"task_id":"21","hash":"91\/2fd95b","native_id":"9315","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (1)","status":"CACHED","exit":"0","submit":"1649517389566","start":"1649517389651","complete":"1649517393899","duration":"4333","realtime":"2260","%cpu":"19.6","%mem":"0.0","rss":"8163328","vmem":"68767744","peak_rss":"8163328","peak_vmem":"68775936","rchar":"2614607","wchar":"1832311","syscr":"1537","syscw":"1173","read_bytes":"1236992","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/91\/2fd95b201a10093515dd0da96fa3c8","script":"\n    if [[ test.fastq2_q20_nodup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n        echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n        echo -e \"\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n    fi\n\n    # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ\n    samtools view test.fastq2_q20_nodup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n    # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n    echo -e \"\\n\\n######## test.fastq2_q20_nodup.bam file\\n\\n\" > insertion_report.txt\n    cat tempo | head -60 | tail -20 >> insertion_report.txt\n    echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n    # redefinition of POS according to FLAG\n    awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n    echo -e \"\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\\\' end of the read as insertion site and not the 5\\\' part as with forward reads (0)\\n\\n\" >> insertion_report.txt\n    cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n    awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2_q20_nodup.pos\n    echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n    cat test.fastq2_q20_nodup.pos | head -60 | tail -20 >> insertion_report.txt\n\n    read_nb_before=$(samtools view test.fastq2_q20_nodup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n    read_nb_after=$(wc -l test.fastq2_q20_nodup.pos | cut -f1 -d\' \')\n    if [[ test.fastq2_q20_nodup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n        echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n        echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n        echo -e \"Ratio: \" >> report.rmd\n        echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n        echo -e \"\\n\\n\" >> report.rmd\n    else\n        echo -e \"\\n\\n\" >> report.rmd\n    fi\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"819","inv_ctxt":"1"},{"task_id":"23","hash":"22\/3c6c1a","native_id":"9335","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (2)","status":"CACHED","exit":"0","submit":"1649517389595","start":"1649517389671","complete":"1649517394064","duration":"4469","realtime":"2475","%cpu":"20.4","%mem":"0.0","rss":"9629696","vmem":"68907008","peak_rss":"9629696","peak_vmem":"68907008","rchar":"3142153","wchar":"2312414","syscr":"1877","syscw":"1514","read_bytes":"1267712","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/22\/3c6c1a1ef3ab1682b6e551be1cb552","script":"\n    if [[ test.fastq2_q20_dup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n        echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n        echo -e \"\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n    fi\n\n    # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ\n    samtools view test.fastq2_q20_dup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n    # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n    echo -e \"\\n\\n######## test.fastq2_q20_dup.bam file\\n\\n\" > insertion_report.txt\n    cat tempo | head -60 | tail -20 >> insertion_report.txt\n    echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n    # redefinition of POS according to FLAG\n    awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n    echo -e \"\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\\\' end of the read as insertion site and not the 5\\\' part as with forward reads (0)\\n\\n\" >> insertion_report.txt\n    cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n    awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2_q20_dup.pos\n    echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n    cat test.fastq2_q20_dup.pos | head -60 | tail -20 >> insertion_report.txt\n\n    read_nb_before=$(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n    read_nb_after=$(wc -l test.fastq2_q20_dup.pos | cut -f1 -d\' \')\n    if [[ test.fastq2_q20_dup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n        echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n        echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n        echo -e \"Ratio: \" >> report.rmd\n        echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n        echo -e \"\\n\\n\" >> report.rmd\n    else\n        echo -e \"\\n\\n\" >> report.rmd\n    fi\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1018","inv_ctxt":"2"},{"task_id":"20","hash":"d5\/03b2f8","native_id":"11599","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (3)","status":"CACHED","exit":"0","submit":"1649517447665","start":"1649517447738","complete":"1649517451839","duration":"4174","realtime":"1845","%cpu":"19.8","%mem":"0.0","rss":"45600768","vmem":"83861504","peak_rss":"45600768","peak_vmem":"83996672","rchar":"317679","wchar":"84031","syscr":"235","syscw":"2820","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d5\/03b2f893a259a7c22397def25c8629","script":"\n    # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n    # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n    bedtools genomecov -bga -ibam test.fastq2_q20_nodup.bam  > test.fastq2_q20_nodup_mini.cov |& tee cov_report.txt\n    # -g ${ref} not required when inputs are bam files\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3928","inv_ctxt":"0"},{"task_id":"28","hash":"12\/6a6085","native_id":"27083","process":"backup","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"backup","status":"COMPLETED","exit":"0","submit":"1649701148358","start":"1649701148420","complete":"1649701150107","duration":"1749","realtime":"12","%cpu":"10.4","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106843","wchar":"505","syscr":"189","syscw":"23","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/12\/6a60855898397edf4971151a1679ac","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Backup\\n\\n\" > report.rmd\n    echo -e \"See the [reports](.\/reports) folder for all the details of the analysis, including the parameters used in the .config file\" >> report.rmd\n    echo -e \"\\n\\nFull .nextflow.log is in: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot<br \/>The one in the [reports](.\/reports) folder is not complete (miss the end)\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649701145\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"29","hash":"cb\/520355","native_id":"27134","process":"workflowVersion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"workflowVersion","status":"COMPLETED","exit":"0","submit":"1649701148475","start":"1649701148520","complete":"1649701150687","duration":"2212","realtime":"694","%cpu":"14.5","%mem":"0.0","rss":"5152768","vmem":"40312832","peak_rss":"5152768","peak_vmem":"40312832","rchar":"136832","wchar":"2135","syscr":"313","syscw":"67","read_bytes":"1538048","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/cb\/520355b758839267e440ef5a80c369","script":"\n    modules= # this is just to deal with variable interpretation during the creation of the .command.sh file by nextflow. See also $modules below\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Workflow Version\\n\\n\" > report.rmd\n    echo -e \"\\n\\n#### General\\n\\n\n| Variable | Value |\n| :-- | :-- |\n| Project<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot remote -v | head -n 1) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo\n| Git info<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot describe --abbrev=10 --dirty --always --tags) | # idem. Provide the small commit number of the script and nextflow.config used in the execution\n| Cmd line | nextflow run main.nf -resume |\n| execution mode | local |\" >> report.rmd \n\n    if [[ ! -z $modules ]] ; then\n        echo \"| loaded modules (according to specification by the user thanks to the --modules argument of main.nf) |  |\" >> report.rmd\n    fi\n    \n    echo \"| Manifest\'s pipeline version | null |\n| result path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649701145 |\n| nextflow version | 21.04.2 |\n    \" >> report.rmd\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Implicit variables\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| launchDir | Directory where the workflow is run | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| nprojectDir | Directory where the main.nf script is located | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| workDir | Directory where tasks temporary files are created | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work |\n    \" >> report.rmd\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n#### User variables\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| out_path | output folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649701145 |\n| in_path | input folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset |\n    \" >> report.rmd\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Workflow diagram\\n\\nSee the [nf_dag.png](.\/reports\/nf_dag.png) file\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649701145\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"25","inv_ctxt":"0"},{"task_id":"19","hash":"9d\/64d05b","native_id":"13378","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (1)","status":"CACHED","exit":"0","submit":"1649517482485","start":"1649517482559","complete":"1649517509228","duration":"26743","realtime":"24483","%cpu":"49.2","%mem":"0.2","rss":"220262400","vmem":"363646976","peak_rss":"220262400","peak_vmem":"363679744","rchar":"19158411","wchar":"450691","syscr":"3788","syscw":"294","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9d\/64d05bc1b1f46cbdd0dc53ec9bc0e0","script":"\n    plot_coverage.R \"test.fastq2_bowtie2_mini\" \"read_nb_before\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42359","inv_ctxt":"13"},{"task_id":"22","hash":"88\/636f95","native_id":"14201","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (2)","status":"CACHED","exit":"0","submit":"1649517509257","start":"1649517509329","complete":"1649517535648","duration":"26391","realtime":"24286","%cpu":"49.3","%mem":"0.2","rss":"225636352","vmem":"370900992","peak_rss":"225636352","peak_vmem":"370933760","rchar":"19149612","wchar":"444685","syscr":"3786","syscw":"292","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/88\/636f9574ac4e1058c6503f1a2e81c0","script":"\n    plot_coverage.R \"test.fastq2_q20_dup_mini\" \"read_nb_after\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42843","inv_ctxt":"11"},{"task_id":"27","hash":"37\/f53840","native_id":"15016","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (3)","status":"CACHED","exit":"0","submit":"1649517535680","start":"1649517535748","complete":"1649517561551","duration":"25871","realtime":"23860","%cpu":"49.5","%mem":"0.2","rss":"226594816","vmem":"371625984","peak_rss":"226594816","peak_vmem":"371658752","rchar":"19149294","wchar":"445351","syscr":"3786","syscw":"293","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/37\/f53840827946ca3b72549721599e38","script":"\n    plot_coverage.R \"test.fastq2_q20_nodup_mini\" \"dup_read_nb\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"44003","inv_ctxt":"11"},{"task_id":"25","hash":"13\/37b94c","native_id":"11809","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"final_insertion_files (1)","status":"CACHED","exit":"0","submit":"1649517451877","start":"1649517451940","complete":"1649517466971","duration":"15094","realtime":"12958","%cpu":"39.8","%mem":"0.1","rss":"127500288","vmem":"258732032","peak_rss":"127500288","peak_vmem":"258764800","rchar":"18003744","wchar":"275694","syscr":"2302","syscw":"549","read_bytes":"28325888","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/13\/37b94c10e8ea0dd3e2a107a360e17d","script":"\n    final_insertion_files.R \"test.fastq2_q20_nodup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"6\" \"test.fastq2_q20_nodup\" \"cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27284","inv_ctxt":"11"},{"task_id":"26","hash":"23\/48d601","native_id":"12520","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"final_insertion_files (2)","status":"CACHED","exit":"0","submit":"1649517466998","start":"1649517467072","complete":"1649517482460","duration":"15462","realtime":"13021","%cpu":"39.8","%mem":"0.1","rss":"127520768","vmem":"258723840","peak_rss":"127520768","peak_vmem":"258756608","rchar":"18009229","wchar":"285506","syscr":"2303","syscw":"563","read_bytes":"28325888","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/23\/48d601bd9aa70901c4f07c6555b90c","script":"\n    final_insertion_files.R \"test.fastq2_q20_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"6\" \"test.fastq2_q20_dup\" \"cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27255","inv_ctxt":"16"},{"task_id":"32","hash":"08\/101dfa","native_id":"23264","process":"report3","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report3 (1)","status":"CACHED","exit":"0","submit":"1649631364071","start":"1649631364094","complete":"1649631365539","duration":"1468","realtime":"65","%cpu":"9.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"305829","wchar":"44602","syscr":"275","syscw":"49","read_bytes":"405504","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/08\/101dfacb4777d5793a816180256474","script":"\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Final insertion site files\\n\\n\" > report.rmd\n    echo -e \"\\n\\nSee the [test.fastq2_q20_nodup_annot.pos](.\/files\/test.fastq2_q20_nodup_annot.pos) and [test.fastq2_q20_nodup_annot.freq](.\/files\/test.fastq2_q20_nodup_annot.freq) files\\n\\n\" >> report.rmd\n    pos_nb=$(( $(wc -l test.fastq2_q20_nodup_annot.pos | cut -f1 -d\' \') - 1)) # -1 because first line is the header\n    pos_uniq_nb=$(( $(sort -u test.fastq2_q20_nodup_annot.pos | wc -l | cut -f1 -d\' \') - 1)) # -1 because first line is the header\n    echo -e \"\\n\\nNumber of total positions without duplicates: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n    echo -e \"\\n\\nNumber of different positions without duplicates: $(printf \"%\'d\" ${pos_uniq_nb})\\n\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649631360\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"24","hash":"c6\/bef5aa","native_id":"560","process":"motif","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"motif","status":"CACHED","exit":"0","submit":"1649517332488","start":"1649517332563","complete":"1649517378942","duration":"46454","realtime":"42507","%cpu":"42.6","%mem":"0.2","rss":"210448384","vmem":"341352448","peak_rss":"210448384","peak_vmem":"341385216","rchar":"49872281","wchar":"41616533","syscr":"5761","syscw":"34229","read_bytes":"28351488","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c6\/bef5aab063b9c049c73b56dc16a5d0","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n### Motif selected for the random insertions\\n\\n\" > report.rmd\n    echo -e \"\\n\\nThe forward motif is: G[AT]T\\n\\n\" >> report.rmd\n    echo -e \"\\n\\nThe reverse motif is: A[AT]C\\n\\n\" >> report.rmd\n    if [[ G[AT]T != \"NULL\" ]] ; then\n        cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'G[AT]T\' > motif_fw.pos\n        cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'A[AT]C\' > motif_rev.pos\n    else\n        cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_fw.pos\n        cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_rev.pos\n    fi\n    echo -e \"\nINDICATED POSITIONS IN FILES START AT ZERO AND CORRESPOND TO THE FIRST LEFT BASE OF THE MOTIF\n\"\n    motif.R \"motif_fw.pos\" \"motif_rev.pos\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"G[AT]T\" \"A[AT]C\" \"cute_little_R_functions.R\" \"motif_report.txt\" \"report.rmd\"\n\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"56263","inv_ctxt":"515"},{"task_id":"12","hash":"2f\/6c72d5","native_id":"10356","process":"plot_read_length","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_read_length (1)","status":"CACHED","exit":"0","submit":"1649517410093","start":"1649517410161","complete":"1649517438749","duration":"28656","realtime":"26476","%cpu":"53.9","%mem":"0.2","rss":"208457728","vmem":"353968128","peak_rss":"208457728","peak_vmem":"354000896","rchar":"19621130","wchar":"708057","syscr":"4089","syscw":"430","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/2f\/6c72d54a358a5ba24052af31872307","script":"\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n###  Length of initial reads\\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 2: Frequency of reads according to read size (in bp).](.\/figures\/plot_read_length_ini.png){width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n###  Length of reads after selection of attC in 5 prime \\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 3: Frequency of reads according to read size (in bp).](.\/figures\/plot_read_length_fivep_filtering.png){width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n###  Length of reads after trimming \\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 4: Frequency of reads according to read size (in bp).](.\/figures\/plot_read_length_fivep_filtering_cut.png){width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n###  Read length after cut-off\\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 5: Frequency of reads according to read size (in bp).](.\/figures\/plot_read_length_cutoff.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \' > report.rmd\n    plot_read_length.R \"test.fastq2_ini.length\" \"test.fastq2_5pAttc.length\" \"test.fastq2_5pAtccRm.stat\" \"test.fastq2_cutoff.length\" \"cute_little_R_functions.R\" \"plot_read_length_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"44866","inv_ctxt":"18"},{"task_id":"9","hash":"51\/09f085","native_id":"7550","process":"plot_fivep_filtering_stat","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_fivep_filtering_stat (1)","status":"CACHED","exit":"0","submit":"1649517378958","start":"1649517379042","complete":"1649517410062","duration":"31104","realtime":"28457","%cpu":"42.9","%mem":"0.2","rss":"220442624","vmem":"363499520","peak_rss":"220442624","peak_vmem":"363532288","rchar":"19122541","wchar":"811482","syscr":"3774","syscw":"392","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/51\/09f08545d1cb5212f837380cb66f1d","script":"\n    echo -e \"\n\\n\\n<br \/><br \/>\\n\\n###  Base frequencies at the 5\' extremity of reads\\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 1: Frequency of each base at the 5\' of the reads.](.\/figures\/plot_fivep_filtering_stat.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \" > report.rmd\n    plot_fivep_filtering_stat.R \"test.fastq2_5pAttc_1-51.stat\" \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"cute_little_R_functions.R\" \"plot_fivep_filtering_stat_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"45486","inv_ctxt":"163"},{"task_id":"30","hash":"16\/ef3227","native_id":"15833","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"seq_around_insertion (1)","status":"CACHED","exit":"0","submit":"1649517561578","start":"1649517561650","complete":"1649517576718","duration":"15140","realtime":"12931","%cpu":"40.7","%mem":"0.1","rss":"127676416","vmem":"258727936","peak_rss":"127676416","peak_vmem":"258760704","rchar":"18001648","wchar":"213511","syscr":"2298","syscw":"375","read_bytes":"28199936","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/16\/ef32272c34739f656bad122d66b667","script":"\n    seq_around_insertion.R \"test.fastq2_q20_nodup_selected_if_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2_q20_nodup_selected_if_dup\" \"cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27272","inv_ctxt":"4"},{"task_id":"31","hash":"61\/3abc05","native_id":"17353","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"seq_around_insertion (2)","status":"CACHED","exit":"0","submit":"1649517601464","start":"1649517601588","complete":"1649517616248","duration":"14784","realtime":"12663","%cpu":"40.7","%mem":"0.1","rss":"127565824","vmem":"258732032","peak_rss":"127565824","peak_vmem":"258764800","rchar":"17988623","wchar":"146404","syscr":"2295","syscw":"273","read_bytes":"28199936","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/61\/3abc0565b8de06c8d45f9b4688fe97","script":"\n    seq_around_insertion.R \"test.fastq2_q20_dup_selected_if_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2_q20_dup_selected_if_dup\" \"cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27263","inv_ctxt":"7"},{"task_id":"35","hash":"73\/f0b62e","native_id":"18913","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (1)","status":"CACHED","exit":"0","submit":"1649517644033","start":"1649517644135","complete":"1649517649189","duration":"5156","realtime":"2804","%cpu":"19.6","%mem":"0.0","rss":"10805248","vmem":"57536512","peak_rss":"18477056","peak_vmem":"65474560","rchar":"9503313","wchar":"4763907","syscr":"866","syscw":"3349","read_bytes":"6359040","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/73\/f0b62ecf2ff3b5cf5a16212d9e5cfe","script":"\n    echo -e \"\n\n######## test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed file\n\n\" > extract_seq_report.txt\n    # make a bed file from the reference genome\n    echo \">ref\" > tempo.ref.fasta\n    awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n    bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed -fo \"test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n    rm tempo.ref.fasta\n    rm tempo.ref.fasta.fai\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3829","inv_ctxt":"1"},{"task_id":"36","hash":"52\/691666","native_id":"27108","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (2)","status":"CACHED","exit":"0","submit":"1649517996849","start":"1649517997120","complete":"1649518000598","duration":"3749","realtime":"1457","%cpu":"17.8","%mem":"0.0","rss":"6295552","vmem":"52846592","peak_rss":"6295552","peak_vmem":"52846592","rchar":"9452267","wchar":"4672192","syscr":"860","syscw":"847","read_bytes":"2721792","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/52\/69166677daa4c07a65c8abc0ce22da","script":"\n    echo -e \"\n\n######## test.fastq2_q20_dup_selected_if_dup_around_insertion.bed file\n\n\" > extract_seq_report.txt\n    # make a bed file from the reference genome\n    echo \">ref\" > tempo.ref.fasta\n    awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n    bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_q20_dup_selected_if_dup_around_insertion.bed -fo \"test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n    rm tempo.ref.fasta\n    rm tempo.ref.fasta.fai\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"649","inv_ctxt":"0"},{"task_id":"34","hash":"34\/a909b8","native_id":"18724","process":"random_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"random_insertion (1)","status":"CACHED","exit":"0","submit":"1649699456918","start":"1649699456985","complete":"1649699466417","duration":"9499","realtime":"8510","%cpu":"57.3","%mem":"0.3","rss":"368607232","vmem":"511221760","peak_rss":"368607232","peak_vmem":"511254528","rchar":"31432716","wchar":"1296711","syscr":"5927","syscw":"1485","read_bytes":"35685376","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/34\/a909b82f7c0fa1fec6a1b178946ae2","script":"\n    random_insertion.R \"test.fastq2_q20_nodup_annot.pos\" \"motif_sites.pos\" \"2320711 2320942\" \"4627368 4627400\" \"G[AT]T\" \"4641652\" \"test.fastq2\" \"cute_little_R_functions.R\" \"random_insertion_report.txt\"\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n### Random insertion sites\\n\\n\" > report.rmd\n    echo -e \"\\n\\n#### Insertion site counts\\n\\n\" >> report.rmd\n    echo -e \"\\n\\nSee the [random_insertion_report.txt](.\/reports\/random_insertion_report.txt) file for details, notably the number of random sites (which should be the same as the number of observed sites)\\n\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 14: Number of motifs insertion per fork](.\/figures\/plot_motif_insertion_per_fork.png){width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 15: Number of motifs insertion per strand](.\/figures\/plot_motif_insertion_per_strand.png){width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 16: Number of motifs insertion per strand](.\/figures\/plot_motif_insertion_per_fork_and_strand.png){width=400}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Insertion site proportions\\n\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 17: Proportion of motifs insertion per fork](.\/figures\/plot_motif_insertion_per_fork_prop.png){width=500}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 18: Proportion of motifs insertion per strand](.\/figures\/plot_motif_insertion_per_strand_prop.png){width=500}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 19: Proportion of motifs insertion per strand](.\/figures\/plot_motif_insertion_per_fork_and_strand_prop.png){width=500}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649699453\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"39640","inv_ctxt":"20"},{"task_id":"33","hash":"9c\/609ffc","native_id":"10377","process":"dup_insertion_and_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"dup_insertion_and_logo (1)","status":"CACHED","exit":"0","submit":"1649697980341","start":"1649697980427","complete":"1649697992247","duration":"11906","realtime":"11158","%cpu":"64.5","%mem":"0.2","rss":"211824640","vmem":"388526080","peak_rss":"283533312","peak_vmem":"426229760","rchar":"17526998","wchar":"601011","syscr":"3912","syscw":"456","read_bytes":"44530688","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9c\/609ffc8d292774da43b0602bb72955","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Analysis with duplicates\\n\\n\" > report.rmd\n    dup_insertion_and_logo.R \"test.fastq2_q20_dup_annot.freq\" \"test.fastq2_q20_dup_annot_selected.freq\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"dup\" \"20\" \"cute_little_R_functions.R\" \"dup_insertion_and_logo_report.txt\" # logo\n\n    echo -e \"\\n\\nSee the [test.fastq2_q20_dup_selected_if_dup.pos](.\/files\/test.fastq2_q20_dup_selected_if_dup.pos) and [test.fastq2_q20_dup_annot_selected.freq](.\/files\/test.fastq2_q20_dup_annot_selected.freq) files\\n\\n\" >> report.rmd\n    echo -e \"\\n\\nWarning: more than the 6 most frequent used sites can be present in the case of frequency equality\\n\\n\" >> report.rmd\n\n    pos_nb=$(( $(wc -l test.fastq2_q20_dup_annot.pos | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n    echo -e \"\\n\\nNumber of total positions using duplicated reads: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n\n    freq_nb=$(( $(wc -l test.fastq2_q20_dup_annot.freq | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n    echo -e \"\\n\\nNumber of different positions using duplicated reads: $(printf \"%\'d\" ${freq_nb})\\n\" >> report.rmd\n\n    pos_selected_nb=$(wc -l test.fastq2_q20_dup_selected_if_dup.pos | cut -f1 -d\' \')\n    echo -e \"\\n\\nNumber of total positions after selection of the 6 highest used sites: $(printf \"%\'d\" ${pos_selected_nb})\\n\" >> report.rmd\n\n    freq_selected_nb=$(( $(wc -l test.fastq2_q20_dup_annot_selected.freq | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n    echo -e \"\\n\\nNumber of different positions after selection of the 6 highest used sites: $(printf \"%\'d\" ${freq_selected_nb})\\n\" >> report.rmd\n\n    TEMPO=(50000 200000 500000)\n    FIG_NB_BEFORE=$(($(echo ${#TEMPO[@]}) * 2)) # nb of elements in the window size * nb of figure plotted\n    if [[ \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt != \"NULL\" ]] ; then\n        FIG_NB=$(( 34 + $FIG_NB_BEFORE + 1 + 1)) # 2 * because two figures\n    else\n        FIG_NB=$(( 24 + $FIG_NB_BEFORE + 1 + 1))\n    fi\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$FIG_NB\': With duplicates raw insertion frequencies.](.\/figures\/plot_test.fastq2_insertion_dup_raw.png){width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$(echo $(($FIG_NB + 1)))\': Selected sites (6 most used insertion sites).](.\/figures\/plot_test.fastq2_insertion_dup_selected.png){width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$(echo $(($FIG_NB + 2)))\': Insertion site usage (total insertions).](.\/figures\/plot_test.fastq2_insertion_hist_tot_selected.png){width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\nSelected sites with frequencies:\\n\\n\" >> report.rmd\n    echo \"\n\\`\\`\\`{r, echo = FALSE}\ntempo <- read.table(\'.\/files\/test.fastq2_q20_dup_annot_selected.freq\', header = TRUE, colClasses = \'character\', sep = \'\\t\', check.names = FALSE) ; \nkableExtra::kable_styling(knitr::kable(tempo, row.names = TRUE, digits = 0, caption = NULL, format=\'html\'), c(\'striped\', \'bordered\', \'responsive\', \'condensed\'), font_size=10, full_width = FALSE, position = \'left\')\n\\`\\`\\`\n    \n\n\n    \" >> report.rmd\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$(echo $(($FIG_NB + 3)))\': Alignment of the selected sites (click [here](.\/figures\/alignment.html) to extend)](.\/figures\/alignment.html){width=600}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\nWarning: the frequency of each position is taken into account in the logo plot\\n\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$(echo $(($FIG_NB + 4)))\': With duplicates test.fastq2 global logo on selected sites](.\/figures\/global_logo_dup_test.fastq2.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649697967\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"43335","inv_ctxt":"16"},{"task_id":"37","hash":"49\/575b96","native_id":"27342","process":"goalign","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-goalign-v0.3.5.img","tag":"-","name":"goalign (1)","status":"CACHED","exit":"0","submit":"1649518000735","start":"1649518000798","complete":"1649518007039","duration":"6304","realtime":"2873","%cpu":"13.2","%mem":"0.0","rss":"14262272","vmem":"734232576","peak_rss":"14262272","peak_vmem":"734240768","rchar":"131211","wchar":"356117","syscr":"276","syscw":"108","read_bytes":"3862528","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/49\/575b963f7bb8fe6e513f1f993e68d2","script":"\n    # Remove duplicated data in a fasta file according to duplicated header\n    awk \'\n        \/^>\/{f=!d[$1];d[$1]=1}f\n    \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > tempo\n\n    # split the fasta file according to forward or reverse sequences\n    PATTERN=\'LEADING_16|LAGGING_16\'\n    awk -v var1=$PATTERN \'\n        BEGIN{ORS=\"\\n\"}\n        {lineKind=(NR-1)%2}\n        lineKind==0{record=$0 ; next}\n        lineKind==1{\n            toGet=(record ~ var1)\n            if(toGet){\n                print record > \"reverse.fasta\"\n                print $0 > \"reverse.fasta\"\n            }else{\n                print record > \"forward.fasta\"\n                print $0 > \"forward.fasta\"\n            }\n            next\n        }\n    \' tempo\n\n    # Goalign\n    if [ -s reverse.fasta ] ; then\n        goalign revcomp --unaligned -i reverse.fasta -o tempo2 # rev-comp the 16 sequences\n        cat forward.fasta tempo2 > final.fasta\n    else # we cannot have neither reverse nor forward\n        cp forward.fasta final.fasta\n    fi\n    # add a hyphen before or after the sequence, to have correct alignment\n    awk -v var1=$PATTERN \'\n        BEGIN{ORS=\"\\n\"}\n        {lineKind=(NR-1)%2}\n        lineKind==0{record=$0 ; print $0 ; next}\n        lineKind==1{\n            toGet=(record ~ var1)\n            if(toGet){\n                print \"-\"$0 ; next\n            }else{\n                print $0\"-\" ; next\n            }\n        }\n    \' final.fasta > tempo3\n    goalign draw biojs --auto-detect -i tempo3 -o alignment.html |& tee -a goalign_report.txt\n    ","scratch":"-","queue":"-","cpus":"12","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3223","inv_ctxt":"2"},{"task_id":"41","hash":"f0\/df4b99","native_id":"19278","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (4)","status":"CACHED","exit":"0","submit":"1649517649523","start":"1649517649590","complete":"1649517654353","duration":"4830","realtime":"432","%cpu":"11.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288822","wchar":"19500","syscr":"531","syscw":"51","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f0\/df4b990558220e25f113d0cfeac3ea","script":"\n    # file splitting into seq\n    awk -v var1=LAGGING_16 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"40","hash":"3c\/c2beee","native_id":"19315","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (3)","status":"CACHED","exit":"0","submit":"1649517649606","start":"1649517649691","complete":"1649517654451","duration":"4845","realtime":"426","%cpu":"11.9","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"289470","wchar":"20168","syscr":"532","syscw":"52","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3c\/c2beee63bd2a590f3d93228009f675","script":"\n    # file splitting into seq\n    awk -v var1=LAGGING_0 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"39","hash":"ac\/24a1a8","native_id":"19211","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (2)","status":"CACHED","exit":"0","submit":"1649517649332","start":"1649517649389","complete":"1649517654136","duration":"4804","realtime":"399","%cpu":"11.1","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288657","wchar":"19344","syscr":"530","syscw":"50","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ac\/24a1a84c8dccc7d267164f15a6a0dd","script":"\n    # file splitting into seq\n    awk -v var1=LEADING_16 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"43","hash":"63\/faaafa","native_id":"28010","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (6)","status":"CACHED","exit":"0","submit":"1649518005691","start":"1649518005866","complete":"1649518008672","duration":"2981","realtime":"109","%cpu":"11.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"183021","wchar":"5250","syscr":"324","syscw":"23","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/63\/faaafa410111d32d4fa1a81f842bfa","script":"\n    # file splitting into seq\n    awk -v var1=LEADING_16 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"45","hash":"b4\/c8c939","native_id":"27489","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (8)","status":"CACHED","exit":"0","submit":"1649518001036","start":"1649518001118","complete":"1649518005804","duration":"4768","realtime":"201","%cpu":"9.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"184866","wchar":"7118","syscr":"328","syscw":"27","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b4\/c8c93938121f441e49b361efe8f001","script":"\n    # file splitting into seq\n    awk -v var1=LAGGING_16 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"42","hash":"e7\/c17b46","native_id":"27448","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (5)","status":"CACHED","exit":"0","submit":"1649518001008","start":"1649518001099","complete":"1649518005653","duration":"4645","realtime":"197","%cpu":"9.7","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"186870","wchar":"9131","syscr":"332","syscw":"31","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e7\/c17b4628d9b5cfa9de18551ae5efa8","script":"\n    # file splitting into seq\n    awk -v var1=LEADING_0 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"44","hash":"24\/882b89","native_id":"27418","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (7)","status":"CACHED","exit":"0","submit":"1649518000971","start":"1649518000999","complete":"1649518005740","duration":"4769","realtime":"172","%cpu":"9.8","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"180638","wchar":"2832","syscr":"319","syscw":"18","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/24\/882b89ee5e23a0484fa80121a46044","script":"\n    # file splitting into seq\n    awk -v var1=LAGGING_0 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"38","hash":"35\/ec05ea","native_id":"19358","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (1)","status":"CACHED","exit":"0","submit":"1649517649698","start":"1649517649791","complete":"1649517654517","duration":"4819","realtime":"396","%cpu":"10.0","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"286518","wchar":"17181","syscr":"526","syscw":"46","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/35\/ec05ea9f6b312a191057dce3bb593d","script":"\n    # file splitting into seq\n    awk -v var1=LEADING_0 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"52","hash":"71\/fcd5ac","native_id":"28454","process":"report2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report2","status":"CACHED","exit":"0","submit":"1649518009697","start":"1649518009773","complete":"1649518012408","duration":"2711","realtime":"45","%cpu":"5.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"135292","wchar":"2465","syscr":"248","syscw":"103","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/71\/fcd5ac705daf0d2c90e84a7d3a87f3","script":"\n    echo -e \"\n\\n\\n<br \/><br \/>\\n\\n###  Logos\\n\\n\n\\n\\nIn each sequence of length $((20 * 2)) <br \/>position $((20 + 1)) corresponds to the first nucleotide of the reference genome part of the read\n\" > report.rmd\n    count=0 # always goes to 4 because 4 figures, one for each forward\/reverse leading\/lagging\n    for i in $(echo [test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0] | sed \'s\/^\\[\/\/\' | sed \'s\/\\]$\/\/\' | sed \'s\/,\/\/g\') ; do\n        echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$((9 + $count))\': \'${i}\'](.\/figures\/logo_\'${i}\'.png){width=600}\n\\n\\n<\/center>\\n\\n\n        \' >> report.rmd\n        count=$((count + 1))\n    done\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 13: test.fastq2 global logo](.\/figures\/global_logo_nodup_test.fastq2.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"50","hash":"12\/8d4218","native_id":"30389","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (4)","status":"CACHED","exit":"0","submit":"1649518055457","start":"1649518055529","complete":"1649518072378","duration":"16921","realtime":"14779","%cpu":"44.2","%mem":"0.1","rss":"125968384","vmem":"307650560","peak_rss":"125968384","peak_vmem":"307683328","rchar":"14488278","wchar":"1026153","syscr":"2474","syscw":"334","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/12\/8d42187c499a07e1b2854cb1783557","script":"\n    logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"26386","inv_ctxt":"6"},{"task_id":"47","hash":"20\/686354","native_id":"28980","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (2)","status":"CACHED","exit":"0","submit":"1649518021775","start":"1649518021849","complete":"1649518038231","duration":"16456","realtime":"14490","%cpu":"44.4","%mem":"0.1","rss":"129908736","vmem":"311144448","peak_rss":"129908736","peak_vmem":"311177216","rchar":"14488301","wchar":"904086","syscr":"2474","syscw":"316","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/20\/6863545e9b2fd0bd51b448b5219110","script":"\n    logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"26525","inv_ctxt":"6"},{"task_id":"49","hash":"49\/98147b","native_id":"27326","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (1)","status":"CACHED","exit":"0","submit":"1649518000631","start":"1649518000698","complete":"1649518021750","duration":"21119","realtime":"17706","%cpu":"38.5","%mem":"0.1","rss":"142135296","vmem":"285728768","peak_rss":"176672768","peak_vmem":"321765376","rchar":"14488308","wchar":"873213","syscr":"2474","syscw":"314","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/49\/98147bec76c1caa3b8cf85164cb6b1","script":"\n    logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"30254","inv_ctxt":"601"},{"task_id":"46","hash":"48\/88f58b","native_id":"27296","process":"plot_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_insertion (1)","status":"COMPLETED","exit":"0","submit":"1649701149319","start":"1649701149422","complete":"1649701393358","duration":"244039","realtime":"243125","%cpu":"35.7","%mem":"0.4","rss":"418119680","vmem":"576544768","peak_rss":"418713600","peak_vmem":"576577536","rchar":"46947015","wchar":"23743899","syscr":"34549","syscw":"18914","read_bytes":"53133312","write_bytes":"450560","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/48\/88f58bc888db5b4e7146551edb7d5c","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Insertion plots\\n\\n\" > report.rmd\n    plot_insertion.R \"obs_rd_insertions.pos\" \"obs_rd_insertions.freq\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/Essential_genes_MG1655.tsv\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/cds_ORI_CENTERED.txt\" \"2320711 2320942\" \"4627368 4627400\" \"Ecoli Genome (bp)\" \"4641652\" \"0.88\" \"0.08\" \"50000 200000 500000\" \"100\" \"test.fastq2\" \"12\" \"cute_little_R_functions.R\" \"plot_insertion_report.txt\"\n    echo -e \"\\n\\n####  Histograms\\n\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<\/center>\\n\\n\n![Figure 20: Insertion site usage (total insertions).](.\/figures\/plot_test.fastq2_insertion_hist_tot.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure 21: Insertion site usage zoomed for sites with few insertions (total insertions).](.\/figures\/plot_test.fastq2_insertion_hist_tot_zoom.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure 22: Insertion site usage (forward strand).](.\/figures\/plot_test.fastq2_insertion_hist_forward.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure 23: Insertion site usage (reverse strand).](.\/figures\/plot_test.fastq2_insertion_hist_reverse.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n####  Raw frequencies\\n\\n\" >> report.rmd\n    echo -e \"\\n\\nSee the CL Labbook section 24.7.3 to explain the limitation around 100 bp\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure 24: Raw insertion frequencies.](.\/figures\/plot_test.fastq2_insertion_raw.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n####  Binned frequencies\\n\\n\" >> report.rmd\n    count=1\n    for i in 50000 200000 500000 ; do\n        echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$((24 + $count))\': frequencies using the binning range of \'$(printf \"%\'d\" ${i})\'](.\/figures\/plot_test.fastq2_insertion_bin_\'${i}\'.png){width=600}\n\\n\\n<\/center>\\n\\n\n        \' >> report.rmd\n        count=$((count + 1))\n        echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$((24 + $count))\': frequencies using the binning range of \'$(printf \"%\'d\" ${i})\'](.\/figures\/plot_test.fastq2_lead_lag_insertion_bin_\'${i}\'.png){width=600}\n\\n\\n<\/center>\\n\\n\n        \' >> report.rmd\n        count=$((count + 1))\n    done\n    if [[ \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt != \"NULL\" ]] ; then\n        echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Transcription start site (TSS) plots\\n\\n\" >> report.rmd\n        echo -e \"\\n\\nSee the CL Labbook section 48.3 to to get the theoretical proportion of the codant\/non codant essential\/non essential genome\\n\\nSee the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details about the plotted values.\" >> report.rmd\n        echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((24 + $count))\': Promoters per gene.](.\/figures\/plot_test.fastq2_promoter_per_genes.png){width=400}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((25 + $count))\': Distance from TSS.](.\/figures\/hist_test.fastq2_tss_distance_freq.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((26 + $count))\': Distance from TSS and Normal Law.](.\/figures\/hist_test.fastq2_tss_distance_freq_Nlaw.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n            \\n\\n<br \/><br \/>\\n\\nThe number of insertions sites are indicated above graphs.\\n\\n\n![Figure \'$((27 + $count))\': Insertion relative to TSS.](.\/figures\/boxplot_test.fastq2_tss.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((28 + $count))\': Insertion relative to TSS without unknown.](.\/figures\/boxplot_test.fastq2_tss_wo_unknown.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n            \\n\\n<br \/><br \/>\\n\\n###  Coding sequences (CDS) plots\\n\\nThe number of insertions sites inside CDS are indicated above graphs.\\n\\nSee the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details about the plotted values.\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((29 + $count))\': Insertion relative to CDS.](.\/figures\/boxplot_test.fastq2_cds.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((30 + $count))\': Insertion relative to CDS without unknown.](.\/figures\/boxplot_test.fastq2_cds_wo_unknown.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n            \\n\\nWarning: the number of observed and random insertions indicated above graphs can be greater than those indicated above Figure \'$((28 + $count))\', since a position that overlaps two genes is counted twice (see the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details).\\n\\n\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((31 + $count))\': Insertion per class of CDS.](.\/figures\/barplot_test.fastq2_all.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((32 + $count))\': Kind of insertion relative to CDS.](.\/figures\/barplot_test.fastq2_all_relative.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((33 + $count))\': Kind of insertion relative to CDS.](.\/figures\/barplot_test.fastq2_inside_outside.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((34 + $count))\': Kind of insertion relative to CDS.](.\/figures\/barplot_test.fastq2_ess_uness.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n        \' >> report.rmd\n    fi\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649701145\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"100739","inv_ctxt":"1410"},{"task_id":"48","hash":"d7\/09132f","native_id":"29683","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (3)","status":"CACHED","exit":"0","submit":"1649518038258","start":"1649518038331","complete":"1649518055429","duration":"17171","realtime":"15098","%cpu":"43.2","%mem":"0.1","rss":"123715584","vmem":"271429632","peak_rss":"123715584","peak_vmem":"271462400","rchar":"14488313","wchar":"894424","syscr":"2474","syscw":"314","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d7\/09132fb6c80831584aaec35d37e3d9","script":"\n    logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"25754","inv_ctxt":"3"},{"task_id":"53","hash":"e9\/9bbb1e","native_id":"31094","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"global_logo (2)","status":"CACHED","exit":"0","submit":"1649518072403","start":"1649518072478","complete":"1649518090138","duration":"17735","realtime":"15591","%cpu":"46.4","%mem":"0.1","rss":"122126336","vmem":"267714560","peak_rss":"122126336","peak_vmem":"267747328","rchar":"14496507","wchar":"990822","syscr":"2488","syscw":"331","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e9\/9bbb1ef3d79cf349635852b4413b30","script":"\n    global_logo.R \"test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat\" \"test.fastq2\" \"20\" \"cute_little_R_functions.R\" \"global_logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"25009","inv_ctxt":"4"},{"task_id":"51","hash":"6d\/f8b929","native_id":"31807","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"global_logo (1)","status":"CACHED","exit":"0","submit":"1649518090164","start":"1649518090253","complete":"1649518107759","duration":"17595","realtime":"15576","%cpu":"46.3","%mem":"0.1","rss":"122327040","vmem":"266919936","peak_rss":"122327040","peak_vmem":"266952704","rchar":"14497087","wchar":"867376","syscr":"2488","syscw":"311","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/6d\/f8b92904090b1f68582fc5640c92e5","script":"\n    global_logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat\" \"test.fastq2\" \"20\" \"cute_little_R_functions.R\" \"global_logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"24904","inv_ctxt":"5"},{"task_id":"54","hash":"26\/2264ed","native_id":"1448","process":"print_report","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"print_report (1)","status":"COMPLETED","exit":"0","submit":"1649701394009","start":"1649701394059","complete":"1649701404377","duration":"10368","realtime":"9534","%cpu":"45.3","%mem":"0.2","rss":"260063232","vmem":"1100166922240","peak_rss":"260063232","peak_vmem":"1100167069696","rchar":"54391528","wchar":"27590178","syscr":"7164","syscw":"2194","read_bytes":"48487424","write_bytes":"4096","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/26\/2264ed4807edbad99fea2d31384a6e","script":"\n    cp report.rmd report_file.rmd # this is to get hard files, not symlinks\n    mkdir figures\n    mkdir files\n    mkdir reports\n    cat stat_tempo > .\/files\/test.fastq2_5pAttc_1-51.stat # this is to get hard files, not symlinks\n    cp head.fw.txt head.rv.txt table1.txt table2.txt table3.txt table4.txt table8.txt test.fastq2_q20_dup_annot_selected.freq .\/files\/ # this is to get hard files, not symlinks\n    cp plot_fivep_filtering_stat.png plot_read_length_cutoff.png plot_read_length_fivep_filtering.png plot_read_length_fivep_filtering_cut.png plot_read_length_ini.png plot_test.fastq2_bowtie2_mini.png plot_test.fastq2_q20_dup_mini.png plot_test.fastq2_q20_nodup_mini.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png global_logo_dup_test.fastq2.png global_logo_nodup_test.fastq2.png plot_motif_insertion_per_fork.png plot_motif_insertion_per_fork_and_strand.png plot_motif_insertion_per_fork_and_strand_prop.png plot_motif_insertion_per_fork_prop.png plot_motif_insertion_per_strand.png plot_motif_insertion_per_strand_prop.png barplot_test.fastq2_all.png barplot_test.fastq2_all_relative.png barplot_test.fastq2_ess_uness.png barplot_test.fastq2_inside_outside.png boxplot_test.fastq2_cds.png boxplot_test.fastq2_cds_wo_unknown.png boxplot_test.fastq2_tss.png boxplot_test.fastq2_tss_wo_unknown.png hist_test.fastq2_tss_distance_freq.png hist_test.fastq2_tss_distance_freq_Nlaw.png plot_test.fastq2_insertion_bin_200000.png plot_test.fastq2_insertion_bin_50000.png plot_test.fastq2_insertion_bin_500000.png plot_test.fastq2_insertion_hist_forward.png plot_test.fastq2_insertion_hist_reverse.png plot_test.fastq2_insertion_hist_tot.png plot_test.fastq2_insertion_hist_tot_zoom.png plot_test.fastq2_insertion_raw.png plot_test.fastq2_lead_lag_insertion_bin_200000.png plot_test.fastq2_lead_lag_insertion_bin_50000.png plot_test.fastq2_lead_lag_insertion_bin_500000.png plot_test.fastq2_promoter_per_genes.png alignment.html plot_test.fastq2_insertion_dup_raw.png plot_test.fastq2_insertion_dup_selected.png plot_test.fastq2_insertion_hist_tot_selected.png .\/figures\/ # Warning several files\n    cp plot_fivep_filtering_stat.png .\/reports\/nf_dag.png # trick to delude the knitting during the print report\n    cp multiqc_report.html .\/reports\/ # this is to get hard files from html from multiqc_ch, not symlinks\n    print_report.R \"cute_little_R_functions.R\" \"report_file.rmd\" \"print_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649701145\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42213","inv_ctxt":"14"}], "summary":[{"cpuUsage":{"mean":37.7,"min":37.7,"q1":37.7,"q2":37.7,"q3":37.7,"max":37.7,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"process":"Nremove","mem":{"mean":12468224,"min":12468224,"q1":12468224,"q2":12468224,"q3":12468224,"max":12468224,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"memUsage":{"mean":0.39,"min":0.39,"q1":0.39,"q2":0.39,"q3":0.39,"max":0.39,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"timeUsage":null,"vmem":{"mean":74002432,"min":74002432,"q1":74002432,"q2":74002432,"q3":74002432,"max":74002432,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"reads":{"mean":17604799,"min":17604799,"q1":17604799,"q2":17604799,"q3":17604799,"max":17604799,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"cpu":{"mean":37.7,"min":37.7,"q1":37.7,"q2":37.7,"q3":37.7,"max":37.7,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"time":{"mean":1273,"min":1273,"q1":1273,"q2":1273,"q3":1273,"max":1273,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"writes":{"mean":15167118,"min":15167118,"q1":15167118,"q2":15167118,"q3":15167118,"max":15167118,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"}},{"cpuUsage":{"mean":6.6,"min":6.6,"q1":6.6,"q2":6.6,"q3":6.6,"max":6.6,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"process":"report1","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106909,"min":106909,"q1":106909,"q2":106909,"q3":106909,"max":106909,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"cpu":{"mean":6.6,"min":6.6,"q1":6.6,"q2":6.6,"q3":6.6,"max":6.6,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"time":{"mean":85,"min":85,"q1":85,"q2":85,"q3":85,"max":85,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"writes":{"mean":684,"min":684,"q1":684,"q2":684,"q3":684,"max":684,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"}},{"cpuUsage":{"mean":44.5,"min":44.5,"q1":44.5,"q2":44.5,"q3":44.5,"max":44.5,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"process":"trim","mem":{"mean":66617344,"min":66617344,"q1":66617344,"q2":66617344,"q3":66617344,"max":66617344,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"memUsage":{"mean":2.07,"min":2.07,"q1":2.07,"q2":2.07,"q3":2.07,"max":2.07,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"timeUsage":null,"vmem":{"mean":5970448384,"min":5970448384,"q1":5970448384,"q2":5970448384,"q3":5970448384,"max":5970448384,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"reads":{"mean":17145211,"min":17145211,"q1":17145211,"q2":17145211,"q3":17145211,"max":17145211,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"cpu":{"mean":44.5,"min":44.5,"q1":44.5,"q2":44.5,"q3":44.5,"max":44.5,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"time":{"mean":7348,"min":7348,"q1":7348,"q2":7348,"q3":7348,"max":7348,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"writes":{"mean":12629480,"min":12629480,"q1":12629480,"q2":12629480,"q3":12629480,"max":12629480,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"}},{"cpuUsage":{"mean":81.6,"min":81.6,"q1":81.6,"q2":81.6,"q3":81.6,"max":81.6,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"process":"kraken","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":154429,"min":154429,"q1":154429,"q2":154429,"q3":154429,"max":154429,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"cpu":{"mean":81.6,"min":81.6,"q1":81.6,"q2":81.6,"q3":81.6,"max":81.6,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"time":{"mean":34,"min":34,"q1":34,"q2":34,"q3":34,"max":34,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"writes":{"mean":220,"min":220,"q1":220,"q2":220,"q3":220,"max":220,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"}},{"cpuUsage":{"mean":27.1,"min":27.1,"q1":27.1,"q2":27.1,"q3":27.1,"max":27.1,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"process":"fivep_filtering","mem":{"mean":12136448,"min":12136448,"q1":12136448,"q2":12136448,"q3":12136448,"max":12136448,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"memUsage":{"mean":0.38,"min":0.38,"q1":0.38,"q2":0.38,"q3":0.38,"max":0.38,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"timeUsage":null,"vmem":{"mean":70533120,"min":70533120,"q1":70533120,"q2":70533120,"q3":70533120,"max":70533120,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"reads":{"mean":29337231,"min":29337231,"q1":29337231,"q2":29337231,"q3":29337231,"max":29337231,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"cpu":{"mean":27.1,"min":27.1,"q1":27.1,"q2":27.1,"q3":27.1,"max":27.1,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"time":{"mean":6176,"min":6176,"q1":6176,"q2":6176,"q3":6176,"max":6176,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"writes":{"mean":16061720,"min":16061720,"q1":16061720,"q2":16061720,"q3":16061720,"max":16061720,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"}},{"cpuUsage":{"mean":52,"min":52,"q1":52,"q2":52,"q3":52,"max":52,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"process":"fastqc1","mem":{"mean":173256704,"min":173256704,"q1":173256704,"q2":173256704,"q3":173256704,"max":173256704,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3342663680,"min":3342663680,"q1":3342663680,"q2":3342663680,"q3":3342663680,"max":3342663680,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"reads":{"mean":14605630,"min":14605630,"q1":14605630,"q2":14605630,"q3":14605630,"max":14605630,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"cpu":{"mean":52,"min":52,"q1":52,"q2":52,"q3":52,"max":52,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"time":{"mean":17027,"min":17027,"q1":17027,"q2":17027,"q3":17027,"max":17027,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"writes":{"mean":1278924,"min":1278924,"q1":1278924,"q2":1278924,"q3":1278924,"max":1278924,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"}},{"cpuUsage":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"process":"cutoff","mem":{"mean":10223616,"min":10223616,"q1":10223616,"q2":10223616,"q3":10223616,"max":10223616,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"memUsage":{"mean":0.32,"min":0.32,"q1":0.32,"q2":0.32,"q3":0.32,"max":0.32,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"timeUsage":null,"vmem":{"mean":64237568,"min":64237568,"q1":64237568,"q2":64237568,"q3":64237568,"max":64237568,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"reads":{"mean":7308009,"min":7308009,"q1":7308009,"q2":7308009,"q3":7308009,"max":7308009,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"cpu":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"time":{"mean":988,"min":988,"q1":988,"q2":988,"q3":988,"max":988,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"writes":{"mean":4049154,"min":4049154,"q1":4049154,"q2":4049154,"q3":4049154,"max":4049154,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"}},{"cpuUsage":{"mean":69.2,"min":69.2,"q1":69.2,"q2":69.2,"q3":69.2,"max":69.2,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"process":"fastqc2","mem":{"mean":184655872,"min":184655872,"q1":184655872,"q2":184655872,"q3":184655872,"max":184655872,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3289899008,"min":3289899008,"q1":3289899008,"q2":3289899008,"q3":3289899008,"max":3289899008,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"reads":{"mean":12768081,"min":12768081,"q1":12768081,"q2":12768081,"q3":12768081,"max":12768081,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"cpu":{"mean":69.2,"min":69.2,"q1":69.2,"q2":69.2,"q3":69.2,"max":69.2,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"time":{"mean":12798,"min":12798,"q1":12798,"q2":12798,"q3":12798,"max":12798,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"writes":{"mean":1245410,"min":1245410,"q1":1245410,"q2":1245410,"q3":1245410,"max":1245410,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"}},{"cpuUsage":{"mean":3.38,"min":3.38,"q1":3.38,"q2":3.38,"q3":3.38,"max":3.38,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"process":"bowtie2","mem":{"mean":120336384,"min":120336384,"q1":120336384,"q2":120336384,"q3":120336384,"max":120336384,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"memUsage":{"mean":0.7,"min":0.7,"q1":0.7,"q2":0.7,"q3":0.7,"max":0.7,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"timeUsage":null,"vmem":{"mean":251154432,"min":251154432,"q1":251154432,"q2":251154432,"q3":251154432,"max":251154432,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"reads":{"mean":36678363,"min":36678363,"q1":36678363,"q2":36678363,"q3":36678363,"max":36678363,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"cpu":{"mean":40.6,"min":40.6,"q1":40.6,"q2":40.6,"q3":40.6,"max":40.6,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"time":{"mean":9333,"min":9333,"q1":9333,"q2":9333,"q3":9333,"max":9333,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"writes":{"mean":17009938,"min":17009938,"q1":17009938,"q2":17009938,"q3":17009938,"max":17009938,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"}},{"cpuUsage":{"mean":17.8,"min":17.8,"q1":17.8,"q2":17.8,"q3":17.8,"max":17.8,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"process":"Q20","mem":{"mean":4722688,"min":4722688,"q1":4722688,"q2":4722688,"q3":4722688,"max":4722688,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"memUsage":{"mean":0.44,"min":0.44,"q1":0.44,"q2":0.44,"q3":0.44,"max":0.44,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"timeUsage":null,"vmem":{"mean":44834816,"min":44834816,"q1":44834816,"q2":44834816,"q3":44834816,"max":44834816,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"reads":{"mean":3392035,"min":3392035,"q1":3392035,"q2":3392035,"q3":3392035,"max":3392035,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"cpu":{"mean":17.8,"min":17.8,"q1":17.8,"q2":17.8,"q3":17.8,"max":17.8,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"time":{"mean":707,"min":707,"q1":707,"q2":707,"q3":707,"max":707,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"writes":{"mean":2260606,"min":2260606,"q1":2260606,"q2":2260606,"q3":2260606,"max":2260606,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"}},{"cpuUsage":{"mean":1.59,"min":1.53,"q1":1.56,"q2":1.59,"q3":1.62,"max":1.65,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"process":"coverage","mem":{"mean":45603498.67,"min":45502464,"q1":45551616,"q2":45600768,"q3":45654016,"max":45707264,"minLabel":"coverage (1)","maxLabel":"coverage (2)","q1Label":"coverage (1)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"memUsage":{"mean":0.07,"min":0.07,"q1":0.07,"q2":0.07,"q3":0.07,"max":0.07,"minLabel":"coverage (1)","maxLabel":"coverage (2)","q1Label":"coverage (1)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"timeUsage":null,"vmem":{"mean":83996672,"min":83996672,"q1":83996672,"q2":83996672,"q3":83996672,"max":83996672,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"reads":{"mean":383974.33,"min":317679,"q1":330370,"q2":343061,"q3":417122,"max":491183,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"cpu":{"mean":19.07,"min":18.3,"q1":18.7,"q2":19.1,"q3":19.45,"max":19.8,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"time":{"mean":1918.67,"min":1845,"q1":1878,"q2":1911,"q3":1955.5,"max":2000,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"writes":{"mean":87175.33,"min":84031,"q1":84189,"q2":84347,"q3":88747.5,"max":93148,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"}},{"cpuUsage":{"mean":36.5,"min":36.5,"q1":36.5,"q2":36.5,"q3":36.5,"max":36.5,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"process":"multiQC","mem":{"mean":74149888,"min":74149888,"q1":74149888,"q2":74149888,"q3":74149888,"max":74149888,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"memUsage":null,"timeUsage":null,"vmem":{"mean":85012480,"min":85012480,"q1":85012480,"q2":85012480,"q3":85012480,"max":85012480,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"reads":{"mean":29716377,"min":29716377,"q1":29716377,"q2":29716377,"q3":29716377,"max":29716377,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"cpu":{"mean":36.5,"min":36.5,"q1":36.5,"q2":36.5,"q3":36.5,"max":36.5,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"time":{"mean":23000,"min":23000,"q1":23000,"q2":23000,"q3":23000,"max":23000,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"writes":{"mean":2404869,"min":2404869,"q1":2404869,"q2":2404869,"q3":2404869,"max":2404869,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"}},{"cpuUsage":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"process":"no_soft_clipping","mem":{"mean":5394432,"min":5394432,"q1":5394432,"q2":5394432,"q3":5394432,"max":5394432,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"memUsage":{"mean":0.5,"min":0.5,"q1":0.5,"q2":0.5,"q3":0.5,"max":0.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"timeUsage":null,"vmem":{"mean":60452864,"min":60452864,"q1":60452864,"q2":60452864,"q3":60452864,"max":60452864,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"reads":{"mean":2188565,"min":2188565,"q1":2188565,"q2":2188565,"q3":2188565,"max":2188565,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"cpu":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"time":{"mean":1228,"min":1228,"q1":1228,"q2":1228,"q3":1228,"max":1228,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"writes":{"mean":1583809,"min":1583809,"q1":1583809,"q2":1583809,"q3":1583809,"max":1583809,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"}},{"cpuUsage":{"mean":24.6,"min":24.6,"q1":24.6,"q2":24.6,"q3":24.6,"max":24.6,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"process":"duplicate_removal","mem":{"mean":13029376,"min":13029376,"q1":13029376,"q2":13029376,"q3":13029376,"max":13029376,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"memUsage":{"mean":1.21,"min":1.21,"q1":1.21,"q2":1.21,"q3":1.21,"max":1.21,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"timeUsage":null,"vmem":{"mean":89198592,"min":89198592,"q1":89198592,"q2":89198592,"q3":89198592,"max":89198592,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"reads":{"mean":13491677,"min":13491677,"q1":13491677,"q2":13491677,"q3":13491677,"max":13491677,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"cpu":{"mean":24.6,"min":24.6,"q1":24.6,"q2":24.6,"q3":24.6,"max":24.6,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"time":{"mean":6625,"min":6625,"q1":6625,"q2":6625,"q3":6625,"max":6625,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"writes":{"mean":6912516,"min":6912516,"q1":6912516,"q2":6912516,"q3":6912516,"max":6912516,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"}},{"cpuUsage":{"mean":20,"min":19.6,"q1":19.8,"q2":20,"q3":20.2,"max":20.4,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"process":"insertion","mem":{"mean":8896512,"min":8163328,"q1":8529920,"q2":8896512,"q3":9263104,"max":9629696,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"memUsage":{"mean":0.83,"min":0.76,"q1":0.79,"q2":0.83,"q3":0.86,"max":0.9,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"timeUsage":null,"vmem":{"mean":68841472,"min":68775936,"q1":68808704,"q2":68841472,"q3":68874240,"max":68907008,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"reads":{"mean":2878380,"min":2614607,"q1":2746493.5,"q2":2878380,"q3":3010266.5,"max":3142153,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"cpu":{"mean":20,"min":19.6,"q1":19.8,"q2":20,"q3":20.2,"max":20.4,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"time":{"mean":2367.5,"min":2260,"q1":2313.75,"q2":2367.5,"q3":2421.25,"max":2475,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"writes":{"mean":2072362.5,"min":1832311,"q1":1952336.75,"q2":2072362.5,"q3":2192388.25,"max":2312414,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"}},{"cpuUsage":{"mean":49.33,"min":49.2,"q1":49.25,"q2":49.3,"q3":49.4,"max":49.5,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"process":"plot_coverage","mem":{"mean":224164522.67,"min":220262400,"q1":222949376,"q2":225636352,"q3":226115584,"max":226594816,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"memUsage":{"mean":0.33,"min":0.32,"q1":0.32,"q2":0.33,"q3":0.33,"max":0.33,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"timeUsage":null,"vmem":{"mean":368757418.67,"min":363679744,"q1":367306752,"q2":370933760,"q3":371296256,"max":371658752,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"reads":{"mean":19152439,"min":19149294,"q1":19149453,"q2":19149612,"q3":19154011.5,"max":19158411,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"cpu":{"mean":49.33,"min":49.2,"q1":49.25,"q2":49.3,"q3":49.4,"max":49.5,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"time":{"mean":24209.67,"min":23860,"q1":24073,"q2":24286,"q3":24384.5,"max":24483,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"writes":{"mean":446909,"min":444685,"q1":445018,"q2":445351,"q3":448021,"max":450691,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"}},{"cpuUsage":{"mean":39.8,"min":39.8,"q1":39.8,"q2":39.8,"q3":39.8,"max":39.8,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"process":"final_insertion_files","mem":{"mean":127510528,"min":127500288,"q1":127505408,"q2":127510528,"q3":127515648,"max":127520768,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"memUsage":{"mean":0.19,"min":0.19,"q1":0.19,"q2":0.19,"q3":0.19,"max":0.19,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"timeUsage":null,"vmem":{"mean":258760704,"min":258756608,"q1":258758656,"q2":258760704,"q3":258762752,"max":258764800,"minLabel":"final_insertion_files (2)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (2)","q2Label":"final_insertion_files (2)","q3Label":"final_insertion_files (2)"},"reads":{"mean":18006486.5,"min":18003744,"q1":18005115.25,"q2":18006486.5,"q3":18007857.75,"max":18009229,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"cpu":{"mean":39.8,"min":39.8,"q1":39.8,"q2":39.8,"q3":39.8,"max":39.8,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"time":{"mean":12989.5,"min":12958,"q1":12973.75,"q2":12989.5,"q3":13005.25,"max":13021,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"writes":{"mean":280600,"min":275694,"q1":278147,"q2":280600,"q3":283053,"max":285506,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"}},{"cpuUsage":{"mean":9.5,"min":9.5,"q1":9.5,"q2":9.5,"q3":9.5,"max":9.5,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"process":"report3","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":305829,"min":305829,"q1":305829,"q2":305829,"q3":305829,"max":305829,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"cpu":{"mean":9.5,"min":9.5,"q1":9.5,"q2":9.5,"q3":9.5,"max":9.5,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"time":{"mean":65,"min":65,"q1":65,"q2":65,"q3":65,"max":65,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"writes":{"mean":44602,"min":44602,"q1":44602,"q2":44602,"q3":44602,"max":44602,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"}},{"cpuUsage":{"mean":42.6,"min":42.6,"q1":42.6,"q2":42.6,"q3":42.6,"max":42.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"process":"motif","mem":{"mean":210448384,"min":210448384,"q1":210448384,"q2":210448384,"q3":210448384,"max":210448384,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"timeUsage":null,"vmem":{"mean":341385216,"min":341385216,"q1":341385216,"q2":341385216,"q3":341385216,"max":341385216,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"reads":{"mean":49872281,"min":49872281,"q1":49872281,"q2":49872281,"q3":49872281,"max":49872281,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"cpu":{"mean":42.6,"min":42.6,"q1":42.6,"q2":42.6,"q3":42.6,"max":42.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"time":{"mean":42507,"min":42507,"q1":42507,"q2":42507,"q3":42507,"max":42507,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"writes":{"mean":41616533,"min":41616533,"q1":41616533,"q2":41616533,"q3":41616533,"max":41616533,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"}},{"cpuUsage":{"mean":53.9,"min":53.9,"q1":53.9,"q2":53.9,"q3":53.9,"max":53.9,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"process":"plot_read_length","mem":{"mean":208457728,"min":208457728,"q1":208457728,"q2":208457728,"q3":208457728,"max":208457728,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"memUsage":{"mean":0.3,"min":0.3,"q1":0.3,"q2":0.3,"q3":0.3,"max":0.3,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"timeUsage":null,"vmem":{"mean":354000896,"min":354000896,"q1":354000896,"q2":354000896,"q3":354000896,"max":354000896,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"reads":{"mean":19621130,"min":19621130,"q1":19621130,"q2":19621130,"q3":19621130,"max":19621130,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"cpu":{"mean":53.9,"min":53.9,"q1":53.9,"q2":53.9,"q3":53.9,"max":53.9,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"time":{"mean":26476,"min":26476,"q1":26476,"q2":26476,"q3":26476,"max":26476,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"writes":{"mean":708057,"min":708057,"q1":708057,"q2":708057,"q3":708057,"max":708057,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"}},{"cpuUsage":{"mean":42.9,"min":42.9,"q1":42.9,"q2":42.9,"q3":42.9,"max":42.9,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"process":"plot_fivep_filtering_stat","mem":{"mean":220442624,"min":220442624,"q1":220442624,"q2":220442624,"q3":220442624,"max":220442624,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"memUsage":{"mean":0.32,"min":0.32,"q1":0.32,"q2":0.32,"q3":0.32,"max":0.32,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"timeUsage":null,"vmem":{"mean":363532288,"min":363532288,"q1":363532288,"q2":363532288,"q3":363532288,"max":363532288,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"reads":{"mean":19122541,"min":19122541,"q1":19122541,"q2":19122541,"q3":19122541,"max":19122541,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"cpu":{"mean":42.9,"min":42.9,"q1":42.9,"q2":42.9,"q3":42.9,"max":42.9,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"time":{"mean":28457,"min":28457,"q1":28457,"q2":28457,"q3":28457,"max":28457,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"writes":{"mean":811482,"min":811482,"q1":811482,"q2":811482,"q3":811482,"max":811482,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"}},{"cpuUsage":{"mean":40.7,"min":40.7,"q1":40.7,"q2":40.7,"q3":40.7,"max":40.7,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (2)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"process":"seq_around_insertion","mem":{"mean":127621120,"min":127565824,"q1":127593472,"q2":127621120,"q3":127648768,"max":127676416,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"memUsage":{"mean":0.19,"min":0.19,"q1":0.19,"q2":0.19,"q3":0.19,"max":0.19,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"timeUsage":null,"vmem":{"mean":258762752,"min":258760704,"q1":258761728,"q2":258762752,"q3":258763776,"max":258764800,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (2)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"reads":{"mean":17995135.5,"min":17988623,"q1":17991879.25,"q2":17995135.5,"q3":17998391.75,"max":18001648,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"cpu":{"mean":40.7,"min":40.7,"q1":40.7,"q2":40.7,"q3":40.7,"max":40.7,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (2)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"time":{"mean":12797,"min":12663,"q1":12730,"q2":12797,"q3":12864,"max":12931,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"writes":{"mean":179957.5,"min":146404,"q1":163180.75,"q2":179957.5,"q3":196734.25,"max":213511,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"}},{"cpuUsage":{"mean":1.56,"min":1.48,"q1":1.52,"q2":1.56,"q3":1.6,"max":1.63,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"process":"extract_seq","mem":{"mean":12386304,"min":6295552,"q1":9340928,"q2":12386304,"q3":15431680,"max":18477056,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"memUsage":{"mean":0.02,"min":0.01,"q1":0.01,"q2":0.02,"q3":0.02,"max":0.03,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"timeUsage":null,"vmem":{"mean":59160576,"min":52846592,"q1":56003584,"q2":59160576,"q3":62317568,"max":65474560,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"reads":{"mean":9477790,"min":9452267,"q1":9465028.5,"q2":9477790,"q3":9490551.5,"max":9503313,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"cpu":{"mean":18.7,"min":17.8,"q1":18.25,"q2":18.7,"q3":19.15,"max":19.6,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"time":{"mean":2130.5,"min":1457,"q1":1793.75,"q2":2130.5,"q3":2467.25,"max":2804,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"writes":{"mean":4718049.5,"min":4672192,"q1":4695120.75,"q2":4718049.5,"q3":4740978.25,"max":4763907,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"}},{"cpuUsage":{"mean":57.3,"min":57.3,"q1":57.3,"q2":57.3,"q3":57.3,"max":57.3,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"process":"random_insertion","mem":{"mean":368607232,"min":368607232,"q1":368607232,"q2":368607232,"q3":368607232,"max":368607232,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"memUsage":{"mean":0.54,"min":0.54,"q1":0.54,"q2":0.54,"q3":0.54,"max":0.54,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"timeUsage":null,"vmem":{"mean":511254528,"min":511254528,"q1":511254528,"q2":511254528,"q3":511254528,"max":511254528,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"reads":{"mean":31432716,"min":31432716,"q1":31432716,"q2":31432716,"q3":31432716,"max":31432716,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"cpu":{"mean":57.3,"min":57.3,"q1":57.3,"q2":57.3,"q3":57.3,"max":57.3,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"time":{"mean":8510,"min":8510,"q1":8510,"q2":8510,"q3":8510,"max":8510,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"writes":{"mean":1296711,"min":1296711,"q1":1296711,"q2":1296711,"q3":1296711,"max":1296711,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"}},{"cpuUsage":{"mean":64.5,"min":64.5,"q1":64.5,"q2":64.5,"q3":64.5,"max":64.5,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"process":"dup_insertion_and_logo","mem":{"mean":283533312,"min":283533312,"q1":283533312,"q2":283533312,"q3":283533312,"max":283533312,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"memUsage":{"mean":0.41,"min":0.41,"q1":0.41,"q2":0.41,"q3":0.41,"max":0.41,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"timeUsage":null,"vmem":{"mean":426229760,"min":426229760,"q1":426229760,"q2":426229760,"q3":426229760,"max":426229760,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"reads":{"mean":17526998,"min":17526998,"q1":17526998,"q2":17526998,"q3":17526998,"max":17526998,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"cpu":{"mean":64.5,"min":64.5,"q1":64.5,"q2":64.5,"q3":64.5,"max":64.5,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"time":{"mean":11158,"min":11158,"q1":11158,"q2":11158,"q3":11158,"max":11158,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"writes":{"mean":601011,"min":601011,"q1":601011,"q2":601011,"q3":601011,"max":601011,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"}},{"cpuUsage":{"mean":1.1,"min":1.1,"q1":1.1,"q2":1.1,"q3":1.1,"max":1.1,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"process":"goalign","mem":{"mean":14262272,"min":14262272,"q1":14262272,"q2":14262272,"q3":14262272,"max":14262272,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"memUsage":{"mean":1.33,"min":1.33,"q1":1.33,"q2":1.33,"q3":1.33,"max":1.33,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"timeUsage":null,"vmem":{"mean":734240768,"min":734240768,"q1":734240768,"q2":734240768,"q3":734240768,"max":734240768,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"reads":{"mean":131211,"min":131211,"q1":131211,"q2":131211,"q3":131211,"max":131211,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"cpu":{"mean":13.2,"min":13.2,"q1":13.2,"q2":13.2,"q3":13.2,"max":13.2,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"time":{"mean":2873,"min":2873,"q1":2873,"q2":2873,"q3":2873,"max":2873,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"writes":{"mean":356117,"min":356117,"q1":356117,"q2":356117,"q3":356117,"max":356117,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"}},{"cpuUsage":{"mean":10.63,"min":9.6,"q1":9.78,"q2":10.55,"q3":11.38,"max":11.9,"minLabel":"base_freq (8)","maxLabel":"base_freq (3)","q1Label":"base_freq (5)","q2Label":"base_freq (1)","q3Label":"base_freq (4)"},"process":"base_freq","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":236107.75,"min":180638,"q1":184404.75,"q2":236694,"q3":288698.25,"max":289470,"minLabel":"base_freq (7)","maxLabel":"base_freq (3)","q1Label":"base_freq (6)","q2Label":"base_freq (5)","q3Label":"base_freq (2)"},"cpu":{"mean":10.63,"min":9.6,"q1":9.78,"q2":10.55,"q3":11.38,"max":11.9,"minLabel":"base_freq (8)","maxLabel":"base_freq (3)","q1Label":"base_freq (5)","q2Label":"base_freq (1)","q3Label":"base_freq (4)"},"time":{"mean":291.5,"min":109,"q1":190.75,"q2":298.5,"q3":405.75,"max":432,"minLabel":"base_freq (6)","maxLabel":"base_freq (4)","q1Label":"base_freq (7)","q2Label":"base_freq (8)","q3Label":"base_freq (2)"},"writes":{"mean":12565.5,"min":2832,"q1":6651,"q2":13156,"q3":19383,"max":20168,"minLabel":"base_freq (7)","maxLabel":"base_freq (3)","q1Label":"base_freq (6)","q2Label":"base_freq (5)","q3Label":"base_freq (2)"}},{"cpuUsage":{"mean":5.6,"min":5.6,"q1":5.6,"q2":5.6,"q3":5.6,"max":5.6,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"process":"report2","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":135292,"min":135292,"q1":135292,"q2":135292,"q3":135292,"max":135292,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"cpu":{"mean":5.6,"min":5.6,"q1":5.6,"q2":5.6,"q3":5.6,"max":5.6,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"time":{"mean":45,"min":45,"q1":45,"q2":45,"q3":45,"max":45,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"writes":{"mean":2465,"min":2465,"q1":2465,"q2":2465,"q3":2465,"max":2465,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"}},{"cpuUsage":{"mean":42.58,"min":38.5,"q1":42.03,"q2":43.7,"q3":44.25,"max":44.4,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (4)"},"process":"logo","mem":{"mean":139066368,"min":123715584,"q1":125405184,"q2":127938560,"q3":141599744,"max":176672768,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"memUsage":{"mean":0.2,"min":0.18,"q1":0.18,"q2":0.19,"q3":0.21,"max":0.26,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"timeUsage":null,"vmem":{"mean":303022080,"min":271462400,"q1":298628096,"q2":309430272,"q3":313824256,"max":321765376,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"reads":{"mean":14488300,"min":14488278,"q1":14488295.25,"q2":14488304.5,"q3":14488309.25,"max":14488313,"minLabel":"logo (4)","maxLabel":"logo (3)","q1Label":"logo (4)","q2Label":"logo (2)","q3Label":"logo (1)"},"cpu":{"mean":42.58,"min":38.5,"q1":42.03,"q2":43.7,"q3":44.25,"max":44.4,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (4)"},"time":{"mean":15518.25,"min":14490,"q1":14706.75,"q2":14938.5,"q3":15750,"max":17706,"minLabel":"logo (2)","maxLabel":"logo (1)","q1Label":"logo (2)","q2Label":"logo (4)","q3Label":"logo (3)"},"writes":{"mean":924469,"min":873213,"q1":889121.25,"q2":899255,"q3":934602.75,"max":1026153,"minLabel":"logo (1)","maxLabel":"logo (4)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (2)"}},{"cpuUsage":{"mean":46.35,"min":46.3,"q1":46.33,"q2":46.35,"q3":46.38,"max":46.4,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"process":"global_logo","mem":{"mean":122226688,"min":122126336,"q1":122176512,"q2":122226688,"q3":122276864,"max":122327040,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"memUsage":{"mean":0.18,"min":0.18,"q1":0.18,"q2":0.18,"q3":0.18,"max":0.18,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"timeUsage":null,"vmem":{"mean":267350016,"min":266952704,"q1":267151360,"q2":267350016,"q3":267548672,"max":267747328,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"reads":{"mean":14496797,"min":14496507,"q1":14496652,"q2":14496797,"q3":14496942,"max":14497087,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"cpu":{"mean":46.35,"min":46.3,"q1":46.33,"q2":46.35,"q3":46.38,"max":46.4,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"time":{"mean":15583.5,"min":15576,"q1":15579.75,"q2":15583.5,"q3":15587.25,"max":15591,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"writes":{"mean":929099,"min":867376,"q1":898237.5,"q2":929099,"q3":959960.5,"max":990822,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"}},{"cpuUsage":{"mean":5.2,"min":5.2,"q1":5.2,"q2":5.2,"q3":5.2,"max":5.2,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"process":"init","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106638,"min":106638,"q1":106638,"q2":106638,"q3":106638,"max":106638,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"cpu":{"mean":5.2,"min":5.2,"q1":5.2,"q2":5.2,"q3":5.2,"max":5.2,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"time":{"mean":13,"min":13,"q1":13,"q2":13,"q3":13,"max":13,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"writes":{"mean":669,"min":669,"q1":669,"q2":669,"q3":669,"max":669,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"}},{"cpuUsage":{"mean":10.4,"min":10.4,"q1":10.4,"q2":10.4,"q3":10.4,"max":10.4,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"process":"backup","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106843,"min":106843,"q1":106843,"q2":106843,"q3":106843,"max":106843,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"cpu":{"mean":10.4,"min":10.4,"q1":10.4,"q2":10.4,"q3":10.4,"max":10.4,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"time":{"mean":12,"min":12,"q1":12,"q2":12,"q3":12,"max":12,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"writes":{"mean":505,"min":505,"q1":505,"q2":505,"q3":505,"max":505,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"}},{"cpuUsage":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"process":"workflowVersion","mem":{"mean":5152768,"min":5152768,"q1":5152768,"q2":5152768,"q3":5152768,"max":5152768,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"memUsage":{"mean":0.16,"min":0.16,"q1":0.16,"q2":0.16,"q3":0.16,"max":0.16,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"timeUsage":null,"vmem":{"mean":40312832,"min":40312832,"q1":40312832,"q2":40312832,"q3":40312832,"max":40312832,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"reads":{"mean":136832,"min":136832,"q1":136832,"q2":136832,"q3":136832,"max":136832,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"cpu":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"time":{"mean":694,"min":694,"q1":694,"q2":694,"q3":694,"max":694,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"writes":{"mean":2135,"min":2135,"q1":2135,"q2":2135,"q3":2135,"max":2135,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"}},{"cpuUsage":{"mean":2.98,"min":2.98,"q1":2.98,"q2":2.98,"q3":2.98,"max":2.98,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"process":"plot_insertion","mem":{"mean":418713600,"min":418713600,"q1":418713600,"q2":418713600,"q3":418713600,"max":418713600,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"memUsage":{"mean":0.61,"min":0.61,"q1":0.61,"q2":0.61,"q3":0.61,"max":0.61,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"timeUsage":null,"vmem":{"mean":576577536,"min":576577536,"q1":576577536,"q2":576577536,"q3":576577536,"max":576577536,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"reads":{"mean":46947015,"min":46947015,"q1":46947015,"q2":46947015,"q3":46947015,"max":46947015,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"cpu":{"mean":35.7,"min":35.7,"q1":35.7,"q2":35.7,"q3":35.7,"max":35.7,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"time":{"mean":243125,"min":243125,"q1":243125,"q2":243125,"q3":243125,"max":243125,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"writes":{"mean":23743899,"min":23743899,"q1":23743899,"q2":23743899,"q3":23743899,"max":23743899,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"}},{"cpuUsage":{"mean":45.3,"min":45.3,"q1":45.3,"q2":45.3,"q3":45.3,"max":45.3,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"process":"print_report","mem":{"mean":260063232,"min":260063232,"q1":260063232,"q2":260063232,"q3":260063232,"max":260063232,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"memUsage":{"mean":0.38,"min":0.38,"q1":0.38,"q2":0.38,"q3":0.38,"max":0.38,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"timeUsage":null,"vmem":{"mean":1100167069696,"min":1100167069696,"q1":1100167069696,"q2":1100167069696,"q3":1100167069696,"max":1100167069696,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"reads":{"mean":54391528,"min":54391528,"q1":54391528,"q2":54391528,"q3":54391528,"max":54391528,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"cpu":{"mean":45.3,"min":45.3,"q1":45.3,"q2":45.3,"q3":45.3,"max":45.3,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"time":{"mean":9534,"min":9534,"q1":9534,"q2":9534,"q3":9534,"max":9534,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"writes":{"mean":27590178,"min":27590178,"q1":27590178,"q2":27590178,"q3":27590178,"max":27590178,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"}}] };
+{"task_id":"2","hash":"25\/7b2ed6","native_id":"281","process":"Nremove","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"Nremove (1)","status":"CACHED","exit":"0","submit":"1649517331366","start":"1649517331460","complete":"1649517336786","duration":"5420","realtime":"1273","%cpu":"37.7","%mem":"0.0","rss":"12468224","vmem":"73990144","peak_rss":"12468224","peak_vmem":"74002432","rchar":"17604799","wchar":"15167118","syscr":"1863","syscw":"1271","read_bytes":"568320","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/25\/7b2ed6336bab428544e9b702e6a042","script":"\n    Nremove.sh test.fastq2.gz \"test.fastq2_Nremove.gz\" \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"853","inv_ctxt":"19"},{"task_id":"3","hash":"f3\/638b7c","native_id":"308","process":"report1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report1","status":"CACHED","exit":"0","submit":"1649517331415","start":"1649517331494","complete":"1649517336099","duration":"4684","realtime":"85","%cpu":"6.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106909","wchar":"684","syscr":"189","syscw":"54","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f3\/638b7c1225ea438db495aefc16a905","script":"\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n###  Read coverage\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 6: After Bowtie2 alignment](.\/figures\/plot_test.fastq2_bowtie2_mini.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 7: After Mapping Quality Q20 (1%) filtering](.\/figures\/plot_test.fastq2_q20_dup_mini.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 8: After removal of reads with identical 5\' and 3\' coordinates](.\/figures\/plot_test.fastq2_q20_nodup_mini.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \' > report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"4","hash":"e9\/33684c","native_id":"1241","process":"trim","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-alien_trimmer_v0.4.0-gitlab_v8.1.img","tag":"-","name":"trim (1)","status":"CACHED","exit":"0","submit":"1649517336960","start":"1649517336984","complete":"1649517347469","duration":"10509","realtime":"7348","%cpu":"44.5","%mem":"0.1","rss":"66617344","vmem":"5908262912","peak_rss":"66617344","peak_vmem":"5970448384","rchar":"17145211","wchar":"12629480","syscr":"2381","syscw":"647","read_bytes":"9981952","write_bytes":"32768","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e9\/33684ce0818a231e05632f82b2dcdb","script":"\n    trim.sh test.fastq2_Nremove.gz \"test.fastq2_trim.fq\" 20200520_adapters_TruSeq_B2699_14985_CL.fasta 30 \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3272","inv_ctxt":"9"},{"task_id":"1","hash":"bd\/8b5bfa","native_id":"137","process":"init","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"init","status":"COMPLETED","exit":"0","submit":"1649703170952","start":"1649703171054","complete":"1649703172718","duration":"1766","realtime":"17","%cpu":"5.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106462","wchar":"659","syscr":"190","syscw":"26","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/bd\/8b5bfa3b5577099bccea0d0d626bf7","script":"\n    echo \"---\n    title: \'Insertion Sites Report\'\n    author: \'Gael Millot\'\n    date: \'`r Sys.Date()`\'\n    output:\n      html_document:\n        toc: TRUE\n        toc_float: TRUE\n    ---\n\n    \\n\\n<br \/><br \/>\\n\\n\n    \" > report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"5","hash":"d5\/d15b46","native_id":"2771","process":"kraken","module":"-","container":"-","tag":"-","name":"kraken (1)","status":"CACHED","exit":"0","submit":"1649517347569","start":"1649517347669","complete":"1649517347880","duration":"311","realtime":"34","%cpu":"81.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"154429","wchar":"220","syscr":"228","syscw":"13","read_bytes":"49152","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d5\/d15b46d768587b15d4a43e3e1416bd","script":"\n        echo \"No kraken analysis performed in local running\" > test.fastq2_trim_kraken_std.txt\n        ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"7","hash":"f8\/e48213","native_id":"2908","process":"fivep_filtering","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"fivep_filtering (1)","status":"CACHED","exit":"0","submit":"1649517347765","start":"1649517347828","complete":"1649517355984","duration":"8219","realtime":"6176","%cpu":"27.1","%mem":"0.0","rss":"12136448","vmem":"70533120","peak_rss":"12136448","peak_vmem":"70533120","rchar":"29337231","wchar":"16061720","syscr":"9149","syscw":"5789","read_bytes":"437248","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f8\/e482130c484e578853920aef7381bf","script":"\n    fivep_filtering.sh test.fastq2_trim.fq \"test.fastq2\" \"^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\" 48 3 51 \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"6135","inv_ctxt":"2"},{"task_id":"6","hash":"59\/2dbb6e","native_id":"2819","process":"fastqc1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc1 (1)","status":"CACHED","exit":"0","submit":"1649517347681","start":"1649517347770","complete":"1649517366659","duration":"18978","realtime":"17027","%cpu":"52.0","%mem":"0.2","rss":"173170688","vmem":"3289477120","peak_rss":"173256704","peak_vmem":"3342663680","rchar":"14605630","wchar":"1278924","syscr":"7612","syscw":"5170","read_bytes":"19996672","write_bytes":"712704","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/59\/2dbb6e3e89d63b886cbd5e4cc01ec1","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Read QC n\u00B01\\n\\n\" > report.rmd\n    echo -e \"Results are published in the [fastQC1](.\/fastQC1) folder\\n\\n\" >> report.rmd\n    fastqc test.fastq2_trim.fq | tee tempo.txt\n    cat tempo.txt >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4333","inv_ctxt":"39"},{"task_id":"9","hash":"c8\/fa65a5","native_id":"4175","process":"cutoff","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"cutoff (1)","status":"CACHED","exit":"0","submit":"1649517356282","start":"1649517356311","complete":"1649517359645","duration":"3363","realtime":"988","%cpu":"14.5","%mem":"0.0","rss":"10223616","vmem":"64237568","peak_rss":"10223616","peak_vmem":"64237568","rchar":"7308009","wchar":"4049154","syscr":"2784","syscw":"2034","read_bytes":"384000","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c8\/fa65a502fe7569089ad77729a27d36","script":"\n    cutoff.sh test.fastq2_5pAtccRm.fq 25 \"test.fastq2\" \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1167","inv_ctxt":"1"},{"task_id":"8","hash":"b4\/13acb3","native_id":"4147","process":"fastqc2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc2 (1)","status":"CACHED","exit":"0","submit":"1649517356193","start":"1649517356286","complete":"1649517370882","duration":"14689","realtime":"12798","%cpu":"69.2","%mem":"0.2","rss":"184655872","vmem":"3289477120","peak_rss":"184655872","peak_vmem":"3289899008","rchar":"12768081","wchar":"1245410","syscr":"7365","syscw":"5096","read_bytes":"19984384","write_bytes":"688128","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b4\/13acb3ca013c26eb96eb0cbf07abdd","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Read QC n\u00B02\\n\\n\" > report.rmd\n    echo -e \"Results are published in the [fastQC2](.\/fastQC2) folder\\n\\n\" >> report.rmd\n    fastqc test.fastq2_5pAtccRm.fq | tee tempo.txt\n    cat tempo.txt >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4333","inv_ctxt":"2"},{"task_id":"11","hash":"96\/3945da","native_id":"5033","process":"bowtie2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bowtie2_v2.3.4.3_extended_v2.0-gitlab_v8.0.img","tag":"-","name":"bowtie2 (1)","status":"CACHED","exit":"0","submit":"1649517360685","start":"1649517360746","complete":"1649517374142","duration":"13457","realtime":"9333","%cpu":"40.6","%mem":"0.1","rss":"68902912","vmem":"249094144","peak_rss":"120336384","peak_vmem":"251154432","rchar":"36678363","wchar":"17009938","syscr":"3392","syscw":"2516","read_bytes":"7209984","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/96\/3945da1d9d4a1f8976a45bb56ea6e2","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Bowtie2 indexing of the reference sequence\\n\\n\" >> bowtie2_report.txt\n    bowtie2-build Ecoli-K12-MG1655_ORI_CENTERED.fasta Ecoli-K12-MG1655_ORI_CENTERED |& tee -a bowtie2_report.txt\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Bowtie2 alignment\\n\\n\" > report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Bowtie2 alignment\\n\\n\" >> bowtie2_report.txt\n    bowtie2 --very-sensitive -x Ecoli-K12-MG1655_ORI_CENTERED -U test.fastq2_cutoff.fq -t -S test.fastq2_bowtie2.sam |& tee -a tempo.txt\n    # --very-sensitive: no soft clipping allowed and very sensitive seed alignment\n    # -t time displayed\n    cat tempo.txt >> bowtie2_report.txt\n    sed -i -e \':a;N;$!ba;s\/\\n\/\\n<br \\\/>\/g\' tempo.txt\n    cat tempo.txt >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n####  samtools conversion\\n\\n\" >> bowtie2_report.txt\n    # samtools faidx Ecoli-K12-MG1655_ORI_CENTERED.fasta\n    samtools view -bh -o tempo.bam test.fastq2_bowtie2.sam |& tee -a bowtie2_report.txt\n    samtools sort -o test.fastq2_bowtie2.bam tempo.bam |& tee -a bowtie2_report.txt\n    samtools index test.fastq2_bowtie2.bam |& tee -a bowtie2_report.txt\n    ","scratch":"-","queue":"-","cpus":"12","memory":"17179869184","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"5701","inv_ctxt":"9"},{"task_id":"13","hash":"50\/34788a","native_id":"6971","process":"Q20","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"Q20 (1)","status":"CACHED","exit":"0","submit":"1649517375154","start":"1649517375243","complete":"1649517377849","duration":"2695","realtime":"707","%cpu":"17.8","%mem":"0.0","rss":"4722688","vmem":"44826624","peak_rss":"4722688","peak_vmem":"44834816","rchar":"3392035","wchar":"2260606","syscr":"897","syscw":"567","read_bytes":"1230848","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/50\/34788aeb175a22a1d913b583847a61","script":"\n    samtools view -q 20 -b test.fastq2_bowtie2.bam > test.fastq2_q20_dup.bam |& tee q20_report.txt\n    samtools index test.fastq2_q20_dup.bam\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Q20 filtering\\n\\n\" > report.rmd\n    read_nb_before=$(samtools view test.fastq2_bowtie2.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n    read_nb_after=$(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n    echo -e \"\\n\\nNumber of sequences before Q20 filtering: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n    echo -e \"\\n\\nNumber of sequences after Q20 filtering: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n    echo -e \"Ratio: \" >> report.rmd\n    echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n    echo -e \"\\n\\n\" >> report.rmd\n    echo $read_nb_before > read_nb_before # because nf cannot output values easily\n    echo $read_nb_after > read_nb_after\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"806","inv_ctxt":"0"},{"task_id":"14","hash":"a8\/f98ebd","native_id":"11174","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (1)","status":"CACHED","exit":"0","submit":"1649517438784","start":"1649517438890","complete":"1649517443338","duration":"4554","realtime":"2000","%cpu":"18.3","%mem":"0.0","rss":"45502464","vmem":"83861504","peak_rss":"45502464","peak_vmem":"83996672","rchar":"491183","wchar":"93148","syscr":"251","syscw":"3116","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/a8\/f98ebde5137cd4a4569ccc04fc89c5","script":"\n    # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n    # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n    bedtools genomecov -bga -ibam test.fastq2_bowtie2.bam  > test.fastq2_bowtie2_mini.cov |& tee cov_report.txt\n    # -g ${ref} not required when inputs are bam files\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3958","inv_ctxt":"1"},{"task_id":"17","hash":"41\/75981b","native_id":"7462","process":"no_soft_clipping","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"no_soft_clipping (1)","status":"CACHED","exit":"0","submit":"1649517378863","start":"1649517379002","complete":"1649517383173","duration":"4310","realtime":"1228","%cpu":"14.5","%mem":"0.0","rss":"5394432","vmem":"60452864","peak_rss":"5394432","peak_vmem":"60452864","rchar":"2188565","wchar":"1583809","syscr":"718","syscw":"417","read_bytes":"1153024","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/41\/75981b0207214e9680f067f4eccfbd","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Control that no more soft clipping in reads\\n\\n\" > report.rmd\n    echo -e \"nb of reads with soft clipping (S) in CIGAR: $(printf \"%\'d\" $(samtools view test.fastq2_q20_dup.bam | awk \'$6 ~ \/.*[S].*\/{print $0}\' | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n    echo -e \"\\n\\ntotal nb of reads: $(printf \"%\'d\" $(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"28","inv_ctxt":"1"},{"task_id":"15","hash":"8f\/71ec44","native_id":"6997","process":"multiQC","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/ewels-multiqc-1.10.1.img","tag":"-","name":"multiQC","status":"CACHED","exit":"0","submit":"1649517375192","start":"1649517375268","complete":"1649517398413","duration":"23221","realtime":"23000","%cpu":"36.5","%mem":"0.1","rss":"74149888","vmem":"85012480","peak_rss":"74149888","peak_vmem":"85012480","rchar":"29716377","wchar":"2404869","syscr":"9278","syscw":"295","read_bytes":"22820864","write_bytes":"1253376","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/8f\/71ec4485b2780844d80f43234a84d9","script":"\n    multiqc . -n multiqc_report.html\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  MultiQC\\n\\n\" > report.rmd\n    if [[ local == \"local\" ]] ; then\n        echo -e \"\\n\\nWarning: no Kraken performed when using local run\\n\" >> report.rmd\n    fi\n    echo -e \"\\n\\nResults are published in the [Report](.\/reports\/multiqc_report.html) folder\\n\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"34782","inv_ctxt":"285"},{"task_id":"18","hash":"da\/6b7a6c","native_id":"11388","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (2)","status":"CACHED","exit":"0","submit":"1649517443376","start":"1649517443438","complete":"1649517447638","duration":"4262","realtime":"1911","%cpu":"19.1","%mem":"0.0","rss":"45707264","vmem":"83861504","peak_rss":"45707264","peak_vmem":"83996672","rchar":"343061","wchar":"84347","syscr":"239","syscw":"2824","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/da\/6b7a6c60ccfee9229a0531b342010e","script":"\n    # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n    # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n    bedtools genomecov -bga -ibam test.fastq2_q20_dup.bam  > test.fastq2_q20_dup_mini.cov |& tee cov_report.txt\n    # -g ${ref} not required when inputs are bam files\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3888","inv_ctxt":"0"},{"task_id":"16","hash":"0a\/40301f","native_id":"7482","process":"duplicate_removal","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"duplicate_removal (1)","status":"CACHED","exit":"0","submit":"1649517378891","start":"1649517379023","complete":"1649517388551","duration":"9660","realtime":"6625","%cpu":"24.6","%mem":"0.0","rss":"13029376","vmem":"89198592","peak_rss":"13029376","peak_vmem":"89198592","rchar":"13491677","wchar":"6912516","syscr":"7202","syscw":"5709","read_bytes":"1376256","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/0a\/40301fd02966cf17f1eabcfffba711","script":"\n    duplicate_removal.sh test.fastq2_q20_dup.bam Ecoli-K12-MG1655_ORI_CENTERED.fasta \"test.fastq2_q20_nodup.bam\" \"dup_report.txt\" \"report.rmd\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"2449","inv_ctxt":"4"},{"task_id":"23","hash":"91\/2fd95b","native_id":"9315","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (1)","status":"CACHED","exit":"0","submit":"1649517389566","start":"1649517389651","complete":"1649517393899","duration":"4333","realtime":"2260","%cpu":"19.6","%mem":"0.0","rss":"8163328","vmem":"68767744","peak_rss":"8163328","peak_vmem":"68775936","rchar":"2614607","wchar":"1832311","syscr":"1537","syscw":"1173","read_bytes":"1236992","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/91\/2fd95b201a10093515dd0da96fa3c8","script":"\n    if [[ test.fastq2_q20_nodup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n        echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n        echo -e \"\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n    fi\n\n    # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ\n    samtools view test.fastq2_q20_nodup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n    # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n    echo -e \"\\n\\n######## test.fastq2_q20_nodup.bam file\\n\\n\" > insertion_report.txt\n    cat tempo | head -60 | tail -20 >> insertion_report.txt\n    echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n    # redefinition of POS according to FLAG\n    awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n    echo -e \"\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\\\' end of the read as insertion site and not the 5\\\' part as with forward reads (0)\\n\\n\" >> insertion_report.txt\n    cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n    awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2_q20_nodup.pos\n    echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n    cat test.fastq2_q20_nodup.pos | head -60 | tail -20 >> insertion_report.txt\n\n    read_nb_before=$(samtools view test.fastq2_q20_nodup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n    read_nb_after=$(wc -l test.fastq2_q20_nodup.pos | cut -f1 -d\' \')\n    if [[ test.fastq2_q20_nodup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n        echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n        echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n        echo -e \"Ratio: \" >> report.rmd\n        echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n        echo -e \"\\n\\n\" >> report.rmd\n    else\n        echo -e \"\\n\\n\" >> report.rmd\n    fi\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"819","inv_ctxt":"1"},{"task_id":"24","hash":"22\/3c6c1a","native_id":"9335","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (2)","status":"CACHED","exit":"0","submit":"1649517389595","start":"1649517389671","complete":"1649517394064","duration":"4469","realtime":"2475","%cpu":"20.4","%mem":"0.0","rss":"9629696","vmem":"68907008","peak_rss":"9629696","peak_vmem":"68907008","rchar":"3142153","wchar":"2312414","syscr":"1877","syscw":"1514","read_bytes":"1267712","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/22\/3c6c1a1ef3ab1682b6e551be1cb552","script":"\n    if [[ test.fastq2_q20_dup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n        echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n        echo -e \"\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n    fi\n\n    # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ\n    samtools view test.fastq2_q20_dup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n    # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n    echo -e \"\\n\\n######## test.fastq2_q20_dup.bam file\\n\\n\" > insertion_report.txt\n    cat tempo | head -60 | tail -20 >> insertion_report.txt\n    echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n    # redefinition of POS according to FLAG\n    awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n    echo -e \"\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\\\' end of the read as insertion site and not the 5\\\' part as with forward reads (0)\\n\\n\" >> insertion_report.txt\n    cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n    awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2_q20_dup.pos\n    echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n    cat test.fastq2_q20_dup.pos | head -60 | tail -20 >> insertion_report.txt\n\n    read_nb_before=$(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n    read_nb_after=$(wc -l test.fastq2_q20_dup.pos | cut -f1 -d\' \')\n    if [[ test.fastq2_q20_dup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n        echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n        echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n        echo -e \"Ratio: \" >> report.rmd\n        echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n        echo -e \"\\n\\n\" >> report.rmd\n    else\n        echo -e \"\\n\\n\" >> report.rmd\n    fi\n    ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1018","inv_ctxt":"2"},{"task_id":"22","hash":"d5\/03b2f8","native_id":"11599","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (3)","status":"CACHED","exit":"0","submit":"1649517447665","start":"1649517447738","complete":"1649517451839","duration":"4174","realtime":"1845","%cpu":"19.8","%mem":"0.0","rss":"45600768","vmem":"83861504","peak_rss":"45600768","peak_vmem":"83996672","rchar":"317679","wchar":"84031","syscr":"235","syscw":"2820","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d5\/03b2f893a259a7c22397def25c8629","script":"\n    # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n    # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n    bedtools genomecov -bga -ibam test.fastq2_q20_nodup.bam  > test.fastq2_q20_nodup_mini.cov |& tee cov_report.txt\n    # -g ${ref} not required when inputs are bam files\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3928","inv_ctxt":"0"},{"task_id":"25","hash":"86\/7a76f6","native_id":"226","process":"backup","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"backup","status":"COMPLETED","exit":"0","submit":"1649703171343","start":"1649703171363","complete":"1649703173137","duration":"1794","realtime":"11","%cpu":"6.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106668","wchar":"494","syscr":"189","syscw":"23","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/86\/7a76f639c6c9b7424ecdea86f085d9","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Backup\\n\\n\" > report.rmd\n    echo -e \"See the [reports](.\/reports) folder for all the details of the analysis, including the parameters used in the .config file\" >> report.rmd\n    echo -e \"\\n\\nFull .nextflow.log is in: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot<br \/>The one in the [reports](.\/reports) folder is not complete (miss the end)\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"26","hash":"ec\/876577","native_id":"262","process":"workflowVersion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"workflowVersion","status":"COMPLETED","exit":"0","submit":"1649703171403","start":"1649703171460","complete":"1649703173707","duration":"2304","realtime":"744","%cpu":"14.3","%mem":"0.0","rss":"5267456","vmem":"40312832","peak_rss":"5267456","peak_vmem":"40312832","rchar":"136704","wchar":"2126","syscr":"315","syscw":"67","read_bytes":"1660928","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ec\/876577f13b2f140f1624c6a3cddd3f","script":"\n    modules= # this is just to deal with variable interpretation during the creation of the .command.sh file by nextflow. See also $modules below\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Workflow Version\\n\\n\" > report.rmd\n    echo -e \"\\n\\n#### General\\n\\n\n| Variable | Value |\n| :-- | :-- |\n| Project<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot remote -v | head -n 1) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo\n| Git info<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot describe --abbrev=10 --dirty --always --tags) | # idem. Provide the small commit number of the script and nextflow.config used in the execution\n| Cmd line | nextflow run main.nf -resume |\n| execution mode | local |\" >> report.rmd \n\n    if [[ ! -z $modules ]] ; then\n        echo \"| loaded modules (according to specification by the user thanks to the --modules argument of main.nf) |  |\" >> report.rmd\n    fi\n    \n    echo \"| Manifest\'s pipeline version | null |\n| result path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168 |\n| nextflow version | 21.04.2 |\n    \" >> report.rmd\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Implicit variables\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| launchDir | Directory where the workflow is run | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| nprojectDir | Directory where the main.nf script is located | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| workDir | Directory where tasks temporary files are created | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work |\n    \" >> report.rmd\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n#### User variables\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| out_path | output folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168 |\n| in_path | input folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset |\n    \" >> report.rmd\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Workflow diagram\\n\\nSee the [nf_dag.png](.\/reports\/nf_dag.png) file\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"28","inv_ctxt":"0"},{"task_id":"21","hash":"88\/636f95","native_id":"14201","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (2)","status":"CACHED","exit":"0","submit":"1649517509257","start":"1649517509329","complete":"1649517535648","duration":"26391","realtime":"24286","%cpu":"49.3","%mem":"0.2","rss":"225636352","vmem":"370900992","peak_rss":"225636352","peak_vmem":"370933760","rchar":"19149612","wchar":"444685","syscr":"3786","syscw":"292","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/88\/636f9574ac4e1058c6503f1a2e81c0","script":"\n    plot_coverage.R \"test.fastq2_q20_dup_mini\" \"read_nb_after\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42843","inv_ctxt":"11"},{"task_id":"29","hash":"37\/f53840","native_id":"15016","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (3)","status":"CACHED","exit":"0","submit":"1649517535680","start":"1649517535748","complete":"1649517561551","duration":"25871","realtime":"23860","%cpu":"49.5","%mem":"0.2","rss":"226594816","vmem":"371625984","peak_rss":"226594816","peak_vmem":"371658752","rchar":"19149294","wchar":"445351","syscr":"3786","syscw":"293","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/37\/f53840827946ca3b72549721599e38","script":"\n    plot_coverage.R \"test.fastq2_q20_nodup_mini\" \"dup_read_nb\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"44003","inv_ctxt":"11"},{"task_id":"19","hash":"9d\/64d05b","native_id":"13378","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (1)","status":"CACHED","exit":"0","submit":"1649517482485","start":"1649517482559","complete":"1649517509228","duration":"26743","realtime":"24483","%cpu":"49.2","%mem":"0.2","rss":"220262400","vmem":"363646976","peak_rss":"220262400","peak_vmem":"363679744","rchar":"19158411","wchar":"450691","syscr":"3788","syscw":"294","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9d\/64d05bc1b1f46cbdd0dc53ec9bc0e0","script":"\n    plot_coverage.R \"test.fastq2_bowtie2_mini\" \"read_nb_before\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42359","inv_ctxt":"13"},{"task_id":"27","hash":"13\/37b94c","native_id":"11809","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"final_insertion_files (1)","status":"CACHED","exit":"0","submit":"1649517451877","start":"1649517451940","complete":"1649517466971","duration":"15094","realtime":"12958","%cpu":"39.8","%mem":"0.1","rss":"127500288","vmem":"258732032","peak_rss":"127500288","peak_vmem":"258764800","rchar":"18003744","wchar":"275694","syscr":"2302","syscw":"549","read_bytes":"28325888","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/13\/37b94c10e8ea0dd3e2a107a360e17d","script":"\n    final_insertion_files.R \"test.fastq2_q20_nodup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"6\" \"test.fastq2_q20_nodup\" \"cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27284","inv_ctxt":"11"},{"task_id":"28","hash":"23\/48d601","native_id":"12520","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"final_insertion_files (2)","status":"CACHED","exit":"0","submit":"1649517466998","start":"1649517467072","complete":"1649517482460","duration":"15462","realtime":"13021","%cpu":"39.8","%mem":"0.1","rss":"127520768","vmem":"258723840","peak_rss":"127520768","peak_vmem":"258756608","rchar":"18009229","wchar":"285506","syscr":"2303","syscw":"563","read_bytes":"28325888","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/23\/48d601bd9aa70901c4f07c6555b90c","script":"\n    final_insertion_files.R \"test.fastq2_q20_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"6\" \"test.fastq2_q20_dup\" \"cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27255","inv_ctxt":"16"},{"task_id":"31","hash":"08\/101dfa","native_id":"23264","process":"report3","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report3 (1)","status":"CACHED","exit":"0","submit":"1649631364071","start":"1649631364094","complete":"1649631365539","duration":"1468","realtime":"65","%cpu":"9.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"305829","wchar":"44602","syscr":"275","syscw":"49","read_bytes":"405504","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/08\/101dfacb4777d5793a816180256474","script":"\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Final insertion site files\\n\\n\" > report.rmd\n    echo -e \"\\n\\nSee the [test.fastq2_q20_nodup_annot.pos](.\/files\/test.fastq2_q20_nodup_annot.pos) and [test.fastq2_q20_nodup_annot.freq](.\/files\/test.fastq2_q20_nodup_annot.freq) files\\n\\n\" >> report.rmd\n    pos_nb=$(( $(wc -l test.fastq2_q20_nodup_annot.pos | cut -f1 -d\' \') - 1)) # -1 because first line is the header\n    pos_uniq_nb=$(( $(sort -u test.fastq2_q20_nodup_annot.pos | wc -l | cut -f1 -d\' \') - 1)) # -1 because first line is the header\n    echo -e \"\\n\\nNumber of total positions without duplicates: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n    echo -e \"\\n\\nNumber of different positions without duplicates: $(printf \"%\'d\" ${pos_uniq_nb})\\n\" >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649631360\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"20","hash":"c6\/bef5aa","native_id":"560","process":"motif","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"motif","status":"CACHED","exit":"0","submit":"1649517332488","start":"1649517332563","complete":"1649517378942","duration":"46454","realtime":"42507","%cpu":"42.6","%mem":"0.2","rss":"210448384","vmem":"341352448","peak_rss":"210448384","peak_vmem":"341385216","rchar":"49872281","wchar":"41616533","syscr":"5761","syscw":"34229","read_bytes":"28351488","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c6\/bef5aab063b9c049c73b56dc16a5d0","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n### Motif selected for the random insertions\\n\\n\" > report.rmd\n    echo -e \"\\n\\nThe forward motif is: G[AT]T\\n\\n\" >> report.rmd\n    echo -e \"\\n\\nThe reverse motif is: A[AT]C\\n\\n\" >> report.rmd\n    if [[ G[AT]T != \"NULL\" ]] ; then\n        cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'G[AT]T\' > motif_fw.pos\n        cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'A[AT]C\' > motif_rev.pos\n    else\n        cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_fw.pos\n        cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_rev.pos\n    fi\n    echo -e \"\nINDICATED POSITIONS IN FILES START AT ZERO AND CORRESPOND TO THE FIRST LEFT BASE OF THE MOTIF\n\"\n    motif.R \"motif_fw.pos\" \"motif_rev.pos\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"G[AT]T\" \"A[AT]C\" \"cute_little_R_functions.R\" \"motif_report.txt\" \"report.rmd\"\n\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"56263","inv_ctxt":"515"},{"task_id":"12","hash":"2f\/6c72d5","native_id":"10356","process":"plot_read_length","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_read_length (1)","status":"CACHED","exit":"0","submit":"1649517410093","start":"1649517410161","complete":"1649517438749","duration":"28656","realtime":"26476","%cpu":"53.9","%mem":"0.2","rss":"208457728","vmem":"353968128","peak_rss":"208457728","peak_vmem":"354000896","rchar":"19621130","wchar":"708057","syscr":"4089","syscw":"430","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/2f\/6c72d54a358a5ba24052af31872307","script":"\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n###  Length of initial reads\\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 2: Frequency of reads according to read size (in bp).](.\/figures\/plot_read_length_ini.png){width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n###  Length of reads after selection of attC in 5 prime \\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 3: Frequency of reads according to read size (in bp).](.\/figures\/plot_read_length_fivep_filtering.png){width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n###  Length of reads after trimming \\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 4: Frequency of reads according to read size (in bp).](.\/figures\/plot_read_length_fivep_filtering_cut.png){width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n###  Read length after cut-off\\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 5: Frequency of reads according to read size (in bp).](.\/figures\/plot_read_length_cutoff.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \' > report.rmd\n    plot_read_length.R \"test.fastq2_ini.length\" \"test.fastq2_5pAttc.length\" \"test.fastq2_5pAtccRm.stat\" \"test.fastq2_cutoff.length\" \"cute_little_R_functions.R\" \"plot_read_length_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"44866","inv_ctxt":"18"},{"task_id":"10","hash":"51\/09f085","native_id":"7550","process":"plot_fivep_filtering_stat","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_fivep_filtering_stat (1)","status":"CACHED","exit":"0","submit":"1649517378958","start":"1649517379042","complete":"1649517410062","duration":"31104","realtime":"28457","%cpu":"42.9","%mem":"0.2","rss":"220442624","vmem":"363499520","peak_rss":"220442624","peak_vmem":"363532288","rchar":"19122541","wchar":"811482","syscr":"3774","syscw":"392","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/51\/09f08545d1cb5212f837380cb66f1d","script":"\n    echo -e \"\n\\n\\n<br \/><br \/>\\n\\n###  Base frequencies at the 5\' extremity of reads\\n\\n\n\\n\\n<\/center>\\n\\n\n![Figure 1: Frequency of each base at the 5\' of the reads.](.\/figures\/plot_fivep_filtering_stat.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \" > report.rmd\n    plot_fivep_filtering_stat.R \"test.fastq2_5pAttc_1-51.stat\" \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"cute_little_R_functions.R\" \"plot_fivep_filtering_stat_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"45486","inv_ctxt":"163"},{"task_id":"32","hash":"61\/3abc05","native_id":"17353","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"seq_around_insertion (2)","status":"CACHED","exit":"0","submit":"1649517601464","start":"1649517601588","complete":"1649517616248","duration":"14784","realtime":"12663","%cpu":"40.7","%mem":"0.1","rss":"127565824","vmem":"258732032","peak_rss":"127565824","peak_vmem":"258764800","rchar":"17988623","wchar":"146404","syscr":"2295","syscw":"273","read_bytes":"28199936","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/61\/3abc0565b8de06c8d45f9b4688fe97","script":"\n    seq_around_insertion.R \"test.fastq2_q20_dup_selected_if_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2_q20_dup_selected_if_dup\" \"cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27263","inv_ctxt":"7"},{"task_id":"30","hash":"16\/ef3227","native_id":"15833","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"seq_around_insertion (1)","status":"CACHED","exit":"0","submit":"1649517561578","start":"1649517561650","complete":"1649517576718","duration":"15140","realtime":"12931","%cpu":"40.7","%mem":"0.1","rss":"127676416","vmem":"258727936","peak_rss":"127676416","peak_vmem":"258760704","rchar":"18001648","wchar":"213511","syscr":"2298","syscw":"375","read_bytes":"28199936","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/16\/ef32272c34739f656bad122d66b667","script":"\n    seq_around_insertion.R \"test.fastq2_q20_nodup_selected_if_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2_q20_nodup_selected_if_dup\" \"cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27272","inv_ctxt":"4"},{"task_id":"36","hash":"73\/f0b62e","native_id":"18913","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (1)","status":"CACHED","exit":"0","submit":"1649517644033","start":"1649517644135","complete":"1649517649189","duration":"5156","realtime":"2804","%cpu":"19.6","%mem":"0.0","rss":"10805248","vmem":"57536512","peak_rss":"18477056","peak_vmem":"65474560","rchar":"9503313","wchar":"4763907","syscr":"866","syscw":"3349","read_bytes":"6359040","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/73\/f0b62ecf2ff3b5cf5a16212d9e5cfe","script":"\n    echo -e \"\n\n######## test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed file\n\n\" > extract_seq_report.txt\n    # make a bed file from the reference genome\n    echo \">ref\" > tempo.ref.fasta\n    awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n    bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed -fo \"test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n    rm tempo.ref.fasta\n    rm tempo.ref.fasta.fai\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3829","inv_ctxt":"1"},{"task_id":"35","hash":"52\/691666","native_id":"27108","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (2)","status":"CACHED","exit":"0","submit":"1649517996849","start":"1649517997120","complete":"1649518000598","duration":"3749","realtime":"1457","%cpu":"17.8","%mem":"0.0","rss":"6295552","vmem":"52846592","peak_rss":"6295552","peak_vmem":"52846592","rchar":"9452267","wchar":"4672192","syscr":"860","syscw":"847","read_bytes":"2721792","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/52\/69166677daa4c07a65c8abc0ce22da","script":"\n    echo -e \"\n\n######## test.fastq2_q20_dup_selected_if_dup_around_insertion.bed file\n\n\" > extract_seq_report.txt\n    # make a bed file from the reference genome\n    echo \">ref\" > tempo.ref.fasta\n    awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n    bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_q20_dup_selected_if_dup_around_insertion.bed -fo \"test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n    rm tempo.ref.fasta\n    rm tempo.ref.fasta.fai\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"649","inv_ctxt":"0"},{"task_id":"33","hash":"8b\/74bcbf","native_id":"403","process":"dup_insertion_and_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"dup_insertion_and_logo (1)","status":"COMPLETED","exit":"0","submit":"1649703172046","start":"1649703172061","complete":"1649703184167","duration":"12121","realtime":"10997","%cpu":"64.5","%mem":"0.2","rss":"247107584","vmem":"425803776","peak_rss":"283983872","peak_vmem":"426561536","rchar":"17562590","wchar":"600302","syscr":"3936","syscw":"456","read_bytes":"44530688","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/8b\/74bcbf845d8c1180cbc16b8f011cf9","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Analysis with duplicates\\n\\n\" > report.rmd\n    dup_insertion_and_logo.R \"test.fastq2_q20_dup_annot.freq\" \"test.fastq2_q20_dup_annot_selected.freq\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"dup\" \"20\" \"cute_little_R_functions.R\" \"dup_insertion_and_logo_report.txt\" # logo\n\n    echo -e \"\\n\\nSee the [test.fastq2_q20_dup_selected_if_dup.pos](.\/files\/test.fastq2_q20_dup_selected_if_dup.pos) and [test.fastq2_q20_dup_annot_selected.freq](.\/files\/test.fastq2_q20_dup_annot_selected.freq) files\\n\\n\" >> report.rmd\n    echo -e \"\\n\\nWarning: more than the 6 most frequent used sites can be present in the case of frequency equality\\n\\n\" >> report.rmd\n\n    pos_nb=$(( $(wc -l test.fastq2_q20_dup_annot.pos | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n    echo -e \"\\n\\nNumber of total positions using duplicated reads: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n\n    freq_nb=$(( $(wc -l test.fastq2_q20_dup_annot.freq | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n    echo -e \"\\n\\nNumber of different positions using duplicated reads: $(printf \"%\'d\" ${freq_nb})\\n\" >> report.rmd\n\n    pos_selected_nb=$(wc -l test.fastq2_q20_dup_selected_if_dup.pos | cut -f1 -d\' \')\n    echo -e \"\\n\\nNumber of total positions after selection of the 6 highest used sites: $(printf \"%\'d\" ${pos_selected_nb})\\n\" >> report.rmd\n\n    freq_selected_nb=$(( $(wc -l test.fastq2_q20_dup_annot_selected.freq | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n    echo -e \"\\n\\nNumber of different positions after selection of the 6 highest used sites: $(printf \"%\'d\" ${freq_selected_nb})\\n\" >> report.rmd\n\n    TEMPO=(50000 200000 500000)\n    FIG_NB_BEFORE=$(($(echo ${#TEMPO[@]}) * 2)) # nb of elements in the window size * nb of figure plotted\n    if [[ \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt != \"NULL\" ]] ; then\n        FIG_NB=$(( 34 + $FIG_NB_BEFORE + 1 + 1)) # 2 * because two figures\n    else\n        FIG_NB=$(( 24 + $FIG_NB_BEFORE + 1 + 1))\n    fi\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$FIG_NB\': With duplicates raw insertion frequencies.](.\/figures\/plot_test.fastq2_insertion_dup_raw.png){width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$(echo $(($FIG_NB + 1)))\': Selected sites (6 most used insertion sites).](.\/figures\/plot_test.fastq2_insertion_dup_selected.png){width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$(echo $(($FIG_NB + 2)))\': Insertion site usage (total insertions).](.\/figures\/plot_test.fastq2_insertion_hist_tot_selected.png){width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\nSelected sites with frequencies:\\n\\n\" >> report.rmd\n    echo \"\n\\`\\`\\`{r, echo = FALSE}\ntempo <- read.table(\'.\/files\/test.fastq2_q20_dup_annot_selected.freq\', header = TRUE, colClasses = \'character\', sep = \'\\t\', check.names = FALSE) ; \nkableExtra::kable_styling(knitr::kable(tempo, row.names = TRUE, digits = 0, caption = NULL, format=\'html\'), c(\'striped\', \'bordered\', \'responsive\', \'condensed\'), font_size=10, full_width = FALSE, position = \'left\')\n\\`\\`\\`\n    \n\n\n    \" >> report.rmd\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$(echo $(($FIG_NB + 3)))\': Alignment of the selected sites (click [here](.\/figures\/alignment.html) to extend)](.\/figures\/alignment.html){width=600}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\nWarning: the frequency of each position is taken into account in the logo plot\\n\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$(echo $(($FIG_NB + 4)))\': With duplicates test.fastq2 global logo on selected sites](.\/figures\/global_logo_dup_test.fastq2.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"43393","inv_ctxt":"8"},{"task_id":"41","hash":"49\/575b96","native_id":"27342","process":"goalign","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-goalign-v0.3.5.img","tag":"-","name":"goalign (1)","status":"CACHED","exit":"0","submit":"1649518000735","start":"1649518000798","complete":"1649518007039","duration":"6304","realtime":"2873","%cpu":"13.2","%mem":"0.0","rss":"14262272","vmem":"734232576","peak_rss":"14262272","peak_vmem":"734240768","rchar":"131211","wchar":"356117","syscr":"276","syscw":"108","read_bytes":"3862528","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/49\/575b963f7bb8fe6e513f1f993e68d2","script":"\n    # Remove duplicated data in a fasta file according to duplicated header\n    awk \'\n        \/^>\/{f=!d[$1];d[$1]=1}f\n    \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > tempo\n\n    # split the fasta file according to forward or reverse sequences\n    PATTERN=\'LEADING_16|LAGGING_16\'\n    awk -v var1=$PATTERN \'\n        BEGIN{ORS=\"\\n\"}\n        {lineKind=(NR-1)%2}\n        lineKind==0{record=$0 ; next}\n        lineKind==1{\n            toGet=(record ~ var1)\n            if(toGet){\n                print record > \"reverse.fasta\"\n                print $0 > \"reverse.fasta\"\n            }else{\n                print record > \"forward.fasta\"\n                print $0 > \"forward.fasta\"\n            }\n            next\n        }\n    \' tempo\n\n    # Goalign\n    if [ -s reverse.fasta ] ; then\n        goalign revcomp --unaligned -i reverse.fasta -o tempo2 # rev-comp the 16 sequences\n        cat forward.fasta tempo2 > final.fasta\n    else # we cannot have neither reverse nor forward\n        cp forward.fasta final.fasta\n    fi\n    # add a hyphen before or after the sequence, to have correct alignment\n    awk -v var1=$PATTERN \'\n        BEGIN{ORS=\"\\n\"}\n        {lineKind=(NR-1)%2}\n        lineKind==0{record=$0 ; print $0 ; next}\n        lineKind==1{\n            toGet=(record ~ var1)\n            if(toGet){\n                print \"-\"$0 ; next\n            }else{\n                print $0\"-\" ; next\n            }\n        }\n    \' final.fasta > tempo3\n    goalign draw biojs --auto-detect -i tempo3 -o alignment.html |& tee -a goalign_report.txt\n    ","scratch":"-","queue":"-","cpus":"12","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3223","inv_ctxt":"2"},{"task_id":"37","hash":"35\/ec05ea","native_id":"19358","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (1)","status":"CACHED","exit":"0","submit":"1649517649698","start":"1649517649791","complete":"1649517654517","duration":"4819","realtime":"396","%cpu":"10.0","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"286518","wchar":"17181","syscr":"526","syscw":"46","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/35\/ec05ea9f6b312a191057dce3bb593d","script":"\n    # file splitting into seq\n    awk -v var1=LEADING_0 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"45","hash":"b4\/c8c939","native_id":"27489","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (8)","status":"CACHED","exit":"0","submit":"1649518001036","start":"1649518001118","complete":"1649518005804","duration":"4768","realtime":"201","%cpu":"9.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"184866","wchar":"7118","syscr":"328","syscw":"27","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b4\/c8c93938121f441e49b361efe8f001","script":"\n    # file splitting into seq\n    awk -v var1=LAGGING_16 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"38","hash":"ac\/24a1a8","native_id":"19211","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (2)","status":"CACHED","exit":"0","submit":"1649517649332","start":"1649517649389","complete":"1649517654136","duration":"4804","realtime":"399","%cpu":"11.1","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288657","wchar":"19344","syscr":"530","syscw":"50","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ac\/24a1a84c8dccc7d267164f15a6a0dd","script":"\n    # file splitting into seq\n    awk -v var1=LEADING_16 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"42","hash":"e7\/c17b46","native_id":"27448","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (5)","status":"CACHED","exit":"0","submit":"1649518001008","start":"1649518001099","complete":"1649518005653","duration":"4645","realtime":"197","%cpu":"9.7","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"186870","wchar":"9131","syscr":"332","syscw":"31","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e7\/c17b4628d9b5cfa9de18551ae5efa8","script":"\n    # file splitting into seq\n    awk -v var1=LEADING_0 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"40","hash":"f0\/df4b99","native_id":"19278","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (4)","status":"CACHED","exit":"0","submit":"1649517649523","start":"1649517649590","complete":"1649517654353","duration":"4830","realtime":"432","%cpu":"11.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288822","wchar":"19500","syscr":"531","syscw":"51","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f0\/df4b990558220e25f113d0cfeac3ea","script":"\n    # file splitting into seq\n    awk -v var1=LAGGING_16 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"44","hash":"24\/882b89","native_id":"27418","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (7)","status":"CACHED","exit":"0","submit":"1649518000971","start":"1649518000999","complete":"1649518005740","duration":"4769","realtime":"172","%cpu":"9.8","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"180638","wchar":"2832","syscr":"319","syscw":"18","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/24\/882b89ee5e23a0484fa80121a46044","script":"\n    # file splitting into seq\n    awk -v var1=LAGGING_0 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"39","hash":"3c\/c2beee","native_id":"19315","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (3)","status":"CACHED","exit":"0","submit":"1649517649606","start":"1649517649691","complete":"1649517654451","duration":"4845","realtime":"426","%cpu":"11.9","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"289470","wchar":"20168","syscr":"532","syscw":"52","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3c\/c2beee63bd2a590f3d93228009f675","script":"\n    # file splitting into seq\n    awk -v var1=LAGGING_0 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"43","hash":"63\/faaafa","native_id":"28010","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (6)","status":"CACHED","exit":"0","submit":"1649518005691","start":"1649518005866","complete":"1649518008672","duration":"2981","realtime":"109","%cpu":"11.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"183021","wchar":"5250","syscr":"324","syscw":"23","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/63\/faaafa410111d32d4fa1a81f842bfa","script":"\n    # file splitting into seq\n    awk -v var1=LEADING_16 \'\n        {lineKind=(NR-1)%2}\n        lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n        lineKind==1{if(toGet){print $0}}\n        \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq |& tee base_freq_report.txt\n    # ATGC contingency\n    gawk \'{\n        L=length($0);\n        for(i=1;i<=L;i++) {\n            B=substr($0,i,1);\n            T[i][B]++;\n        }\n      }\n      END{\n            for(BI=0;BI<5;BI++) {\n                B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n                printf(\"%s\",B); \n                for(i in T) {\n                    tot=0.0;\n                    for(B2 in T[i]){\n                        tot+=T[i][B2];\n                    }\n                printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n                } \n            printf(\"\\n\");\n            }\n    }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat |& tee base_freq_report.txt\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"50","hash":"71\/fcd5ac","native_id":"28454","process":"report2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report2","status":"CACHED","exit":"0","submit":"1649518009697","start":"1649518009773","complete":"1649518012408","duration":"2711","realtime":"45","%cpu":"5.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"135292","wchar":"2465","syscr":"248","syscw":"103","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/71\/fcd5ac705daf0d2c90e84a7d3a87f3","script":"\n    echo -e \"\n\\n\\n<br \/><br \/>\\n\\n###  Logos\\n\\n\n\\n\\nIn each sequence of length $((20 * 2)) <br \/>position $((20 + 1)) corresponds to the first nucleotide of the reference genome part of the read\n\" > report.rmd\n    count=0 # always goes to 4 because 4 figures, one for each forward\/reverse leading\/lagging\n    for i in $(echo [test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0] | sed \'s\/^\\[\/\/\' | sed \'s\/\\]$\/\/\' | sed \'s\/,\/\/g\') ; do\n        echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$((9 + $count))\': \'${i}\'](.\/figures\/logo_\'${i}\'.png){width=600}\n\\n\\n<\/center>\\n\\n\n        \' >> report.rmd\n        count=$((count + 1))\n    done\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 13: test.fastq2 global logo](.\/figures\/global_logo_nodup_test.fastq2.png){width=600}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"34","hash":"34\/a909b8","native_id":"18724","process":"random_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"random_insertion (1)","status":"CACHED","exit":"0","submit":"1649699456918","start":"1649699456985","complete":"1649699466417","duration":"9499","realtime":"8510","%cpu":"57.3","%mem":"0.3","rss":"368607232","vmem":"511221760","peak_rss":"368607232","peak_vmem":"511254528","rchar":"31432716","wchar":"1296711","syscr":"5927","syscw":"1485","read_bytes":"35685376","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/34\/a909b82f7c0fa1fec6a1b178946ae2","script":"\n    random_insertion.R \"test.fastq2_q20_nodup_annot.pos\" \"motif_sites.pos\" \"2320711 2320942\" \"4627368 4627400\" \"G[AT]T\" \"4641652\" \"test.fastq2\" \"cute_little_R_functions.R\" \"random_insertion_report.txt\"\n\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n### Random insertion sites\\n\\n\" > report.rmd\n    echo -e \"\\n\\n#### Insertion site counts\\n\\n\" >> report.rmd\n    echo -e \"\\n\\nSee the [random_insertion_report.txt](.\/reports\/random_insertion_report.txt) file for details, notably the number of random sites (which should be the same as the number of observed sites)\\n\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 14: Number of motifs insertion per fork](.\/figures\/plot_motif_insertion_per_fork.png){width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 15: Number of motifs insertion per strand](.\/figures\/plot_motif_insertion_per_strand.png){width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 16: Number of motifs insertion per strand](.\/figures\/plot_motif_insertion_per_fork_and_strand.png){width=400}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Insertion site proportions\\n\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 17: Proportion of motifs insertion per fork](.\/figures\/plot_motif_insertion_per_fork_prop.png){width=500}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 18: Proportion of motifs insertion per strand](.\/figures\/plot_motif_insertion_per_strand_prop.png){width=500}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure 19: Proportion of motifs insertion per strand](.\/figures\/plot_motif_insertion_per_fork_and_strand_prop.png){width=500}\n\\n\\n<\/center>\\n\\n\n    \' >> report.rmd\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649699453\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"39640","inv_ctxt":"20"},{"task_id":"46","hash":"12\/8d4218","native_id":"30389","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (4)","status":"CACHED","exit":"0","submit":"1649518055457","start":"1649518055529","complete":"1649518072378","duration":"16921","realtime":"14779","%cpu":"44.2","%mem":"0.1","rss":"125968384","vmem":"307650560","peak_rss":"125968384","peak_vmem":"307683328","rchar":"14488278","wchar":"1026153","syscr":"2474","syscw":"334","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/12\/8d42187c499a07e1b2854cb1783557","script":"\n    logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"26386","inv_ctxt":"6"},{"task_id":"47","hash":"49\/98147b","native_id":"27326","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (1)","status":"CACHED","exit":"0","submit":"1649518000631","start":"1649518000698","complete":"1649518021750","duration":"21119","realtime":"17706","%cpu":"38.5","%mem":"0.1","rss":"142135296","vmem":"285728768","peak_rss":"176672768","peak_vmem":"321765376","rchar":"14488308","wchar":"873213","syscr":"2474","syscw":"314","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/49\/98147bec76c1caa3b8cf85164cb6b1","script":"\n    logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"30254","inv_ctxt":"601"},{"task_id":"48","hash":"20\/686354","native_id":"28980","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (2)","status":"CACHED","exit":"0","submit":"1649518021775","start":"1649518021849","complete":"1649518038231","duration":"16456","realtime":"14490","%cpu":"44.4","%mem":"0.1","rss":"129908736","vmem":"311144448","peak_rss":"129908736","peak_vmem":"311177216","rchar":"14488301","wchar":"904086","syscr":"2474","syscw":"316","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/20\/6863545e9b2fd0bd51b448b5219110","script":"\n    logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"26525","inv_ctxt":"6"},{"task_id":"49","hash":"d7\/09132f","native_id":"29683","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (3)","status":"CACHED","exit":"0","submit":"1649518038258","start":"1649518038331","complete":"1649518055429","duration":"17171","realtime":"15098","%cpu":"43.2","%mem":"0.1","rss":"123715584","vmem":"271429632","peak_rss":"123715584","peak_vmem":"271462400","rchar":"14488313","wchar":"894424","syscr":"2474","syscw":"314","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d7\/09132fb6c80831584aaec35d37e3d9","script":"\n    logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"25754","inv_ctxt":"3"},{"task_id":"51","hash":"6d\/f8b929","native_id":"31807","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"global_logo (1)","status":"CACHED","exit":"0","submit":"1649518090164","start":"1649518090253","complete":"1649518107759","duration":"17595","realtime":"15576","%cpu":"46.3","%mem":"0.1","rss":"122327040","vmem":"266919936","peak_rss":"122327040","peak_vmem":"266952704","rchar":"14497087","wchar":"867376","syscr":"2488","syscw":"311","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/6d\/f8b92904090b1f68582fc5640c92e5","script":"\n    global_logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat\" \"test.fastq2\" \"20\" \"cute_little_R_functions.R\" \"global_logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"24904","inv_ctxt":"5"},{"task_id":"52","hash":"e9\/9bbb1e","native_id":"31094","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"global_logo (2)","status":"CACHED","exit":"0","submit":"1649518072403","start":"1649518072478","complete":"1649518090138","duration":"17735","realtime":"15591","%cpu":"46.4","%mem":"0.1","rss":"122126336","vmem":"267714560","peak_rss":"122126336","peak_vmem":"267747328","rchar":"14496507","wchar":"990822","syscr":"2488","syscw":"331","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e9\/9bbb1ef3d79cf349635852b4413b30","script":"\n    global_logo.R \"test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat\" \"test.fastq2\" \"20\" \"cute_little_R_functions.R\" \"global_logo_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"25009","inv_ctxt":"4"},{"task_id":"53","hash":"f8\/d685f3","native_id":"1420","process":"plot_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_insertion (1)","status":"COMPLETED","exit":"0","submit":"1649703184174","start":"1649703184268","complete":"1649703424377","duration":"240203","realtime":"239503","%cpu":"35.7","%mem":"0.4","rss":"413442048","vmem":"572653568","peak_rss":"414097408","peak_vmem":"572731392","rchar":"46946944","wchar":"23740340","syscr":"34549","syscw":"18913","read_bytes":"53133312","write_bytes":"450560","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f8\/d685f3eec85cf489de186325f95b3e","script":"\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Insertion plots\\n\\n\" > report.rmd\n    plot_insertion.R \"obs_rd_insertions.pos\" \"obs_rd_insertions.freq\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/Essential_genes_MG1655.tsv\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/cds_ORI_CENTERED.txt\" \"2320711 2320942\" \"4627368 4627400\" \"Ecoli Genome (bp)\" \"4641652\" \"0.88\" \"0.08\" \"50000 200000 500000\" \"100\" \"test.fastq2\" \"12\" \"cute_little_R_functions.R\" \"plot_insertion_report.txt\"\n    echo -e \"\\n\\n####  Histograms\\n\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<\/center>\\n\\n\n![Figure 20: Insertion site usage (total insertions).](.\/figures\/plot_test.fastq2_insertion_hist_tot.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure 21: Insertion site usage zoomed for sites with few insertions (total insertions).](.\/figures\/plot_test.fastq2_insertion_hist_tot_zoom.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure 22: Insertion site usage (forward strand).](.\/figures\/plot_test.fastq2_insertion_hist_forward.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure 23: Insertion site usage (reverse strand).](.\/figures\/plot_test.fastq2_insertion_hist_reverse.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n####  Raw frequencies\\n\\n\" >> report.rmd\n    echo -e \"\\n\\nSee the CL Labbook section 24.7.3 to explain the limitation around 100 bp\\n\" >> report.rmd\n    echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure 24: Raw insertion frequencies.](.\/figures\/plot_test.fastq2_insertion_raw.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n    \' >> report.rmd\n    echo -e \"\\n\\n<br \/><br \/>\\n\\n####  Binned frequencies\\n\\n\" >> report.rmd\n    count=1\n    for i in 50000 200000 500000 ; do\n        echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$((24 + $count))\': frequencies using the binning range of \'$(printf \"%\'d\" ${i})\'](.\/figures\/plot_test.fastq2_insertion_bin_\'${i}\'.png){width=600}\n\\n\\n<\/center>\\n\\n\n        \' >> report.rmd\n        count=$((count + 1))\n        echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n![Figure \'$((24 + $count))\': frequencies using the binning range of \'$(printf \"%\'d\" ${i})\'](.\/figures\/plot_test.fastq2_lead_lag_insertion_bin_\'${i}\'.png){width=600}\n\\n\\n<\/center>\\n\\n\n        \' >> report.rmd\n        count=$((count + 1))\n    done\n    if [[ \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt != \"NULL\" ]] ; then\n        echo -e \"\\n\\n<br \/><br \/>\\n\\n###  Transcription start site (TSS) plots\\n\\n\" >> report.rmd\n        echo -e \"\\n\\nSee the CL Labbook section 48.3 to to get the theoretical proportion of the codant\/non codant essential\/non essential genome\\n\\nSee the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details about the plotted values.\" >> report.rmd\n        echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((24 + $count))\': Promoters per gene.](.\/figures\/plot_test.fastq2_promoter_per_genes.png){width=400}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((25 + $count))\': Distance from TSS.](.\/figures\/hist_test.fastq2_tss_distance_freq.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((26 + $count))\': Distance from TSS and Normal Law.](.\/figures\/hist_test.fastq2_tss_distance_freq_Nlaw.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n            \\n\\n<br \/><br \/>\\n\\nThe number of insertions sites are indicated above graphs.\\n\\n\n![Figure \'$((27 + $count))\': Insertion relative to TSS.](.\/figures\/boxplot_test.fastq2_tss.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((28 + $count))\': Insertion relative to TSS without unknown.](.\/figures\/boxplot_test.fastq2_tss_wo_unknown.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n            \\n\\n<br \/><br \/>\\n\\n###  Coding sequences (CDS) plots\\n\\nThe number of insertions sites inside CDS are indicated above graphs.\\n\\nSee the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details about the plotted values.\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((29 + $count))\': Insertion relative to CDS.](.\/figures\/boxplot_test.fastq2_cds.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((30 + $count))\': Insertion relative to CDS without unknown.](.\/figures\/boxplot_test.fastq2_cds_wo_unknown.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n            \\n\\nWarning: the number of observed and random insertions indicated above graphs can be greater than those indicated above Figure \'$((28 + $count))\', since a position that overlaps two genes is counted twice (see the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details).\\n\\n\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((31 + $count))\': Insertion per class of CDS.](.\/figures\/barplot_test.fastq2_all.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((32 + $count))\': Kind of insertion relative to CDS.](.\/figures\/barplot_test.fastq2_all_relative.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((33 + $count))\': Kind of insertion relative to CDS.](.\/figures\/barplot_test.fastq2_inside_outside.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n![Figure \'$((34 + $count))\': Kind of insertion relative to CDS.](.\/figures\/barplot_test.fastq2_ess_uness.png){width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n        \' >> report.rmd\n    fi\n    ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"99826","inv_ctxt":"165"},{"task_id":"54","hash":"ac\/8ffc76","native_id":"7745","process":"print_report","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"print_report (1)","status":"COMPLETED","exit":"0","submit":"1649703425043","start":"1649703425078","complete":"1649703435217","duration":"10174","realtime":"9314","%cpu":"45.4","%mem":"0.2","rss":"279404544","vmem":"1100166922240","peak_rss":"279404544","peak_vmem":"1100167069696","rchar":"54377295","wchar":"27580275","syscr":"7160","syscw":"2194","read_bytes":"48487424","write_bytes":"4096","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ac\/8ffc760018645c1fbeb583ce7f83d2","script":"\n    cp report.rmd report_file.rmd # this is to get hard files, not symlinks\n    mkdir figures\n    mkdir files\n    mkdir reports\n    cat stat_tempo > .\/files\/test.fastq2_5pAttc_1-51.stat # this is to get hard files, not symlinks\n    cp head.fw.txt head.rv.txt table1.txt table2.txt table3.txt table4.txt table8.txt test.fastq2_q20_dup_annot_selected.freq .\/files\/ # this is to get hard files, not symlinks\n    cp plot_fivep_filtering_stat.png plot_read_length_cutoff.png plot_read_length_fivep_filtering.png plot_read_length_fivep_filtering_cut.png plot_read_length_ini.png plot_test.fastq2_q20_dup_mini.png plot_test.fastq2_q20_nodup_mini.png plot_test.fastq2_bowtie2_mini.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png global_logo_nodup_test.fastq2.png global_logo_dup_test.fastq2.png plot_motif_insertion_per_fork.png plot_motif_insertion_per_fork_and_strand.png plot_motif_insertion_per_fork_and_strand_prop.png plot_motif_insertion_per_fork_prop.png plot_motif_insertion_per_strand.png plot_motif_insertion_per_strand_prop.png barplot_test.fastq2_all.png barplot_test.fastq2_all_relative.png barplot_test.fastq2_ess_uness.png barplot_test.fastq2_inside_outside.png boxplot_test.fastq2_cds.png boxplot_test.fastq2_cds_wo_unknown.png boxplot_test.fastq2_tss.png boxplot_test.fastq2_tss_wo_unknown.png hist_test.fastq2_tss_distance_freq.png hist_test.fastq2_tss_distance_freq_Nlaw.png plot_test.fastq2_insertion_bin_200000.png plot_test.fastq2_insertion_bin_50000.png plot_test.fastq2_insertion_bin_500000.png plot_test.fastq2_insertion_hist_forward.png plot_test.fastq2_insertion_hist_reverse.png plot_test.fastq2_insertion_hist_tot.png plot_test.fastq2_insertion_hist_tot_zoom.png plot_test.fastq2_insertion_raw.png plot_test.fastq2_lead_lag_insertion_bin_200000.png plot_test.fastq2_lead_lag_insertion_bin_50000.png plot_test.fastq2_lead_lag_insertion_bin_500000.png plot_test.fastq2_promoter_per_genes.png alignment.html plot_test.fastq2_insertion_dup_raw.png plot_test.fastq2_insertion_dup_selected.png plot_test.fastq2_insertion_hist_tot_selected.png .\/figures\/ # Warning several files\n    cp plot_fivep_filtering_stat.png .\/reports\/nf_dag.png # trick to delude the knitting during the print report\n    cp multiqc_report.html .\/reports\/ # this is to get hard files from html from multiqc_ch, not symlinks\n    print_report.R \"cute_little_R_functions.R\" \"report_file.rmd\" \"print_report.txt\"\n    ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42211","inv_ctxt":"24"}], "summary":[{"cpuUsage":{"mean":37.7,"min":37.7,"q1":37.7,"q2":37.7,"q3":37.7,"max":37.7,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"process":"Nremove","mem":{"mean":12468224,"min":12468224,"q1":12468224,"q2":12468224,"q3":12468224,"max":12468224,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"memUsage":{"mean":0.39,"min":0.39,"q1":0.39,"q2":0.39,"q3":0.39,"max":0.39,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"timeUsage":null,"vmem":{"mean":74002432,"min":74002432,"q1":74002432,"q2":74002432,"q3":74002432,"max":74002432,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"reads":{"mean":17604799,"min":17604799,"q1":17604799,"q2":17604799,"q3":17604799,"max":17604799,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"cpu":{"mean":37.7,"min":37.7,"q1":37.7,"q2":37.7,"q3":37.7,"max":37.7,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"time":{"mean":1273,"min":1273,"q1":1273,"q2":1273,"q3":1273,"max":1273,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"writes":{"mean":15167118,"min":15167118,"q1":15167118,"q2":15167118,"q3":15167118,"max":15167118,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"}},{"cpuUsage":{"mean":6.6,"min":6.6,"q1":6.6,"q2":6.6,"q3":6.6,"max":6.6,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"process":"report1","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106909,"min":106909,"q1":106909,"q2":106909,"q3":106909,"max":106909,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"cpu":{"mean":6.6,"min":6.6,"q1":6.6,"q2":6.6,"q3":6.6,"max":6.6,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"time":{"mean":85,"min":85,"q1":85,"q2":85,"q3":85,"max":85,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"writes":{"mean":684,"min":684,"q1":684,"q2":684,"q3":684,"max":684,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"}},{"cpuUsage":{"mean":44.5,"min":44.5,"q1":44.5,"q2":44.5,"q3":44.5,"max":44.5,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"process":"trim","mem":{"mean":66617344,"min":66617344,"q1":66617344,"q2":66617344,"q3":66617344,"max":66617344,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"memUsage":{"mean":2.07,"min":2.07,"q1":2.07,"q2":2.07,"q3":2.07,"max":2.07,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"timeUsage":null,"vmem":{"mean":5970448384,"min":5970448384,"q1":5970448384,"q2":5970448384,"q3":5970448384,"max":5970448384,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"reads":{"mean":17145211,"min":17145211,"q1":17145211,"q2":17145211,"q3":17145211,"max":17145211,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"cpu":{"mean":44.5,"min":44.5,"q1":44.5,"q2":44.5,"q3":44.5,"max":44.5,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"time":{"mean":7348,"min":7348,"q1":7348,"q2":7348,"q3":7348,"max":7348,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"writes":{"mean":12629480,"min":12629480,"q1":12629480,"q2":12629480,"q3":12629480,"max":12629480,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"}},{"cpuUsage":{"mean":81.6,"min":81.6,"q1":81.6,"q2":81.6,"q3":81.6,"max":81.6,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"process":"kraken","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":154429,"min":154429,"q1":154429,"q2":154429,"q3":154429,"max":154429,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"cpu":{"mean":81.6,"min":81.6,"q1":81.6,"q2":81.6,"q3":81.6,"max":81.6,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"time":{"mean":34,"min":34,"q1":34,"q2":34,"q3":34,"max":34,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"writes":{"mean":220,"min":220,"q1":220,"q2":220,"q3":220,"max":220,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"}},{"cpuUsage":{"mean":27.1,"min":27.1,"q1":27.1,"q2":27.1,"q3":27.1,"max":27.1,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"process":"fivep_filtering","mem":{"mean":12136448,"min":12136448,"q1":12136448,"q2":12136448,"q3":12136448,"max":12136448,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"memUsage":{"mean":0.38,"min":0.38,"q1":0.38,"q2":0.38,"q3":0.38,"max":0.38,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"timeUsage":null,"vmem":{"mean":70533120,"min":70533120,"q1":70533120,"q2":70533120,"q3":70533120,"max":70533120,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"reads":{"mean":29337231,"min":29337231,"q1":29337231,"q2":29337231,"q3":29337231,"max":29337231,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"cpu":{"mean":27.1,"min":27.1,"q1":27.1,"q2":27.1,"q3":27.1,"max":27.1,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"time":{"mean":6176,"min":6176,"q1":6176,"q2":6176,"q3":6176,"max":6176,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"writes":{"mean":16061720,"min":16061720,"q1":16061720,"q2":16061720,"q3":16061720,"max":16061720,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"}},{"cpuUsage":{"mean":52,"min":52,"q1":52,"q2":52,"q3":52,"max":52,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"process":"fastqc1","mem":{"mean":173256704,"min":173256704,"q1":173256704,"q2":173256704,"q3":173256704,"max":173256704,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3342663680,"min":3342663680,"q1":3342663680,"q2":3342663680,"q3":3342663680,"max":3342663680,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"reads":{"mean":14605630,"min":14605630,"q1":14605630,"q2":14605630,"q3":14605630,"max":14605630,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"cpu":{"mean":52,"min":52,"q1":52,"q2":52,"q3":52,"max":52,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"time":{"mean":17027,"min":17027,"q1":17027,"q2":17027,"q3":17027,"max":17027,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"writes":{"mean":1278924,"min":1278924,"q1":1278924,"q2":1278924,"q3":1278924,"max":1278924,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"}},{"cpuUsage":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"process":"cutoff","mem":{"mean":10223616,"min":10223616,"q1":10223616,"q2":10223616,"q3":10223616,"max":10223616,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"memUsage":{"mean":0.32,"min":0.32,"q1":0.32,"q2":0.32,"q3":0.32,"max":0.32,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"timeUsage":null,"vmem":{"mean":64237568,"min":64237568,"q1":64237568,"q2":64237568,"q3":64237568,"max":64237568,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"reads":{"mean":7308009,"min":7308009,"q1":7308009,"q2":7308009,"q3":7308009,"max":7308009,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"cpu":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"time":{"mean":988,"min":988,"q1":988,"q2":988,"q3":988,"max":988,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"writes":{"mean":4049154,"min":4049154,"q1":4049154,"q2":4049154,"q3":4049154,"max":4049154,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"}},{"cpuUsage":{"mean":69.2,"min":69.2,"q1":69.2,"q2":69.2,"q3":69.2,"max":69.2,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"process":"fastqc2","mem":{"mean":184655872,"min":184655872,"q1":184655872,"q2":184655872,"q3":184655872,"max":184655872,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3289899008,"min":3289899008,"q1":3289899008,"q2":3289899008,"q3":3289899008,"max":3289899008,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"reads":{"mean":12768081,"min":12768081,"q1":12768081,"q2":12768081,"q3":12768081,"max":12768081,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"cpu":{"mean":69.2,"min":69.2,"q1":69.2,"q2":69.2,"q3":69.2,"max":69.2,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"time":{"mean":12798,"min":12798,"q1":12798,"q2":12798,"q3":12798,"max":12798,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"writes":{"mean":1245410,"min":1245410,"q1":1245410,"q2":1245410,"q3":1245410,"max":1245410,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"}},{"cpuUsage":{"mean":3.38,"min":3.38,"q1":3.38,"q2":3.38,"q3":3.38,"max":3.38,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"process":"bowtie2","mem":{"mean":120336384,"min":120336384,"q1":120336384,"q2":120336384,"q3":120336384,"max":120336384,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"memUsage":{"mean":0.7,"min":0.7,"q1":0.7,"q2":0.7,"q3":0.7,"max":0.7,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"timeUsage":null,"vmem":{"mean":251154432,"min":251154432,"q1":251154432,"q2":251154432,"q3":251154432,"max":251154432,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"reads":{"mean":36678363,"min":36678363,"q1":36678363,"q2":36678363,"q3":36678363,"max":36678363,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"cpu":{"mean":40.6,"min":40.6,"q1":40.6,"q2":40.6,"q3":40.6,"max":40.6,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"time":{"mean":9333,"min":9333,"q1":9333,"q2":9333,"q3":9333,"max":9333,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"writes":{"mean":17009938,"min":17009938,"q1":17009938,"q2":17009938,"q3":17009938,"max":17009938,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"}},{"cpuUsage":{"mean":17.8,"min":17.8,"q1":17.8,"q2":17.8,"q3":17.8,"max":17.8,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"process":"Q20","mem":{"mean":4722688,"min":4722688,"q1":4722688,"q2":4722688,"q3":4722688,"max":4722688,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"memUsage":{"mean":0.44,"min":0.44,"q1":0.44,"q2":0.44,"q3":0.44,"max":0.44,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"timeUsage":null,"vmem":{"mean":44834816,"min":44834816,"q1":44834816,"q2":44834816,"q3":44834816,"max":44834816,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"reads":{"mean":3392035,"min":3392035,"q1":3392035,"q2":3392035,"q3":3392035,"max":3392035,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"cpu":{"mean":17.8,"min":17.8,"q1":17.8,"q2":17.8,"q3":17.8,"max":17.8,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"time":{"mean":707,"min":707,"q1":707,"q2":707,"q3":707,"max":707,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"writes":{"mean":2260606,"min":2260606,"q1":2260606,"q2":2260606,"q3":2260606,"max":2260606,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"}},{"cpuUsage":{"mean":1.59,"min":1.53,"q1":1.56,"q2":1.59,"q3":1.62,"max":1.65,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"process":"coverage","mem":{"mean":45603498.67,"min":45502464,"q1":45551616,"q2":45600768,"q3":45654016,"max":45707264,"minLabel":"coverage (1)","maxLabel":"coverage (2)","q1Label":"coverage (1)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"memUsage":{"mean":0.07,"min":0.07,"q1":0.07,"q2":0.07,"q3":0.07,"max":0.07,"minLabel":"coverage (1)","maxLabel":"coverage (2)","q1Label":"coverage (1)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"timeUsage":null,"vmem":{"mean":83996672,"min":83996672,"q1":83996672,"q2":83996672,"q3":83996672,"max":83996672,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"reads":{"mean":383974.33,"min":317679,"q1":330370,"q2":343061,"q3":417122,"max":491183,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"cpu":{"mean":19.07,"min":18.3,"q1":18.7,"q2":19.1,"q3":19.45,"max":19.8,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"time":{"mean":1918.67,"min":1845,"q1":1878,"q2":1911,"q3":1955.5,"max":2000,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"writes":{"mean":87175.33,"min":84031,"q1":84189,"q2":84347,"q3":88747.5,"max":93148,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"}},{"cpuUsage":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"process":"no_soft_clipping","mem":{"mean":5394432,"min":5394432,"q1":5394432,"q2":5394432,"q3":5394432,"max":5394432,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"memUsage":{"mean":0.5,"min":0.5,"q1":0.5,"q2":0.5,"q3":0.5,"max":0.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"timeUsage":null,"vmem":{"mean":60452864,"min":60452864,"q1":60452864,"q2":60452864,"q3":60452864,"max":60452864,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"reads":{"mean":2188565,"min":2188565,"q1":2188565,"q2":2188565,"q3":2188565,"max":2188565,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"cpu":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"time":{"mean":1228,"min":1228,"q1":1228,"q2":1228,"q3":1228,"max":1228,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"writes":{"mean":1583809,"min":1583809,"q1":1583809,"q2":1583809,"q3":1583809,"max":1583809,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"}},{"cpuUsage":{"mean":36.5,"min":36.5,"q1":36.5,"q2":36.5,"q3":36.5,"max":36.5,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"process":"multiQC","mem":{"mean":74149888,"min":74149888,"q1":74149888,"q2":74149888,"q3":74149888,"max":74149888,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"memUsage":null,"timeUsage":null,"vmem":{"mean":85012480,"min":85012480,"q1":85012480,"q2":85012480,"q3":85012480,"max":85012480,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"reads":{"mean":29716377,"min":29716377,"q1":29716377,"q2":29716377,"q3":29716377,"max":29716377,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"cpu":{"mean":36.5,"min":36.5,"q1":36.5,"q2":36.5,"q3":36.5,"max":36.5,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"time":{"mean":23000,"min":23000,"q1":23000,"q2":23000,"q3":23000,"max":23000,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"writes":{"mean":2404869,"min":2404869,"q1":2404869,"q2":2404869,"q3":2404869,"max":2404869,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"}},{"cpuUsage":{"mean":24.6,"min":24.6,"q1":24.6,"q2":24.6,"q3":24.6,"max":24.6,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"process":"duplicate_removal","mem":{"mean":13029376,"min":13029376,"q1":13029376,"q2":13029376,"q3":13029376,"max":13029376,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"memUsage":{"mean":1.21,"min":1.21,"q1":1.21,"q2":1.21,"q3":1.21,"max":1.21,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"timeUsage":null,"vmem":{"mean":89198592,"min":89198592,"q1":89198592,"q2":89198592,"q3":89198592,"max":89198592,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"reads":{"mean":13491677,"min":13491677,"q1":13491677,"q2":13491677,"q3":13491677,"max":13491677,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"cpu":{"mean":24.6,"min":24.6,"q1":24.6,"q2":24.6,"q3":24.6,"max":24.6,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"time":{"mean":6625,"min":6625,"q1":6625,"q2":6625,"q3":6625,"max":6625,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"writes":{"mean":6912516,"min":6912516,"q1":6912516,"q2":6912516,"q3":6912516,"max":6912516,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"}},{"cpuUsage":{"mean":20,"min":19.6,"q1":19.8,"q2":20,"q3":20.2,"max":20.4,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"process":"insertion","mem":{"mean":8896512,"min":8163328,"q1":8529920,"q2":8896512,"q3":9263104,"max":9629696,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"memUsage":{"mean":0.83,"min":0.76,"q1":0.79,"q2":0.83,"q3":0.86,"max":0.9,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"timeUsage":null,"vmem":{"mean":68841472,"min":68775936,"q1":68808704,"q2":68841472,"q3":68874240,"max":68907008,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"reads":{"mean":2878380,"min":2614607,"q1":2746493.5,"q2":2878380,"q3":3010266.5,"max":3142153,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"cpu":{"mean":20,"min":19.6,"q1":19.8,"q2":20,"q3":20.2,"max":20.4,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"time":{"mean":2367.5,"min":2260,"q1":2313.75,"q2":2367.5,"q3":2421.25,"max":2475,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"writes":{"mean":2072362.5,"min":1832311,"q1":1952336.75,"q2":2072362.5,"q3":2192388.25,"max":2312414,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"}},{"cpuUsage":{"mean":49.33,"min":49.2,"q1":49.25,"q2":49.3,"q3":49.4,"max":49.5,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"process":"plot_coverage","mem":{"mean":224164522.67,"min":220262400,"q1":222949376,"q2":225636352,"q3":226115584,"max":226594816,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"memUsage":{"mean":0.33,"min":0.32,"q1":0.32,"q2":0.33,"q3":0.33,"max":0.33,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"timeUsage":null,"vmem":{"mean":368757418.67,"min":363679744,"q1":367306752,"q2":370933760,"q3":371296256,"max":371658752,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"reads":{"mean":19152439,"min":19149294,"q1":19149453,"q2":19149612,"q3":19154011.5,"max":19158411,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"cpu":{"mean":49.33,"min":49.2,"q1":49.25,"q2":49.3,"q3":49.4,"max":49.5,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"time":{"mean":24209.67,"min":23860,"q1":24073,"q2":24286,"q3":24384.5,"max":24483,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"writes":{"mean":446909,"min":444685,"q1":445018,"q2":445351,"q3":448021,"max":450691,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"}},{"cpuUsage":{"mean":39.8,"min":39.8,"q1":39.8,"q2":39.8,"q3":39.8,"max":39.8,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"process":"final_insertion_files","mem":{"mean":127510528,"min":127500288,"q1":127505408,"q2":127510528,"q3":127515648,"max":127520768,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"memUsage":{"mean":0.19,"min":0.19,"q1":0.19,"q2":0.19,"q3":0.19,"max":0.19,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"timeUsage":null,"vmem":{"mean":258760704,"min":258756608,"q1":258758656,"q2":258760704,"q3":258762752,"max":258764800,"minLabel":"final_insertion_files (2)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (2)","q2Label":"final_insertion_files (2)","q3Label":"final_insertion_files (2)"},"reads":{"mean":18006486.5,"min":18003744,"q1":18005115.25,"q2":18006486.5,"q3":18007857.75,"max":18009229,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"cpu":{"mean":39.8,"min":39.8,"q1":39.8,"q2":39.8,"q3":39.8,"max":39.8,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"time":{"mean":12989.5,"min":12958,"q1":12973.75,"q2":12989.5,"q3":13005.25,"max":13021,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"writes":{"mean":280600,"min":275694,"q1":278147,"q2":280600,"q3":283053,"max":285506,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"}},{"cpuUsage":{"mean":9.5,"min":9.5,"q1":9.5,"q2":9.5,"q3":9.5,"max":9.5,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"process":"report3","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":305829,"min":305829,"q1":305829,"q2":305829,"q3":305829,"max":305829,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"cpu":{"mean":9.5,"min":9.5,"q1":9.5,"q2":9.5,"q3":9.5,"max":9.5,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"time":{"mean":65,"min":65,"q1":65,"q2":65,"q3":65,"max":65,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"writes":{"mean":44602,"min":44602,"q1":44602,"q2":44602,"q3":44602,"max":44602,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"}},{"cpuUsage":{"mean":42.6,"min":42.6,"q1":42.6,"q2":42.6,"q3":42.6,"max":42.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"process":"motif","mem":{"mean":210448384,"min":210448384,"q1":210448384,"q2":210448384,"q3":210448384,"max":210448384,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"timeUsage":null,"vmem":{"mean":341385216,"min":341385216,"q1":341385216,"q2":341385216,"q3":341385216,"max":341385216,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"reads":{"mean":49872281,"min":49872281,"q1":49872281,"q2":49872281,"q3":49872281,"max":49872281,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"cpu":{"mean":42.6,"min":42.6,"q1":42.6,"q2":42.6,"q3":42.6,"max":42.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"time":{"mean":42507,"min":42507,"q1":42507,"q2":42507,"q3":42507,"max":42507,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"writes":{"mean":41616533,"min":41616533,"q1":41616533,"q2":41616533,"q3":41616533,"max":41616533,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"}},{"cpuUsage":{"mean":53.9,"min":53.9,"q1":53.9,"q2":53.9,"q3":53.9,"max":53.9,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"process":"plot_read_length","mem":{"mean":208457728,"min":208457728,"q1":208457728,"q2":208457728,"q3":208457728,"max":208457728,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"memUsage":{"mean":0.3,"min":0.3,"q1":0.3,"q2":0.3,"q3":0.3,"max":0.3,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"timeUsage":null,"vmem":{"mean":354000896,"min":354000896,"q1":354000896,"q2":354000896,"q3":354000896,"max":354000896,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"reads":{"mean":19621130,"min":19621130,"q1":19621130,"q2":19621130,"q3":19621130,"max":19621130,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"cpu":{"mean":53.9,"min":53.9,"q1":53.9,"q2":53.9,"q3":53.9,"max":53.9,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"time":{"mean":26476,"min":26476,"q1":26476,"q2":26476,"q3":26476,"max":26476,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"writes":{"mean":708057,"min":708057,"q1":708057,"q2":708057,"q3":708057,"max":708057,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"}},{"cpuUsage":{"mean":42.9,"min":42.9,"q1":42.9,"q2":42.9,"q3":42.9,"max":42.9,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"process":"plot_fivep_filtering_stat","mem":{"mean":220442624,"min":220442624,"q1":220442624,"q2":220442624,"q3":220442624,"max":220442624,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"memUsage":{"mean":0.32,"min":0.32,"q1":0.32,"q2":0.32,"q3":0.32,"max":0.32,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"timeUsage":null,"vmem":{"mean":363532288,"min":363532288,"q1":363532288,"q2":363532288,"q3":363532288,"max":363532288,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"reads":{"mean":19122541,"min":19122541,"q1":19122541,"q2":19122541,"q3":19122541,"max":19122541,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"cpu":{"mean":42.9,"min":42.9,"q1":42.9,"q2":42.9,"q3":42.9,"max":42.9,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"time":{"mean":28457,"min":28457,"q1":28457,"q2":28457,"q3":28457,"max":28457,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"writes":{"mean":811482,"min":811482,"q1":811482,"q2":811482,"q3":811482,"max":811482,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"}},{"cpuUsage":{"mean":40.7,"min":40.7,"q1":40.7,"q2":40.7,"q3":40.7,"max":40.7,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"process":"seq_around_insertion","mem":{"mean":127621120,"min":127565824,"q1":127593472,"q2":127621120,"q3":127648768,"max":127676416,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"memUsage":{"mean":0.19,"min":0.19,"q1":0.19,"q2":0.19,"q3":0.19,"max":0.19,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"timeUsage":null,"vmem":{"mean":258762752,"min":258760704,"q1":258761728,"q2":258762752,"q3":258763776,"max":258764800,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (2)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"reads":{"mean":17995135.5,"min":17988623,"q1":17991879.25,"q2":17995135.5,"q3":17998391.75,"max":18001648,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"cpu":{"mean":40.7,"min":40.7,"q1":40.7,"q2":40.7,"q3":40.7,"max":40.7,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"time":{"mean":12797,"min":12663,"q1":12730,"q2":12797,"q3":12864,"max":12931,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"writes":{"mean":179957.5,"min":146404,"q1":163180.75,"q2":179957.5,"q3":196734.25,"max":213511,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"}},{"cpuUsage":{"mean":1.56,"min":1.48,"q1":1.52,"q2":1.56,"q3":1.6,"max":1.63,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"process":"extract_seq","mem":{"mean":12386304,"min":6295552,"q1":9340928,"q2":12386304,"q3":15431680,"max":18477056,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"memUsage":{"mean":0.02,"min":0.01,"q1":0.01,"q2":0.02,"q3":0.02,"max":0.03,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"timeUsage":null,"vmem":{"mean":59160576,"min":52846592,"q1":56003584,"q2":59160576,"q3":62317568,"max":65474560,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"reads":{"mean":9477790,"min":9452267,"q1":9465028.5,"q2":9477790,"q3":9490551.5,"max":9503313,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"cpu":{"mean":18.7,"min":17.8,"q1":18.25,"q2":18.7,"q3":19.15,"max":19.6,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"time":{"mean":2130.5,"min":1457,"q1":1793.75,"q2":2130.5,"q3":2467.25,"max":2804,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"writes":{"mean":4718049.5,"min":4672192,"q1":4695120.75,"q2":4718049.5,"q3":4740978.25,"max":4763907,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"}},{"cpuUsage":{"mean":1.1,"min":1.1,"q1":1.1,"q2":1.1,"q3":1.1,"max":1.1,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"process":"goalign","mem":{"mean":14262272,"min":14262272,"q1":14262272,"q2":14262272,"q3":14262272,"max":14262272,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"memUsage":{"mean":1.33,"min":1.33,"q1":1.33,"q2":1.33,"q3":1.33,"max":1.33,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"timeUsage":null,"vmem":{"mean":734240768,"min":734240768,"q1":734240768,"q2":734240768,"q3":734240768,"max":734240768,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"reads":{"mean":131211,"min":131211,"q1":131211,"q2":131211,"q3":131211,"max":131211,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"cpu":{"mean":13.2,"min":13.2,"q1":13.2,"q2":13.2,"q3":13.2,"max":13.2,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"time":{"mean":2873,"min":2873,"q1":2873,"q2":2873,"q3":2873,"max":2873,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"writes":{"mean":356117,"min":356117,"q1":356117,"q2":356117,"q3":356117,"max":356117,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"}},{"cpuUsage":{"mean":10.63,"min":9.6,"q1":9.78,"q2":10.55,"q3":11.38,"max":11.9,"minLabel":"base_freq (8)","maxLabel":"base_freq (3)","q1Label":"base_freq (5)","q2Label":"base_freq (1)","q3Label":"base_freq (4)"},"process":"base_freq","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":236107.75,"min":180638,"q1":184404.75,"q2":236694,"q3":288698.25,"max":289470,"minLabel":"base_freq (7)","maxLabel":"base_freq (3)","q1Label":"base_freq (6)","q2Label":"base_freq (5)","q3Label":"base_freq (2)"},"cpu":{"mean":10.63,"min":9.6,"q1":9.78,"q2":10.55,"q3":11.38,"max":11.9,"minLabel":"base_freq (8)","maxLabel":"base_freq (3)","q1Label":"base_freq (5)","q2Label":"base_freq (1)","q3Label":"base_freq (4)"},"time":{"mean":291.5,"min":109,"q1":190.75,"q2":298.5,"q3":405.75,"max":432,"minLabel":"base_freq (6)","maxLabel":"base_freq (4)","q1Label":"base_freq (7)","q2Label":"base_freq (8)","q3Label":"base_freq (2)"},"writes":{"mean":12565.5,"min":2832,"q1":6651,"q2":13156,"q3":19383,"max":20168,"minLabel":"base_freq (7)","maxLabel":"base_freq (3)","q1Label":"base_freq (6)","q2Label":"base_freq (5)","q3Label":"base_freq (2)"}},{"cpuUsage":{"mean":5.6,"min":5.6,"q1":5.6,"q2":5.6,"q3":5.6,"max":5.6,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"process":"report2","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":135292,"min":135292,"q1":135292,"q2":135292,"q3":135292,"max":135292,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"cpu":{"mean":5.6,"min":5.6,"q1":5.6,"q2":5.6,"q3":5.6,"max":5.6,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"time":{"mean":45,"min":45,"q1":45,"q2":45,"q3":45,"max":45,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"writes":{"mean":2465,"min":2465,"q1":2465,"q2":2465,"q3":2465,"max":2465,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"}},{"cpuUsage":{"mean":57.3,"min":57.3,"q1":57.3,"q2":57.3,"q3":57.3,"max":57.3,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"process":"random_insertion","mem":{"mean":368607232,"min":368607232,"q1":368607232,"q2":368607232,"q3":368607232,"max":368607232,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"memUsage":{"mean":0.54,"min":0.54,"q1":0.54,"q2":0.54,"q3":0.54,"max":0.54,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"timeUsage":null,"vmem":{"mean":511254528,"min":511254528,"q1":511254528,"q2":511254528,"q3":511254528,"max":511254528,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"reads":{"mean":31432716,"min":31432716,"q1":31432716,"q2":31432716,"q3":31432716,"max":31432716,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"cpu":{"mean":57.3,"min":57.3,"q1":57.3,"q2":57.3,"q3":57.3,"max":57.3,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"time":{"mean":8510,"min":8510,"q1":8510,"q2":8510,"q3":8510,"max":8510,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"writes":{"mean":1296711,"min":1296711,"q1":1296711,"q2":1296711,"q3":1296711,"max":1296711,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"}},{"cpuUsage":{"mean":42.58,"min":38.5,"q1":42.03,"q2":43.7,"q3":44.25,"max":44.4,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (4)"},"process":"logo","mem":{"mean":139066368,"min":123715584,"q1":125405184,"q2":127938560,"q3":141599744,"max":176672768,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"memUsage":{"mean":0.2,"min":0.18,"q1":0.18,"q2":0.19,"q3":0.21,"max":0.26,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"timeUsage":null,"vmem":{"mean":303022080,"min":271462400,"q1":298628096,"q2":309430272,"q3":313824256,"max":321765376,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"reads":{"mean":14488300,"min":14488278,"q1":14488295.25,"q2":14488304.5,"q3":14488309.25,"max":14488313,"minLabel":"logo (4)","maxLabel":"logo (3)","q1Label":"logo (4)","q2Label":"logo (2)","q3Label":"logo (1)"},"cpu":{"mean":42.58,"min":38.5,"q1":42.03,"q2":43.7,"q3":44.25,"max":44.4,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (4)"},"time":{"mean":15518.25,"min":14490,"q1":14706.75,"q2":14938.5,"q3":15750,"max":17706,"minLabel":"logo (2)","maxLabel":"logo (1)","q1Label":"logo (2)","q2Label":"logo (4)","q3Label":"logo (3)"},"writes":{"mean":924469,"min":873213,"q1":889121.25,"q2":899255,"q3":934602.75,"max":1026153,"minLabel":"logo (1)","maxLabel":"logo (4)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (2)"}},{"cpuUsage":{"mean":46.35,"min":46.3,"q1":46.33,"q2":46.35,"q3":46.38,"max":46.4,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"process":"global_logo","mem":{"mean":122226688,"min":122126336,"q1":122176512,"q2":122226688,"q3":122276864,"max":122327040,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"memUsage":{"mean":0.18,"min":0.18,"q1":0.18,"q2":0.18,"q3":0.18,"max":0.18,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"timeUsage":null,"vmem":{"mean":267350016,"min":266952704,"q1":267151360,"q2":267350016,"q3":267548672,"max":267747328,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"reads":{"mean":14496797,"min":14496507,"q1":14496652,"q2":14496797,"q3":14496942,"max":14497087,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"cpu":{"mean":46.35,"min":46.3,"q1":46.33,"q2":46.35,"q3":46.38,"max":46.4,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"time":{"mean":15583.5,"min":15576,"q1":15579.75,"q2":15583.5,"q3":15587.25,"max":15591,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"writes":{"mean":929099,"min":867376,"q1":898237.5,"q2":929099,"q3":959960.5,"max":990822,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"}},{"cpuUsage":{"mean":5.3,"min":5.3,"q1":5.3,"q2":5.3,"q3":5.3,"max":5.3,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"process":"init","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106462,"min":106462,"q1":106462,"q2":106462,"q3":106462,"max":106462,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"cpu":{"mean":5.3,"min":5.3,"q1":5.3,"q2":5.3,"q3":5.3,"max":5.3,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"time":{"mean":17,"min":17,"q1":17,"q2":17,"q3":17,"max":17,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"writes":{"mean":659,"min":659,"q1":659,"q2":659,"q3":659,"max":659,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"}},{"cpuUsage":{"mean":6.3,"min":6.3,"q1":6.3,"q2":6.3,"q3":6.3,"max":6.3,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"process":"backup","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106668,"min":106668,"q1":106668,"q2":106668,"q3":106668,"max":106668,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"cpu":{"mean":6.3,"min":6.3,"q1":6.3,"q2":6.3,"q3":6.3,"max":6.3,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"time":{"mean":11,"min":11,"q1":11,"q2":11,"q3":11,"max":11,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"writes":{"mean":494,"min":494,"q1":494,"q2":494,"q3":494,"max":494,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"}},{"cpuUsage":{"mean":14.3,"min":14.3,"q1":14.3,"q2":14.3,"q3":14.3,"max":14.3,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"process":"workflowVersion","mem":{"mean":5267456,"min":5267456,"q1":5267456,"q2":5267456,"q3":5267456,"max":5267456,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"memUsage":{"mean":0.16,"min":0.16,"q1":0.16,"q2":0.16,"q3":0.16,"max":0.16,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"timeUsage":null,"vmem":{"mean":40312832,"min":40312832,"q1":40312832,"q2":40312832,"q3":40312832,"max":40312832,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"reads":{"mean":136704,"min":136704,"q1":136704,"q2":136704,"q3":136704,"max":136704,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"cpu":{"mean":14.3,"min":14.3,"q1":14.3,"q2":14.3,"q3":14.3,"max":14.3,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"time":{"mean":744,"min":744,"q1":744,"q2":744,"q3":744,"max":744,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"writes":{"mean":2126,"min":2126,"q1":2126,"q2":2126,"q3":2126,"max":2126,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"}},{"cpuUsage":{"mean":64.5,"min":64.5,"q1":64.5,"q2":64.5,"q3":64.5,"max":64.5,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"process":"dup_insertion_and_logo","mem":{"mean":283983872,"min":283983872,"q1":283983872,"q2":283983872,"q3":283983872,"max":283983872,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"memUsage":{"mean":0.41,"min":0.41,"q1":0.41,"q2":0.41,"q3":0.41,"max":0.41,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"timeUsage":null,"vmem":{"mean":426561536,"min":426561536,"q1":426561536,"q2":426561536,"q3":426561536,"max":426561536,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"reads":{"mean":17562590,"min":17562590,"q1":17562590,"q2":17562590,"q3":17562590,"max":17562590,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"cpu":{"mean":64.5,"min":64.5,"q1":64.5,"q2":64.5,"q3":64.5,"max":64.5,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"time":{"mean":10997,"min":10997,"q1":10997,"q2":10997,"q3":10997,"max":10997,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"writes":{"mean":600302,"min":600302,"q1":600302,"q2":600302,"q3":600302,"max":600302,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"}},{"cpuUsage":{"mean":2.98,"min":2.98,"q1":2.98,"q2":2.98,"q3":2.98,"max":2.98,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"process":"plot_insertion","mem":{"mean":414097408,"min":414097408,"q1":414097408,"q2":414097408,"q3":414097408,"max":414097408,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"memUsage":{"mean":0.6,"min":0.6,"q1":0.6,"q2":0.6,"q3":0.6,"max":0.6,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"timeUsage":null,"vmem":{"mean":572731392,"min":572731392,"q1":572731392,"q2":572731392,"q3":572731392,"max":572731392,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"reads":{"mean":46946944,"min":46946944,"q1":46946944,"q2":46946944,"q3":46946944,"max":46946944,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"cpu":{"mean":35.7,"min":35.7,"q1":35.7,"q2":35.7,"q3":35.7,"max":35.7,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"time":{"mean":239503,"min":239503,"q1":239503,"q2":239503,"q3":239503,"max":239503,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"writes":{"mean":23740340,"min":23740340,"q1":23740340,"q2":23740340,"q3":23740340,"max":23740340,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"}},{"cpuUsage":{"mean":45.4,"min":45.4,"q1":45.4,"q2":45.4,"q3":45.4,"max":45.4,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"process":"print_report","mem":{"mean":279404544,"min":279404544,"q1":279404544,"q2":279404544,"q3":279404544,"max":279404544,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"memUsage":{"mean":0.41,"min":0.41,"q1":0.41,"q2":0.41,"q3":0.41,"max":0.41,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"timeUsage":null,"vmem":{"mean":1100167069696,"min":1100167069696,"q1":1100167069696,"q2":1100167069696,"q3":1100167069696,"max":1100167069696,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"reads":{"mean":54377295,"min":54377295,"q1":54377295,"q2":54377295,"q3":54377295,"max":54377295,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"cpu":{"mean":45.4,"min":45.4,"q1":45.4,"q2":45.4,"q3":45.4,"max":45.4,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"time":{"mean":9314,"min":9314,"q1":9314,"q2":9314,"q3":9314,"max":9314,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"writes":{"mean":27580275,"min":27580275,"q1":27580275,"q2":27580275,"q3":27580275,"max":27580275,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"}}] };
 
   </script>
 
diff --git a/example_of_result/20220120_test_1649701145/reports/nf_timeline.html b/example_of_result/20220120_test_1649703168/reports/nf_timeline.html
similarity index 99%
rename from example_of_result/20220120_test_1649701145/reports/nf_timeline.html
rename to example_of_result/20220120_test_1649703168/reports/nf_timeline.html
index 4a76bb885d7c83fc0d3a1f30c1842f2771eaeba9..ac295357b5057b903b74f43e335747ef5932184d 100644
--- a/example_of_result/20220120_test_1649701145/reports/nf_timeline.html
+++ b/example_of_result/20220120_test_1649703168/reports/nf_timeline.html
@@ -205,14 +205,14 @@ $(function() {
 
   // Nextflow report data
   window.data = {
-    "elapsed": "4m 19s",
+    "elapsed": "4m 27s",
     "beginningMillis": 1649517331366,
-    "endingMillis": 1649701405448,
+    "endingMillis": 1649703436276,
     "processes": [
         {"label": "Nremove (1)", "cached": true, "index": 0, "times": [{"starting_time": 1649517331366, "ending_time": 1649517331460}, {"starting_time": 1649517331460, "ending_time": 1649517332733, "label": "5.4s \/ 11.9 MB \/ CACHED"}, {"starting_time": 1649517332733, "ending_time": 1649517336786}]},
         {"label": "report1", "cached": true, "index": 1, "times": [{"starting_time": 1649517331415, "ending_time": 1649517331494}, {"starting_time": 1649517331494, "ending_time": 1649517331579, "label": "4.7s \/ 0 \/ CACHED"}, {"starting_time": 1649517331579, "ending_time": 1649517336099}]},
         {"label": "trim (1)", "cached": true, "index": 2, "times": [{"starting_time": 1649517336960, "ending_time": 1649517336984}, {"starting_time": 1649517336984, "ending_time": 1649517344332, "label": "10.5s \/ 63.5 MB \/ CACHED"}, {"starting_time": 1649517344332, "ending_time": 1649517347469}]},
-        {"label": "init", "cached": false, "index": 3, "times": [{"starting_time": 1649701147908, "ending_time": 1649701147920}, {"starting_time": 1649701147920, "ending_time": 1649701147933, "label": "1.8s \/ 0"}, {"starting_time": 1649701147933, "ending_time": 1649701149658}]},
+        {"label": "init", "cached": false, "index": 3, "times": [{"starting_time": 1649703170952, "ending_time": 1649703171054}, {"starting_time": 1649703171054, "ending_time": 1649703171071, "label": "1.8s \/ 0"}, {"starting_time": 1649703171071, "ending_time": 1649703172718}]},
         {"label": "kraken (1)", "cached": true, "index": 4, "times": [{"starting_time": 1649517347569, "ending_time": 1649517347669}, {"starting_time": 1649517347669, "ending_time": 1649517347703, "label": "311ms \/ 0 \/ CACHED"}, {"starting_time": 1649517347703, "ending_time": 1649517347880}]},
         {"label": "fivep_filtering (1)", "cached": true, "index": 5, "times": [{"starting_time": 1649517347765, "ending_time": 1649517347828}, {"starting_time": 1649517347828, "ending_time": 1649517354004, "label": "8.2s \/ 11.6 MB \/ CACHED"}, {"starting_time": 1649517354004, "ending_time": 1649517355984}]},
         {"label": "fastqc1 (1)", "cached": true, "index": 6, "times": [{"starting_time": 1649517347681, "ending_time": 1649517347770}, {"starting_time": 1649517347770, "ending_time": 1649517364797, "label": "19s \/ 165.2 MB \/ CACHED"}, {"starting_time": 1649517364797, "ending_time": 1649517366659}]},
@@ -221,48 +221,48 @@ $(function() {
         {"label": "bowtie2 (1)", "cached": true, "index": 9, "times": [{"starting_time": 1649517360685, "ending_time": 1649517360746}, {"starting_time": 1649517360746, "ending_time": 1649517370079, "label": "13.5s \/ 114.8 MB \/ CACHED"}, {"starting_time": 1649517370079, "ending_time": 1649517374142}]},
         {"label": "Q20 (1)", "cached": true, "index": 10, "times": [{"starting_time": 1649517375154, "ending_time": 1649517375243}, {"starting_time": 1649517375243, "ending_time": 1649517375950, "label": "2.7s \/ 4.5 MB \/ CACHED"}, {"starting_time": 1649517375950, "ending_time": 1649517377849}]},
         {"label": "coverage (1)", "cached": true, "index": 11, "times": [{"starting_time": 1649517438784, "ending_time": 1649517438890}, {"starting_time": 1649517438890, "ending_time": 1649517440890, "label": "4.6s \/ 43.4 MB \/ CACHED"}, {"starting_time": 1649517440890, "ending_time": 1649517443338}]},
-        {"label": "multiQC", "cached": true, "index": 12, "times": [{"starting_time": 1649517375192, "ending_time": 1649517375268}, {"starting_time": 1649517375268, "ending_time": 1649517398268, "label": "23.2s \/ 70.7 MB \/ CACHED"}, {"starting_time": 1649517398268, "ending_time": 1649517398413}]},
-        {"label": "no_soft_clipping (1)", "cached": true, "index": 13, "times": [{"starting_time": 1649517378863, "ending_time": 1649517379002}, {"starting_time": 1649517379002, "ending_time": 1649517380230, "label": "4.3s \/ 5.1 MB \/ CACHED"}, {"starting_time": 1649517380230, "ending_time": 1649517383173}]},
+        {"label": "no_soft_clipping (1)", "cached": true, "index": 12, "times": [{"starting_time": 1649517378863, "ending_time": 1649517379002}, {"starting_time": 1649517379002, "ending_time": 1649517380230, "label": "4.3s \/ 5.1 MB \/ CACHED"}, {"starting_time": 1649517380230, "ending_time": 1649517383173}]},
+        {"label": "multiQC", "cached": true, "index": 13, "times": [{"starting_time": 1649517375192, "ending_time": 1649517375268}, {"starting_time": 1649517375268, "ending_time": 1649517398268, "label": "23.2s \/ 70.7 MB \/ CACHED"}, {"starting_time": 1649517398268, "ending_time": 1649517398413}]},
         {"label": "coverage (2)", "cached": true, "index": 11, "times": [{"starting_time": 1649517443376, "ending_time": 1649517443438}, {"starting_time": 1649517443438, "ending_time": 1649517445349, "label": "4.3s \/ 43.6 MB \/ CACHED"}, {"starting_time": 1649517445349, "ending_time": 1649517447638}]},
         {"label": "duplicate_removal (1)", "cached": true, "index": 14, "times": [{"starting_time": 1649517378891, "ending_time": 1649517379023}, {"starting_time": 1649517379023, "ending_time": 1649517385648, "label": "9.7s \/ 12.4 MB \/ CACHED"}, {"starting_time": 1649517385648, "ending_time": 1649517388551}]},
         {"label": "insertion (1)", "cached": true, "index": 15, "times": [{"starting_time": 1649517389566, "ending_time": 1649517389651}, {"starting_time": 1649517389651, "ending_time": 1649517391911, "label": "4.3s \/ 7.8 MB \/ CACHED"}, {"starting_time": 1649517391911, "ending_time": 1649517393899}]},
         {"label": "insertion (2)", "cached": true, "index": 15, "times": [{"starting_time": 1649517389595, "ending_time": 1649517389671}, {"starting_time": 1649517389671, "ending_time": 1649517392146, "label": "4.5s \/ 9.2 MB \/ CACHED"}, {"starting_time": 1649517392146, "ending_time": 1649517394064}]},
         {"label": "coverage (3)", "cached": true, "index": 11, "times": [{"starting_time": 1649517447665, "ending_time": 1649517447738}, {"starting_time": 1649517447738, "ending_time": 1649517449583, "label": "4.2s \/ 43.5 MB \/ CACHED"}, {"starting_time": 1649517449583, "ending_time": 1649517451839}]},
-        {"label": "backup", "cached": false, "index": 16, "times": [{"starting_time": 1649701148358, "ending_time": 1649701148420}, {"starting_time": 1649701148420, "ending_time": 1649701148432, "label": "1.7s \/ 0"}, {"starting_time": 1649701148432, "ending_time": 1649701150107}]},
-        {"label": "workflowVersion", "cached": false, "index": 17, "times": [{"starting_time": 1649701148475, "ending_time": 1649701148520}, {"starting_time": 1649701148520, "ending_time": 1649701149214, "label": "2.2s \/ 4.9 MB"}, {"starting_time": 1649701149214, "ending_time": 1649701150687}]},
-        {"label": "plot_coverage (1)", "cached": true, "index": 18, "times": [{"starting_time": 1649517482485, "ending_time": 1649517482559}, {"starting_time": 1649517482559, "ending_time": 1649517507042, "label": "26.7s \/ 210.1 MB \/ CACHED"}, {"starting_time": 1649517507042, "ending_time": 1649517509228}]},
+        {"label": "backup", "cached": false, "index": 16, "times": [{"starting_time": 1649703171343, "ending_time": 1649703171363}, {"starting_time": 1649703171363, "ending_time": 1649703171374, "label": "1.8s \/ 0"}, {"starting_time": 1649703171374, "ending_time": 1649703173137}]},
+        {"label": "workflowVersion", "cached": false, "index": 17, "times": [{"starting_time": 1649703171403, "ending_time": 1649703171460}, {"starting_time": 1649703171460, "ending_time": 1649703172204, "label": "2.3s \/ 5 MB"}, {"starting_time": 1649703172204, "ending_time": 1649703173707}]},
         {"label": "plot_coverage (2)", "cached": true, "index": 18, "times": [{"starting_time": 1649517509257, "ending_time": 1649517509329}, {"starting_time": 1649517509329, "ending_time": 1649517533615, "label": "26.4s \/ 215.2 MB \/ CACHED"}, {"starting_time": 1649517533615, "ending_time": 1649517535648}]},
         {"label": "plot_coverage (3)", "cached": true, "index": 18, "times": [{"starting_time": 1649517535680, "ending_time": 1649517535748}, {"starting_time": 1649517535748, "ending_time": 1649517559608, "label": "25.9s \/ 216.1 MB \/ CACHED"}, {"starting_time": 1649517559608, "ending_time": 1649517561551}]},
+        {"label": "plot_coverage (1)", "cached": true, "index": 18, "times": [{"starting_time": 1649517482485, "ending_time": 1649517482559}, {"starting_time": 1649517482559, "ending_time": 1649517507042, "label": "26.7s \/ 210.1 MB \/ CACHED"}, {"starting_time": 1649517507042, "ending_time": 1649517509228}]},
         {"label": "final_insertion_files (1)", "cached": true, "index": 19, "times": [{"starting_time": 1649517451877, "ending_time": 1649517451940}, {"starting_time": 1649517451940, "ending_time": 1649517464898, "label": "15.1s \/ 121.6 MB \/ CACHED"}, {"starting_time": 1649517464898, "ending_time": 1649517466971}]},
         {"label": "final_insertion_files (2)", "cached": true, "index": 19, "times": [{"starting_time": 1649517466998, "ending_time": 1649517467072}, {"starting_time": 1649517467072, "ending_time": 1649517480093, "label": "15.5s \/ 121.6 MB \/ CACHED"}, {"starting_time": 1649517480093, "ending_time": 1649517482460}]},
         {"label": "report3 (1)", "cached": true, "index": 20, "times": [{"starting_time": 1649631364071, "ending_time": 1649631364094}, {"starting_time": 1649631364094, "ending_time": 1649631364159, "label": "1.5s \/ 0 \/ CACHED"}, {"starting_time": 1649631364159, "ending_time": 1649631365539}]},
         {"label": "motif", "cached": true, "index": 21, "times": [{"starting_time": 1649517332488, "ending_time": 1649517332563}, {"starting_time": 1649517332563, "ending_time": 1649517375070, "label": "46.5s \/ 200.7 MB \/ CACHED"}, {"starting_time": 1649517375070, "ending_time": 1649517378942}]},
         {"label": "plot_read_length (1)", "cached": true, "index": 22, "times": [{"starting_time": 1649517410093, "ending_time": 1649517410161}, {"starting_time": 1649517410161, "ending_time": 1649517436637, "label": "28.7s \/ 198.8 MB \/ CACHED"}, {"starting_time": 1649517436637, "ending_time": 1649517438749}]},
         {"label": "plot_fivep_filtering_stat (1)", "cached": true, "index": 23, "times": [{"starting_time": 1649517378958, "ending_time": 1649517379042}, {"starting_time": 1649517379042, "ending_time": 1649517407499, "label": "31.1s \/ 210.2 MB \/ CACHED"}, {"starting_time": 1649517407499, "ending_time": 1649517410062}]},
-        {"label": "seq_around_insertion (1)", "cached": true, "index": 24, "times": [{"starting_time": 1649517561578, "ending_time": 1649517561650}, {"starting_time": 1649517561650, "ending_time": 1649517574581, "label": "15.1s \/ 121.8 MB \/ CACHED"}, {"starting_time": 1649517574581, "ending_time": 1649517576718}]},
         {"label": "seq_around_insertion (2)", "cached": true, "index": 24, "times": [{"starting_time": 1649517601464, "ending_time": 1649517601588}, {"starting_time": 1649517601588, "ending_time": 1649517614251, "label": "14.8s \/ 121.7 MB \/ CACHED"}, {"starting_time": 1649517614251, "ending_time": 1649517616248}]},
+        {"label": "seq_around_insertion (1)", "cached": true, "index": 24, "times": [{"starting_time": 1649517561578, "ending_time": 1649517561650}, {"starting_time": 1649517561650, "ending_time": 1649517574581, "label": "15.1s \/ 121.8 MB \/ CACHED"}, {"starting_time": 1649517574581, "ending_time": 1649517576718}]},
         {"label": "extract_seq (1)", "cached": true, "index": 25, "times": [{"starting_time": 1649517644033, "ending_time": 1649517644135}, {"starting_time": 1649517644135, "ending_time": 1649517646939, "label": "5.2s \/ 17.6 MB \/ CACHED"}, {"starting_time": 1649517646939, "ending_time": 1649517649189}]},
         {"label": "extract_seq (2)", "cached": true, "index": 25, "times": [{"starting_time": 1649517996849, "ending_time": 1649517997120}, {"starting_time": 1649517997120, "ending_time": 1649517998577, "label": "3.7s \/ 6 MB \/ CACHED"}, {"starting_time": 1649517998577, "ending_time": 1649518000598}]},
-        {"label": "random_insertion (1)", "cached": true, "index": 26, "times": [{"starting_time": 1649699456918, "ending_time": 1649699456985}, {"starting_time": 1649699456985, "ending_time": 1649699465495, "label": "9.5s \/ 351.5 MB \/ CACHED"}, {"starting_time": 1649699465495, "ending_time": 1649699466417}]},
-        {"label": "dup_insertion_and_logo (1)", "cached": true, "index": 27, "times": [{"starting_time": 1649697980341, "ending_time": 1649697980427}, {"starting_time": 1649697980427, "ending_time": 1649697991585, "label": "11.9s \/ 270.4 MB \/ CACHED"}, {"starting_time": 1649697991585, "ending_time": 1649697992247}]},
-        {"label": "goalign (1)", "cached": true, "index": 28, "times": [{"starting_time": 1649518000735, "ending_time": 1649518000798}, {"starting_time": 1649518000798, "ending_time": 1649518003671, "label": "6.3s \/ 13.6 MB \/ CACHED"}, {"starting_time": 1649518003671, "ending_time": 1649518007039}]},
-        {"label": "base_freq (4)", "cached": true, "index": 29, "times": [{"starting_time": 1649517649523, "ending_time": 1649517649590}, {"starting_time": 1649517649590, "ending_time": 1649517650022, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650022, "ending_time": 1649517654353}]},
-        {"label": "base_freq (3)", "cached": true, "index": 29, "times": [{"starting_time": 1649517649606, "ending_time": 1649517649691}, {"starting_time": 1649517649691, "ending_time": 1649517650117, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650117, "ending_time": 1649517654451}]},
-        {"label": "base_freq (2)", "cached": true, "index": 29, "times": [{"starting_time": 1649517649332, "ending_time": 1649517649389}, {"starting_time": 1649517649389, "ending_time": 1649517649788, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517649788, "ending_time": 1649517654136}]},
-        {"label": "base_freq (6)", "cached": true, "index": 29, "times": [{"starting_time": 1649518005691, "ending_time": 1649518005866}, {"starting_time": 1649518005866, "ending_time": 1649518005975, "label": "3s \/ 0 \/ CACHED"}, {"starting_time": 1649518005975, "ending_time": 1649518008672}]},
-        {"label": "base_freq (8)", "cached": true, "index": 29, "times": [{"starting_time": 1649518001036, "ending_time": 1649518001118}, {"starting_time": 1649518001118, "ending_time": 1649518001319, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649518001319, "ending_time": 1649518005804}]},
-        {"label": "base_freq (5)", "cached": true, "index": 29, "times": [{"starting_time": 1649518001008, "ending_time": 1649518001099}, {"starting_time": 1649518001099, "ending_time": 1649518001296, "label": "4.6s \/ 0 \/ CACHED"}, {"starting_time": 1649518001296, "ending_time": 1649518005653}]},
-        {"label": "base_freq (7)", "cached": true, "index": 29, "times": [{"starting_time": 1649518000971, "ending_time": 1649518000999}, {"starting_time": 1649518000999, "ending_time": 1649518001171, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649518001171, "ending_time": 1649518005740}]},
-        {"label": "base_freq (1)", "cached": true, "index": 29, "times": [{"starting_time": 1649517649698, "ending_time": 1649517649791}, {"starting_time": 1649517649791, "ending_time": 1649517650187, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650187, "ending_time": 1649517654517}]},
-        {"label": "report2", "cached": true, "index": 30, "times": [{"starting_time": 1649518009697, "ending_time": 1649518009773}, {"starting_time": 1649518009773, "ending_time": 1649518009818, "label": "2.7s \/ 0 \/ CACHED"}, {"starting_time": 1649518009818, "ending_time": 1649518012408}]},
+        {"label": "dup_insertion_and_logo (1)", "cached": false, "index": 26, "times": [{"starting_time": 1649703172046, "ending_time": 1649703172061}, {"starting_time": 1649703172061, "ending_time": 1649703183058, "label": "12.1s \/ 270.8 MB"}, {"starting_time": 1649703183058, "ending_time": 1649703184167}]},
+        {"label": "goalign (1)", "cached": true, "index": 27, "times": [{"starting_time": 1649518000735, "ending_time": 1649518000798}, {"starting_time": 1649518000798, "ending_time": 1649518003671, "label": "6.3s \/ 13.6 MB \/ CACHED"}, {"starting_time": 1649518003671, "ending_time": 1649518007039}]},
+        {"label": "base_freq (1)", "cached": true, "index": 28, "times": [{"starting_time": 1649517649698, "ending_time": 1649517649791}, {"starting_time": 1649517649791, "ending_time": 1649517650187, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650187, "ending_time": 1649517654517}]},
+        {"label": "base_freq (8)", "cached": true, "index": 28, "times": [{"starting_time": 1649518001036, "ending_time": 1649518001118}, {"starting_time": 1649518001118, "ending_time": 1649518001319, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649518001319, "ending_time": 1649518005804}]},
+        {"label": "base_freq (2)", "cached": true, "index": 28, "times": [{"starting_time": 1649517649332, "ending_time": 1649517649389}, {"starting_time": 1649517649389, "ending_time": 1649517649788, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517649788, "ending_time": 1649517654136}]},
+        {"label": "base_freq (5)", "cached": true, "index": 28, "times": [{"starting_time": 1649518001008, "ending_time": 1649518001099}, {"starting_time": 1649518001099, "ending_time": 1649518001296, "label": "4.6s \/ 0 \/ CACHED"}, {"starting_time": 1649518001296, "ending_time": 1649518005653}]},
+        {"label": "base_freq (4)", "cached": true, "index": 28, "times": [{"starting_time": 1649517649523, "ending_time": 1649517649590}, {"starting_time": 1649517649590, "ending_time": 1649517650022, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650022, "ending_time": 1649517654353}]},
+        {"label": "base_freq (7)", "cached": true, "index": 28, "times": [{"starting_time": 1649518000971, "ending_time": 1649518000999}, {"starting_time": 1649518000999, "ending_time": 1649518001171, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649518001171, "ending_time": 1649518005740}]},
+        {"label": "base_freq (3)", "cached": true, "index": 28, "times": [{"starting_time": 1649517649606, "ending_time": 1649517649691}, {"starting_time": 1649517649691, "ending_time": 1649517650117, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650117, "ending_time": 1649517654451}]},
+        {"label": "base_freq (6)", "cached": true, "index": 28, "times": [{"starting_time": 1649518005691, "ending_time": 1649518005866}, {"starting_time": 1649518005866, "ending_time": 1649518005975, "label": "3s \/ 0 \/ CACHED"}, {"starting_time": 1649518005975, "ending_time": 1649518008672}]},
+        {"label": "report2", "cached": true, "index": 29, "times": [{"starting_time": 1649518009697, "ending_time": 1649518009773}, {"starting_time": 1649518009773, "ending_time": 1649518009818, "label": "2.7s \/ 0 \/ CACHED"}, {"starting_time": 1649518009818, "ending_time": 1649518012408}]},
+        {"label": "random_insertion (1)", "cached": true, "index": 30, "times": [{"starting_time": 1649699456918, "ending_time": 1649699456985}, {"starting_time": 1649699456985, "ending_time": 1649699465495, "label": "9.5s \/ 351.5 MB \/ CACHED"}, {"starting_time": 1649699465495, "ending_time": 1649699466417}]},
         {"label": "logo (4)", "cached": true, "index": 31, "times": [{"starting_time": 1649518055457, "ending_time": 1649518055529}, {"starting_time": 1649518055529, "ending_time": 1649518070308, "label": "16.9s \/ 120.1 MB \/ CACHED"}, {"starting_time": 1649518070308, "ending_time": 1649518072378}]},
-        {"label": "logo (2)", "cached": true, "index": 31, "times": [{"starting_time": 1649518021775, "ending_time": 1649518021849}, {"starting_time": 1649518021849, "ending_time": 1649518036339, "label": "16.5s \/ 123.9 MB \/ CACHED"}, {"starting_time": 1649518036339, "ending_time": 1649518038231}]},
         {"label": "logo (1)", "cached": true, "index": 31, "times": [{"starting_time": 1649518000631, "ending_time": 1649518000698}, {"starting_time": 1649518000698, "ending_time": 1649518018404, "label": "21.1s \/ 168.5 MB \/ CACHED"}, {"starting_time": 1649518018404, "ending_time": 1649518021750}]},
-        {"label": "plot_insertion (1)", "cached": false, "index": 32, "times": [{"starting_time": 1649701149319, "ending_time": 1649701149422}, {"starting_time": 1649701149422, "ending_time": 1649701392547, "label": "4m 4s \/ 399.3 MB"}, {"starting_time": 1649701392547, "ending_time": 1649701393358}]},
+        {"label": "logo (2)", "cached": true, "index": 31, "times": [{"starting_time": 1649518021775, "ending_time": 1649518021849}, {"starting_time": 1649518021849, "ending_time": 1649518036339, "label": "16.5s \/ 123.9 MB \/ CACHED"}, {"starting_time": 1649518036339, "ending_time": 1649518038231}]},
         {"label": "logo (3)", "cached": true, "index": 31, "times": [{"starting_time": 1649518038258, "ending_time": 1649518038331}, {"starting_time": 1649518038331, "ending_time": 1649518053429, "label": "17.2s \/ 118 MB \/ CACHED"}, {"starting_time": 1649518053429, "ending_time": 1649518055429}]},
-        {"label": "global_logo (2)", "cached": true, "index": 33, "times": [{"starting_time": 1649518072403, "ending_time": 1649518072478}, {"starting_time": 1649518072478, "ending_time": 1649518088069, "label": "17.7s \/ 116.5 MB \/ CACHED"}, {"starting_time": 1649518088069, "ending_time": 1649518090138}]},
-        {"label": "global_logo (1)", "cached": true, "index": 33, "times": [{"starting_time": 1649518090164, "ending_time": 1649518090253}, {"starting_time": 1649518090253, "ending_time": 1649518105829, "label": "17.6s \/ 116.7 MB \/ CACHED"}, {"starting_time": 1649518105829, "ending_time": 1649518107759}]},
-        {"label": "print_report (1)", "cached": false, "index": 34, "times": [{"starting_time": 1649701394009, "ending_time": 1649701394059}, {"starting_time": 1649701394059, "ending_time": 1649701403593, "label": "10.4s \/ 248 MB"}, {"starting_time": 1649701403593, "ending_time": 1649701404377}]}
+        {"label": "global_logo (1)", "cached": true, "index": 32, "times": [{"starting_time": 1649518090164, "ending_time": 1649518090253}, {"starting_time": 1649518090253, "ending_time": 1649518105829, "label": "17.6s \/ 116.7 MB \/ CACHED"}, {"starting_time": 1649518105829, "ending_time": 1649518107759}]},
+        {"label": "global_logo (2)", "cached": true, "index": 32, "times": [{"starting_time": 1649518072403, "ending_time": 1649518072478}, {"starting_time": 1649518072478, "ending_time": 1649518088069, "label": "17.7s \/ 116.5 MB \/ CACHED"}, {"starting_time": 1649518088069, "ending_time": 1649518090138}]},
+        {"label": "plot_insertion (1)", "cached": false, "index": 33, "times": [{"starting_time": 1649703184174, "ending_time": 1649703184268}, {"starting_time": 1649703184268, "ending_time": 1649703423771, "label": "4m \/ 394.9 MB"}, {"starting_time": 1649703423771, "ending_time": 1649703424377}]},
+        {"label": "print_report (1)", "cached": false, "index": 34, "times": [{"starting_time": 1649703425043, "ending_time": 1649703425078}, {"starting_time": 1649703425078, "ending_time": 1649703434392, "label": "10.2s \/ 266.5 MB"}, {"starting_time": 1649703434392, "ending_time": 1649703435217}]}
     ]
 }
 ;
diff --git a/example_of_result/20220120_test_1649701145/reports/nf_trace.txt b/example_of_result/20220120_test_1649703168/reports/nf_trace.txt
similarity index 53%
rename from example_of_result/20220120_test_1649701145/reports/nf_trace.txt
rename to example_of_result/20220120_test_1649703168/reports/nf_trace.txt
index 4764c7c293939ce1b56b6dee653192c0dea05039..b2512ff2b0363a35369247c90c6b59b1bdb2119f 100644
--- a/example_of_result/20220120_test_1649701145/reports/nf_trace.txt
+++ b/example_of_result/20220120_test_1649703168/reports/nf_trace.txt
@@ -2,54 +2,54 @@ task_id	hash	native_id	name	status	exit	submit	duration	realtime	%cpu	peak_rss	p
 2	25/7b2ed6	281	Nremove (1)	CACHED	0	2022-04-09 17:15:31.366	5.4s	1.3s	37.7%	11.9 MB	70.6 MB	16.8 MB	14.5 MB
 3	f3/638b7c	308	report1	CACHED	0	2022-04-09 17:15:31.415	4.7s	85ms	6.6%	0	0	104.4 KB	684 B
 4	e9/33684c	1241	trim (1)	CACHED	0	2022-04-09 17:15:36.960	10.5s	7.3s	44.5%	63.5 MB	5.6 GB	16.4 MB	12 MB
-7	d5/d15b46	2771	kraken (1)	CACHED	0	2022-04-09 17:15:47.569	311ms	34ms	81.6%	0	0	150.8 KB	220 B
-6	f8/e48213	2908	fivep_filtering (1)	CACHED	0	2022-04-09 17:15:47.765	8.2s	6.2s	27.1%	11.6 MB	67.3 MB	28 MB	15.3 MB
-5	59/2dbb6e	2819	fastqc1 (1)	CACHED	0	2022-04-09 17:15:47.681	19s	17s	52.0%	165.2 MB	3.1 GB	13.9 MB	1.2 MB
-8	c8/fa65a5	4175	cutoff (1)	CACHED	0	2022-04-09 17:15:56.282	3.4s	988ms	14.5%	9.8 MB	61.3 MB	7 MB	3.9 MB
-10	b4/13acb3	4147	fastqc2 (1)	CACHED	0	2022-04-09 17:15:56.193	14.7s	12.8s	69.2%	176.1 MB	3.1 GB	12.2 MB	1.2 MB
+5	d5/d15b46	2771	kraken (1)	CACHED	0	2022-04-09 17:15:47.569	311ms	34ms	81.6%	0	0	150.8 KB	220 B
+7	f8/e48213	2908	fivep_filtering (1)	CACHED	0	2022-04-09 17:15:47.765	8.2s	6.2s	27.1%	11.6 MB	67.3 MB	28 MB	15.3 MB
+6	59/2dbb6e	2819	fastqc1 (1)	CACHED	0	2022-04-09 17:15:47.681	19s	17s	52.0%	165.2 MB	3.1 GB	13.9 MB	1.2 MB
+9	c8/fa65a5	4175	cutoff (1)	CACHED	0	2022-04-09 17:15:56.282	3.4s	988ms	14.5%	9.8 MB	61.3 MB	7 MB	3.9 MB
+8	b4/13acb3	4147	fastqc2 (1)	CACHED	0	2022-04-09 17:15:56.193	14.7s	12.8s	69.2%	176.1 MB	3.1 GB	12.2 MB	1.2 MB
 11	96/3945da	5033	bowtie2 (1)	CACHED	0	2022-04-09 17:16:00.685	13.5s	9.3s	40.6%	114.8 MB	239.5 MB	35 MB	16.2 MB
 13	50/34788a	6971	Q20 (1)	CACHED	0	2022-04-09 17:16:15.154	2.7s	707ms	17.8%	4.5 MB	42.8 MB	3.2 MB	2.2 MB
 14	a8/f98ebd	11174	coverage (1)	CACHED	0	2022-04-09 17:17:18.784	4.6s	2s	18.3%	43.4 MB	80.1 MB	479.7 KB	91 KB
+17	41/75981b	7462	no_soft_clipping (1)	CACHED	0	2022-04-09 17:16:18.863	4.3s	1.2s	14.5%	5.1 MB	57.7 MB	2.1 MB	1.5 MB
 15	8f/71ec44	6997	multiQC	CACHED	0	2022-04-09 17:16:15.192	23.2s	23s	36.5%	70.7 MB	81.1 MB	28.3 MB	2.3 MB
-16	41/75981b	7462	no_soft_clipping (1)	CACHED	0	2022-04-09 17:16:18.863	4.3s	1.2s	14.5%	5.1 MB	57.7 MB	2.1 MB	1.5 MB
-17	da/6b7a6c	11388	coverage (2)	CACHED	0	2022-04-09 17:17:23.376	4.3s	1.9s	19.1%	43.6 MB	80.1 MB	335 KB	82.4 KB
-18	0a/40301f	7482	duplicate_removal (1)	CACHED	0	2022-04-09 17:16:18.891	9.7s	6.6s	24.6%	12.4 MB	85.1 MB	12.9 MB	6.6 MB
-21	91/2fd95b	9315	insertion (1)	CACHED	0	2022-04-09 17:16:29.566	4.3s	2.3s	19.6%	7.8 MB	65.6 MB	2.5 MB	1.7 MB
-23	22/3c6c1a	9335	insertion (2)	CACHED	0	2022-04-09 17:16:29.595	4.5s	2.5s	20.4%	9.2 MB	65.7 MB	3 MB	2.2 MB
-20	d5/03b2f8	11599	coverage (3)	CACHED	0	2022-04-09 17:17:27.665	4.2s	1.8s	19.8%	43.5 MB	80.1 MB	310.2 KB	82.1 KB
+18	da/6b7a6c	11388	coverage (2)	CACHED	0	2022-04-09 17:17:23.376	4.3s	1.9s	19.1%	43.6 MB	80.1 MB	335 KB	82.4 KB
+16	0a/40301f	7482	duplicate_removal (1)	CACHED	0	2022-04-09 17:16:18.891	9.7s	6.6s	24.6%	12.4 MB	85.1 MB	12.9 MB	6.6 MB
+23	91/2fd95b	9315	insertion (1)	CACHED	0	2022-04-09 17:16:29.566	4.3s	2.3s	19.6%	7.8 MB	65.6 MB	2.5 MB	1.7 MB
+24	22/3c6c1a	9335	insertion (2)	CACHED	0	2022-04-09 17:16:29.595	4.5s	2.5s	20.4%	9.2 MB	65.7 MB	3 MB	2.2 MB
+22	d5/03b2f8	11599	coverage (3)	CACHED	0	2022-04-09 17:17:27.665	4.2s	1.8s	19.8%	43.5 MB	80.1 MB	310.2 KB	82.1 KB
+21	88/636f95	14201	plot_coverage (2)	CACHED	0	2022-04-09 17:18:29.257	26.4s	24.3s	49.3%	215.2 MB	353.8 MB	18.3 MB	434.3 KB
+29	37/f53840	15016	plot_coverage (3)	CACHED	0	2022-04-09 17:18:55.680	25.9s	23.9s	49.5%	216.1 MB	354.4 MB	18.3 MB	434.9 KB
 19	9d/64d05b	13378	plot_coverage (1)	CACHED	0	2022-04-09 17:18:02.485	26.7s	24.5s	49.2%	210.1 MB	346.8 MB	18.3 MB	440.1 KB
-22	88/636f95	14201	plot_coverage (2)	CACHED	0	2022-04-09 17:18:29.257	26.4s	24.3s	49.3%	215.2 MB	353.8 MB	18.3 MB	434.3 KB
-27	37/f53840	15016	plot_coverage (3)	CACHED	0	2022-04-09 17:18:55.680	25.9s	23.9s	49.5%	216.1 MB	354.4 MB	18.3 MB	434.9 KB
-25	13/37b94c	11809	final_insertion_files (1)	CACHED	0	2022-04-09 17:17:31.877	15.1s	13s	39.8%	121.6 MB	246.8 MB	17.2 MB	269.2 KB
-26	23/48d601	12520	final_insertion_files (2)	CACHED	0	2022-04-09 17:17:46.998	15.5s	13s	39.8%	121.6 MB	246.8 MB	17.2 MB	278.8 KB
-32	08/101dfa	23264	report3 (1)	CACHED	0	2022-04-11 00:56:04.071	1.5s	65ms	9.5%	0	0	298.7 KB	43.6 KB
-24	c6/bef5aa	560	motif	CACHED	0	2022-04-09 17:15:32.488	46.5s	42.5s	42.6%	200.7 MB	325.6 MB	47.6 MB	39.7 MB
+27	13/37b94c	11809	final_insertion_files (1)	CACHED	0	2022-04-09 17:17:31.877	15.1s	13s	39.8%	121.6 MB	246.8 MB	17.2 MB	269.2 KB
+28	23/48d601	12520	final_insertion_files (2)	CACHED	0	2022-04-09 17:17:46.998	15.5s	13s	39.8%	121.6 MB	246.8 MB	17.2 MB	278.8 KB
+31	08/101dfa	23264	report3 (1)	CACHED	0	2022-04-11 00:56:04.071	1.5s	65ms	9.5%	0	0	298.7 KB	43.6 KB
+20	c6/bef5aa	560	motif	CACHED	0	2022-04-09 17:15:32.488	46.5s	42.5s	42.6%	200.7 MB	325.6 MB	47.6 MB	39.7 MB
 12	2f/6c72d5	10356	plot_read_length (1)	CACHED	0	2022-04-09 17:16:50.093	28.7s	26.5s	53.9%	198.8 MB	337.6 MB	18.7 MB	691.5 KB
-9	51/09f085	7550	plot_fivep_filtering_stat (1)	CACHED	0	2022-04-09 17:16:18.958	31.1s	28.5s	42.9%	210.2 MB	346.7 MB	18.2 MB	792.5 KB
+10	51/09f085	7550	plot_fivep_filtering_stat (1)	CACHED	0	2022-04-09 17:16:18.958	31.1s	28.5s	42.9%	210.2 MB	346.7 MB	18.2 MB	792.5 KB
+32	61/3abc05	17353	seq_around_insertion (2)	CACHED	0	2022-04-09 17:20:01.464	14.8s	12.7s	40.7%	121.7 MB	246.8 MB	17.2 MB	143 KB
 30	16/ef3227	15833	seq_around_insertion (1)	CACHED	0	2022-04-09 17:19:21.578	15.1s	12.9s	40.7%	121.8 MB	246.8 MB	17.2 MB	208.5 KB
-31	61/3abc05	17353	seq_around_insertion (2)	CACHED	0	2022-04-09 17:20:01.464	14.8s	12.7s	40.7%	121.7 MB	246.8 MB	17.2 MB	143 KB
-35	73/f0b62e	18913	extract_seq (1)	CACHED	0	2022-04-09 17:20:44.033	5.2s	2.8s	19.6%	17.6 MB	62.4 MB	9.1 MB	4.5 MB
-36	52/691666	27108	extract_seq (2)	CACHED	0	2022-04-09 17:26:36.849	3.7s	1.5s	17.8%	6 MB	50.4 MB	9 MB	4.5 MB
-34	34/a909b8	18724	random_insertion (1)	CACHED	0	2022-04-11 19:50:56.918	9.5s	8.5s	57.3%	351.5 MB	487.6 MB	30 MB	1.2 MB
-33	9c/609ffc	10377	dup_insertion_and_logo (1)	CACHED	0	2022-04-11 19:26:20.341	11.9s	11.2s	64.5%	270.4 MB	406.5 MB	16.7 MB	586.9 KB
-37	49/575b96	27342	goalign (1)	CACHED	0	2022-04-09 17:26:40.735	6.3s	2.9s	13.2%	13.6 MB	700.2 MB	128.1 KB	347.8 KB
-41	f0/df4b99	19278	base_freq (4)	CACHED	0	2022-04-09 17:20:49.523	4.8s	432ms	11.3%	0	0	282.1 KB	19 KB
-40	3c/c2beee	19315	base_freq (3)	CACHED	0	2022-04-09 17:20:49.606	4.8s	426ms	11.9%	0	0	282.7 KB	19.7 KB
-39	ac/24a1a8	19211	base_freq (2)	CACHED	0	2022-04-09 17:20:49.332	4.8s	399ms	11.1%	0	0	281.9 KB	18.9 KB
-43	63/faaafa	28010	base_freq (6)	CACHED	0	2022-04-09 17:26:45.691	3s	109ms	11.6%	0	0	178.7 KB	5.1 KB
+36	73/f0b62e	18913	extract_seq (1)	CACHED	0	2022-04-09 17:20:44.033	5.2s	2.8s	19.6%	17.6 MB	62.4 MB	9.1 MB	4.5 MB
+35	52/691666	27108	extract_seq (2)	CACHED	0	2022-04-09 17:26:36.849	3.7s	1.5s	17.8%	6 MB	50.4 MB	9 MB	4.5 MB
+41	49/575b96	27342	goalign (1)	CACHED	0	2022-04-09 17:26:40.735	6.3s	2.9s	13.2%	13.6 MB	700.2 MB	128.1 KB	347.8 KB
+37	35/ec05ea	19358	base_freq (1)	CACHED	0	2022-04-09 17:20:49.698	4.8s	396ms	10.0%	0	0	279.8 KB	16.8 KB
 45	b4/c8c939	27489	base_freq (8)	CACHED	0	2022-04-09 17:26:41.036	4.8s	201ms	9.6%	0	0	180.5 KB	7 KB
+38	ac/24a1a8	19211	base_freq (2)	CACHED	0	2022-04-09 17:20:49.332	4.8s	399ms	11.1%	0	0	281.9 KB	18.9 KB
 42	e7/c17b46	27448	base_freq (5)	CACHED	0	2022-04-09 17:26:41.008	4.6s	197ms	9.7%	0	0	182.5 KB	8.9 KB
+40	f0/df4b99	19278	base_freq (4)	CACHED	0	2022-04-09 17:20:49.523	4.8s	432ms	11.3%	0	0	282.1 KB	19 KB
 44	24/882b89	27418	base_freq (7)	CACHED	0	2022-04-09 17:26:40.971	4.8s	172ms	9.8%	0	0	176.4 KB	2.8 KB
-38	35/ec05ea	19358	base_freq (1)	CACHED	0	2022-04-09 17:20:49.698	4.8s	396ms	10.0%	0	0	279.8 KB	16.8 KB
-52	71/fcd5ac	28454	report2	CACHED	0	2022-04-09 17:26:49.697	2.7s	45ms	5.6%	0	0	132.1 KB	2.4 KB
-50	12/8d4218	30389	logo (4)	CACHED	0	2022-04-09 17:27:35.457	16.9s	14.8s	44.2%	120.1 MB	293.4 MB	13.8 MB	1002.1 KB
-47	20/686354	28980	logo (2)	CACHED	0	2022-04-09 17:27:01.775	16.5s	14.5s	44.4%	123.9 MB	296.8 MB	13.8 MB	882.9 KB
-49	49/98147b	27326	logo (1)	CACHED	0	2022-04-09 17:26:40.631	21.1s	17.7s	38.5%	168.5 MB	306.9 MB	13.8 MB	852.7 KB
-48	d7/09132f	29683	logo (3)	CACHED	0	2022-04-09 17:27:18.258	17.2s	15.1s	43.2%	118 MB	258.9 MB	13.8 MB	873.5 KB
-53	e9/9bbb1e	31094	global_logo (2)	CACHED	0	2022-04-09 17:27:52.403	17.7s	15.6s	46.4%	116.5 MB	255.3 MB	13.8 MB	967.6 KB
+39	3c/c2beee	19315	base_freq (3)	CACHED	0	2022-04-09 17:20:49.606	4.8s	426ms	11.9%	0	0	282.7 KB	19.7 KB
+43	63/faaafa	28010	base_freq (6)	CACHED	0	2022-04-09 17:26:45.691	3s	109ms	11.6%	0	0	178.7 KB	5.1 KB
+50	71/fcd5ac	28454	report2	CACHED	0	2022-04-09 17:26:49.697	2.7s	45ms	5.6%	0	0	132.1 KB	2.4 KB
+34	34/a909b8	18724	random_insertion (1)	CACHED	0	2022-04-11 19:50:56.918	9.5s	8.5s	57.3%	351.5 MB	487.6 MB	30 MB	1.2 MB
+46	12/8d4218	30389	logo (4)	CACHED	0	2022-04-09 17:27:35.457	16.9s	14.8s	44.2%	120.1 MB	293.4 MB	13.8 MB	1002.1 KB
+47	49/98147b	27326	logo (1)	CACHED	0	2022-04-09 17:26:40.631	21.1s	17.7s	38.5%	168.5 MB	306.9 MB	13.8 MB	852.7 KB
+48	20/686354	28980	logo (2)	CACHED	0	2022-04-09 17:27:01.775	16.5s	14.5s	44.4%	123.9 MB	296.8 MB	13.8 MB	882.9 KB
+49	d7/09132f	29683	logo (3)	CACHED	0	2022-04-09 17:27:18.258	17.2s	15.1s	43.2%	118 MB	258.9 MB	13.8 MB	873.5 KB
 51	6d/f8b929	31807	global_logo (1)	CACHED	0	2022-04-09 17:28:10.164	17.6s	15.6s	46.3%	116.7 MB	254.6 MB	13.8 MB	847 KB
-1	95/5055ef	26995	init	COMPLETED	0	2022-04-11 20:19:07.908	1.8s	13ms	5.2%	0	0	104.1 KB	669 B
-28	12/6a6085	27083	backup	COMPLETED	0	2022-04-11 20:19:08.358	1.7s	12ms	10.4%	0	0	104.3 KB	505 B
-29	cb/520355	27134	workflowVersion	COMPLETED	0	2022-04-11 20:19:08.475	2.2s	694ms	14.5%	4.9 MB	38.4 MB	133.6 KB	2.1 KB
-46	48/88f58b	27296	plot_insertion (1)	COMPLETED	0	2022-04-11 20:19:09.319	4m 4s	4m 3s	35.7%	399.3 MB	549.9 MB	44.8 MB	22.6 MB
-54	26/2264ed	1448	print_report (1)	COMPLETED	0	2022-04-11 20:23:14.009	10.4s	9.5s	45.3%	248 MB	1 TB	51.9 MB	26.3 MB
+52	e9/9bbb1e	31094	global_logo (2)	CACHED	0	2022-04-09 17:27:52.403	17.7s	15.6s	46.4%	116.5 MB	255.3 MB	13.8 MB	967.6 KB
+1	bd/8b5bfa	137	init	COMPLETED	0	2022-04-11 20:52:50.952	1.8s	17ms	5.3%	0	0	104 KB	659 B
+25	86/7a76f6	226	backup	COMPLETED	0	2022-04-11 20:52:51.343	1.8s	11ms	6.3%	0	0	104.2 KB	494 B
+26	ec/876577	262	workflowVersion	COMPLETED	0	2022-04-11 20:52:51.403	2.3s	744ms	14.3%	5 MB	38.4 MB	133.5 KB	2.1 KB
+33	8b/74bcbf	403	dup_insertion_and_logo (1)	COMPLETED	0	2022-04-11 20:52:52.046	12.1s	11s	64.5%	270.8 MB	406.8 MB	16.7 MB	586.2 KB
+53	f8/d685f3	1420	plot_insertion (1)	COMPLETED	0	2022-04-11 20:53:04.174	4m	4m	35.7%	394.9 MB	546.2 MB	44.8 MB	22.6 MB
+54	ac/8ffc76	7745	print_report (1)	COMPLETED	0	2022-04-11 20:57:05.043	10.2s	9.3s	45.4%	266.5 MB	1 TB	51.9 MB	26.3 MB
diff --git a/example_of_result/20220120_test_1649701145/reports/plot_cov_report.txt b/example_of_result/20220120_test_1649703168/reports/plot_cov_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/plot_cov_report.txt
rename to example_of_result/20220120_test_1649703168/reports/plot_cov_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/plot_fivep_filtering_stat_report.txt b/example_of_result/20220120_test_1649703168/reports/plot_fivep_filtering_stat_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/plot_fivep_filtering_stat_report.txt
rename to example_of_result/20220120_test_1649703168/reports/plot_fivep_filtering_stat_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/plot_insertion_report.txt b/example_of_result/20220120_test_1649703168/reports/plot_insertion_report.txt
similarity index 99%
rename from example_of_result/20220120_test_1649701145/reports/plot_insertion_report.txt
rename to example_of_result/20220120_test_1649703168/reports/plot_insertion_report.txt
index 4acb60b1caac790b7d483d4c5a554561606d0fb9..482a02780195c52d09d4a190fff35c506abeaa0c 100644
--- a/example_of_result/20220120_test_1649701145/reports/plot_insertion_report.txt
+++ b/example_of_result/20220120_test_1649703168/reports/plot_insertion_report.txt
@@ -12,7 +12,7 @@
 
 
 
-2022-04-11 18:19:14
+2022-04-11 18:53:09
 
 
 
@@ -512,7 +512,7 @@ LINES REPLACED IN THE GENE OBJECT:
 
 
 
-PARALLELIZATION INITIATED AT: 2022-04-11 18:22:13
+PARALLELIZATION INITIATED AT: 2022-04-11 18:56:05
 
 
 
@@ -1668,7 +1668,7 @@ NUMBER OF INSERTIONS IN REANNOTATED res3 FILE (NORMALIZATION TO MAX 1):
 
 
 
-END TIME: 2022-04-11 18:23:12
+END TIME: 2022-04-11 18:57:03
 
 
 
@@ -1767,7 +1767,7 @@ loaded via a namespace (and not attached):
 
 ################################ JOB END
 
-TIME: 2022-04-11 18:23:12
+TIME: 2022-04-11 18:57:03
 
 TOTAL TIME LAPSE: 59S
 
diff --git a/example_of_result/20220120_test_1649701145/reports/plot_read_length_report.txt b/example_of_result/20220120_test_1649703168/reports/plot_read_length_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/plot_read_length_report.txt
rename to example_of_result/20220120_test_1649703168/reports/plot_read_length_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/print_report.txt b/example_of_result/20220120_test_1649703168/reports/print_report.txt
similarity index 97%
rename from example_of_result/20220120_test_1649701145/reports/print_report.txt
rename to example_of_result/20220120_test_1649703168/reports/print_report.txt
index 38b842df7d60c421f240ebf50ad798b2f7e7386f..d7ba680ccc1ca3e4493bfede49b71df2c37f46b5 100644
--- a/example_of_result/20220120_test_1649701145/reports/print_report.txt
+++ b/example_of_result/20220120_test_1649703168/reports/print_report.txt
@@ -12,7 +12,7 @@
 
 
 
-2022-04-11 18:23:18
+2022-04-11 18:57:09
 
 
 
@@ -31,7 +31,7 @@
 
 
 
-END TIME: 2022-04-11 18:23:23
+END TIME: 2022-04-11 18:57:14
 
 
 
@@ -114,7 +114,7 @@ loaded via a namespace (and not attached):
 
 ################################ JOB END
 
-TIME: 2022-04-11 18:23:23
+TIME: 2022-04-11 18:57:14
 
 TOTAL TIME LAPSE: 5S
 
diff --git a/example_of_result/20220120_test_1649701145/reports/q20_report.txt b/example_of_result/20220120_test_1649703168/reports/q20_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/q20_report.txt
rename to example_of_result/20220120_test_1649703168/reports/q20_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/random_insertion_report.txt b/example_of_result/20220120_test_1649703168/reports/random_insertion_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/random_insertion_report.txt
rename to example_of_result/20220120_test_1649703168/reports/random_insertion_report.txt
diff --git a/example_of_result/20220120_test_1649701145/reports/report.rmd b/example_of_result/20220120_test_1649703168/reports/report.rmd
similarity index 99%
rename from example_of_result/20220120_test_1649701145/reports/report.rmd
rename to example_of_result/20220120_test_1649703168/reports/report.rmd
index 1a25b7a1ca557269bd09eb593eac0c276b449321..3d54215a177d7d534c88c09364008a9d982e8b0b 100644
--- a/example_of_result/20220120_test_1649701145/reports/report.rmd
+++ b/example_of_result/20220120_test_1649703168/reports/report.rmd
@@ -1209,11 +1209,11 @@ Full .nextflow.log is in: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br
 | Variable | Value |
 | :-- | :-- |
 | Project<br />(empty means no .git folder where the main.nf file is present) | loot	https://gitlab.pasteur.fr/gmillot/14985_loot (fetch) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo
-| Git info<br />(empty means no .git folder where the main.nf file is present) | v8.4.0-dirty | # idem. Provide the small commit number of the script and nextflow.config used in the execution
+| Git info<br />(empty means no .git folder where the main.nf file is present) | v8.5.0-dirty | # idem. Provide the small commit number of the script and nextflow.config used in the execution
 | Cmd line | nextflow run main.nf -resume |
 | execution mode | local |
 | Manifest's pipeline version | null |
-| result path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649701145 |
+| result path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649703168 |
 | nextflow version | 21.04.2 |
     
 
@@ -1238,7 +1238,7 @@ Full .nextflow.log is in: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br
 
 | Name | Description | Value | 
 | :-- | :-- | :-- |
-| out_path | output folder path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649701145 |
+| out_path | output folder path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649703168 |
 | in_path | input folder path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/dataset |
     
 
diff --git a/example_of_result/20220120_test_1649701145/reports/seq_around_insertion_report.txt b/example_of_result/20220120_test_1649703168/reports/seq_around_insertion_report.txt
similarity index 100%
rename from example_of_result/20220120_test_1649701145/reports/seq_around_insertion_report.txt
rename to example_of_result/20220120_test_1649703168/reports/seq_around_insertion_report.txt