diff --git a/README.md b/README.md index 81deb4bdea6c4f9d3bf9c2058e508d27ed43aaaa..6a56552cf369cc8e935049fd74c72b1fb4f75b62 100755 --- a/README.md +++ b/README.md @@ -209,9 +209,15 @@ Gitlab developers ## WHAT'S NEW IN + +### v8.7.0 + +1) Precision about were the cutting is, relatively to the nucleotide position indicated in the files & logos improved for the reverse panels + + ### v8.6.0 -1) Figure 21 and 44 modified. +1) Figure 21 and 44 modified ### v8.5.0 diff --git a/bin/logo.R b/bin/logo.R index 5167259deba5bba602299273e51a437299f1e577..08c1463eca812f564f68b117f8ce76737fd79297 100755 --- a/bin/logo.R +++ b/bin/logo.R @@ -339,21 +339,33 @@ png(filename = paste0("logo_", sub(x = freq, pattern = "\\.stat$", replacement = width <- 7 height <- 2.5 text.size <- 6 -title.text.size <- 5 +title.text.size <- 3 angle <- 90 decal <- -1 # indicate the position occupied by the +1 position of the read (that correspond to first base of coli part of read) after rev complementation. Before rev-comp, it is 201 (as mentioned above). After, it is 400-201+1 = 200, thus -1. Allow to overlay consensus that are not centered on the +1 position tempo.just <- fun_gg_just(angle = angle, pos = "bottom") if(ncol(tempo) > 0){ gg1 = ggseqlogo::geom_logo(data = tempo, method = "bits", seq_type = "dna") # Derived from https://weblogo.berkeley.edu/logo.cgi because the website does not work - title <- paste0(freq, " | CONSENSUS SEQUENCE | POSITION 1 CORRESPONDS TO THE FIRST NUCLEOTIDE OF THE GENOME PART OF THE PLASMID GENOME JUNCTION") + title <- paste0(freq, "\nCONSENSUS SEQUENCE | POSITION 1 CORRESPONDS TO THE FIRST NUCLEOTIDE OF THE GENOME PART OF THE PLASMID GENOME JUNCTION") gg2 <- ggplot2::theme( # axis.text.x = ggplot2::element_text(angle = tempo.just$angle, hjust = tempo.just$hjust, vjust = tempo.just$vjust, size = text.size), #not required anymore because I used annotate() finally panel.background = ggplot2::element_blank() ) gg3 <- ggplot2::annotate("text", x = 0, y = 2.05, hjust = 0, vjust = 0, label = title, size = title.text.size) # y = 2.05 with bits, ggplot2::labs(title = title) to boring to fix the size gg4 <- ggplot2::scale_x_discrete(labels = c((-insertion_dist):(-1), 1:insertion_dist)) #remove the x initial numbers - gg5 <- ggplot2::annotate("text", x = 1:(insertion_dist * 2), y = -0.01, hjust = 1, vjust = 0.5, label = c((-insertion_dist):(-1), 1:insertion_dist), size = text.size, angle = angle) + gg5 <- ggplot2::annotate("text", + x = 1:(insertion_dist * 2), + y = -0.01, + hjust = 1, + vjust = 0.5, + label = if(grepl(x = freq, pattern = "_0.stat$")){ + c((-insertion_dist):(-1), 1:insertion_dist) + }else{ + c((1 + insertion_dist):1, (-1):(-insertion_dist + 1)) + }, + size = text.size, + angle = angle + ) gg6 <- ggplot2::coord_cartesian(clip = "off") gg7 <- ggplot2::theme(text = ggplot2::element_text(size = text.size * 4)) suppressMessages(print(ggplot2::ggplot() + gg1 + gg2 + gg3 + gg4 + gg5 + gg6 + gg7)) diff --git a/bin/motif.R b/bin/motif.R index fa9299e70f4c9dd6e6ccdf5ceec5728bfebbe119..3f63765539b1dcf9dc031fb71ba73dcb7db6e8e8 100755 --- a/bin/motif.R +++ b/bin/motif.R @@ -378,7 +378,7 @@ kableExtra::kable_styling(knitr::kable(head(tempo), row.names = FALSE, caption = fun_report(data = tempo.cat, output = report.rmd, path = "./", overwrite = FALSE) fun_report(data = paste0("\n\nBeginning of the motif positions in the reverse strand:\n\n"), output = report.rmd, path = "./", overwrite = FALSE) options(scipen = 1000) # to avoid writing of scientific numbers in tables, see https://stackoverflow.com/questions/3978266/number-format-writing-1e-5-instead-of-0-00001 -write.table(head(fw), file = paste0("./head.rv.txt"), row.names = FALSE, col.names = TRUE, append = FALSE, quote = FALSE, sep = "\t") +write.table(head(rv), file = paste0("./head.rv.txt"), row.names = FALSE, col.names = TRUE, append = FALSE, quote = FALSE, sep = "\t") options(scipen = 0) tempo.cat <- " \`\`\`{r, echo = FALSE} diff --git a/bin/print_report.R b/bin/print_report.R index 69ab147f6f2014c3224b6d9c89f683fa1374efc1..db1f0b9de7115e81f935f846374cd99e48d2ec46 100755 --- a/bin/print_report.R +++ b/bin/print_report.R @@ -38,7 +38,7 @@ # R version checking if(version$version.string != "R version 4.1.2 (2021-11-01)"){ - stop(paste0("\n\n================\n\nERROR IN plot_read_length.R\n", version$version.string, " IS NOT THE 4.1.2 RECOMMANDED\n\n================\n\n")) + stop(paste0("\n\n================\n\nERROR IN print_report.R\n", version$version.string, " IS NOT THE 4.1.2 RECOMMANDED\n\n================\n\n")) } # other initializations erase.objects = TRUE # write TRUE to erase all the existing objects in R before starting the algorithm and FALSE otherwise. Beginners should use TRUE @@ -148,22 +148,22 @@ for(i in 1:length(param.list)){ ################ import functions from cute little functions toolbox if(length(cute) != 1){ - stop(paste0("\n\n============\n\nERROR IN plot_read_length.R\ncute PARAMETER MUST BE LENGTH 1: ", paste(cute, collapse = " "), "\n\n============\n\n"), call. = FALSE) + stop(paste0("\n\n============\n\nERROR IN print_report.R\ncute PARAMETER MUST BE LENGTH 1: ", paste(cute, collapse = " "), "\n\n============\n\n"), call. = FALSE) }else if(grepl(x = cute, pattern = "^http")){ tempo.try <- try(suppressWarnings(suppressMessages(source(cute, local = .GlobalEnv))), silent = TRUE) if(any(grepl(x = tempo.try, pattern = "^[Ee]rror"))){ - stop(paste0("\n\n============\n\nERROR IN plot_read_length.R\nHTTP INDICATED IN THE cute PARAMETER DOES NOT EXISTS: ", cute, "\n\n============\n\n"), call. = FALSE) + stop(paste0("\n\n============\n\nERROR IN print_report.R\nHTTP INDICATED IN THE cute PARAMETER DOES NOT EXISTS: ", cute, "\n\n============\n\n"), call. = FALSE) }else{ source(cute, local = .GlobalEnv) # source the fun_ functions used below } }else if( ! grepl(x = cute, pattern = "^http")){ if( ! file.exists(cute)){ - stop(paste0("\n\n============\n\nERROR IN plot_read_length.R\nFILE INDICATED IN THE cute PARAMETER DOES NOT EXISTS: ", cute, "\n\n============\n\n"), call. = FALSE) + stop(paste0("\n\n============\n\nERROR IN print_report.R\nFILE INDICATED IN THE cute PARAMETER DOES NOT EXISTS: ", cute, "\n\n============\n\n"), call. = FALSE) }else{ source(cute, local = .GlobalEnv) # source the fun_ functions used below } }else{ - tempo.cat <- paste0("\n\n================\n\nINTERNAL CODE ERROR 3 IN plot_read_length.R: CODE HAS TO BE MODIFIED\n\n============\n\n") + tempo.cat <- paste0("\n\n================\n\nINTERNAL CODE ERROR 3 IN print_report.R: CODE HAS TO BE MODIFIED\n\n============\n\n") stop(tempo.cat, call. = FALSE) } @@ -181,7 +181,7 @@ for(i1 in req.function){ } } if( ! is.null(tempo)){ - tempo.cat <- paste0("ERROR IN plot_read_length.R\nREQUIRED cute FUNCTION", ifelse(length(tempo) > 1, "S ARE", " IS"), " MISSING IN THE R ENVIRONMENT:\n", paste0(tempo, collapse = "()\n")) + tempo.cat <- paste0("ERROR IN print_report.R\nREQUIRED cute FUNCTION", ifelse(length(tempo) > 1, "S ARE", " IS"), " MISSING IN THE R ENVIRONMENT:\n", paste0(tempo, collapse = "()\n")) stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between == } # end required function checking diff --git a/example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.html b/example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.html deleted file mode 100644 index b46355be0b1a60c9f4f904d3498a7b9f8e6d1902..0000000000000000000000000000000000000000 --- a/example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.html +++ /dev/null @@ -1,187 +0,0 @@ -<html><head><title>test.fastq2_trim.fq FastQC Report</title><style type="text/css"> - @media screen { - div.summary { - width: 18em; - position:fixed; - top: 3em; - margin:1em 0 0 1em; - } - - div.main { - display:block; - position:absolute; - overflow:auto; - height:auto; - width:auto; - top:4.5em; - bottom:2.3em; - left:18em; - right:0; - border-left: 1px solid #CCC; - padding:0 0 0 1em; - background-color: white; - z-index:1; - } - - div.header { - background-color: #EEE; - border:0; - margin:0; - padding: 0.5em; - font-size: 200%; - font-weight: bold; - position:fixed; - width:100%; - top:0; - left:0; - z-index:2; - } - - div.footer { - background-color: #EEE; - border:0; - margin:0; - padding:0.5em; - height: 1.3em; - overflow:hidden; - font-size: 100%; - font-weight: bold; - position:fixed; - bottom:0; - width:100%; - z-index:2; - } - - img.indented { - margin-left: 3em; - } - } - - @media print { - img { - max-width:100% !important; - page-break-inside: avoid; - } - h2, h3 { - page-break-after: avoid; - } - div.header { - background-color: #FFF; - } - - } - - body { - font-family: sans-serif; - color: #000; - background-color: #FFF; - border: 0; - margin: 0; - padding: 0; - } - - div.header { - border:0; - margin:0; - padding: 0.5em; - font-size: 200%; - font-weight: bold; - width:100%; - } - - #header_title { - display:inline-block; - float:left; - clear:left; - } - #header_filename { - display:inline-block; - float:right; - clear:right; - font-size: 50%; - margin-right:2em; - text-align: right; - } - - div.header h3 { - font-size: 50%; - margin-bottom: 0; - } - - div.summary ul { - padding-left:0; - list-style-type:none; - } - - div.summary ul li img { - margin-bottom:-0.5em; - margin-top:0.5em; - } - - div.main { - background-color: white; - } - - div.module { - padding-bottom:1.5em; - padding-top:1.5em; - } - - div.footer { - background-color: #EEE; - border:0; - margin:0; - padding: 0.5em; - font-size: 100%; - font-weight: bold; - width:100%; - } - - - a { - color: #000080; - } - - a:hover { - color: #800000; - } - - h2 { - color: #800000; - padding-bottom: 0; - margin-bottom: 0; - clear:left; - } - - table { - margin-left: 3em; - text-align: center; - } - - th { - text-align: center; - background-color: #000080; - color: #FFF; - padding: 0.4em; - } - - td { - font-family: monospace; - text-align: left; - background-color: #EEE; - color: #000; - padding: 0.4em; - } - - img { - padding-top: 0; - margin-top: 0; - border-top: 0; - } - - - p { - padding-top: 0; - margin-top: 0; - } -</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Sat 9 Apr 2022<br/>test.fastq2_trim.fq</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M2">Per tile sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[PASS]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[WARNING]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[FAIL]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>test.fastq2_trim.fq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>8709</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>30-175</td></tr><tr><td>%GC</td><td>54</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M2"><img src="" alt="[OK]"/>Per tile sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[OK]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content" width="800" height="600"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[OK]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[WARN]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution" width="800" height="600"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[FAIL]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph" width="800" height="600"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>2628</td><td>30.17568033069239</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAT</td><td>1004</td><td>11.528304053278218</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG</td><td>139</td><td>1.59605006315306</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGGT</td><td>110</td><td>1.2630612010563786</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGCT</td><td>76</td><td>0.872660466184407</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTA</td><td>74</td><td>0.8496957170742909</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAGTTCAAGCGTT</td><td>74</td><td>0.8496957170742909</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGG</td><td>72</td><td>0.826730967964175</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTA</td><td>54</td><td>0.6200482259731313</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAGTTCAAGCGAT</td><td>38</td><td>0.4363302330922035</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGACGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>36</td><td>0.4133654839820875</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCG</td><td>35</td><td>0.40188310942702954</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGG</td><td>28</td><td>0.3215064875416236</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAT</td><td>26</td><td>0.29854173843150766</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGTCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>22</td><td>0.25261224021127565</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTGATTCAAGCGTT</td><td>21</td><td>0.24112986565621772</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATC</td><td>18</td><td>0.20668274199104375</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAGGCGTT</td><td>16</td><td>0.18371799288092777</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAG</td><td>15</td><td>0.17223561832586978</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTG</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGGGCGGCTTAATTCAAGCGTT</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGGTTAATTCAAGCGTT</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTG</td><td>13</td><td>0.14927086921575383</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGC</td><td>13</td><td>0.14927086921575383</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGG</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTGAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAG</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTA</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGGGGCGCGGCTTAATTCAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGGCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCACGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCGTAATTCAAGCGTT</td><td>11</td><td>0.12630612010563783</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGACGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAT</td><td>11</td><td>0.12630612010563783</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATA</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGC</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGGGGCTTAATTCAAGCGTT</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTGAATTCAAGCGTT</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCTGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATA</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAG</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCGAGCGTT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGGGGCTTAATTCAAGCGAT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTGATTCAAGCGAT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph" width="800" height="600"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a> (version 0.11.8)</div></body></html> \ No newline at end of file diff --git a/example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.zip b/example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.zip deleted file mode 100644 index c0680a2b03814586999bc703e4f561285a9257fd..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_test_1649703168/fastQC1/test.fastq2_trim_fastqc.zip and /dev/null differ diff --git a/example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.html b/example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.html deleted file mode 100644 index 62f86b4702585ffcf021330c8692a68cf8fe1ad1..0000000000000000000000000000000000000000 --- a/example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.html +++ /dev/null @@ -1,187 +0,0 @@ -<html><head><title>test.fastq2_5pAtccRm.fq FastQC Report</title><style type="text/css"> - @media screen { - div.summary { - width: 18em; - position:fixed; - top: 3em; - margin:1em 0 0 1em; - } - - div.main { - display:block; - position:absolute; - overflow:auto; - height:auto; - width:auto; - top:4.5em; - bottom:2.3em; - left:18em; - right:0; - border-left: 1px solid #CCC; - padding:0 0 0 1em; - background-color: white; - z-index:1; - } - - div.header { - background-color: #EEE; - border:0; - margin:0; - padding: 0.5em; - font-size: 200%; - font-weight: bold; - position:fixed; - width:100%; - top:0; - left:0; - z-index:2; - } - - div.footer { - background-color: #EEE; - border:0; - margin:0; - padding:0.5em; - height: 1.3em; - overflow:hidden; - font-size: 100%; - font-weight: bold; - position:fixed; - bottom:0; - width:100%; - z-index:2; - } - - img.indented { - margin-left: 3em; - } - } - - @media print { - img { - max-width:100% !important; - page-break-inside: avoid; - } - h2, h3 { - page-break-after: avoid; - } - div.header { - background-color: #FFF; - } - - } - - body { - font-family: sans-serif; - color: #000; - background-color: #FFF; - border: 0; - margin: 0; - padding: 0; - } - - div.header { - border:0; - margin:0; - padding: 0.5em; - font-size: 200%; - font-weight: bold; - width:100%; - } - - #header_title { - display:inline-block; - float:left; - clear:left; - } - #header_filename { - display:inline-block; - float:right; - clear:right; - font-size: 50%; - margin-right:2em; - text-align: right; - } - - div.header h3 { - font-size: 50%; - margin-bottom: 0; - } - - div.summary ul { - padding-left:0; - list-style-type:none; - } - - div.summary ul li img { - margin-bottom:-0.5em; - margin-top:0.5em; - } - - div.main { - background-color: white; - } - - div.module { - padding-bottom:1.5em; - padding-top:1.5em; - } - - div.footer { - background-color: #EEE; - border:0; - margin:0; - padding: 0.5em; - font-size: 100%; - font-weight: bold; - width:100%; - } - - - a { - color: #000080; - } - - a:hover { - color: #800000; - } - - h2 { - color: #800000; - padding-bottom: 0; - margin-bottom: 0; - clear:left; - } - - table { - margin-left: 3em; - text-align: center; - } - - th { - text-align: center; - background-color: #000080; - color: #FFF; - padding: 0.4em; - } - - td { - font-family: monospace; - text-align: left; - background-color: #EEE; - color: #000; - padding: 0.4em; - } - - img { - padding-top: 0; - margin-top: 0; - border-top: 0; - } - - - p { - padding-top: 0; - margin-top: 0; - } -</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Sat 9 Apr 2022<br/>test.fastq2_5pAtccRm.fq</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M2">Per tile sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[FAIL]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[WARNING]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[PASS]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>test.fastq2_5pAtccRm.fq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4391</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1-127</td></tr><tr><td>%GC</td><td>52</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M2"><img src="" alt="[OK]"/>Per tile sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[OK]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content" width="1020" height="600"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[FAIL]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[WARN]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution" width="800" height="600"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[OK]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph" width="800" height="600"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>TTAGACGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCCA</td><td>146</td><td>3.3249829196082894</td><td>No Hit</td></tr><tr><td>TT</td><td>92</td><td>2.0951947164654974</td><td>No Hit</td></tr><tr><td>TTATACAGCAAGCGCGCACCGACTCTGACAATCGGCATATCCGGTTCGCC</td><td>86</td><td>1.958551582782965</td><td>No Hit</td></tr><tr><td>TTAAAACCTCTTCAAATTTGCCGTGCAAATTTGGTAGGCCTGAGTGGACT</td><td>83</td><td>1.890230015941699</td><td>No Hit</td></tr><tr><td>TTA</td><td>74</td><td>1.6852653154179003</td><td>No Hit</td></tr><tr><td>TTGGCGAAGTAATCGCAACATCCGCATTAAAATCTAGCGAGGGCTTTACT</td><td>50</td><td>1.1386927806877705</td><td>No Hit</td></tr><tr><td>TTTACCAGCATTAAGGAACAGCTGCTTACGGTCGGCGTGGGTTGCCAGCA</td><td>32</td><td>0.7287633796401731</td><td>No Hit</td></tr><tr><td>ATCACAGGCGTAAACGTCGCCGTTGTGCTCAACAATCACCGAGCGCCCAC</td><td>30</td><td>0.6832156684126622</td><td>No Hit</td></tr><tr><td>TTAT</td><td>26</td><td>0.5921202459576406</td><td>No Hit</td></tr><tr><td>AT</td><td>23</td><td>0.5237986791163743</td><td>No Hit</td></tr><tr><td>GTACGATGTCACTGTGCACGACGATGGTCACTTCCAAGGCGCGGAGTGCC</td><td>19</td><td>0.43270325666135273</td><td>No Hit</td></tr><tr><td>ATCATCGTACGCAAGTGACCAACGCTGTCGATGGTGTCTTTGATGCCAAC</td><td>17</td><td>0.38715554543384195</td><td>No Hit</td></tr><tr><td>TTATCCAGCGCGAGCACTCGCTCTATCACCATTTCACGAGTTTCAAGGTT</td><td>16</td><td>0.36438168982008656</td><td>No Hit</td></tr><tr><td>ATGAGGAGCGAAGGCATGAAACCATATCAGCGCCAGTTTATTGAATTTGC</td><td>16</td><td>0.36438168982008656</td><td>No Hit</td></tr><tr><td>ATATAGAGCATTTTTGCCTCCTTTCGCGCCACAAGAAATTAACTGTAGCG</td><td>15</td><td>0.3416078342063311</td><td>No Hit</td></tr><tr><td>TTAGGCGACAACGTGATGGTTGCGCCGGTGTTCACTGAAGCGGGCGATGT</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTATCAATACTGCCTTCAATCAGTACATTGGTGGCAGGAACATCATTGAG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTATCCGAAGCGATGAGAGTTATCCCGTAACCGGGTCAGCCACTGCATAG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTACGCATAGTCATTTCTCCTTCTAAGAAGCGAGTAAGTACCTGCAAATC</td><td>13</td><td>0.2960601229788203</td><td>No Hit</td></tr><tr><td>TTACGCATAATCAATAGCTCCTGAAATCAGCGAGAATGTAAGACCTTCCA</td><td>12</td><td>0.2732862673650649</td><td>No Hit</td></tr><tr><td>TTAG</td><td>12</td><td>0.2732862673650649</td><td>No Hit</td></tr><tr><td>TTATCCGGCCAGGCGGGAACTGCAGTTCGGAGAGTGGCAGCGCAAAGACA</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>TTAACCTTCACCAGCGTGCGACCCTGGATCTGGTTATTAATGATGGCCTC</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>ATA</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>TTATCCAGATAGTTCGCCAGCTCTTCATTATTGAGTTTTTTCTTAAGCAC</td><td>9</td><td>0.20496470052379867</td><td>No Hit</td></tr><tr><td>TTAATTGGCATCAACACTGCAATCCTTGCGCCTGGCGGCGGGAGCGTCGG</td><td>9</td><td>0.20496470052379867</td><td>No Hit</td></tr><tr><td>TTATCCGGCGTGTAGGCATCGTCATGACGTAAACGGCGATCGGCGGTATA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>ATCTACCGCGAAGGTTTTACCGGACTGGATCTGGCTTCGTCTGCCGCACA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>TTAGGGATTAGCGTCTTAAGCTGGCGCGAGGACCAACGTATCAGCCAGGC</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>TTAA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>ATC</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>T</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTT</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTATGGCTACTGGCGGTGCGGGTCGCGTTTATCGTTACAACACCAACGGC</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTATCCGGCGTTGCAACCTGTGAGCTGTAGATCATATCGGTGATAGCCTG</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>ATG</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTAAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTC</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTAGCATGACTCACGCCGGGCGTCCAGTTTTTAGCGACGGGGCACCCGAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTAGTGCGCTGGTTAGCGTGCGGGATAACGCCTGTCAGGATTATCTCGCG</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTATCCATCAGGGAGTTACTGTAAGCGAGAATATATTTATCACTCAATGC</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>ATAACCAGCATCAGCATTGGCGCGTAGAGAAAGGTAAAGCCCAGCAGCAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTATGCACCGCATCGTGAGCATCTTTCCCCCAGGCGAACGGCCCGTGCTG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTATA</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>GT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTAAGCTGCACCACACCGATACCGAGCGTAGTGGCAATACCGAAGATAGT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTAAATACCGTCGGCGCGTTAATCGGCCCAACTGCGCCACCAACACCAAT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>ATCA</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTGATCGTCAAAACCAACATTGCGACCGACGGTGGCGATAGGCATCCGGG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTATATACCAGGCTTAGCTGGGGTTGCCCCTTAATCTCTGGAGAATAACG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTGAGTTTCAGCAGCCGCGGTTCCGCCAGCACTTTACTGAAACTGCCTTT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>ATCTACCGCGAGGTTAAGCTGCTGTTCAATCTGGGCGACGCTCAGTTCGG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph" width="945" height="600"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a> (version 0.11.8)</div></body></html> \ No newline at end of file diff --git a/example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.zip b/example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.zip deleted file mode 100644 index 0154f37b6c90ebd43a52373145114c6038fea8fb..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_test_1649703168/fastQC2/test.fastq2_5pAtccRm_fastqc.zip and /dev/null differ diff --git a/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png b/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png deleted file mode 100644 index 62900026a3eede57be8bf912d19d6f07210587df..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png and /dev/null differ diff --git a/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png b/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png deleted file mode 100644 index c3c91aa74b668972a5df538ef322f2696b7627fb..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png and /dev/null differ diff --git a/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png b/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png deleted file mode 100644 index a18aa57d3e62593ec39ad66b153e957dadf441af..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png and /dev/null differ diff --git a/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png b/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png deleted file mode 100644 index 3ec4ebd43b6446f8e9328c2da345b4a8255c70c6..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_test_1649703168/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png and /dev/null differ diff --git a/example_of_result/20220120_test_1649703168/reports/nf_dag.png b/example_of_result/20220120_test_1649703168/reports/nf_dag.png deleted file mode 100644 index f292ac5f76c0cb831a343933530558edf31ff912..0000000000000000000000000000000000000000 Binary files a/example_of_result/20220120_test_1649703168/reports/nf_dag.png and /dev/null differ diff --git a/example_of_result/20220120_test_1649703168/reports/nf_trace.txt b/example_of_result/20220120_test_1649703168/reports/nf_trace.txt deleted file mode 100644 index b2512ff2b0363a35369247c90c6b59b1bdb2119f..0000000000000000000000000000000000000000 --- a/example_of_result/20220120_test_1649703168/reports/nf_trace.txt +++ /dev/null @@ -1,55 +0,0 @@ -task_id hash native_id name status exit submit duration realtime %cpu peak_rss peak_vmem rchar wchar -2 25/7b2ed6 281 Nremove (1) CACHED 0 2022-04-09 17:15:31.366 5.4s 1.3s 37.7% 11.9 MB 70.6 MB 16.8 MB 14.5 MB -3 f3/638b7c 308 report1 CACHED 0 2022-04-09 17:15:31.415 4.7s 85ms 6.6% 0 0 104.4 KB 684 B -4 e9/33684c 1241 trim (1) CACHED 0 2022-04-09 17:15:36.960 10.5s 7.3s 44.5% 63.5 MB 5.6 GB 16.4 MB 12 MB -5 d5/d15b46 2771 kraken (1) CACHED 0 2022-04-09 17:15:47.569 311ms 34ms 81.6% 0 0 150.8 KB 220 B -7 f8/e48213 2908 fivep_filtering (1) CACHED 0 2022-04-09 17:15:47.765 8.2s 6.2s 27.1% 11.6 MB 67.3 MB 28 MB 15.3 MB -6 59/2dbb6e 2819 fastqc1 (1) CACHED 0 2022-04-09 17:15:47.681 19s 17s 52.0% 165.2 MB 3.1 GB 13.9 MB 1.2 MB -9 c8/fa65a5 4175 cutoff (1) CACHED 0 2022-04-09 17:15:56.282 3.4s 988ms 14.5% 9.8 MB 61.3 MB 7 MB 3.9 MB -8 b4/13acb3 4147 fastqc2 (1) CACHED 0 2022-04-09 17:15:56.193 14.7s 12.8s 69.2% 176.1 MB 3.1 GB 12.2 MB 1.2 MB -11 96/3945da 5033 bowtie2 (1) CACHED 0 2022-04-09 17:16:00.685 13.5s 9.3s 40.6% 114.8 MB 239.5 MB 35 MB 16.2 MB -13 50/34788a 6971 Q20 (1) CACHED 0 2022-04-09 17:16:15.154 2.7s 707ms 17.8% 4.5 MB 42.8 MB 3.2 MB 2.2 MB -14 a8/f98ebd 11174 coverage (1) CACHED 0 2022-04-09 17:17:18.784 4.6s 2s 18.3% 43.4 MB 80.1 MB 479.7 KB 91 KB -17 41/75981b 7462 no_soft_clipping (1) CACHED 0 2022-04-09 17:16:18.863 4.3s 1.2s 14.5% 5.1 MB 57.7 MB 2.1 MB 1.5 MB -15 8f/71ec44 6997 multiQC CACHED 0 2022-04-09 17:16:15.192 23.2s 23s 36.5% 70.7 MB 81.1 MB 28.3 MB 2.3 MB -18 da/6b7a6c 11388 coverage (2) CACHED 0 2022-04-09 17:17:23.376 4.3s 1.9s 19.1% 43.6 MB 80.1 MB 335 KB 82.4 KB -16 0a/40301f 7482 duplicate_removal (1) CACHED 0 2022-04-09 17:16:18.891 9.7s 6.6s 24.6% 12.4 MB 85.1 MB 12.9 MB 6.6 MB -23 91/2fd95b 9315 insertion (1) CACHED 0 2022-04-09 17:16:29.566 4.3s 2.3s 19.6% 7.8 MB 65.6 MB 2.5 MB 1.7 MB -24 22/3c6c1a 9335 insertion (2) CACHED 0 2022-04-09 17:16:29.595 4.5s 2.5s 20.4% 9.2 MB 65.7 MB 3 MB 2.2 MB -22 d5/03b2f8 11599 coverage (3) CACHED 0 2022-04-09 17:17:27.665 4.2s 1.8s 19.8% 43.5 MB 80.1 MB 310.2 KB 82.1 KB -21 88/636f95 14201 plot_coverage (2) CACHED 0 2022-04-09 17:18:29.257 26.4s 24.3s 49.3% 215.2 MB 353.8 MB 18.3 MB 434.3 KB -29 37/f53840 15016 plot_coverage (3) CACHED 0 2022-04-09 17:18:55.680 25.9s 23.9s 49.5% 216.1 MB 354.4 MB 18.3 MB 434.9 KB -19 9d/64d05b 13378 plot_coverage (1) CACHED 0 2022-04-09 17:18:02.485 26.7s 24.5s 49.2% 210.1 MB 346.8 MB 18.3 MB 440.1 KB -27 13/37b94c 11809 final_insertion_files (1) CACHED 0 2022-04-09 17:17:31.877 15.1s 13s 39.8% 121.6 MB 246.8 MB 17.2 MB 269.2 KB -28 23/48d601 12520 final_insertion_files (2) CACHED 0 2022-04-09 17:17:46.998 15.5s 13s 39.8% 121.6 MB 246.8 MB 17.2 MB 278.8 KB -31 08/101dfa 23264 report3 (1) CACHED 0 2022-04-11 00:56:04.071 1.5s 65ms 9.5% 0 0 298.7 KB 43.6 KB -20 c6/bef5aa 560 motif CACHED 0 2022-04-09 17:15:32.488 46.5s 42.5s 42.6% 200.7 MB 325.6 MB 47.6 MB 39.7 MB -12 2f/6c72d5 10356 plot_read_length (1) CACHED 0 2022-04-09 17:16:50.093 28.7s 26.5s 53.9% 198.8 MB 337.6 MB 18.7 MB 691.5 KB -10 51/09f085 7550 plot_fivep_filtering_stat (1) CACHED 0 2022-04-09 17:16:18.958 31.1s 28.5s 42.9% 210.2 MB 346.7 MB 18.2 MB 792.5 KB -32 61/3abc05 17353 seq_around_insertion (2) CACHED 0 2022-04-09 17:20:01.464 14.8s 12.7s 40.7% 121.7 MB 246.8 MB 17.2 MB 143 KB -30 16/ef3227 15833 seq_around_insertion (1) CACHED 0 2022-04-09 17:19:21.578 15.1s 12.9s 40.7% 121.8 MB 246.8 MB 17.2 MB 208.5 KB -36 73/f0b62e 18913 extract_seq (1) CACHED 0 2022-04-09 17:20:44.033 5.2s 2.8s 19.6% 17.6 MB 62.4 MB 9.1 MB 4.5 MB -35 52/691666 27108 extract_seq (2) CACHED 0 2022-04-09 17:26:36.849 3.7s 1.5s 17.8% 6 MB 50.4 MB 9 MB 4.5 MB -41 49/575b96 27342 goalign (1) CACHED 0 2022-04-09 17:26:40.735 6.3s 2.9s 13.2% 13.6 MB 700.2 MB 128.1 KB 347.8 KB -37 35/ec05ea 19358 base_freq (1) CACHED 0 2022-04-09 17:20:49.698 4.8s 396ms 10.0% 0 0 279.8 KB 16.8 KB -45 b4/c8c939 27489 base_freq (8) CACHED 0 2022-04-09 17:26:41.036 4.8s 201ms 9.6% 0 0 180.5 KB 7 KB -38 ac/24a1a8 19211 base_freq (2) CACHED 0 2022-04-09 17:20:49.332 4.8s 399ms 11.1% 0 0 281.9 KB 18.9 KB -42 e7/c17b46 27448 base_freq (5) CACHED 0 2022-04-09 17:26:41.008 4.6s 197ms 9.7% 0 0 182.5 KB 8.9 KB -40 f0/df4b99 19278 base_freq (4) CACHED 0 2022-04-09 17:20:49.523 4.8s 432ms 11.3% 0 0 282.1 KB 19 KB -44 24/882b89 27418 base_freq (7) CACHED 0 2022-04-09 17:26:40.971 4.8s 172ms 9.8% 0 0 176.4 KB 2.8 KB -39 3c/c2beee 19315 base_freq (3) CACHED 0 2022-04-09 17:20:49.606 4.8s 426ms 11.9% 0 0 282.7 KB 19.7 KB -43 63/faaafa 28010 base_freq (6) CACHED 0 2022-04-09 17:26:45.691 3s 109ms 11.6% 0 0 178.7 KB 5.1 KB -50 71/fcd5ac 28454 report2 CACHED 0 2022-04-09 17:26:49.697 2.7s 45ms 5.6% 0 0 132.1 KB 2.4 KB -34 34/a909b8 18724 random_insertion (1) CACHED 0 2022-04-11 19:50:56.918 9.5s 8.5s 57.3% 351.5 MB 487.6 MB 30 MB 1.2 MB -46 12/8d4218 30389 logo (4) CACHED 0 2022-04-09 17:27:35.457 16.9s 14.8s 44.2% 120.1 MB 293.4 MB 13.8 MB 1002.1 KB -47 49/98147b 27326 logo (1) CACHED 0 2022-04-09 17:26:40.631 21.1s 17.7s 38.5% 168.5 MB 306.9 MB 13.8 MB 852.7 KB -48 20/686354 28980 logo (2) CACHED 0 2022-04-09 17:27:01.775 16.5s 14.5s 44.4% 123.9 MB 296.8 MB 13.8 MB 882.9 KB -49 d7/09132f 29683 logo (3) CACHED 0 2022-04-09 17:27:18.258 17.2s 15.1s 43.2% 118 MB 258.9 MB 13.8 MB 873.5 KB -51 6d/f8b929 31807 global_logo (1) CACHED 0 2022-04-09 17:28:10.164 17.6s 15.6s 46.3% 116.7 MB 254.6 MB 13.8 MB 847 KB -52 e9/9bbb1e 31094 global_logo (2) CACHED 0 2022-04-09 17:27:52.403 17.7s 15.6s 46.4% 116.5 MB 255.3 MB 13.8 MB 967.6 KB -1 bd/8b5bfa 137 init COMPLETED 0 2022-04-11 20:52:50.952 1.8s 17ms 5.3% 0 0 104 KB 659 B -25 86/7a76f6 226 backup COMPLETED 0 2022-04-11 20:52:51.343 1.8s 11ms 6.3% 0 0 104.2 KB 494 B -26 ec/876577 262 workflowVersion COMPLETED 0 2022-04-11 20:52:51.403 2.3s 744ms 14.3% 5 MB 38.4 MB 133.5 KB 2.1 KB -33 8b/74bcbf 403 dup_insertion_and_logo (1) COMPLETED 0 2022-04-11 20:52:52.046 12.1s 11s 64.5% 270.8 MB 406.8 MB 16.7 MB 586.2 KB -53 f8/d685f3 1420 plot_insertion (1) COMPLETED 0 2022-04-11 20:53:04.174 4m 4m 35.7% 394.9 MB 546.2 MB 44.8 MB 22.6 MB -54 ac/8ffc76 7745 print_report (1) COMPLETED 0 2022-04-11 20:57:05.043 10.2s 9.3s 45.4% 266.5 MB 1 TB 51.9 MB 26.3 MB diff --git a/example_of_result/20220120_test_1657729206/fastQC1/test.fastq2_trim_fastqc.html b/example_of_result/20220120_test_1657729206/fastQC1/test.fastq2_trim_fastqc.html new file mode 100644 index 0000000000000000000000000000000000000000..800a864383467b956edc42e22ede698e572a92e2 --- /dev/null +++ b/example_of_result/20220120_test_1657729206/fastQC1/test.fastq2_trim_fastqc.html @@ -0,0 +1,187 @@ +<html><head><title>test.fastq2_trim.fq FastQC Report</title><style type="text/css"> + @media screen { + div.summary { + width: 18em; + position:fixed; + top: 3em; + margin:1em 0 0 1em; + } + + div.main { + display:block; + position:absolute; + overflow:auto; + height:auto; + width:auto; + top:4.5em; + bottom:2.3em; + left:18em; + right:0; + border-left: 1px solid #CCC; + padding:0 0 0 1em; + background-color: white; + z-index:1; + } + + div.header { + background-color: #EEE; + border:0; + margin:0; + padding: 0.5em; + font-size: 200%; + font-weight: bold; + position:fixed; + width:100%; + top:0; + left:0; + z-index:2; + } + + div.footer { + background-color: #EEE; + border:0; + margin:0; + padding:0.5em; + height: 1.3em; + overflow:hidden; + font-size: 100%; + font-weight: bold; + position:fixed; + bottom:0; + width:100%; + z-index:2; + } + + img.indented { + margin-left: 3em; + } + } + + @media print { + img { + max-width:100% !important; + page-break-inside: avoid; + } + h2, h3 { + page-break-after: avoid; + } + div.header { + background-color: #FFF; + } + + } + + body { + font-family: sans-serif; + color: #000; + background-color: #FFF; + border: 0; + margin: 0; + padding: 0; + } + + div.header { + border:0; + margin:0; + padding: 0.5em; + font-size: 200%; + font-weight: bold; + width:100%; + } + + #header_title { + display:inline-block; + float:left; + clear:left; + } + #header_filename { + display:inline-block; + float:right; + clear:right; + font-size: 50%; + margin-right:2em; + text-align: right; + } + + div.header h3 { + font-size: 50%; + margin-bottom: 0; + } + + div.summary ul { + padding-left:0; + list-style-type:none; + } + + div.summary ul li img { + margin-bottom:-0.5em; + margin-top:0.5em; + } + + div.main { + background-color: white; + } + + div.module { + padding-bottom:1.5em; + padding-top:1.5em; + } + + div.footer { + background-color: #EEE; + border:0; + margin:0; + padding: 0.5em; + font-size: 100%; + font-weight: bold; + width:100%; + } + + + a { + color: #000080; + } + + a:hover { + color: #800000; + } + + h2 { + color: #800000; + padding-bottom: 0; + margin-bottom: 0; + clear:left; + } + + table { + margin-left: 3em; + text-align: center; + } + + th { + text-align: center; + background-color: #000080; + color: #FFF; + padding: 0.4em; + } + + td { + font-family: monospace; + text-align: left; + background-color: #EEE; + color: #000; + padding: 0.4em; + } + + img { + padding-top: 0; + margin-top: 0; + border-top: 0; + } + + + p { + padding-top: 0; + margin-top: 0; + } +</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Wed 13 Jul 2022<br/>test.fastq2_trim.fq</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M2">Per tile sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[PASS]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[WARNING]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[FAIL]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>test.fastq2_trim.fq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>8709</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>30-175</td></tr><tr><td>%GC</td><td>54</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M2"><img src="" alt="[OK]"/>Per tile sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[OK]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content" width="800" height="600"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[OK]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[WARN]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution" width="800" height="600"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[FAIL]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph" width="800" height="600"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>2628</td><td>30.17568033069239</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAT</td><td>1004</td><td>11.528304053278218</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG</td><td>139</td><td>1.59605006315306</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGGT</td><td>110</td><td>1.2630612010563786</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGCT</td><td>76</td><td>0.872660466184407</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTA</td><td>74</td><td>0.8496957170742909</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAGTTCAAGCGTT</td><td>74</td><td>0.8496957170742909</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGG</td><td>72</td><td>0.826730967964175</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTA</td><td>54</td><td>0.6200482259731313</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAGTTCAAGCGAT</td><td>38</td><td>0.4363302330922035</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGACGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>36</td><td>0.4133654839820875</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCG</td><td>35</td><td>0.40188310942702954</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGG</td><td>28</td><td>0.3215064875416236</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAT</td><td>26</td><td>0.29854173843150766</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGTCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>22</td><td>0.25261224021127565</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTGATTCAAGCGTT</td><td>21</td><td>0.24112986565621772</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATC</td><td>18</td><td>0.20668274199104375</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAGGCGTT</td><td>16</td><td>0.18371799288092777</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAG</td><td>15</td><td>0.17223561832586978</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTG</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGGGCGGCTTAATTCAAGCGTT</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGGTTAATTCAAGCGTT</td><td>14</td><td>0.1607532437708118</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTG</td><td>13</td><td>0.14927086921575383</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGC</td><td>13</td><td>0.14927086921575383</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGG</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTGAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTTAG</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTA</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGGGGCGCGGCTTAATTCAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGGCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCACGCGTT</td><td>12</td><td>0.13778849466069584</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCGTAATTCAAGCGTT</td><td>11</td><td>0.12630612010563783</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGACGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAT</td><td>11</td><td>0.12630612010563783</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATA</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGC</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGGGGCTTAATTCAAGCGTT</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTGAATTCAAGCGTT</td><td>10</td><td>0.11482374555057985</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCTGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGTT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>AATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGATA</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCGAG</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCGAGCGTT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGGGGCTTAATTCAAGCGAT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr><tr><td>CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTGATTCAAGCGAT</td><td>9</td><td>0.10334137099552188</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph" width="800" height="600"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a> (version 0.11.8)</div></body></html> \ No newline at end of file diff --git a/example_of_result/20220120_test_1657729206/fastQC1/test.fastq2_trim_fastqc.zip b/example_of_result/20220120_test_1657729206/fastQC1/test.fastq2_trim_fastqc.zip new file mode 100644 index 0000000000000000000000000000000000000000..96ebfbcc36f0f889e596381632e89be78ad72a19 Binary files /dev/null and b/example_of_result/20220120_test_1657729206/fastQC1/test.fastq2_trim_fastqc.zip differ diff --git a/example_of_result/20220120_test_1657729206/fastQC2/test.fastq2_5pAtccRm_fastqc.html b/example_of_result/20220120_test_1657729206/fastQC2/test.fastq2_5pAtccRm_fastqc.html new file mode 100644 index 0000000000000000000000000000000000000000..7d170ff8d405babdfab47f0b9e47d1327dbac31d --- /dev/null +++ b/example_of_result/20220120_test_1657729206/fastQC2/test.fastq2_5pAtccRm_fastqc.html @@ -0,0 +1,187 @@ +<html><head><title>test.fastq2_5pAtccRm.fq FastQC Report</title><style type="text/css"> + @media screen { + div.summary { + width: 18em; + position:fixed; + top: 3em; + margin:1em 0 0 1em; + } + + div.main { + display:block; + position:absolute; + overflow:auto; + height:auto; + width:auto; + top:4.5em; + bottom:2.3em; + left:18em; + right:0; + border-left: 1px solid #CCC; + padding:0 0 0 1em; + background-color: white; + z-index:1; + } + + div.header { + background-color: #EEE; + border:0; + margin:0; + padding: 0.5em; + font-size: 200%; + font-weight: bold; + position:fixed; + width:100%; + top:0; + left:0; + z-index:2; + } + + div.footer { + background-color: #EEE; + border:0; + margin:0; + padding:0.5em; + height: 1.3em; + overflow:hidden; + font-size: 100%; + font-weight: bold; + position:fixed; + bottom:0; + width:100%; + z-index:2; + } + + img.indented { + margin-left: 3em; + } + } + + @media print { + img { + max-width:100% !important; + page-break-inside: avoid; + } + h2, h3 { + page-break-after: avoid; + } + div.header { + background-color: #FFF; + } + + } + + body { + font-family: sans-serif; + color: #000; + background-color: #FFF; + border: 0; + margin: 0; + padding: 0; + } + + div.header { + border:0; + margin:0; + padding: 0.5em; + font-size: 200%; + font-weight: bold; + width:100%; + } + + #header_title { + display:inline-block; + float:left; + clear:left; + } + #header_filename { + display:inline-block; + float:right; + clear:right; + font-size: 50%; + margin-right:2em; + text-align: right; + } + + div.header h3 { + font-size: 50%; + margin-bottom: 0; + } + + div.summary ul { + padding-left:0; + list-style-type:none; + } + + div.summary ul li img { + margin-bottom:-0.5em; + margin-top:0.5em; + } + + div.main { + background-color: white; + } + + div.module { + padding-bottom:1.5em; + padding-top:1.5em; + } + + div.footer { + background-color: #EEE; + border:0; + margin:0; + padding: 0.5em; + font-size: 100%; + font-weight: bold; + width:100%; + } + + + a { + color: #000080; + } + + a:hover { + color: #800000; + } + + h2 { + color: #800000; + padding-bottom: 0; + margin-bottom: 0; + clear:left; + } + + table { + margin-left: 3em; + text-align: center; + } + + th { + text-align: center; + background-color: #000080; + color: #FFF; + padding: 0.4em; + } + + td { + font-family: monospace; + text-align: left; + background-color: #EEE; + color: #000; + padding: 0.4em; + } + + img { + padding-top: 0; + margin-top: 0; + border-top: 0; + } + + + p { + padding-top: 0; + margin-top: 0; + } +</style></head><body><div class="header"><div id="header_title"><img src="" alt="FastQC"/>FastQC Report</div><div id="header_filename">Wed 13 Jul 2022<br/>test.fastq2_5pAtccRm.fq</div></div><div class="summary"><h2>Summary</h2><ul><li><img src="" alt="[PASS]"/><a href="#M0">Basic Statistics</a></li><li><img src="" alt="[PASS]"/><a href="#M1">Per base sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M2">Per tile sequence quality</a></li><li><img src="" alt="[PASS]"/><a href="#M3">Per sequence quality scores</a></li><li><img src="" alt="[FAIL]"/><a href="#M4">Per base sequence content</a></li><li><img src="" alt="[FAIL]"/><a href="#M5">Per sequence GC content</a></li><li><img src="" alt="[PASS]"/><a href="#M6">Per base N content</a></li><li><img src="" alt="[WARNING]"/><a href="#M7">Sequence Length Distribution</a></li><li><img src="" alt="[PASS]"/><a href="#M8">Sequence Duplication Levels</a></li><li><img src="" alt="[FAIL]"/><a href="#M9">Overrepresented sequences</a></li><li><img src="" alt="[PASS]"/><a href="#M10">Adapter Content</a></li></ul></div><div class="main"><div class="module"><h2 id="M0"><img src="" alt="[OK]"/>Basic Statistics</h2><table><thead><tr><th>Measure</th><th>Value</th></tr></thead><tbody><tr><td>Filename</td><td>test.fastq2_5pAtccRm.fq</td></tr><tr><td>File type</td><td>Conventional base calls</td></tr><tr><td>Encoding</td><td>Sanger / Illumina 1.9</td></tr><tr><td>Total Sequences</td><td>4391</td></tr><tr><td>Sequences flagged as poor quality</td><td>0</td></tr><tr><td>Sequence length</td><td>1-127</td></tr><tr><td>%GC</td><td>52</td></tr></tbody></table></div><div class="module"><h2 id="M1"><img src="" alt="[OK]"/>Per base sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M2"><img src="" alt="[OK]"/>Per tile sequence quality</h2><p><img class="indented" src="" alt="Per base quality graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M3"><img src="" alt="[OK]"/>Per sequence quality scores</h2><p><img class="indented" src="" alt="Per Sequence quality graph" width="800" height="600"/></p></div><div class="module"><h2 id="M4"><img src="" alt="[FAIL]"/>Per base sequence content</h2><p><img class="indented" src="" alt="Per base sequence content" width="1020" height="600"/></p></div><div class="module"><h2 id="M5"><img src="" alt="[FAIL]"/>Per sequence GC content</h2><p><img class="indented" src="" alt="Per sequence GC content graph" width="800" height="600"/></p></div><div class="module"><h2 id="M6"><img src="" alt="[OK]"/>Per base N content</h2><p><img class="indented" src="" alt="N content graph" width="1020" height="600"/></p></div><div class="module"><h2 id="M7"><img src="" alt="[WARN]"/>Sequence Length Distribution</h2><p><img class="indented" src="" alt="Sequence length distribution" width="800" height="600"/></p></div><div class="module"><h2 id="M8"><img src="" alt="[OK]"/>Sequence Duplication Levels</h2><p><img class="indented" src="" alt="Duplication level graph" width="800" height="600"/></p></div><div class="module"><h2 id="M9"><img src="" alt="[FAIL]"/>Overrepresented sequences</h2><table><thead><tr><th>Sequence</th><th>Count</th><th>Percentage</th><th>Possible Source</th></tr></thead><tbody><tr><td>TTAGACGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTCCA</td><td>146</td><td>3.3249829196082894</td><td>No Hit</td></tr><tr><td>TT</td><td>92</td><td>2.0951947164654974</td><td>No Hit</td></tr><tr><td>TTATACAGCAAGCGCGCACCGACTCTGACAATCGGCATATCCGGTTCGCC</td><td>86</td><td>1.958551582782965</td><td>No Hit</td></tr><tr><td>TTAAAACCTCTTCAAATTTGCCGTGCAAATTTGGTAGGCCTGAGTGGACT</td><td>83</td><td>1.890230015941699</td><td>No Hit</td></tr><tr><td>TTA</td><td>74</td><td>1.6852653154179003</td><td>No Hit</td></tr><tr><td>TTGGCGAAGTAATCGCAACATCCGCATTAAAATCTAGCGAGGGCTTTACT</td><td>50</td><td>1.1386927806877705</td><td>No Hit</td></tr><tr><td>TTTACCAGCATTAAGGAACAGCTGCTTACGGTCGGCGTGGGTTGCCAGCA</td><td>32</td><td>0.7287633796401731</td><td>No Hit</td></tr><tr><td>ATCACAGGCGTAAACGTCGCCGTTGTGCTCAACAATCACCGAGCGCCCAC</td><td>30</td><td>0.6832156684126622</td><td>No Hit</td></tr><tr><td>TTAT</td><td>26</td><td>0.5921202459576406</td><td>No Hit</td></tr><tr><td>AT</td><td>23</td><td>0.5237986791163743</td><td>No Hit</td></tr><tr><td>GTACGATGTCACTGTGCACGACGATGGTCACTTCCAAGGCGCGGAGTGCC</td><td>19</td><td>0.43270325666135273</td><td>No Hit</td></tr><tr><td>ATCATCGTACGCAAGTGACCAACGCTGTCGATGGTGTCTTTGATGCCAAC</td><td>17</td><td>0.38715554543384195</td><td>No Hit</td></tr><tr><td>TTATCCAGCGCGAGCACTCGCTCTATCACCATTTCACGAGTTTCAAGGTT</td><td>16</td><td>0.36438168982008656</td><td>No Hit</td></tr><tr><td>ATGAGGAGCGAAGGCATGAAACCATATCAGCGCCAGTTTATTGAATTTGC</td><td>16</td><td>0.36438168982008656</td><td>No Hit</td></tr><tr><td>ATATAGAGCATTTTTGCCTCCTTTCGCGCCACAAGAAATTAACTGTAGCG</td><td>15</td><td>0.3416078342063311</td><td>No Hit</td></tr><tr><td>TTAGGCGACAACGTGATGGTTGCGCCGGTGTTCACTGAAGCGGGCGATGT</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTATCAATACTGCCTTCAATCAGTACATTGGTGGCAGGAACATCATTGAG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTATCCGAAGCGATGAGAGTTATCCCGTAACCGGGTCAGCCACTGCATAG</td><td>14</td><td>0.31883397859257573</td><td>No Hit</td></tr><tr><td>TTACGCATAGTCATTTCTCCTTCTAAGAAGCGAGTAAGTACCTGCAAATC</td><td>13</td><td>0.2960601229788203</td><td>No Hit</td></tr><tr><td>TTACGCATAATCAATAGCTCCTGAAATCAGCGAGAATGTAAGACCTTCCA</td><td>12</td><td>0.2732862673650649</td><td>No Hit</td></tr><tr><td>TTAG</td><td>12</td><td>0.2732862673650649</td><td>No Hit</td></tr><tr><td>TTATCCGGCCAGGCGGGAACTGCAGTTCGGAGAGTGGCAGCGCAAAGACA</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>TTAACCTTCACCAGCGTGCGACCCTGGATCTGGTTATTAATGATGGCCTC</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>ATA</td><td>10</td><td>0.2277385561375541</td><td>No Hit</td></tr><tr><td>TTATCCAGATAGTTCGCCAGCTCTTCATTATTGAGTTTTTTCTTAAGCAC</td><td>9</td><td>0.20496470052379867</td><td>No Hit</td></tr><tr><td>TTAATTGGCATCAACACTGCAATCCTTGCGCCTGGCGGCGGGAGCGTCGG</td><td>9</td><td>0.20496470052379867</td><td>No Hit</td></tr><tr><td>TTATCCGGCGTGTAGGCATCGTCATGACGTAAACGGCGATCGGCGGTATA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>ATCTACCGCGAAGGTTTTACCGGACTGGATCTGGCTTCGTCTGCCGCACA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>TTAGGGATTAGCGTCTTAAGCTGGCGCGAGGACCAACGTATCAGCCAGGC</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>TTAA</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>ATC</td><td>8</td><td>0.18219084491004328</td><td>No Hit</td></tr><tr><td>T</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTT</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTATGGCTACTGGCGGTGCGGGTCGCGTTTATCGTTACAACACCAACGGC</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTATCCGGCGTTGCAACCTGTGAGCTGTAGATCATATCGGTGATAGCCTG</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>ATG</td><td>7</td><td>0.15941698929628786</td><td>No Hit</td></tr><tr><td>TTAAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTC</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTAGCATGACTCACGCCGGGCGTCCAGTTTTTAGCGACGGGGCACCCGAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTAGTGCGCTGGTTAGCGTGCGGGATAACGCCTGTCAGGATTATCTCGCG</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTATCCATCAGGGAGTTACTGTAAGCGAGAATATATTTATCACTCAATGC</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>ATAACCAGCATCAGCATTGGCGCGTAGAGAAAGGTAAAGCCCAGCAGCAA</td><td>6</td><td>0.13664313368253245</td><td>No Hit</td></tr><tr><td>TTATGCACCGCATCGTGAGCATCTTTCCCCCAGGCGAACGGCCCGTGCTG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTATA</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>GT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTAAGCTGCACCACACCGATACCGAGCGTAGTGGCAATACCGAAGATAGT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTAAATACCGTCGGCGCGTTAATCGGCCCAACTGCGCCACCAACACCAAT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>ATCA</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTGATCGTCAAAACCAACATTGCGACCGACGGTGGCGATAGGCATCCGGG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTATATACCAGGCTTAGCTGGGGTTGCCCCTTAATCTCTGGAGAATAACG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>TTGAGTTTCAGCAGCCGCGGTTCCGCCAGCACTTTACTGAAACTGCCTTT</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr><tr><td>ATCTACCGCGAGGTTAAGCTGCTGTTCAATCTGGGCGACGCTCAGTTCGG</td><td>5</td><td>0.11386927806877704</td><td>No Hit</td></tr></tbody></table></div><div class="module"><h2 id="M10"><img src="" alt="[OK]"/>Adapter Content</h2><p><img class="indented" src="" alt="Adapter graph" width="945" height="600"/></p></div></div><div class="footer">Produced by <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc/">FastQC</a> (version 0.11.8)</div></body></html> \ No newline at end of file diff --git a/example_of_result/20220120_test_1657729206/fastQC2/test.fastq2_5pAtccRm_fastqc.zip b/example_of_result/20220120_test_1657729206/fastQC2/test.fastq2_5pAtccRm_fastqc.zip new file mode 100644 index 0000000000000000000000000000000000000000..f1109f1197ddd0f2f85140779e97fec5f74efb0b Binary files /dev/null and b/example_of_result/20220120_test_1657729206/fastQC2/test.fastq2_5pAtccRm_fastqc.zip differ diff --git a/example_of_result/20220120_test_1649703168/figures/alignment.html b/example_of_result/20220120_test_1657729206/figures/alignment.html similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/alignment.html rename to example_of_result/20220120_test_1657729206/figures/alignment.html diff --git a/example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_all.png b/example_of_result/20220120_test_1657729206/figures/barplot_test.fastq2_all.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_all.png rename to example_of_result/20220120_test_1657729206/figures/barplot_test.fastq2_all.png diff --git a/example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_all_relative.png b/example_of_result/20220120_test_1657729206/figures/barplot_test.fastq2_all_relative.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_all_relative.png rename to example_of_result/20220120_test_1657729206/figures/barplot_test.fastq2_all_relative.png diff --git a/example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_ess_uness.png b/example_of_result/20220120_test_1657729206/figures/barplot_test.fastq2_ess_uness.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_ess_uness.png rename to example_of_result/20220120_test_1657729206/figures/barplot_test.fastq2_ess_uness.png diff --git a/example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_inside_outside.png b/example_of_result/20220120_test_1657729206/figures/barplot_test.fastq2_inside_outside.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/barplot_test.fastq2_inside_outside.png rename to example_of_result/20220120_test_1657729206/figures/barplot_test.fastq2_inside_outside.png diff --git a/example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_cds.png b/example_of_result/20220120_test_1657729206/figures/boxplot_test.fastq2_cds.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_cds.png rename to example_of_result/20220120_test_1657729206/figures/boxplot_test.fastq2_cds.png diff --git a/example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_cds_wo_unknown.png b/example_of_result/20220120_test_1657729206/figures/boxplot_test.fastq2_cds_wo_unknown.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_cds_wo_unknown.png rename to example_of_result/20220120_test_1657729206/figures/boxplot_test.fastq2_cds_wo_unknown.png diff --git a/example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_tss.png b/example_of_result/20220120_test_1657729206/figures/boxplot_test.fastq2_tss.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_tss.png rename to example_of_result/20220120_test_1657729206/figures/boxplot_test.fastq2_tss.png diff --git a/example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_tss_wo_unknown.png b/example_of_result/20220120_test_1657729206/figures/boxplot_test.fastq2_tss_wo_unknown.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/boxplot_test.fastq2_tss_wo_unknown.png rename to example_of_result/20220120_test_1657729206/figures/boxplot_test.fastq2_tss_wo_unknown.png diff --git a/example_of_result/20220120_test_1649703168/figures/global_logo_dup_test.fastq2.png b/example_of_result/20220120_test_1657729206/figures/global_logo_dup_test.fastq2.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/global_logo_dup_test.fastq2.png rename to example_of_result/20220120_test_1657729206/figures/global_logo_dup_test.fastq2.png diff --git a/example_of_result/20220120_test_1649703168/figures/global_logo_nodup_test.fastq2.png b/example_of_result/20220120_test_1657729206/figures/global_logo_nodup_test.fastq2.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/global_logo_nodup_test.fastq2.png rename to example_of_result/20220120_test_1657729206/figures/global_logo_nodup_test.fastq2.png diff --git a/example_of_result/20220120_test_1649703168/figures/hist_test.fastq2_tss_distance_freq.png b/example_of_result/20220120_test_1657729206/figures/hist_test.fastq2_tss_distance_freq.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/hist_test.fastq2_tss_distance_freq.png rename to example_of_result/20220120_test_1657729206/figures/hist_test.fastq2_tss_distance_freq.png diff --git a/example_of_result/20220120_test_1649703168/figures/hist_test.fastq2_tss_distance_freq_Nlaw.png b/example_of_result/20220120_test_1657729206/figures/hist_test.fastq2_tss_distance_freq_Nlaw.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/hist_test.fastq2_tss_distance_freq_Nlaw.png rename to example_of_result/20220120_test_1657729206/figures/hist_test.fastq2_tss_distance_freq_Nlaw.png diff --git a/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png b/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png new file mode 100644 index 0000000000000000000000000000000000000000..9f2e7ce4bac249b87771778e8a0ca832110c6136 Binary files /dev/null and b/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png differ diff --git a/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png b/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png new file mode 100644 index 0000000000000000000000000000000000000000..be8c11264b53c052d9feae2583627294fe993ae1 Binary files /dev/null and b/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png differ diff --git a/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png b/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png new file mode 100644 index 0000000000000000000000000000000000000000..740d3fe545884085a3f7f903c58484f399787bcb Binary files /dev/null and b/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png differ diff --git a/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png b/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png new file mode 100644 index 0000000000000000000000000000000000000000..01d36b154618b172684fa2f7126ddb13aaaeacf6 Binary files /dev/null and b/example_of_result/20220120_test_1657729206/figures/logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png differ diff --git a/example_of_result/20220120_test_1649703168/figures/plot_fivep_filtering_stat.png b/example_of_result/20220120_test_1657729206/figures/plot_fivep_filtering_stat.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_fivep_filtering_stat.png rename to example_of_result/20220120_test_1657729206/figures/plot_fivep_filtering_stat.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork.png b/example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_fork.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork.png rename to example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_fork.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_and_strand.png b/example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_fork_and_strand.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_and_strand.png rename to example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_fork_and_strand.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_and_strand_prop.png b/example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_fork_and_strand_prop.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_and_strand_prop.png rename to example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_fork_and_strand_prop.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_prop.png b/example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_fork_prop.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_fork_prop.png rename to example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_fork_prop.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_strand.png b/example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_strand.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_strand.png rename to example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_strand.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_strand_prop.png b/example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_strand_prop.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_motif_insertion_per_strand_prop.png rename to example_of_result/20220120_test_1657729206/figures/plot_motif_insertion_per_strand_prop.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_read_length_cutoff.png b/example_of_result/20220120_test_1657729206/figures/plot_read_length_cutoff.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_read_length_cutoff.png rename to example_of_result/20220120_test_1657729206/figures/plot_read_length_cutoff.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_read_length_fivep_filtering.png b/example_of_result/20220120_test_1657729206/figures/plot_read_length_fivep_filtering.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_read_length_fivep_filtering.png rename to example_of_result/20220120_test_1657729206/figures/plot_read_length_fivep_filtering.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_read_length_fivep_filtering_cut.png b/example_of_result/20220120_test_1657729206/figures/plot_read_length_fivep_filtering_cut.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_read_length_fivep_filtering_cut.png rename to example_of_result/20220120_test_1657729206/figures/plot_read_length_fivep_filtering_cut.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_read_length_ini.png b/example_of_result/20220120_test_1657729206/figures/plot_read_length_ini.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_read_length_ini.png rename to example_of_result/20220120_test_1657729206/figures/plot_read_length_ini.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_bowtie2_mini.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_bowtie2_mini.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_bowtie2_mini.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_bowtie2_mini.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_200000.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_bin_200000.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_200000.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_bin_200000.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_50000.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_bin_50000.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_50000.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_bin_50000.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_500000.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_bin_500000.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_bin_500000.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_bin_500000.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_dup_raw.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_dup_raw.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_dup_raw.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_dup_raw.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_dup_selected.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_dup_selected.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_dup_selected.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_dup_selected.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_forward.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_forward.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_forward.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_forward.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_reverse.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_reverse.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_reverse.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_reverse.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_tot.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_tot.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_selected.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_tot_selected.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_selected.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_tot_selected.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_zoom.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_tot_zoom.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_hist_tot_zoom.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_hist_tot_zoom.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_raw.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_raw.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_insertion_raw.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_insertion_raw.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_200000.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_lead_lag_insertion_bin_200000.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_200000.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_lead_lag_insertion_bin_200000.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_lead_lag_insertion_bin_50000.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_500000.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_lead_lag_insertion_bin_500000.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_lead_lag_insertion_bin_500000.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_lead_lag_insertion_bin_500000.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_promoter_per_genes.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_promoter_per_genes.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_promoter_per_genes.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_promoter_per_genes.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_q20_dup_mini.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_q20_dup_mini.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_q20_dup_mini.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_q20_dup_mini.png diff --git a/example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_q20_nodup_mini.png b/example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_q20_nodup_mini.png similarity index 100% rename from example_of_result/20220120_test_1649703168/figures/plot_test.fastq2_q20_nodup_mini.png rename to example_of_result/20220120_test_1657729206/figures/plot_test.fastq2_q20_nodup_mini.png diff --git a/example_of_result/20220120_test_1649703168/files/motif_sites.pos b/example_of_result/20220120_test_1657729206/files/motif_sites.pos similarity index 100% rename from example_of_result/20220120_test_1649703168/files/motif_sites.pos rename to example_of_result/20220120_test_1657729206/files/motif_sites.pos diff --git a/example_of_result/20220120_test_1649703168/files/obs_rd_insertions.freq b/example_of_result/20220120_test_1657729206/files/obs_rd_insertions.freq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/obs_rd_insertions.freq rename to example_of_result/20220120_test_1657729206/files/obs_rd_insertions.freq diff --git a/example_of_result/20220120_test_1649703168/files/obs_rd_insertions.pos b/example_of_result/20220120_test_1657729206/files/obs_rd_insertions.pos similarity index 100% rename from example_of_result/20220120_test_1649703168/files/obs_rd_insertions.pos rename to example_of_result/20220120_test_1657729206/files/obs_rd_insertions.pos diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_5pAtccRm.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_5pAtccRm.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_5pAtccRm.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_5pAtccRm.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_5pAttc.length b/example_of_result/20220120_test_1657729206/files/test.fastq2_5pAttc.length similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_5pAttc.length rename to example_of_result/20220120_test_1657729206/files/test.fastq2_5pAttc.length diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_5pAttc_1-51.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_5pAttc_1-51.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_5pAttc_1-51.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_5pAttc_1-51.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_bowtie2_mini.cov b/example_of_result/20220120_test_1657729206/files/test.fastq2_bowtie2_mini.cov similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_bowtie2_mini.cov rename to example_of_result/20220120_test_1657729206/files/test.fastq2_bowtie2_mini.cov diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_ini.length b/example_of_result/20220120_test_1657729206/files/test.fastq2_ini.length similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_ini.length rename to example_of_result/20220120_test_1657729206/files/test.fastq2_ini.length diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup.pos b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup.pos similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup.pos rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup.pos diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot.freq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_annot.freq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot.freq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_annot.freq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot.pos b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_annot.pos similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot.pos rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_annot.pos diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot_selected.freq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_annot_selected.freq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_annot_selected.freq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_annot_selected.freq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_mini.cov b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_mini.cov similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_mini.cov rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_mini.cov diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup.pos b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup.pos similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup.pos rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup.pos diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.bed b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.bed similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.bed rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.bed diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup.pos b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup.pos similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup.pos rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup.pos diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot.freq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_annot.freq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot.freq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_annot.freq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot.pos b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_annot.pos similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot.pos rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_annot.pos diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot_selected.freq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_annot_selected.freq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_annot_selected.freq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_annot_selected.freq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_mini.cov b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_mini.cov similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_mini.cov rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_mini.cov diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup.pos b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup.pos similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup.pos rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup.pos diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq diff --git a/example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat b/example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat similarity index 100% rename from example_of_result/20220120_test_1649703168/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat rename to example_of_result/20220120_test_1657729206/files/test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat diff --git a/example_of_result/20220120_test_1649703168/report.html b/example_of_result/20220120_test_1657729206/report.html similarity index 96% rename from example_of_result/20220120_test_1649703168/report.html rename to example_of_result/20220120_test_1657729206/report.html index 2eb4046e36c999d386e3b887fa072232e0a5e93d..d6c85abe3f4cbba792d5119b19689a5d8d67d812 100644 --- a/example_of_result/20220120_test_1649703168/report.html +++ b/example_of_result/20220120_test_1657729206/report.html @@ -1737,7 +1737,7 @@ div.tocify { </div> <div id="trim-of-the-read-for-the-primer-parts" class="section level3"> <h3>Trim of the read for the primer parts</h3> -<p>AlienTrimmer main options: -k 10 -l 30 -m 5 -q 20 -p 0 (Phred+33) / 26 alien sequence(s) / 810 k-mers (k=10) <br />[00:02] 8,932 reads processed: 4,767 trimmed 223 removed <br /><br />AlienTrimmer also removes reads according to quality criteria</p> +<p>AlienTrimmer main options: -k 10 -l 30 -m 5 -q 20 -p 0 (Phred+33) / 26 alien sequence(s) / 810 k-mers (k=10) <br />[00:00] 8,932 reads processed: 4,767 trimmed 223 removed <br /><br />AlienTrimmer also removes reads according to quality criteria</p> <p>Number of sequence before trimming: 8,932</p> <p>Number of sequences after trimming: 8,709</p> <p>Ratio: 0.98</p> @@ -1827,7 +1827,7 @@ div.tocify { </div> <div id="bowtie2-alignment" class="section level3"> <h3>Bowtie2 alignment</h3> -<p>Time loading reference: 00:00:00 <br />Time loading forward index: 00:00:00 <br />Time loading mirror index: 00:00:00 <br />Multiseed full-index search: 00:00:01 <br />3742 reads; of these: <br /> 3742 (100.00%) were unpaired; of these: <br /> 1240 (33.14%) aligned 0 times <br /> 2308 (61.68%) aligned exactly 1 time <br /> 194 (5.18%) aligned >1 times <br />66.86% overall alignment rate <br />Time searching: 00:00:01 <br />Overall time: 00:00:01</p> +<p>Time loading reference: 00:00:00 <br />Time loading forward index: 00:00:00 <br />Time loading mirror index: 00:00:00 <br />Multiseed full-index search: 00:00:00 <br />3742 reads; of these: <br /> 3742 (100.00%) were unpaired; of these: <br /> 1240 (33.14%) aligned 0 times <br /> 2308 (61.68%) aligned exactly 1 time <br /> 194 (5.18%) aligned >1 times <br />66.86% overall alignment rate <br />Time searching: 00:00:00 <br />Overall time: 00:00:00</p> <p><br /><br /></p> </div> <div id="multiqc" class="section level3"> @@ -1894,29 +1894,29 @@ div.tocify { <p><br /><br /></p> </center> <div class="figure"> -<img src="" alt="Figure 9: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16" width="600" /> +<img src="" alt="Figure 9: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16" width="600" /> <p class="caption">Figure 9: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16</p> </div> </center> <p><br /><br /></p> </center> <div class="figure"> -<img src="" alt="Figure 10: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16" width="600" /> -<p class="caption">Figure 10: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16</p> +<img src="" alt="Figure 10: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0" width="600" /> +<p class="caption">Figure 10: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0</p> </div> </center> <p><br /><br /></p> </center> <div class="figure"> -<img src="" alt="Figure 11: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0" width="600" /> -<p class="caption">Figure 11: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0</p> +<img src="" alt="Figure 11: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16" width="600" /> +<p class="caption">Figure 11: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16</p> </div> </center> <p><br /><br /></p> </center> <div class="figure"> -<img src="" alt="Figure 12: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0" width="600" /> -<p class="caption">Figure 12: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0</p> +<img src="" alt="Figure 12: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0" width="600" /> +<p class="caption">Figure 12: test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0</p> </div> </center> <p><br /><br /></p> @@ -1930,6 +1930,7 @@ div.tocify { </div> <div id="final-insertion-site-files" class="section level3"> <h3>Final insertion site files</h3> +<p>Warning: in these files, the position indicated is the first nucleotide of the genomic part of the read (the W of the 5’GWT3’ consensus site). This means that in FORWARD, the cutting site is before the position. But in REVERSE, the cutting site is after the position.</p> <p>See the <a href="./files/test.fastq2_q20_nodup_annot.pos">test.fastq2_q20_nodup_annot.pos</a> and <a href="./files/test.fastq2_q20_nodup_annot.freq">test.fastq2_q20_nodup_annot.freq</a> files</p> <p>Number of total positions without duplicates: 1,660</p> <p>Number of different positions without duplicates: 1,145</p> @@ -1939,6 +1940,7 @@ div.tocify { <h3>Motif selected for the random insertions</h3> <p>The forward motif is: G[AT]T</p> <p>The reverse motif is: A[AT]C</p> +<p>Warning: the position indicated is the first nucleotide of the genomic part of the read (the W of the 5’GWT3’ consensus site). This means that in FORWARD, the cutting site is before the position. But in REVERSE, the cutting site is after the position.</p> <p>Beginning of the motif positions in the forward strand:</p> <table class="table table-striped table-bordered table-responsive table-condensed" style="font-size: 10px; width: auto !important; "> <thead> @@ -2017,50 +2019,50 @@ Sequence <tbody> <tr> <td style="text-align:right;"> -9 +12 </td> <td style="text-align:left;"> -GAT +ATC </td> </tr> <tr> <td style="text-align:right;"> -126 +28 </td> <td style="text-align:left;"> -GTT +ATC </td> </tr> <tr> <td style="text-align:right;"> -136 +42 </td> <td style="text-align:left;"> -GAT +ATC </td> </tr> <tr> <td style="text-align:right;"> -189 +75 </td> <td style="text-align:left;"> -GTT +ATC </td> </tr> <tr> <td style="text-align:right;"> -192 +121 </td> <td style="text-align:left;"> -GAT +AAC </td> </tr> <tr> <td style="text-align:right;"> -225 +156 </td> <td style="text-align:left;"> -GTT +AAC </td> </tr> </tbody> @@ -2910,11 +2912,11 @@ Reverse </tr> <tr class="even"> <td align="left">Git info<br />(empty means no .git folder where the main.nf file is present)</td> -<td align="left">v8.5.0-dirty</td> +<td align="left">v8.6.0-dirty</td> </tr> <tr class="odd"> <td align="left">Cmd line</td> -<td align="left">nextflow run main.nf -resume</td> +<td align="left">nextflow run main.nf -c nextflow.config</td> </tr> <tr class="even"> <td align="left">execution mode</td> @@ -2926,7 +2928,7 @@ Reverse </tr> <tr class="even"> <td align="left">result path</td> -<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649703168</td> +<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1657729206</td> </tr> <tr class="odd"> <td align="left">nextflow version</td> @@ -2990,7 +2992,7 @@ Reverse <tr class="odd"> <td align="left">out_path</td> <td align="left">output folder path</td> -<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649703168</td> +<td align="left">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1657729206</td> </tr> <tr class="even"> <td align="left">in_path</td> diff --git a/example_of_result/20220120_test_1649703168/reports/base_freq_report.txt b/example_of_result/20220120_test_1657729206/reports/base_freq_report.txt similarity index 100% rename from example_of_result/20220120_test_1649703168/reports/base_freq_report.txt rename to example_of_result/20220120_test_1657729206/reports/base_freq_report.txt diff --git a/example_of_result/20220120_test_1649703168/reports/bowtie2_report.txt b/example_of_result/20220120_test_1657729206/reports/bowtie2_report.txt similarity index 95% rename from example_of_result/20220120_test_1649703168/reports/bowtie2_report.txt rename to example_of_result/20220120_test_1657729206/reports/bowtie2_report.txt index 9643a93492f14c10093fd39c40d463dfcd686d17..579219706fa6be5eee5e4f189569c32d37082335 100644 --- a/example_of_result/20220120_test_1649703168/reports/bowtie2_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/bowtie2_report.txt @@ -41,7 +41,7 @@ Building DifferenceCoverSample Building sPrime Building sPrimeOrder V-Sorting samples - V-Sorting samples time: 00:00:00 + V-Sorting samples time: 00:00:01 Allocating rank array Ranking v-sort output Ranking v-sort output time: 00:00:00 @@ -67,7 +67,7 @@ Getting block 1 of 1 No samples; assembling all-inclusive block Sorting block of length 4641652 for bucket 1 (Using difference cover) - Sorting block time: 00:00:01 + Sorting block time: 00:00:00 Returning block of 4641653 for bucket 1 Exited Ebwt loop fchr[A]: 0 @@ -108,7 +108,7 @@ Headers: reverse: 0 Total time for call to driver() for forward index: 00:00:01 Reading reference sizes - Time reading reference sizes: 00:00:01 + Time reading reference sizes: 00:00:00 Calculating joined length Writing header Reserving space for joined string @@ -129,7 +129,7 @@ Building DifferenceCoverSample Ranking v-sort output Ranking v-sort output time: 00:00:00 Invoking Larsson-Sadakane on ranks - Invoking Larsson-Sadakane on ranks time: 00:00:00 + Invoking Larsson-Sadakane on ranks time: 00:00:01 Sanity-checking and returning Building samples Reserving space for 12 sample suffixes @@ -189,7 +189,7 @@ Headers: ebwtTotSz: 1547264 color: 0 reverse: 1 -Total time for backward call to driver() for mirror index: 00:00:02 +Total time for backward call to driver() for mirror index: 00:00:01 <br /><br /> @@ -200,15 +200,15 @@ Total time for backward call to driver() for mirror index: 00:00:02 Time loading reference: 00:00:00 Time loading forward index: 00:00:00 Time loading mirror index: 00:00:00 -Multiseed full-index search: 00:00:01 +Multiseed full-index search: 00:00:00 3742 reads; of these: 3742 (100.00%) were unpaired; of these: 1240 (33.14%) aligned 0 times 2308 (61.68%) aligned exactly 1 time 194 (5.18%) aligned >1 times 66.86% overall alignment rate -Time searching: 00:00:01 -Overall time: 00:00:01 +Time searching: 00:00:00 +Overall time: 00:00:00 <br /><br /> diff --git a/example_of_result/20220120_test_1649703168/reports/cov_report.txt b/example_of_result/20220120_test_1657729206/reports/cov_report.txt similarity index 100% rename from example_of_result/20220120_test_1649703168/reports/cov_report.txt rename to example_of_result/20220120_test_1657729206/reports/cov_report.txt diff --git a/example_of_result/20220120_test_1649703168/reports/dup_insertion_and_logo_report.txt b/example_of_result/20220120_test_1657729206/reports/dup_insertion_and_logo_report.txt similarity index 97% rename from example_of_result/20220120_test_1649703168/reports/dup_insertion_and_logo_report.txt rename to example_of_result/20220120_test_1657729206/reports/dup_insertion_and_logo_report.txt index 2333f378db67e4cb8800b08b446d1ef24aad6f11..1b4a53da61dad0ddd3ac1084d3cf30512108f4bd 100644 --- a/example_of_result/20220120_test_1649703168/reports/dup_insertion_and_logo_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/dup_insertion_and_logo_report.txt @@ -12,7 +12,7 @@ -2022-04-11 18:52:56 +2022-07-13 16:22:01 @@ -31,7 +31,7 @@ -END TIME: 2022-04-11 18:53:03 +END TIME: 2022-07-13 16:22:08 @@ -121,7 +121,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-11 18:53:03 +TIME: 2022-07-13 16:22:08 TOTAL TIME LAPSE: 7S diff --git a/example_of_result/20220120_test_1649703168/reports/dup_report.txt b/example_of_result/20220120_test_1657729206/reports/dup_report.txt similarity index 100% rename from example_of_result/20220120_test_1649703168/reports/dup_report.txt rename to example_of_result/20220120_test_1657729206/reports/dup_report.txt diff --git a/example_of_result/20220120_test_1649703168/reports/extract_seq_report.txt b/example_of_result/20220120_test_1657729206/reports/extract_seq_report.txt similarity index 100% rename from example_of_result/20220120_test_1649703168/reports/extract_seq_report.txt rename to example_of_result/20220120_test_1657729206/reports/extract_seq_report.txt diff --git a/example_of_result/20220120_test_1649703168/reports/final_insertion_files_report.txt b/example_of_result/20220120_test_1657729206/reports/final_insertion_files_report.txt similarity index 96% rename from example_of_result/20220120_test_1649703168/reports/final_insertion_files_report.txt rename to example_of_result/20220120_test_1657729206/reports/final_insertion_files_report.txt index ac94373ff67008ecc1c8055672594159070d64a0..d5bddfa4e17100abb37744c0e2af909667471e55 100644 --- a/example_of_result/20220120_test_1649703168/reports/final_insertion_files_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/final_insertion_files_report.txt @@ -1,6 +1,6 @@ -################################################################ final_insertion_files PROCESS WITH FILE test.fastq2_q20_nodup.pos +################################################################ final_insertion_files PROCESS WITH FILE test.fastq2_q20_dup.pos @@ -12,7 +12,7 @@ -2022-04-09 15:17:45 +2022-07-13 16:21:05 @@ -25,7 +25,7 @@ -HEAD OF THE INITAL FILE test.fastq2_q20_nodup.pos +HEAD OF THE INITAL FILE test.fastq2_q20_dup.pos V1 V2 @@ -39,7 +39,7 @@ HEAD OF THE INITAL FILE test.fastq2_q20_nodup.pos -HEAD OF THE MODIFIED FILE test.fastq2_q20_nodup.pos +HEAD OF THE MODIFIED FILE test.fastq2_q20_dup.pos Sequence Position names fork orient @@ -54,7 +54,7 @@ HEAD OF THE MODIFIED FILE test.fastq2_q20_nodup.pos NUMBER OF OBS POSITIONS: -1,660 +2,182 @@ -64,12 +64,12 @@ NUMBER OF OBS POSITIONS: -END TIME: 2022-04-09 15:17:46 +END TIME: 2022-07-13 16:21:05 -TOTAL TIME LAPSE: 1S +TOTAL TIME LAPSE: 0S @@ -97,12 +97,12 @@ erase.objects TRUE erase.graphs TRUE script final_insertion_files run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/final_insertion_files.R,--args,test.fastq2_q20_nodup.pos,2320711 2320942,4627368 4627400,6,test.fastq2_q20_nodup,cute_little_R_functions.R,final_insertion_files_report.txt -pos test.fastq2_q20_nodup.pos +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/final_insertion_files.R,--args,test.fastq2_q20_dup.pos,2320711 2320942,4627368 4627400,6,test.fastq2_q20_dup,cute_little_R_functions.R,final_insertion_files_report.txt +pos test.fastq2_q20_dup.pos ori_coord 2320711 2320942 ter_coord 4627368 4627400 nb_max_insertion_sites 6 -file_name test.fastq2_q20_nodup +file_name test.fastq2_q20_dup cute cute_little_R_functions.R log final_insertion_files_report.txt @@ -151,15 +151,15 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:17:46 +TIME: 2022-07-13 16:21:05 -TOTAL TIME LAPSE: 1S +TOTAL TIME LAPSE: 0S -################################################################ final_insertion_files PROCESS WITH FILE test.fastq2_q20_dup.pos +################################################################ final_insertion_files PROCESS WITH FILE test.fastq2_q20_nodup.pos @@ -171,7 +171,7 @@ TOTAL TIME LAPSE: 1S -2022-04-09 15:18:01 +2022-07-13 16:20:59 @@ -184,7 +184,7 @@ TOTAL TIME LAPSE: 1S -HEAD OF THE INITAL FILE test.fastq2_q20_dup.pos +HEAD OF THE INITAL FILE test.fastq2_q20_nodup.pos V1 V2 @@ -198,7 +198,7 @@ HEAD OF THE INITAL FILE test.fastq2_q20_dup.pos -HEAD OF THE MODIFIED FILE test.fastq2_q20_dup.pos +HEAD OF THE MODIFIED FILE test.fastq2_q20_nodup.pos Sequence Position names fork orient @@ -213,7 +213,7 @@ HEAD OF THE MODIFIED FILE test.fastq2_q20_dup.pos NUMBER OF OBS POSITIONS: -2,182 +1,660 @@ -223,12 +223,12 @@ NUMBER OF OBS POSITIONS: -END TIME: 2022-04-09 15:18:01 +END TIME: 2022-07-13 16:20:59 -TOTAL TIME LAPSE: 1S +TOTAL TIME LAPSE: 0S @@ -256,12 +256,12 @@ erase.objects TRUE erase.graphs TRUE script final_insertion_files run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/final_insertion_files.R,--args,test.fastq2_q20_dup.pos,2320711 2320942,4627368 4627400,6,test.fastq2_q20_dup,cute_little_R_functions.R,final_insertion_files_report.txt -pos test.fastq2_q20_dup.pos +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/final_insertion_files.R,--args,test.fastq2_q20_nodup.pos,2320711 2320942,4627368 4627400,6,test.fastq2_q20_nodup,cute_little_R_functions.R,final_insertion_files_report.txt +pos test.fastq2_q20_nodup.pos ori_coord 2320711 2320942 ter_coord 4627368 4627400 nb_max_insertion_sites 6 -file_name test.fastq2_q20_dup +file_name test.fastq2_q20_nodup cute cute_little_R_functions.R log final_insertion_files_report.txt @@ -310,9 +310,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:18:01 +TIME: 2022-07-13 16:20:59 -TOTAL TIME LAPSE: 1S +TOTAL TIME LAPSE: 0S diff --git a/example_of_result/20220120_test_1649703168/reports/global_logo_report.txt b/example_of_result/20220120_test_1657729206/reports/global_logo_report.txt similarity index 74% rename from example_of_result/20220120_test_1649703168/reports/global_logo_report.txt rename to example_of_result/20220120_test_1657729206/reports/global_logo_report.txt index 6836194b4d346992571f4b370ab7539449e5d038..2a77a0bccf705d8dedc3946fe2104057758e07a8 100644 --- a/example_of_result/20220120_test_1649703168/reports/global_logo_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/global_logo_report.txt @@ -12,7 +12,7 @@ -2022-04-09 15:28:04 +2022-07-13 16:26:42 @@ -31,12 +31,12 @@ -END TIME: 2022-04-09 15:28:09 +END TIME: 2022-07-13 16:26:44 -TOTAL TIME LAPSE: 5S +TOTAL TIME LAPSE: 2S @@ -64,8 +64,8 @@ erase.objects TRUE erase.graphs TRUE script global_logo run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/global_logo.R,--args,test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat,test.fastq2,20,cute_little_R_functions.R,global_logo_report.txt -freq test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/global_logo.R,--args,test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat,test.fastq2,20,cute_little_R_functions.R,global_logo_report.txt +freq test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat file_name test.fastq2 insertion_dist 20 cute cute_little_R_functions.R @@ -115,9 +115,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:28:09 +TIME: 2022-07-13 16:26:44 -TOTAL TIME LAPSE: 5S +TOTAL TIME LAPSE: 2S diff --git a/example_of_result/20220120_test_1649703168/reports/goalign_report.txt b/example_of_result/20220120_test_1657729206/reports/goalign_report.txt similarity index 100% rename from example_of_result/20220120_test_1649703168/reports/goalign_report.txt rename to example_of_result/20220120_test_1657729206/reports/goalign_report.txt diff --git a/example_of_result/20220120_test_1649703168/reports/insertion_report.txt b/example_of_result/20220120_test_1657729206/reports/insertion_report.txt similarity index 95% rename from example_of_result/20220120_test_1649703168/reports/insertion_report.txt rename to example_of_result/20220120_test_1657729206/reports/insertion_report.txt index 86af5b1e22cbde8e20d077e7483f66c45a671221..5892f0ca1c875428284b39bc4eb7d2feff6fed2f 100644 --- a/example_of_result/20220120_test_1649703168/reports/insertion_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/insertion_report.txt @@ -1,6 +1,6 @@ -######## test.fastq2_q20_nodup.bam file +######## test.fastq2_q20_dup.bam file >0 197823 @@ -33,7 +33,7 @@ Header is the 1) sens of insersion (0 or 16) and 2) insertion site position Final fasta file -Positions of reverse reads (16) use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0) +Positions of reverse reads (16) use the 3' end of the read as insertion site and not the 5' part as with forward reads (0) >0 197823 @@ -83,7 +83,7 @@ Final pos file 0 595937 -######## test.fastq2_q20_dup.bam file +######## test.fastq2_q20_nodup.bam file >0 197823 @@ -116,7 +116,7 @@ Header is the 1) sens of insersion (0 or 16) and 2) insertion site position Final fasta file -Positions of reverse reads (16) use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0) +Positions of reverse reads (16) use the 3' end of the read as insertion site and not the 5' part as with forward reads (0) >0 197823 diff --git a/example_of_result/20220120_test_1649703168/reports/logo_report.txt b/example_of_result/20220120_test_1657729206/reports/logo_report.txt similarity index 92% rename from example_of_result/20220120_test_1649703168/reports/logo_report.txt rename to example_of_result/20220120_test_1657729206/reports/logo_report.txt index df916e5a47ff224b96064d1312599649f3f44ba3..cce224d16260e601e00c5cf578c7f6c3e0c868f4 100644 --- a/example_of_result/20220120_test_1649703168/reports/logo_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/logo_report.txt @@ -12,7 +12,7 @@ -2022-04-09 15:26:56 +2022-07-13 16:26:18 @@ -31,12 +31,12 @@ -END TIME: 2022-04-09 15:27:00 +END TIME: 2022-07-13 16:26:20 -TOTAL TIME LAPSE: 4S +TOTAL TIME LAPSE: 2S @@ -64,8 +64,8 @@ erase.objects TRUE erase.graphs TRUE script logo run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/logo.R,--args,test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat,20,cute_little_R_functions.R,logo_report.txt -freq test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/logo.R,--args,test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat,20,cute_little_R_functions.R,logo_report.txt +freq test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat insertion_dist 20 cute cute_little_R_functions.R log logo_report.txt @@ -114,9 +114,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:27:00 +TIME: 2022-07-13 16:26:20 -TOTAL TIME LAPSE: 4S +TOTAL TIME LAPSE: 2S diff --git a/example_of_result/20220120_test_1649703168/reports/motif_report.txt b/example_of_result/20220120_test_1657729206/reports/motif_report.txt similarity index 96% rename from example_of_result/20220120_test_1649703168/reports/motif_report.txt rename to example_of_result/20220120_test_1657729206/reports/motif_report.txt index 40e8ace6d127a25904559c694dce227e31f07fad..d55e7e260f24b061dac5254f1e2059434c7c6410 100644 --- a/example_of_result/20220120_test_1649703168/reports/motif_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/motif_report.txt @@ -12,7 +12,7 @@ -2022-04-09 15:15:57 +2022-07-13 16:20:17 @@ -78,12 +78,12 @@ fork and orient -END TIME: 2022-04-09 15:16:18 +END TIME: 2022-07-13 16:20:25 -TOTAL TIME LAPSE: 21S +TOTAL TIME LAPSE: 8S @@ -168,9 +168,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:16:18 +TIME: 2022-07-13 16:20:25 -TOTAL TIME LAPSE: 21S +TOTAL TIME LAPSE: 8S diff --git a/example_of_result/20220120_test_1649703168/reports/multiqc_report.html b/example_of_result/20220120_test_1657729206/reports/multiqc_report.html similarity index 99% rename from example_of_result/20220120_test_1649703168/reports/multiqc_report.html rename to example_of_result/20220120_test_1657729206/reports/multiqc_report.html index 963c2a9f7e63151caf02557d7beaf8c0480122a7..4aa3115d1cadf1fbe12b100848df95c69e1d4c74 100644 --- a/example_of_result/20220120_test_1649703168/reports/multiqc_report.html +++ b/example_of_result/20220120_test_1657729206/reports/multiqc_report.html @@ -6259,12 +6259,12 @@ function findPos(obj) { <div id="analysis_dirs_wrapper"> <p>Report - generated on 2022-04-09, 17:16 + generated on 2022-07-13, 18:20 based on data in: - <code class="mqc_analysis_path">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/work/8f/71ec4485b2780844d80f43234a84d9</code></p> + <code class="mqc_analysis_path">/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/work/d3/8b18bf740f0ad3c0386242eb736129</code></p> </div> diff --git a/example_of_result/20220120_test_1649703168/reports/nextflow.config b/example_of_result/20220120_test_1657729206/reports/nextflow.config similarity index 97% rename from example_of_result/20220120_test_1649703168/reports/nextflow.config rename to example_of_result/20220120_test_1657729206/reports/nextflow.config index 8e518669f5e7beb06dc75e73fc47bf61c005833b..cd6733931b3ad4fd05ae93c4604d4744b1292439 100644 --- a/example_of_result/20220120_test_1649703168/reports/nextflow.config +++ b/example_of_result/20220120_test_1657729206/reports/nextflow.config @@ -90,6 +90,7 @@ result_folder_name="20220120_test" //// end general variables //// slurm variables +// see https://confluence.pasteur.fr/pages/viewpage.action?pageId=69304504 fastqueue = 'common,dedicated' // fast for -p option of slurm. Example: fastqueue = 'common,dedicated'. Example: fastqueue = 'hubbioit' fastqos= '--qos=fast' // fast for --qos option of slurm. Example: fastqos= '--qos=fast' normalqueue = 'hubbioit' // normal for -p option of slurm. Example: normalqueue = 'bioevo' diff --git a/example_of_result/20220120_test_1657729206/reports/nf_dag.png b/example_of_result/20220120_test_1657729206/reports/nf_dag.png new file mode 100644 index 0000000000000000000000000000000000000000..566f6c6116875a2994b7cc84cf0edf770e4509d7 Binary files /dev/null and b/example_of_result/20220120_test_1657729206/reports/nf_dag.png differ diff --git a/example_of_result/20220120_test_1649703168/reports/nf_report.html b/example_of_result/20220120_test_1657729206/reports/nf_report.html similarity index 93% rename from example_of_result/20220120_test_1649703168/reports/nf_report.html rename to example_of_result/20220120_test_1657729206/reports/nf_report.html index a7bac14a955fe0a1f68458399aa65a724c0675c9..7a81f981c7d1c6f68913f64882ce834b9b5c4a3e 100644 --- a/example_of_result/20220120_test_1649703168/reports/nf_report.html +++ b/example_of_result/20220120_test_1657729206/reports/nf_report.html @@ -18,11 +18,11 @@ <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> - <meta name="description" content="Nextflow workflow report for run id [determined_hoover]"> + <meta name="description" content="Nextflow workflow report for run id [goofy_pasteur]"> <meta name="author" content="Paolo Di Tommaso, Phil Ewels"> <link rel="icon" type="image/png" href="https://www.nextflow.io/img/favicon.png" /> - <title>[determined_hoover] Nextflow Workflow Report</title> + <title>[goofy_pasteur] Nextflow Workflow Report</title> <style type="text/css"> /*! @@ -137,7 +137,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <li class="nav-item"><a class="nav-link" href="#tasks">Tasks</a></li> </ul> <span class="navbar-text"> - [determined_hoover] + [goofy_pasteur] </span> </div> </nav> @@ -146,7 +146,7 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <div class="container"> <h1 class="display-3">Nextflow workflow report</h1> - <h2 class="text-muted mb-4"><samp>[determined_hoover]</samp> <em>(resumed run)</em></h2> + <h2 class="text-muted mb-4"><samp>[goofy_pasteur]</samp> </h2> <div class="alert alert-success mb-4"> @@ -157,26 +157,26 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <dl> <dt>Run times</dt> <dd> - <span id="workflow_start">11-Apr-2022 20:52:48</span> - <span id="workflow_complete">11-Apr-2022 20:57:15</span> - (<span id="completed_fromnow"></span>duration: <strong>4m 26s</strong>) + <span id="workflow_start">13-Jul-2022 18:20:06</span> - <span id="workflow_complete">13-Jul-2022 18:27:03</span> + (<span id="completed_fromnow"></span>duration: <strong>6m 56s</strong>) </dd> <dl> <div class="progress" style="height: 1.6rem; margin: 1.2rem auto; border-radius: 0.20rem;"> - <div style="width: 11.11%" class="progress-bar bg-success" data-toggle="tooltip" data-placement="top" title="6 tasks succeeded"><span class="text-truncate"> 6 succeeded </span></div> - <div style="width: 88.89%" class="progress-bar bg-secondary" data-toggle="tooltip" data-placement="top" title="48 tasks were cached"><span class="text-truncate"> 48 cached </span></div> + <div style="width: 100.0%" class="progress-bar bg-success" data-toggle="tooltip" data-placement="top" title="54 tasks succeeded"><span class="text-truncate"> 54 succeeded </span></div> + <div style="width: 0.0%" class="progress-bar bg-secondary" data-toggle="tooltip" data-placement="top" title="0 tasks were cached"><span class="text-truncate"> 0 cached </span></div> <div style="width: 0.0%" class="progress-bar bg-warning" data-toggle="tooltip" data-placement="top" title="0 tasks reported and error and were ignored"><span class="text-truncate"> 0 ignored </span></div> <div style="width: 0.0%" class="progress-bar bg-danger" data-toggle="tooltip" data-placement="top" title="0 tasks failed"><span class="text-truncate"> 0 failed </span></div> </div> </dl> <dt>Nextflow command</dt> - <dd><pre class="nfcommand"><code>nextflow run main.nf -resume</code></pre></dd> + <dd><pre class="nfcommand"><code>nextflow run main.nf -c nextflow.config</code></pre></dd> </dl> <dl class="row small"> <dt class="col-sm-3">CPU-Hours</dt> - <dd class="col-sm-9"><samp>1.0 (18.9% cached)</samp></dd> + <dd class="col-sm-9"><samp>0.9</samp></dd> <dt class="col-sm-3">Launch directory</dt> <dd class="col-sm-9"><samp>/mnt/c/Users/Gael/Documents/Git_projects/14985_loot</samp></dd> @@ -194,11 +194,11 @@ table.DTCR_clonedTable.dataTable{position:absolute !important;background-color:r <dt class="col-sm-3">Script ID</dt> - <dd class="col-sm-9"><code>029468532b72e162e87fcde8e3abfe95</code></dd> + <dd class="col-sm-9"><code>cd15f64b0c5e1b052f97ce7d30046346</code></dd> <dt class="col-sm-3">Workflow session</dt> - <dd class="col-sm-9"><code>0e3785ac-cc56-4fd7-b82a-301164e5383a</code></dd> + <dd class="col-sm-9"><code>573d1445-dc22-44af-a37c-242aef9f0b99</code></dd> @@ -1029,7 +1029,7 @@ $(function() { // Nextflow report data window.data = { "trace":[ -{"task_id":"2","hash":"25\/7b2ed6","native_id":"281","process":"Nremove","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"Nremove (1)","status":"CACHED","exit":"0","submit":"1649517331366","start":"1649517331460","complete":"1649517336786","duration":"5420","realtime":"1273","%cpu":"37.7","%mem":"0.0","rss":"12468224","vmem":"73990144","peak_rss":"12468224","peak_vmem":"74002432","rchar":"17604799","wchar":"15167118","syscr":"1863","syscw":"1271","read_bytes":"568320","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/25\/7b2ed6336bab428544e9b702e6a042","script":"\n Nremove.sh test.fastq2.gz \"test.fastq2_Nremove.gz\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"853","inv_ctxt":"19"},{"task_id":"3","hash":"f3\/638b7c","native_id":"308","process":"report1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report1","status":"CACHED","exit":"0","submit":"1649517331415","start":"1649517331494","complete":"1649517336099","duration":"4684","realtime":"85","%cpu":"6.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106909","wchar":"684","syscr":"189","syscw":"54","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f3\/638b7c1225ea438db495aefc16a905","script":"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n### Read coverage\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' > report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"4","hash":"e9\/33684c","native_id":"1241","process":"trim","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-alien_trimmer_v0.4.0-gitlab_v8.1.img","tag":"-","name":"trim (1)","status":"CACHED","exit":"0","submit":"1649517336960","start":"1649517336984","complete":"1649517347469","duration":"10509","realtime":"7348","%cpu":"44.5","%mem":"0.1","rss":"66617344","vmem":"5908262912","peak_rss":"66617344","peak_vmem":"5970448384","rchar":"17145211","wchar":"12629480","syscr":"2381","syscw":"647","read_bytes":"9981952","write_bytes":"32768","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e9\/33684ce0818a231e05632f82b2dcdb","script":"\n trim.sh test.fastq2_Nremove.gz \"test.fastq2_trim.fq\" 20200520_adapters_TruSeq_B2699_14985_CL.fasta 30 \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3272","inv_ctxt":"9"},{"task_id":"1","hash":"bd\/8b5bfa","native_id":"137","process":"init","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"init","status":"COMPLETED","exit":"0","submit":"1649703170952","start":"1649703171054","complete":"1649703172718","duration":"1766","realtime":"17","%cpu":"5.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106462","wchar":"659","syscr":"190","syscw":"26","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/bd\/8b5bfa3b5577099bccea0d0d626bf7","script":"\n echo \"---\n title: \'Insertion Sites Report\'\n author: \'Gael Millot\'\n date: \'`r Sys.Date()`\'\n output:\n html_document:\n toc: TRUE\n toc_float: TRUE\n ---\n\n \\n\\n<br \/><br \/>\\n\\n\n \" > report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"5","hash":"d5\/d15b46","native_id":"2771","process":"kraken","module":"-","container":"-","tag":"-","name":"kraken (1)","status":"CACHED","exit":"0","submit":"1649517347569","start":"1649517347669","complete":"1649517347880","duration":"311","realtime":"34","%cpu":"81.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"154429","wchar":"220","syscr":"228","syscw":"13","read_bytes":"49152","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d5\/d15b46d768587b15d4a43e3e1416bd","script":"\n echo \"No kraken analysis performed in local running\" > test.fastq2_trim_kraken_std.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"7","hash":"f8\/e48213","native_id":"2908","process":"fivep_filtering","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"fivep_filtering (1)","status":"CACHED","exit":"0","submit":"1649517347765","start":"1649517347828","complete":"1649517355984","duration":"8219","realtime":"6176","%cpu":"27.1","%mem":"0.0","rss":"12136448","vmem":"70533120","peak_rss":"12136448","peak_vmem":"70533120","rchar":"29337231","wchar":"16061720","syscr":"9149","syscw":"5789","read_bytes":"437248","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f8\/e482130c484e578853920aef7381bf","script":"\n fivep_filtering.sh test.fastq2_trim.fq \"test.fastq2\" \"^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\" 48 3 51 \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"6135","inv_ctxt":"2"},{"task_id":"6","hash":"59\/2dbb6e","native_id":"2819","process":"fastqc1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc1 (1)","status":"CACHED","exit":"0","submit":"1649517347681","start":"1649517347770","complete":"1649517366659","duration":"18978","realtime":"17027","%cpu":"52.0","%mem":"0.2","rss":"173170688","vmem":"3289477120","peak_rss":"173256704","peak_vmem":"3342663680","rchar":"14605630","wchar":"1278924","syscr":"7612","syscw":"5170","read_bytes":"19996672","write_bytes":"712704","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/59\/2dbb6e3e89d63b886cbd5e4cc01ec1","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Read QC n\u00B01\\n\\n\" > report.rmd\n echo -e \"Results are published in the [fastQC1](.\/fastQC1) folder\\n\\n\" >> report.rmd\n fastqc test.fastq2_trim.fq | tee tempo.txt\n cat tempo.txt >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4333","inv_ctxt":"39"},{"task_id":"9","hash":"c8\/fa65a5","native_id":"4175","process":"cutoff","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"cutoff (1)","status":"CACHED","exit":"0","submit":"1649517356282","start":"1649517356311","complete":"1649517359645","duration":"3363","realtime":"988","%cpu":"14.5","%mem":"0.0","rss":"10223616","vmem":"64237568","peak_rss":"10223616","peak_vmem":"64237568","rchar":"7308009","wchar":"4049154","syscr":"2784","syscw":"2034","read_bytes":"384000","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c8\/fa65a502fe7569089ad77729a27d36","script":"\n cutoff.sh test.fastq2_5pAtccRm.fq 25 \"test.fastq2\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1167","inv_ctxt":"1"},{"task_id":"8","hash":"b4\/13acb3","native_id":"4147","process":"fastqc2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc2 (1)","status":"CACHED","exit":"0","submit":"1649517356193","start":"1649517356286","complete":"1649517370882","duration":"14689","realtime":"12798","%cpu":"69.2","%mem":"0.2","rss":"184655872","vmem":"3289477120","peak_rss":"184655872","peak_vmem":"3289899008","rchar":"12768081","wchar":"1245410","syscr":"7365","syscw":"5096","read_bytes":"19984384","write_bytes":"688128","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b4\/13acb3ca013c26eb96eb0cbf07abdd","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Read QC n\u00B02\\n\\n\" > report.rmd\n echo -e \"Results are published in the [fastQC2](.\/fastQC2) folder\\n\\n\" >> report.rmd\n fastqc test.fastq2_5pAtccRm.fq | tee tempo.txt\n cat tempo.txt >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4333","inv_ctxt":"2"},{"task_id":"11","hash":"96\/3945da","native_id":"5033","process":"bowtie2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bowtie2_v2.3.4.3_extended_v2.0-gitlab_v8.0.img","tag":"-","name":"bowtie2 (1)","status":"CACHED","exit":"0","submit":"1649517360685","start":"1649517360746","complete":"1649517374142","duration":"13457","realtime":"9333","%cpu":"40.6","%mem":"0.1","rss":"68902912","vmem":"249094144","peak_rss":"120336384","peak_vmem":"251154432","rchar":"36678363","wchar":"17009938","syscr":"3392","syscw":"2516","read_bytes":"7209984","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/96\/3945da1d9d4a1f8976a45bb56ea6e2","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 indexing of the reference sequence\\n\\n\" >> bowtie2_report.txt\n bowtie2-build Ecoli-K12-MG1655_ORI_CENTERED.fasta Ecoli-K12-MG1655_ORI_CENTERED |& tee -a bowtie2_report.txt\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 alignment\\n\\n\" > report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 alignment\\n\\n\" >> bowtie2_report.txt\n bowtie2 --very-sensitive -x Ecoli-K12-MG1655_ORI_CENTERED -U test.fastq2_cutoff.fq -t -S test.fastq2_bowtie2.sam |& tee -a tempo.txt\n # --very-sensitive: no soft clipping allowed and very sensitive seed alignment\n # -t time displayed\n cat tempo.txt >> bowtie2_report.txt\n sed -i -e \':a;N;$!ba;s\/\\n\/\\n<br \\\/>\/g\' tempo.txt\n cat tempo.txt >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### samtools conversion\\n\\n\" >> bowtie2_report.txt\n # samtools faidx Ecoli-K12-MG1655_ORI_CENTERED.fasta\n samtools view -bh -o tempo.bam test.fastq2_bowtie2.sam |& tee -a bowtie2_report.txt\n samtools sort -o test.fastq2_bowtie2.bam tempo.bam |& tee -a bowtie2_report.txt\n samtools index test.fastq2_bowtie2.bam |& tee -a bowtie2_report.txt\n ","scratch":"-","queue":"-","cpus":"12","memory":"17179869184","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"5701","inv_ctxt":"9"},{"task_id":"13","hash":"50\/34788a","native_id":"6971","process":"Q20","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"Q20 (1)","status":"CACHED","exit":"0","submit":"1649517375154","start":"1649517375243","complete":"1649517377849","duration":"2695","realtime":"707","%cpu":"17.8","%mem":"0.0","rss":"4722688","vmem":"44826624","peak_rss":"4722688","peak_vmem":"44834816","rchar":"3392035","wchar":"2260606","syscr":"897","syscw":"567","read_bytes":"1230848","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/50\/34788aeb175a22a1d913b583847a61","script":"\n samtools view -q 20 -b test.fastq2_bowtie2.bam > test.fastq2_q20_dup.bam |& tee q20_report.txt\n samtools index test.fastq2_q20_dup.bam\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Q20 filtering\\n\\n\" > report.rmd\n read_nb_before=$(samtools view test.fastq2_bowtie2.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n read_nb_after=$(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n echo -e \"\\n\\nNumber of sequences before Q20 filtering: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of sequences after Q20 filtering: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n echo $read_nb_before > read_nb_before # because nf cannot output values easily\n echo $read_nb_after > read_nb_after\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"806","inv_ctxt":"0"},{"task_id":"14","hash":"a8\/f98ebd","native_id":"11174","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (1)","status":"CACHED","exit":"0","submit":"1649517438784","start":"1649517438890","complete":"1649517443338","duration":"4554","realtime":"2000","%cpu":"18.3","%mem":"0.0","rss":"45502464","vmem":"83861504","peak_rss":"45502464","peak_vmem":"83996672","rchar":"491183","wchar":"93148","syscr":"251","syscw":"3116","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/a8\/f98ebde5137cd4a4569ccc04fc89c5","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_bowtie2.bam > test.fastq2_bowtie2_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3958","inv_ctxt":"1"},{"task_id":"17","hash":"41\/75981b","native_id":"7462","process":"no_soft_clipping","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"no_soft_clipping (1)","status":"CACHED","exit":"0","submit":"1649517378863","start":"1649517379002","complete":"1649517383173","duration":"4310","realtime":"1228","%cpu":"14.5","%mem":"0.0","rss":"5394432","vmem":"60452864","peak_rss":"5394432","peak_vmem":"60452864","rchar":"2188565","wchar":"1583809","syscr":"718","syscw":"417","read_bytes":"1153024","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/41\/75981b0207214e9680f067f4eccfbd","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Control that no more soft clipping in reads\\n\\n\" > report.rmd\n echo -e \"nb of reads with soft clipping (S) in CIGAR: $(printf \"%\'d\" $(samtools view test.fastq2_q20_dup.bam | awk \'$6 ~ \/.*[S].*\/{print $0}\' | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n echo -e \"\\n\\ntotal nb of reads: $(printf \"%\'d\" $(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"28","inv_ctxt":"1"},{"task_id":"15","hash":"8f\/71ec44","native_id":"6997","process":"multiQC","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/ewels-multiqc-1.10.1.img","tag":"-","name":"multiQC","status":"CACHED","exit":"0","submit":"1649517375192","start":"1649517375268","complete":"1649517398413","duration":"23221","realtime":"23000","%cpu":"36.5","%mem":"0.1","rss":"74149888","vmem":"85012480","peak_rss":"74149888","peak_vmem":"85012480","rchar":"29716377","wchar":"2404869","syscr":"9278","syscw":"295","read_bytes":"22820864","write_bytes":"1253376","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/8f\/71ec4485b2780844d80f43234a84d9","script":"\n multiqc . -n multiqc_report.html\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### MultiQC\\n\\n\" > report.rmd\n if [[ local == \"local\" ]] ; then\n echo -e \"\\n\\nWarning: no Kraken performed when using local run\\n\" >> report.rmd\n fi\n echo -e \"\\n\\nResults are published in the [Report](.\/reports\/multiqc_report.html) folder\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"34782","inv_ctxt":"285"},{"task_id":"18","hash":"da\/6b7a6c","native_id":"11388","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (2)","status":"CACHED","exit":"0","submit":"1649517443376","start":"1649517443438","complete":"1649517447638","duration":"4262","realtime":"1911","%cpu":"19.1","%mem":"0.0","rss":"45707264","vmem":"83861504","peak_rss":"45707264","peak_vmem":"83996672","rchar":"343061","wchar":"84347","syscr":"239","syscw":"2824","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/da\/6b7a6c60ccfee9229a0531b342010e","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_q20_dup.bam > test.fastq2_q20_dup_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3888","inv_ctxt":"0"},{"task_id":"16","hash":"0a\/40301f","native_id":"7482","process":"duplicate_removal","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"duplicate_removal (1)","status":"CACHED","exit":"0","submit":"1649517378891","start":"1649517379023","complete":"1649517388551","duration":"9660","realtime":"6625","%cpu":"24.6","%mem":"0.0","rss":"13029376","vmem":"89198592","peak_rss":"13029376","peak_vmem":"89198592","rchar":"13491677","wchar":"6912516","syscr":"7202","syscw":"5709","read_bytes":"1376256","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/0a\/40301fd02966cf17f1eabcfffba711","script":"\n duplicate_removal.sh test.fastq2_q20_dup.bam Ecoli-K12-MG1655_ORI_CENTERED.fasta \"test.fastq2_q20_nodup.bam\" \"dup_report.txt\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"2449","inv_ctxt":"4"},{"task_id":"23","hash":"91\/2fd95b","native_id":"9315","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (1)","status":"CACHED","exit":"0","submit":"1649517389566","start":"1649517389651","complete":"1649517393899","duration":"4333","realtime":"2260","%cpu":"19.6","%mem":"0.0","rss":"8163328","vmem":"68767744","peak_rss":"8163328","peak_vmem":"68775936","rchar":"2614607","wchar":"1832311","syscr":"1537","syscw":"1173","read_bytes":"1236992","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/91\/2fd95b201a10093515dd0da96fa3c8","script":"\n if [[ test.fastq2_q20_nodup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n echo -e \"\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n fi\n\n # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ\n samtools view test.fastq2_q20_nodup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n echo -e \"\\n\\n######## test.fastq2_q20_nodup.bam file\\n\\n\" > insertion_report.txt\n cat tempo | head -60 | tail -20 >> insertion_report.txt\n echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n # redefinition of POS according to FLAG\n awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n echo -e \"\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\\\' end of the read as insertion site and not the 5\\\' part as with forward reads (0)\\n\\n\" >> insertion_report.txt\n cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2_q20_nodup.pos\n echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n cat test.fastq2_q20_nodup.pos | head -60 | tail -20 >> insertion_report.txt\n\n read_nb_before=$(samtools view test.fastq2_q20_nodup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n read_nb_after=$(wc -l test.fastq2_q20_nodup.pos | cut -f1 -d\' \')\n if [[ test.fastq2_q20_nodup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n else\n echo -e \"\\n\\n\" >> report.rmd\n fi\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"819","inv_ctxt":"1"},{"task_id":"24","hash":"22\/3c6c1a","native_id":"9335","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (2)","status":"CACHED","exit":"0","submit":"1649517389595","start":"1649517389671","complete":"1649517394064","duration":"4469","realtime":"2475","%cpu":"20.4","%mem":"0.0","rss":"9629696","vmem":"68907008","peak_rss":"9629696","peak_vmem":"68907008","rchar":"3142153","wchar":"2312414","syscr":"1877","syscw":"1514","read_bytes":"1267712","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/22\/3c6c1a1ef3ab1682b6e551be1cb552","script":"\n if [[ test.fastq2_q20_dup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n echo -e \"\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n fi\n\n # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ\n samtools view test.fastq2_q20_dup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n echo -e \"\\n\\n######## test.fastq2_q20_dup.bam file\\n\\n\" > insertion_report.txt\n cat tempo | head -60 | tail -20 >> insertion_report.txt\n echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n # redefinition of POS according to FLAG\n awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n echo -e \"\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\\\' end of the read as insertion site and not the 5\\\' part as with forward reads (0)\\n\\n\" >> insertion_report.txt\n cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2_q20_dup.pos\n echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n cat test.fastq2_q20_dup.pos | head -60 | tail -20 >> insertion_report.txt\n\n read_nb_before=$(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n read_nb_after=$(wc -l test.fastq2_q20_dup.pos | cut -f1 -d\' \')\n if [[ test.fastq2_q20_dup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n else\n echo -e \"\\n\\n\" >> report.rmd\n fi\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1018","inv_ctxt":"2"},{"task_id":"22","hash":"d5\/03b2f8","native_id":"11599","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (3)","status":"CACHED","exit":"0","submit":"1649517447665","start":"1649517447738","complete":"1649517451839","duration":"4174","realtime":"1845","%cpu":"19.8","%mem":"0.0","rss":"45600768","vmem":"83861504","peak_rss":"45600768","peak_vmem":"83996672","rchar":"317679","wchar":"84031","syscr":"235","syscw":"2820","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d5\/03b2f893a259a7c22397def25c8629","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_q20_nodup.bam > test.fastq2_q20_nodup_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3928","inv_ctxt":"0"},{"task_id":"25","hash":"86\/7a76f6","native_id":"226","process":"backup","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"backup","status":"COMPLETED","exit":"0","submit":"1649703171343","start":"1649703171363","complete":"1649703173137","duration":"1794","realtime":"11","%cpu":"6.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106668","wchar":"494","syscr":"189","syscw":"23","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/86\/7a76f639c6c9b7424ecdea86f085d9","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Backup\\n\\n\" > report.rmd\n echo -e \"See the [reports](.\/reports) folder for all the details of the analysis, including the parameters used in the .config file\" >> report.rmd\n echo -e \"\\n\\nFull .nextflow.log is in: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot<br \/>The one in the [reports](.\/reports) folder is not complete (miss the end)\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"26","hash":"ec\/876577","native_id":"262","process":"workflowVersion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"workflowVersion","status":"COMPLETED","exit":"0","submit":"1649703171403","start":"1649703171460","complete":"1649703173707","duration":"2304","realtime":"744","%cpu":"14.3","%mem":"0.0","rss":"5267456","vmem":"40312832","peak_rss":"5267456","peak_vmem":"40312832","rchar":"136704","wchar":"2126","syscr":"315","syscw":"67","read_bytes":"1660928","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ec\/876577f13b2f140f1624c6a3cddd3f","script":"\n modules= # this is just to deal with variable interpretation during the creation of the .command.sh file by nextflow. See also $modules below\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Workflow Version\\n\\n\" > report.rmd\n echo -e \"\\n\\n#### General\\n\\n\n| Variable | Value |\n| :-- | :-- |\n| Project<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot remote -v | head -n 1) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo\n| Git info<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot describe --abbrev=10 --dirty --always --tags) | # idem. Provide the small commit number of the script and nextflow.config used in the execution\n| Cmd line | nextflow run main.nf -resume |\n| execution mode | local |\" >> report.rmd \n\n if [[ ! -z $modules ]] ; then\n echo \"| loaded modules (according to specification by the user thanks to the --modules argument of main.nf) | |\" >> report.rmd\n fi\n \n echo \"| Manifest\'s pipeline version | null |\n| result path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168 |\n| nextflow version | 21.04.2 |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Implicit variables\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| launchDir | Directory where the workflow is run | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| nprojectDir | Directory where the main.nf script is located | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| workDir | Directory where tasks temporary files are created | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### User variables\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| out_path | output folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168 |\n| in_path | input folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Workflow diagram\\n\\nSee the [nf_dag.png](.\/reports\/nf_dag.png) file\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"28","inv_ctxt":"0"},{"task_id":"21","hash":"88\/636f95","native_id":"14201","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (2)","status":"CACHED","exit":"0","submit":"1649517509257","start":"1649517509329","complete":"1649517535648","duration":"26391","realtime":"24286","%cpu":"49.3","%mem":"0.2","rss":"225636352","vmem":"370900992","peak_rss":"225636352","peak_vmem":"370933760","rchar":"19149612","wchar":"444685","syscr":"3786","syscw":"292","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/88\/636f9574ac4e1058c6503f1a2e81c0","script":"\n plot_coverage.R \"test.fastq2_q20_dup_mini\" \"read_nb_after\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42843","inv_ctxt":"11"},{"task_id":"29","hash":"37\/f53840","native_id":"15016","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (3)","status":"CACHED","exit":"0","submit":"1649517535680","start":"1649517535748","complete":"1649517561551","duration":"25871","realtime":"23860","%cpu":"49.5","%mem":"0.2","rss":"226594816","vmem":"371625984","peak_rss":"226594816","peak_vmem":"371658752","rchar":"19149294","wchar":"445351","syscr":"3786","syscw":"293","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/37\/f53840827946ca3b72549721599e38","script":"\n plot_coverage.R \"test.fastq2_q20_nodup_mini\" \"dup_read_nb\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"44003","inv_ctxt":"11"},{"task_id":"19","hash":"9d\/64d05b","native_id":"13378","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (1)","status":"CACHED","exit":"0","submit":"1649517482485","start":"1649517482559","complete":"1649517509228","duration":"26743","realtime":"24483","%cpu":"49.2","%mem":"0.2","rss":"220262400","vmem":"363646976","peak_rss":"220262400","peak_vmem":"363679744","rchar":"19158411","wchar":"450691","syscr":"3788","syscw":"294","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9d\/64d05bc1b1f46cbdd0dc53ec9bc0e0","script":"\n plot_coverage.R \"test.fastq2_bowtie2_mini\" \"read_nb_before\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42359","inv_ctxt":"13"},{"task_id":"27","hash":"13\/37b94c","native_id":"11809","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"final_insertion_files (1)","status":"CACHED","exit":"0","submit":"1649517451877","start":"1649517451940","complete":"1649517466971","duration":"15094","realtime":"12958","%cpu":"39.8","%mem":"0.1","rss":"127500288","vmem":"258732032","peak_rss":"127500288","peak_vmem":"258764800","rchar":"18003744","wchar":"275694","syscr":"2302","syscw":"549","read_bytes":"28325888","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/13\/37b94c10e8ea0dd3e2a107a360e17d","script":"\n final_insertion_files.R \"test.fastq2_q20_nodup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"6\" \"test.fastq2_q20_nodup\" \"cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27284","inv_ctxt":"11"},{"task_id":"28","hash":"23\/48d601","native_id":"12520","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"final_insertion_files (2)","status":"CACHED","exit":"0","submit":"1649517466998","start":"1649517467072","complete":"1649517482460","duration":"15462","realtime":"13021","%cpu":"39.8","%mem":"0.1","rss":"127520768","vmem":"258723840","peak_rss":"127520768","peak_vmem":"258756608","rchar":"18009229","wchar":"285506","syscr":"2303","syscw":"563","read_bytes":"28325888","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/23\/48d601bd9aa70901c4f07c6555b90c","script":"\n final_insertion_files.R \"test.fastq2_q20_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"6\" \"test.fastq2_q20_dup\" \"cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27255","inv_ctxt":"16"},{"task_id":"31","hash":"08\/101dfa","native_id":"23264","process":"report3","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report3 (1)","status":"CACHED","exit":"0","submit":"1649631364071","start":"1649631364094","complete":"1649631365539","duration":"1468","realtime":"65","%cpu":"9.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"305829","wchar":"44602","syscr":"275","syscw":"49","read_bytes":"405504","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/08\/101dfacb4777d5793a816180256474","script":"\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Final insertion site files\\n\\n\" > report.rmd\n echo -e \"\\n\\nSee the [test.fastq2_q20_nodup_annot.pos](.\/files\/test.fastq2_q20_nodup_annot.pos) and [test.fastq2_q20_nodup_annot.freq](.\/files\/test.fastq2_q20_nodup_annot.freq) files\\n\\n\" >> report.rmd\n pos_nb=$(( $(wc -l test.fastq2_q20_nodup_annot.pos | cut -f1 -d\' \') - 1)) # -1 because first line is the header\n pos_uniq_nb=$(( $(sort -u test.fastq2_q20_nodup_annot.pos | wc -l | cut -f1 -d\' \') - 1)) # -1 because first line is the header\n echo -e \"\\n\\nNumber of total positions without duplicates: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of different positions without duplicates: $(printf \"%\'d\" ${pos_uniq_nb})\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649631360\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"20","hash":"c6\/bef5aa","native_id":"560","process":"motif","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"motif","status":"CACHED","exit":"0","submit":"1649517332488","start":"1649517332563","complete":"1649517378942","duration":"46454","realtime":"42507","%cpu":"42.6","%mem":"0.2","rss":"210448384","vmem":"341352448","peak_rss":"210448384","peak_vmem":"341385216","rchar":"49872281","wchar":"41616533","syscr":"5761","syscw":"34229","read_bytes":"28351488","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c6\/bef5aab063b9c049c73b56dc16a5d0","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Motif selected for the random insertions\\n\\n\" > report.rmd\n echo -e \"\\n\\nThe forward motif is: G[AT]T\\n\\n\" >> report.rmd\n echo -e \"\\n\\nThe reverse motif is: A[AT]C\\n\\n\" >> report.rmd\n if [[ G[AT]T != \"NULL\" ]] ; then\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'G[AT]T\' > motif_fw.pos\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'A[AT]C\' > motif_rev.pos\n else\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_fw.pos\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_rev.pos\n fi\n echo -e \"\nINDICATED POSITIONS IN FILES START AT ZERO AND CORRESPOND TO THE FIRST LEFT BASE OF THE MOTIF\n\"\n motif.R \"motif_fw.pos\" \"motif_rev.pos\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"G[AT]T\" \"A[AT]C\" \"cute_little_R_functions.R\" \"motif_report.txt\" \"report.rmd\"\n\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"56263","inv_ctxt":"515"},{"task_id":"12","hash":"2f\/6c72d5","native_id":"10356","process":"plot_read_length","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_read_length (1)","status":"CACHED","exit":"0","submit":"1649517410093","start":"1649517410161","complete":"1649517438749","duration":"28656","realtime":"26476","%cpu":"53.9","%mem":"0.2","rss":"208457728","vmem":"353968128","peak_rss":"208457728","peak_vmem":"354000896","rchar":"19621130","wchar":"708057","syscr":"4089","syscw":"430","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/2f\/6c72d54a358a5ba24052af31872307","script":"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n### Length of initial reads\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Length of reads after selection of attC in 5 prime \\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Length of reads after trimming \\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Read length after cut-off\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' > report.rmd\n plot_read_length.R \"test.fastq2_ini.length\" \"test.fastq2_5pAttc.length\" \"test.fastq2_5pAtccRm.stat\" \"test.fastq2_cutoff.length\" \"cute_little_R_functions.R\" \"plot_read_length_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"44866","inv_ctxt":"18"},{"task_id":"10","hash":"51\/09f085","native_id":"7550","process":"plot_fivep_filtering_stat","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_fivep_filtering_stat (1)","status":"CACHED","exit":"0","submit":"1649517378958","start":"1649517379042","complete":"1649517410062","duration":"31104","realtime":"28457","%cpu":"42.9","%mem":"0.2","rss":"220442624","vmem":"363499520","peak_rss":"220442624","peak_vmem":"363532288","rchar":"19122541","wchar":"811482","syscr":"3774","syscw":"392","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/51\/09f08545d1cb5212f837380cb66f1d","script":"\n echo -e \"\n\\n\\n<br \/><br \/>\\n\\n### Base frequencies at the 5\' extremity of reads\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \" > report.rmd\n plot_fivep_filtering_stat.R \"test.fastq2_5pAttc_1-51.stat\" \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"cute_little_R_functions.R\" \"plot_fivep_filtering_stat_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"45486","inv_ctxt":"163"},{"task_id":"32","hash":"61\/3abc05","native_id":"17353","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"seq_around_insertion (2)","status":"CACHED","exit":"0","submit":"1649517601464","start":"1649517601588","complete":"1649517616248","duration":"14784","realtime":"12663","%cpu":"40.7","%mem":"0.1","rss":"127565824","vmem":"258732032","peak_rss":"127565824","peak_vmem":"258764800","rchar":"17988623","wchar":"146404","syscr":"2295","syscw":"273","read_bytes":"28199936","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/61\/3abc0565b8de06c8d45f9b4688fe97","script":"\n seq_around_insertion.R \"test.fastq2_q20_dup_selected_if_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2_q20_dup_selected_if_dup\" \"cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27263","inv_ctxt":"7"},{"task_id":"30","hash":"16\/ef3227","native_id":"15833","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"seq_around_insertion (1)","status":"CACHED","exit":"0","submit":"1649517561578","start":"1649517561650","complete":"1649517576718","duration":"15140","realtime":"12931","%cpu":"40.7","%mem":"0.1","rss":"127676416","vmem":"258727936","peak_rss":"127676416","peak_vmem":"258760704","rchar":"18001648","wchar":"213511","syscr":"2298","syscw":"375","read_bytes":"28199936","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/16\/ef32272c34739f656bad122d66b667","script":"\n seq_around_insertion.R \"test.fastq2_q20_nodup_selected_if_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2_q20_nodup_selected_if_dup\" \"cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27272","inv_ctxt":"4"},{"task_id":"36","hash":"73\/f0b62e","native_id":"18913","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (1)","status":"CACHED","exit":"0","submit":"1649517644033","start":"1649517644135","complete":"1649517649189","duration":"5156","realtime":"2804","%cpu":"19.6","%mem":"0.0","rss":"10805248","vmem":"57536512","peak_rss":"18477056","peak_vmem":"65474560","rchar":"9503313","wchar":"4763907","syscr":"866","syscw":"3349","read_bytes":"6359040","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/73\/f0b62ecf2ff3b5cf5a16212d9e5cfe","script":"\n echo -e \"\n\n######## test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed file\n\n\" > extract_seq_report.txt\n # make a bed file from the reference genome\n echo \">ref\" > tempo.ref.fasta\n awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed -fo \"test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n rm tempo.ref.fasta\n rm tempo.ref.fasta.fai\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3829","inv_ctxt":"1"},{"task_id":"35","hash":"52\/691666","native_id":"27108","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (2)","status":"CACHED","exit":"0","submit":"1649517996849","start":"1649517997120","complete":"1649518000598","duration":"3749","realtime":"1457","%cpu":"17.8","%mem":"0.0","rss":"6295552","vmem":"52846592","peak_rss":"6295552","peak_vmem":"52846592","rchar":"9452267","wchar":"4672192","syscr":"860","syscw":"847","read_bytes":"2721792","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/52\/69166677daa4c07a65c8abc0ce22da","script":"\n echo -e \"\n\n######## test.fastq2_q20_dup_selected_if_dup_around_insertion.bed file\n\n\" > extract_seq_report.txt\n # make a bed file from the reference genome\n echo \">ref\" > tempo.ref.fasta\n awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_q20_dup_selected_if_dup_around_insertion.bed -fo \"test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n rm tempo.ref.fasta\n rm tempo.ref.fasta.fai\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"649","inv_ctxt":"0"},{"task_id":"33","hash":"8b\/74bcbf","native_id":"403","process":"dup_insertion_and_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"dup_insertion_and_logo (1)","status":"COMPLETED","exit":"0","submit":"1649703172046","start":"1649703172061","complete":"1649703184167","duration":"12121","realtime":"10997","%cpu":"64.5","%mem":"0.2","rss":"247107584","vmem":"425803776","peak_rss":"283983872","peak_vmem":"426561536","rchar":"17562590","wchar":"600302","syscr":"3936","syscw":"456","read_bytes":"44530688","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/8b\/74bcbf845d8c1180cbc16b8f011cf9","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Analysis with duplicates\\n\\n\" > report.rmd\n dup_insertion_and_logo.R \"test.fastq2_q20_dup_annot.freq\" \"test.fastq2_q20_dup_annot_selected.freq\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"dup\" \"20\" \"cute_little_R_functions.R\" \"dup_insertion_and_logo_report.txt\" # logo\n\n echo -e \"\\n\\nSee the [test.fastq2_q20_dup_selected_if_dup.pos](.\/files\/test.fastq2_q20_dup_selected_if_dup.pos) and [test.fastq2_q20_dup_annot_selected.freq](.\/files\/test.fastq2_q20_dup_annot_selected.freq) files\\n\\n\" >> report.rmd\n echo -e \"\\n\\nWarning: more than the 6 most frequent used sites can be present in the case of frequency equality\\n\\n\" >> report.rmd\n\n pos_nb=$(( $(wc -l test.fastq2_q20_dup_annot.pos | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n echo -e \"\\n\\nNumber of total positions using duplicated reads: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n\n freq_nb=$(( $(wc -l test.fastq2_q20_dup_annot.freq | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n echo -e \"\\n\\nNumber of different positions using duplicated reads: $(printf \"%\'d\" ${freq_nb})\\n\" >> report.rmd\n\n pos_selected_nb=$(wc -l test.fastq2_q20_dup_selected_if_dup.pos | cut -f1 -d\' \')\n echo -e \"\\n\\nNumber of total positions after selection of the 6 highest used sites: $(printf \"%\'d\" ${pos_selected_nb})\\n\" >> report.rmd\n\n freq_selected_nb=$(( $(wc -l test.fastq2_q20_dup_annot_selected.freq | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n echo -e \"\\n\\nNumber of different positions after selection of the 6 highest used sites: $(printf \"%\'d\" ${freq_selected_nb})\\n\" >> report.rmd\n\n TEMPO=(50000 200000 500000)\n FIG_NB_BEFORE=$(($(echo ${#TEMPO[@]}) * 2)) # nb of elements in the window size * nb of figure plotted\n if [[ \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt != \"NULL\" ]] ; then\n FIG_NB=$(( 34 + $FIG_NB_BEFORE + 1 + 1)) # 2 * because two figures\n else\n FIG_NB=$(( 24 + $FIG_NB_BEFORE + 1 + 1))\n fi\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\nSelected sites with frequencies:\\n\\n\" >> report.rmd\n echo \"\n\\`\\`\\`{r, echo = FALSE}\ntempo <- read.table(\'.\/files\/test.fastq2_q20_dup_annot_selected.freq\', header = TRUE, colClasses = \'character\', sep = \'\\t\', check.names = FALSE) ; \nkableExtra::kable_styling(knitr::kable(tempo, row.names = TRUE, digits = 0, caption = NULL, format=\'html\'), c(\'striped\', \'bordered\', \'responsive\', \'condensed\'), font_size=10, full_width = FALSE, position = \'left\')\n\\`\\`\\`\n \n\n\n \" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n to extend)](.\/figures\/alignment.html){width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\nWarning: the frequency of each position is taken into account in the logo plot\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"43393","inv_ctxt":"8"},{"task_id":"41","hash":"49\/575b96","native_id":"27342","process":"goalign","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-goalign-v0.3.5.img","tag":"-","name":"goalign (1)","status":"CACHED","exit":"0","submit":"1649518000735","start":"1649518000798","complete":"1649518007039","duration":"6304","realtime":"2873","%cpu":"13.2","%mem":"0.0","rss":"14262272","vmem":"734232576","peak_rss":"14262272","peak_vmem":"734240768","rchar":"131211","wchar":"356117","syscr":"276","syscw":"108","read_bytes":"3862528","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/49\/575b963f7bb8fe6e513f1f993e68d2","script":"\n # Remove duplicated data in a fasta file according to duplicated header\n awk \'\n \/^>\/{f=!d[$1];d[$1]=1}f\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > tempo\n\n # split the fasta file according to forward or reverse sequences\n PATTERN=\'LEADING_16|LAGGING_16\'\n awk -v var1=$PATTERN \'\n BEGIN{ORS=\"\\n\"}\n {lineKind=(NR-1)%2}\n lineKind==0{record=$0 ; next}\n lineKind==1{\n toGet=(record ~ var1)\n if(toGet){\n print record > \"reverse.fasta\"\n print $0 > \"reverse.fasta\"\n }else{\n print record > \"forward.fasta\"\n print $0 > \"forward.fasta\"\n }\n next\n }\n \' tempo\n\n # Goalign\n if [ -s reverse.fasta ] ; then\n goalign revcomp --unaligned -i reverse.fasta -o tempo2 # rev-comp the 16 sequences\n cat forward.fasta tempo2 > final.fasta\n else # we cannot have neither reverse nor forward\n cp forward.fasta final.fasta\n fi\n # add a hyphen before or after the sequence, to have correct alignment\n awk -v var1=$PATTERN \'\n BEGIN{ORS=\"\\n\"}\n {lineKind=(NR-1)%2}\n lineKind==0{record=$0 ; print $0 ; next}\n lineKind==1{\n toGet=(record ~ var1)\n if(toGet){\n print \"-\"$0 ; next\n }else{\n print $0\"-\" ; next\n }\n }\n \' final.fasta > tempo3\n goalign draw biojs --auto-detect -i tempo3 -o alignment.html |& tee -a goalign_report.txt\n ","scratch":"-","queue":"-","cpus":"12","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3223","inv_ctxt":"2"},{"task_id":"37","hash":"35\/ec05ea","native_id":"19358","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (1)","status":"CACHED","exit":"0","submit":"1649517649698","start":"1649517649791","complete":"1649517654517","duration":"4819","realtime":"396","%cpu":"10.0","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"286518","wchar":"17181","syscr":"526","syscw":"46","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/35\/ec05ea9f6b312a191057dce3bb593d","script":"\n # file splitting into seq\n awk -v var1=LEADING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"45","hash":"b4\/c8c939","native_id":"27489","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (8)","status":"CACHED","exit":"0","submit":"1649518001036","start":"1649518001118","complete":"1649518005804","duration":"4768","realtime":"201","%cpu":"9.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"184866","wchar":"7118","syscr":"328","syscw":"27","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b4\/c8c93938121f441e49b361efe8f001","script":"\n # file splitting into seq\n awk -v var1=LAGGING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"38","hash":"ac\/24a1a8","native_id":"19211","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (2)","status":"CACHED","exit":"0","submit":"1649517649332","start":"1649517649389","complete":"1649517654136","duration":"4804","realtime":"399","%cpu":"11.1","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288657","wchar":"19344","syscr":"530","syscw":"50","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ac\/24a1a84c8dccc7d267164f15a6a0dd","script":"\n # file splitting into seq\n awk -v var1=LEADING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"42","hash":"e7\/c17b46","native_id":"27448","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (5)","status":"CACHED","exit":"0","submit":"1649518001008","start":"1649518001099","complete":"1649518005653","duration":"4645","realtime":"197","%cpu":"9.7","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"186870","wchar":"9131","syscr":"332","syscw":"31","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e7\/c17b4628d9b5cfa9de18551ae5efa8","script":"\n # file splitting into seq\n awk -v var1=LEADING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"40","hash":"f0\/df4b99","native_id":"19278","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (4)","status":"CACHED","exit":"0","submit":"1649517649523","start":"1649517649590","complete":"1649517654353","duration":"4830","realtime":"432","%cpu":"11.3","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288822","wchar":"19500","syscr":"531","syscw":"51","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f0\/df4b990558220e25f113d0cfeac3ea","script":"\n # file splitting into seq\n awk -v var1=LAGGING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"44","hash":"24\/882b89","native_id":"27418","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (7)","status":"CACHED","exit":"0","submit":"1649518000971","start":"1649518000999","complete":"1649518005740","duration":"4769","realtime":"172","%cpu":"9.8","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"180638","wchar":"2832","syscr":"319","syscw":"18","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/24\/882b89ee5e23a0484fa80121a46044","script":"\n # file splitting into seq\n awk -v var1=LAGGING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"39","hash":"3c\/c2beee","native_id":"19315","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (3)","status":"CACHED","exit":"0","submit":"1649517649606","start":"1649517649691","complete":"1649517654451","duration":"4845","realtime":"426","%cpu":"11.9","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"289470","wchar":"20168","syscr":"532","syscw":"52","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3c\/c2beee63bd2a590f3d93228009f675","script":"\n # file splitting into seq\n awk -v var1=LAGGING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"43","hash":"63\/faaafa","native_id":"28010","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (6)","status":"CACHED","exit":"0","submit":"1649518005691","start":"1649518005866","complete":"1649518008672","duration":"2981","realtime":"109","%cpu":"11.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"183021","wchar":"5250","syscr":"324","syscw":"23","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/63\/faaafa410111d32d4fa1a81f842bfa","script":"\n # file splitting into seq\n awk -v var1=LEADING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"50","hash":"71\/fcd5ac","native_id":"28454","process":"report2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report2","status":"CACHED","exit":"0","submit":"1649518009697","start":"1649518009773","complete":"1649518012408","duration":"2711","realtime":"45","%cpu":"5.6","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"135292","wchar":"2465","syscr":"248","syscw":"103","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/71\/fcd5ac705daf0d2c90e84a7d3a87f3","script":"\n echo -e \"\n\\n\\n<br \/><br \/>\\n\\n### Logos\\n\\n\n\\n\\nIn each sequence of length $((20 * 2)) <br \/>position $((20 + 1)) corresponds to the first nucleotide of the reference genome part of the read\n\" > report.rmd\n count=0 # always goes to 4 because 4 figures, one for each forward\/reverse leading\/lagging\n for i in $(echo [test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0] | sed \'s\/^\\[\/\/\' | sed \'s\/\\]$\/\/\' | sed \'s\/,\/\/g\') ; do\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n done\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"34","hash":"34\/a909b8","native_id":"18724","process":"random_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"random_insertion (1)","status":"CACHED","exit":"0","submit":"1649699456918","start":"1649699456985","complete":"1649699466417","duration":"9499","realtime":"8510","%cpu":"57.3","%mem":"0.3","rss":"368607232","vmem":"511221760","peak_rss":"368607232","peak_vmem":"511254528","rchar":"31432716","wchar":"1296711","syscr":"5927","syscw":"1485","read_bytes":"35685376","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/34\/a909b82f7c0fa1fec6a1b178946ae2","script":"\n random_insertion.R \"test.fastq2_q20_nodup_annot.pos\" \"motif_sites.pos\" \"2320711 2320942\" \"4627368 4627400\" \"G[AT]T\" \"4641652\" \"test.fastq2\" \"cute_little_R_functions.R\" \"random_insertion_report.txt\"\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Random insertion sites\\n\\n\" > report.rmd\n echo -e \"\\n\\n#### Insertion site counts\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the [random_insertion_report.txt](.\/reports\/random_insertion_report.txt) file for details, notably the number of random sites (which should be the same as the number of observed sites)\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Insertion site proportions\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649699453\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"39640","inv_ctxt":"20"},{"task_id":"46","hash":"12\/8d4218","native_id":"30389","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (4)","status":"CACHED","exit":"0","submit":"1649518055457","start":"1649518055529","complete":"1649518072378","duration":"16921","realtime":"14779","%cpu":"44.2","%mem":"0.1","rss":"125968384","vmem":"307650560","peak_rss":"125968384","peak_vmem":"307683328","rchar":"14488278","wchar":"1026153","syscr":"2474","syscw":"334","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/12\/8d42187c499a07e1b2854cb1783557","script":"\n logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"26386","inv_ctxt":"6"},{"task_id":"47","hash":"49\/98147b","native_id":"27326","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (1)","status":"CACHED","exit":"0","submit":"1649518000631","start":"1649518000698","complete":"1649518021750","duration":"21119","realtime":"17706","%cpu":"38.5","%mem":"0.1","rss":"142135296","vmem":"285728768","peak_rss":"176672768","peak_vmem":"321765376","rchar":"14488308","wchar":"873213","syscr":"2474","syscw":"314","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/49\/98147bec76c1caa3b8cf85164cb6b1","script":"\n logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"30254","inv_ctxt":"601"},{"task_id":"48","hash":"20\/686354","native_id":"28980","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (2)","status":"CACHED","exit":"0","submit":"1649518021775","start":"1649518021849","complete":"1649518038231","duration":"16456","realtime":"14490","%cpu":"44.4","%mem":"0.1","rss":"129908736","vmem":"311144448","peak_rss":"129908736","peak_vmem":"311177216","rchar":"14488301","wchar":"904086","syscr":"2474","syscw":"316","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/20\/6863545e9b2fd0bd51b448b5219110","script":"\n logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"26525","inv_ctxt":"6"},{"task_id":"49","hash":"d7\/09132f","native_id":"29683","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (3)","status":"CACHED","exit":"0","submit":"1649518038258","start":"1649518038331","complete":"1649518055429","duration":"17171","realtime":"15098","%cpu":"43.2","%mem":"0.1","rss":"123715584","vmem":"271429632","peak_rss":"123715584","peak_vmem":"271462400","rchar":"14488313","wchar":"894424","syscr":"2474","syscw":"314","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d7\/09132fb6c80831584aaec35d37e3d9","script":"\n logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"25754","inv_ctxt":"3"},{"task_id":"51","hash":"6d\/f8b929","native_id":"31807","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"global_logo (1)","status":"CACHED","exit":"0","submit":"1649518090164","start":"1649518090253","complete":"1649518107759","duration":"17595","realtime":"15576","%cpu":"46.3","%mem":"0.1","rss":"122327040","vmem":"266919936","peak_rss":"122327040","peak_vmem":"266952704","rchar":"14497087","wchar":"867376","syscr":"2488","syscw":"311","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/6d\/f8b92904090b1f68582fc5640c92e5","script":"\n global_logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat\" \"test.fastq2\" \"20\" \"cute_little_R_functions.R\" \"global_logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"24904","inv_ctxt":"5"},{"task_id":"52","hash":"e9\/9bbb1e","native_id":"31094","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"global_logo (2)","status":"CACHED","exit":"0","submit":"1649518072403","start":"1649518072478","complete":"1649518090138","duration":"17735","realtime":"15591","%cpu":"46.4","%mem":"0.1","rss":"122126336","vmem":"267714560","peak_rss":"122126336","peak_vmem":"267747328","rchar":"14496507","wchar":"990822","syscr":"2488","syscw":"331","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e9\/9bbb1ef3d79cf349635852b4413b30","script":"\n global_logo.R \"test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat\" \"test.fastq2\" \"20\" \"cute_little_R_functions.R\" \"global_logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649517328\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"25009","inv_ctxt":"4"},{"task_id":"53","hash":"f8\/d685f3","native_id":"1420","process":"plot_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_insertion (1)","status":"COMPLETED","exit":"0","submit":"1649703184174","start":"1649703184268","complete":"1649703424377","duration":"240203","realtime":"239503","%cpu":"35.7","%mem":"0.4","rss":"413442048","vmem":"572653568","peak_rss":"414097408","peak_vmem":"572731392","rchar":"46946944","wchar":"23740340","syscr":"34549","syscw":"18913","read_bytes":"53133312","write_bytes":"450560","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f8\/d685f3eec85cf489de186325f95b3e","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion plots\\n\\n\" > report.rmd\n plot_insertion.R \"obs_rd_insertions.pos\" \"obs_rd_insertions.freq\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/Essential_genes_MG1655.tsv\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/cds_ORI_CENTERED.txt\" \"2320711 2320942\" \"4627368 4627400\" \"Ecoli Genome (bp)\" \"4641652\" \"0.88\" \"0.08\" \"50000 200000 500000\" \"100\" \"test.fastq2\" \"12\" \"cute_little_R_functions.R\" \"plot_insertion_report.txt\"\n echo -e \"\\n\\n#### Histograms\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Raw frequencies\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the CL Labbook section 24.7.3 to explain the limitation around 100 bp\\n\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Binned frequencies\\n\\n\" >> report.rmd\n count=1\n for i in 50000 200000 500000 ; do\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n done\n if [[ \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt != \"NULL\" ]] ; then\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Transcription start site (TSS) plots\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the CL Labbook section 48.3 to to get the theoretical proportion of the codant\/non codant essential\/non essential genome\\n\\nSee the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details about the plotted values.\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \\n\\n<br \/><br \/>\\n\\nThe number of insertions sites are indicated above graphs.\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \\n\\n<br \/><br \/>\\n\\n### Coding sequences (CDS) plots\\n\\nThe number of insertions sites inside CDS are indicated above graphs.\\n\\nSee the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details about the plotted values.\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \\n\\nWarning: the number of observed and random insertions indicated above graphs can be greater than those indicated above Figure \'$((28 + $count))\', since a position that overlaps two genes is counted twice (see the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details).\\n\\n\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n fi\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"99826","inv_ctxt":"165"},{"task_id":"54","hash":"ac\/8ffc76","native_id":"7745","process":"print_report","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"print_report (1)","status":"COMPLETED","exit":"0","submit":"1649703425043","start":"1649703425078","complete":"1649703435217","duration":"10174","realtime":"9314","%cpu":"45.4","%mem":"0.2","rss":"279404544","vmem":"1100166922240","peak_rss":"279404544","peak_vmem":"1100167069696","rchar":"54377295","wchar":"27580275","syscr":"7160","syscw":"2194","read_bytes":"48487424","write_bytes":"4096","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ac\/8ffc760018645c1fbeb583ce7f83d2","script":"\n cp report.rmd report_file.rmd # this is to get hard files, not symlinks\n mkdir figures\n mkdir files\n mkdir reports\n cat stat_tempo > .\/files\/test.fastq2_5pAttc_1-51.stat # this is to get hard files, not symlinks\n cp head.fw.txt head.rv.txt table1.txt table2.txt table3.txt table4.txt table8.txt test.fastq2_q20_dup_annot_selected.freq .\/files\/ # this is to get hard files, not symlinks\n cp plot_fivep_filtering_stat.png plot_read_length_cutoff.png plot_read_length_fivep_filtering.png plot_read_length_fivep_filtering_cut.png plot_read_length_ini.png plot_test.fastq2_q20_dup_mini.png plot_test.fastq2_q20_nodup_mini.png plot_test.fastq2_bowtie2_mini.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png global_logo_nodup_test.fastq2.png global_logo_dup_test.fastq2.png plot_motif_insertion_per_fork.png plot_motif_insertion_per_fork_and_strand.png plot_motif_insertion_per_fork_and_strand_prop.png plot_motif_insertion_per_fork_prop.png plot_motif_insertion_per_strand.png plot_motif_insertion_per_strand_prop.png barplot_test.fastq2_all.png barplot_test.fastq2_all_relative.png barplot_test.fastq2_ess_uness.png barplot_test.fastq2_inside_outside.png boxplot_test.fastq2_cds.png boxplot_test.fastq2_cds_wo_unknown.png boxplot_test.fastq2_tss.png boxplot_test.fastq2_tss_wo_unknown.png hist_test.fastq2_tss_distance_freq.png hist_test.fastq2_tss_distance_freq_Nlaw.png plot_test.fastq2_insertion_bin_200000.png plot_test.fastq2_insertion_bin_50000.png plot_test.fastq2_insertion_bin_500000.png plot_test.fastq2_insertion_hist_forward.png plot_test.fastq2_insertion_hist_reverse.png plot_test.fastq2_insertion_hist_tot.png plot_test.fastq2_insertion_hist_tot_zoom.png plot_test.fastq2_insertion_raw.png plot_test.fastq2_lead_lag_insertion_bin_200000.png plot_test.fastq2_lead_lag_insertion_bin_50000.png plot_test.fastq2_lead_lag_insertion_bin_500000.png plot_test.fastq2_promoter_per_genes.png alignment.html plot_test.fastq2_insertion_dup_raw.png plot_test.fastq2_insertion_dup_selected.png plot_test.fastq2_insertion_hist_tot_selected.png .\/figures\/ # Warning several files\n cp plot_fivep_filtering_stat.png .\/reports\/nf_dag.png # trick to delude the knitting during the print report\n cp multiqc_report.html .\/reports\/ # this is to get hard files from html from multiqc_ch, not symlinks\n print_report.R \"cute_little_R_functions.R\" \"report_file.rmd\" \"print_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1649703168\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42211","inv_ctxt":"24"}], "summary":[{"cpuUsage":{"mean":37.7,"min":37.7,"q1":37.7,"q2":37.7,"q3":37.7,"max":37.7,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"process":"Nremove","mem":{"mean":12468224,"min":12468224,"q1":12468224,"q2":12468224,"q3":12468224,"max":12468224,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"memUsage":{"mean":0.39,"min":0.39,"q1":0.39,"q2":0.39,"q3":0.39,"max":0.39,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"timeUsage":null,"vmem":{"mean":74002432,"min":74002432,"q1":74002432,"q2":74002432,"q3":74002432,"max":74002432,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"reads":{"mean":17604799,"min":17604799,"q1":17604799,"q2":17604799,"q3":17604799,"max":17604799,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"cpu":{"mean":37.7,"min":37.7,"q1":37.7,"q2":37.7,"q3":37.7,"max":37.7,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"time":{"mean":1273,"min":1273,"q1":1273,"q2":1273,"q3":1273,"max":1273,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"writes":{"mean":15167118,"min":15167118,"q1":15167118,"q2":15167118,"q3":15167118,"max":15167118,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"}},{"cpuUsage":{"mean":6.6,"min":6.6,"q1":6.6,"q2":6.6,"q3":6.6,"max":6.6,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"process":"report1","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106909,"min":106909,"q1":106909,"q2":106909,"q3":106909,"max":106909,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"cpu":{"mean":6.6,"min":6.6,"q1":6.6,"q2":6.6,"q3":6.6,"max":6.6,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"time":{"mean":85,"min":85,"q1":85,"q2":85,"q3":85,"max":85,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"writes":{"mean":684,"min":684,"q1":684,"q2":684,"q3":684,"max":684,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"}},{"cpuUsage":{"mean":44.5,"min":44.5,"q1":44.5,"q2":44.5,"q3":44.5,"max":44.5,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"process":"trim","mem":{"mean":66617344,"min":66617344,"q1":66617344,"q2":66617344,"q3":66617344,"max":66617344,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"memUsage":{"mean":2.07,"min":2.07,"q1":2.07,"q2":2.07,"q3":2.07,"max":2.07,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"timeUsage":null,"vmem":{"mean":5970448384,"min":5970448384,"q1":5970448384,"q2":5970448384,"q3":5970448384,"max":5970448384,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"reads":{"mean":17145211,"min":17145211,"q1":17145211,"q2":17145211,"q3":17145211,"max":17145211,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"cpu":{"mean":44.5,"min":44.5,"q1":44.5,"q2":44.5,"q3":44.5,"max":44.5,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"time":{"mean":7348,"min":7348,"q1":7348,"q2":7348,"q3":7348,"max":7348,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"writes":{"mean":12629480,"min":12629480,"q1":12629480,"q2":12629480,"q3":12629480,"max":12629480,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"}},{"cpuUsage":{"mean":81.6,"min":81.6,"q1":81.6,"q2":81.6,"q3":81.6,"max":81.6,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"process":"kraken","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":154429,"min":154429,"q1":154429,"q2":154429,"q3":154429,"max":154429,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"cpu":{"mean":81.6,"min":81.6,"q1":81.6,"q2":81.6,"q3":81.6,"max":81.6,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"time":{"mean":34,"min":34,"q1":34,"q2":34,"q3":34,"max":34,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"writes":{"mean":220,"min":220,"q1":220,"q2":220,"q3":220,"max":220,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"}},{"cpuUsage":{"mean":27.1,"min":27.1,"q1":27.1,"q2":27.1,"q3":27.1,"max":27.1,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"process":"fivep_filtering","mem":{"mean":12136448,"min":12136448,"q1":12136448,"q2":12136448,"q3":12136448,"max":12136448,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"memUsage":{"mean":0.38,"min":0.38,"q1":0.38,"q2":0.38,"q3":0.38,"max":0.38,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"timeUsage":null,"vmem":{"mean":70533120,"min":70533120,"q1":70533120,"q2":70533120,"q3":70533120,"max":70533120,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"reads":{"mean":29337231,"min":29337231,"q1":29337231,"q2":29337231,"q3":29337231,"max":29337231,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"cpu":{"mean":27.1,"min":27.1,"q1":27.1,"q2":27.1,"q3":27.1,"max":27.1,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"time":{"mean":6176,"min":6176,"q1":6176,"q2":6176,"q3":6176,"max":6176,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"writes":{"mean":16061720,"min":16061720,"q1":16061720,"q2":16061720,"q3":16061720,"max":16061720,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"}},{"cpuUsage":{"mean":52,"min":52,"q1":52,"q2":52,"q3":52,"max":52,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"process":"fastqc1","mem":{"mean":173256704,"min":173256704,"q1":173256704,"q2":173256704,"q3":173256704,"max":173256704,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3342663680,"min":3342663680,"q1":3342663680,"q2":3342663680,"q3":3342663680,"max":3342663680,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"reads":{"mean":14605630,"min":14605630,"q1":14605630,"q2":14605630,"q3":14605630,"max":14605630,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"cpu":{"mean":52,"min":52,"q1":52,"q2":52,"q3":52,"max":52,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"time":{"mean":17027,"min":17027,"q1":17027,"q2":17027,"q3":17027,"max":17027,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"writes":{"mean":1278924,"min":1278924,"q1":1278924,"q2":1278924,"q3":1278924,"max":1278924,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"}},{"cpuUsage":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"process":"cutoff","mem":{"mean":10223616,"min":10223616,"q1":10223616,"q2":10223616,"q3":10223616,"max":10223616,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"memUsage":{"mean":0.32,"min":0.32,"q1":0.32,"q2":0.32,"q3":0.32,"max":0.32,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"timeUsage":null,"vmem":{"mean":64237568,"min":64237568,"q1":64237568,"q2":64237568,"q3":64237568,"max":64237568,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"reads":{"mean":7308009,"min":7308009,"q1":7308009,"q2":7308009,"q3":7308009,"max":7308009,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"cpu":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"time":{"mean":988,"min":988,"q1":988,"q2":988,"q3":988,"max":988,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"writes":{"mean":4049154,"min":4049154,"q1":4049154,"q2":4049154,"q3":4049154,"max":4049154,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"}},{"cpuUsage":{"mean":69.2,"min":69.2,"q1":69.2,"q2":69.2,"q3":69.2,"max":69.2,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"process":"fastqc2","mem":{"mean":184655872,"min":184655872,"q1":184655872,"q2":184655872,"q3":184655872,"max":184655872,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3289899008,"min":3289899008,"q1":3289899008,"q2":3289899008,"q3":3289899008,"max":3289899008,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"reads":{"mean":12768081,"min":12768081,"q1":12768081,"q2":12768081,"q3":12768081,"max":12768081,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"cpu":{"mean":69.2,"min":69.2,"q1":69.2,"q2":69.2,"q3":69.2,"max":69.2,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"time":{"mean":12798,"min":12798,"q1":12798,"q2":12798,"q3":12798,"max":12798,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"writes":{"mean":1245410,"min":1245410,"q1":1245410,"q2":1245410,"q3":1245410,"max":1245410,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"}},{"cpuUsage":{"mean":3.38,"min":3.38,"q1":3.38,"q2":3.38,"q3":3.38,"max":3.38,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"process":"bowtie2","mem":{"mean":120336384,"min":120336384,"q1":120336384,"q2":120336384,"q3":120336384,"max":120336384,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"memUsage":{"mean":0.7,"min":0.7,"q1":0.7,"q2":0.7,"q3":0.7,"max":0.7,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"timeUsage":null,"vmem":{"mean":251154432,"min":251154432,"q1":251154432,"q2":251154432,"q3":251154432,"max":251154432,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"reads":{"mean":36678363,"min":36678363,"q1":36678363,"q2":36678363,"q3":36678363,"max":36678363,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"cpu":{"mean":40.6,"min":40.6,"q1":40.6,"q2":40.6,"q3":40.6,"max":40.6,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"time":{"mean":9333,"min":9333,"q1":9333,"q2":9333,"q3":9333,"max":9333,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"writes":{"mean":17009938,"min":17009938,"q1":17009938,"q2":17009938,"q3":17009938,"max":17009938,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"}},{"cpuUsage":{"mean":17.8,"min":17.8,"q1":17.8,"q2":17.8,"q3":17.8,"max":17.8,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"process":"Q20","mem":{"mean":4722688,"min":4722688,"q1":4722688,"q2":4722688,"q3":4722688,"max":4722688,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"memUsage":{"mean":0.44,"min":0.44,"q1":0.44,"q2":0.44,"q3":0.44,"max":0.44,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"timeUsage":null,"vmem":{"mean":44834816,"min":44834816,"q1":44834816,"q2":44834816,"q3":44834816,"max":44834816,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"reads":{"mean":3392035,"min":3392035,"q1":3392035,"q2":3392035,"q3":3392035,"max":3392035,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"cpu":{"mean":17.8,"min":17.8,"q1":17.8,"q2":17.8,"q3":17.8,"max":17.8,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"time":{"mean":707,"min":707,"q1":707,"q2":707,"q3":707,"max":707,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"writes":{"mean":2260606,"min":2260606,"q1":2260606,"q2":2260606,"q3":2260606,"max":2260606,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"}},{"cpuUsage":{"mean":1.59,"min":1.53,"q1":1.56,"q2":1.59,"q3":1.62,"max":1.65,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"process":"coverage","mem":{"mean":45603498.67,"min":45502464,"q1":45551616,"q2":45600768,"q3":45654016,"max":45707264,"minLabel":"coverage (1)","maxLabel":"coverage (2)","q1Label":"coverage (1)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"memUsage":{"mean":0.07,"min":0.07,"q1":0.07,"q2":0.07,"q3":0.07,"max":0.07,"minLabel":"coverage (1)","maxLabel":"coverage (2)","q1Label":"coverage (1)","q2Label":"coverage (3)","q3Label":"coverage (3)"},"timeUsage":null,"vmem":{"mean":83996672,"min":83996672,"q1":83996672,"q2":83996672,"q3":83996672,"max":83996672,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"reads":{"mean":383974.33,"min":317679,"q1":330370,"q2":343061,"q3":417122,"max":491183,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"cpu":{"mean":19.07,"min":18.3,"q1":18.7,"q2":19.1,"q3":19.45,"max":19.8,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"time":{"mean":1918.67,"min":1845,"q1":1878,"q2":1911,"q3":1955.5,"max":2000,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"writes":{"mean":87175.33,"min":84031,"q1":84189,"q2":84347,"q3":88747.5,"max":93148,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"}},{"cpuUsage":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"process":"no_soft_clipping","mem":{"mean":5394432,"min":5394432,"q1":5394432,"q2":5394432,"q3":5394432,"max":5394432,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"memUsage":{"mean":0.5,"min":0.5,"q1":0.5,"q2":0.5,"q3":0.5,"max":0.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"timeUsage":null,"vmem":{"mean":60452864,"min":60452864,"q1":60452864,"q2":60452864,"q3":60452864,"max":60452864,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"reads":{"mean":2188565,"min":2188565,"q1":2188565,"q2":2188565,"q3":2188565,"max":2188565,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"cpu":{"mean":14.5,"min":14.5,"q1":14.5,"q2":14.5,"q3":14.5,"max":14.5,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"time":{"mean":1228,"min":1228,"q1":1228,"q2":1228,"q3":1228,"max":1228,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"writes":{"mean":1583809,"min":1583809,"q1":1583809,"q2":1583809,"q3":1583809,"max":1583809,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"}},{"cpuUsage":{"mean":36.5,"min":36.5,"q1":36.5,"q2":36.5,"q3":36.5,"max":36.5,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"process":"multiQC","mem":{"mean":74149888,"min":74149888,"q1":74149888,"q2":74149888,"q3":74149888,"max":74149888,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"memUsage":null,"timeUsage":null,"vmem":{"mean":85012480,"min":85012480,"q1":85012480,"q2":85012480,"q3":85012480,"max":85012480,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"reads":{"mean":29716377,"min":29716377,"q1":29716377,"q2":29716377,"q3":29716377,"max":29716377,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"cpu":{"mean":36.5,"min":36.5,"q1":36.5,"q2":36.5,"q3":36.5,"max":36.5,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"time":{"mean":23000,"min":23000,"q1":23000,"q2":23000,"q3":23000,"max":23000,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"writes":{"mean":2404869,"min":2404869,"q1":2404869,"q2":2404869,"q3":2404869,"max":2404869,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"}},{"cpuUsage":{"mean":24.6,"min":24.6,"q1":24.6,"q2":24.6,"q3":24.6,"max":24.6,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"process":"duplicate_removal","mem":{"mean":13029376,"min":13029376,"q1":13029376,"q2":13029376,"q3":13029376,"max":13029376,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"memUsage":{"mean":1.21,"min":1.21,"q1":1.21,"q2":1.21,"q3":1.21,"max":1.21,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"timeUsage":null,"vmem":{"mean":89198592,"min":89198592,"q1":89198592,"q2":89198592,"q3":89198592,"max":89198592,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"reads":{"mean":13491677,"min":13491677,"q1":13491677,"q2":13491677,"q3":13491677,"max":13491677,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"cpu":{"mean":24.6,"min":24.6,"q1":24.6,"q2":24.6,"q3":24.6,"max":24.6,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"time":{"mean":6625,"min":6625,"q1":6625,"q2":6625,"q3":6625,"max":6625,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"writes":{"mean":6912516,"min":6912516,"q1":6912516,"q2":6912516,"q3":6912516,"max":6912516,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"}},{"cpuUsage":{"mean":20,"min":19.6,"q1":19.8,"q2":20,"q3":20.2,"max":20.4,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"process":"insertion","mem":{"mean":8896512,"min":8163328,"q1":8529920,"q2":8896512,"q3":9263104,"max":9629696,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"memUsage":{"mean":0.83,"min":0.76,"q1":0.79,"q2":0.83,"q3":0.86,"max":0.9,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"timeUsage":null,"vmem":{"mean":68841472,"min":68775936,"q1":68808704,"q2":68841472,"q3":68874240,"max":68907008,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"reads":{"mean":2878380,"min":2614607,"q1":2746493.5,"q2":2878380,"q3":3010266.5,"max":3142153,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"cpu":{"mean":20,"min":19.6,"q1":19.8,"q2":20,"q3":20.2,"max":20.4,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"time":{"mean":2367.5,"min":2260,"q1":2313.75,"q2":2367.5,"q3":2421.25,"max":2475,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"writes":{"mean":2072362.5,"min":1832311,"q1":1952336.75,"q2":2072362.5,"q3":2192388.25,"max":2312414,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"}},{"cpuUsage":{"mean":49.33,"min":49.2,"q1":49.25,"q2":49.3,"q3":49.4,"max":49.5,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"process":"plot_coverage","mem":{"mean":224164522.67,"min":220262400,"q1":222949376,"q2":225636352,"q3":226115584,"max":226594816,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"memUsage":{"mean":0.33,"min":0.32,"q1":0.32,"q2":0.33,"q3":0.33,"max":0.33,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"timeUsage":null,"vmem":{"mean":368757418.67,"min":363679744,"q1":367306752,"q2":370933760,"q3":371296256,"max":371658752,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"reads":{"mean":19152439,"min":19149294,"q1":19149453,"q2":19149612,"q3":19154011.5,"max":19158411,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"cpu":{"mean":49.33,"min":49.2,"q1":49.25,"q2":49.3,"q3":49.4,"max":49.5,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"time":{"mean":24209.67,"min":23860,"q1":24073,"q2":24286,"q3":24384.5,"max":24483,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"writes":{"mean":446909,"min":444685,"q1":445018,"q2":445351,"q3":448021,"max":450691,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"}},{"cpuUsage":{"mean":39.8,"min":39.8,"q1":39.8,"q2":39.8,"q3":39.8,"max":39.8,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"process":"final_insertion_files","mem":{"mean":127510528,"min":127500288,"q1":127505408,"q2":127510528,"q3":127515648,"max":127520768,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"memUsage":{"mean":0.19,"min":0.19,"q1":0.19,"q2":0.19,"q3":0.19,"max":0.19,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"timeUsage":null,"vmem":{"mean":258760704,"min":258756608,"q1":258758656,"q2":258760704,"q3":258762752,"max":258764800,"minLabel":"final_insertion_files (2)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (2)","q2Label":"final_insertion_files (2)","q3Label":"final_insertion_files (2)"},"reads":{"mean":18006486.5,"min":18003744,"q1":18005115.25,"q2":18006486.5,"q3":18007857.75,"max":18009229,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"cpu":{"mean":39.8,"min":39.8,"q1":39.8,"q2":39.8,"q3":39.8,"max":39.8,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"time":{"mean":12989.5,"min":12958,"q1":12973.75,"q2":12989.5,"q3":13005.25,"max":13021,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"writes":{"mean":280600,"min":275694,"q1":278147,"q2":280600,"q3":283053,"max":285506,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"}},{"cpuUsage":{"mean":9.5,"min":9.5,"q1":9.5,"q2":9.5,"q3":9.5,"max":9.5,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"process":"report3","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":305829,"min":305829,"q1":305829,"q2":305829,"q3":305829,"max":305829,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"cpu":{"mean":9.5,"min":9.5,"q1":9.5,"q2":9.5,"q3":9.5,"max":9.5,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"time":{"mean":65,"min":65,"q1":65,"q2":65,"q3":65,"max":65,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"writes":{"mean":44602,"min":44602,"q1":44602,"q2":44602,"q3":44602,"max":44602,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"}},{"cpuUsage":{"mean":42.6,"min":42.6,"q1":42.6,"q2":42.6,"q3":42.6,"max":42.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"process":"motif","mem":{"mean":210448384,"min":210448384,"q1":210448384,"q2":210448384,"q3":210448384,"max":210448384,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"timeUsage":null,"vmem":{"mean":341385216,"min":341385216,"q1":341385216,"q2":341385216,"q3":341385216,"max":341385216,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"reads":{"mean":49872281,"min":49872281,"q1":49872281,"q2":49872281,"q3":49872281,"max":49872281,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"cpu":{"mean":42.6,"min":42.6,"q1":42.6,"q2":42.6,"q3":42.6,"max":42.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"time":{"mean":42507,"min":42507,"q1":42507,"q2":42507,"q3":42507,"max":42507,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"writes":{"mean":41616533,"min":41616533,"q1":41616533,"q2":41616533,"q3":41616533,"max":41616533,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"}},{"cpuUsage":{"mean":53.9,"min":53.9,"q1":53.9,"q2":53.9,"q3":53.9,"max":53.9,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"process":"plot_read_length","mem":{"mean":208457728,"min":208457728,"q1":208457728,"q2":208457728,"q3":208457728,"max":208457728,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"memUsage":{"mean":0.3,"min":0.3,"q1":0.3,"q2":0.3,"q3":0.3,"max":0.3,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"timeUsage":null,"vmem":{"mean":354000896,"min":354000896,"q1":354000896,"q2":354000896,"q3":354000896,"max":354000896,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"reads":{"mean":19621130,"min":19621130,"q1":19621130,"q2":19621130,"q3":19621130,"max":19621130,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"cpu":{"mean":53.9,"min":53.9,"q1":53.9,"q2":53.9,"q3":53.9,"max":53.9,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"time":{"mean":26476,"min":26476,"q1":26476,"q2":26476,"q3":26476,"max":26476,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"writes":{"mean":708057,"min":708057,"q1":708057,"q2":708057,"q3":708057,"max":708057,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"}},{"cpuUsage":{"mean":42.9,"min":42.9,"q1":42.9,"q2":42.9,"q3":42.9,"max":42.9,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"process":"plot_fivep_filtering_stat","mem":{"mean":220442624,"min":220442624,"q1":220442624,"q2":220442624,"q3":220442624,"max":220442624,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"memUsage":{"mean":0.32,"min":0.32,"q1":0.32,"q2":0.32,"q3":0.32,"max":0.32,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"timeUsage":null,"vmem":{"mean":363532288,"min":363532288,"q1":363532288,"q2":363532288,"q3":363532288,"max":363532288,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"reads":{"mean":19122541,"min":19122541,"q1":19122541,"q2":19122541,"q3":19122541,"max":19122541,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"cpu":{"mean":42.9,"min":42.9,"q1":42.9,"q2":42.9,"q3":42.9,"max":42.9,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"time":{"mean":28457,"min":28457,"q1":28457,"q2":28457,"q3":28457,"max":28457,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"writes":{"mean":811482,"min":811482,"q1":811482,"q2":811482,"q3":811482,"max":811482,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"}},{"cpuUsage":{"mean":40.7,"min":40.7,"q1":40.7,"q2":40.7,"q3":40.7,"max":40.7,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"process":"seq_around_insertion","mem":{"mean":127621120,"min":127565824,"q1":127593472,"q2":127621120,"q3":127648768,"max":127676416,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"memUsage":{"mean":0.19,"min":0.19,"q1":0.19,"q2":0.19,"q3":0.19,"max":0.19,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"timeUsage":null,"vmem":{"mean":258762752,"min":258760704,"q1":258761728,"q2":258762752,"q3":258763776,"max":258764800,"minLabel":"seq_around_insertion (1)","maxLabel":"seq_around_insertion (2)","q1Label":"seq_around_insertion (1)","q2Label":"seq_around_insertion (1)","q3Label":"seq_around_insertion (1)"},"reads":{"mean":17995135.5,"min":17988623,"q1":17991879.25,"q2":17995135.5,"q3":17998391.75,"max":18001648,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"cpu":{"mean":40.7,"min":40.7,"q1":40.7,"q2":40.7,"q3":40.7,"max":40.7,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"time":{"mean":12797,"min":12663,"q1":12730,"q2":12797,"q3":12864,"max":12931,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"writes":{"mean":179957.5,"min":146404,"q1":163180.75,"q2":179957.5,"q3":196734.25,"max":213511,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"}},{"cpuUsage":{"mean":1.56,"min":1.48,"q1":1.52,"q2":1.56,"q3":1.6,"max":1.63,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"process":"extract_seq","mem":{"mean":12386304,"min":6295552,"q1":9340928,"q2":12386304,"q3":15431680,"max":18477056,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"memUsage":{"mean":0.02,"min":0.01,"q1":0.01,"q2":0.02,"q3":0.02,"max":0.03,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"timeUsage":null,"vmem":{"mean":59160576,"min":52846592,"q1":56003584,"q2":59160576,"q3":62317568,"max":65474560,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"reads":{"mean":9477790,"min":9452267,"q1":9465028.5,"q2":9477790,"q3":9490551.5,"max":9503313,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"cpu":{"mean":18.7,"min":17.8,"q1":18.25,"q2":18.7,"q3":19.15,"max":19.6,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"time":{"mean":2130.5,"min":1457,"q1":1793.75,"q2":2130.5,"q3":2467.25,"max":2804,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"writes":{"mean":4718049.5,"min":4672192,"q1":4695120.75,"q2":4718049.5,"q3":4740978.25,"max":4763907,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"}},{"cpuUsage":{"mean":1.1,"min":1.1,"q1":1.1,"q2":1.1,"q3":1.1,"max":1.1,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"process":"goalign","mem":{"mean":14262272,"min":14262272,"q1":14262272,"q2":14262272,"q3":14262272,"max":14262272,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"memUsage":{"mean":1.33,"min":1.33,"q1":1.33,"q2":1.33,"q3":1.33,"max":1.33,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"timeUsage":null,"vmem":{"mean":734240768,"min":734240768,"q1":734240768,"q2":734240768,"q3":734240768,"max":734240768,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"reads":{"mean":131211,"min":131211,"q1":131211,"q2":131211,"q3":131211,"max":131211,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"cpu":{"mean":13.2,"min":13.2,"q1":13.2,"q2":13.2,"q3":13.2,"max":13.2,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"time":{"mean":2873,"min":2873,"q1":2873,"q2":2873,"q3":2873,"max":2873,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"writes":{"mean":356117,"min":356117,"q1":356117,"q2":356117,"q3":356117,"max":356117,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"}},{"cpuUsage":{"mean":10.63,"min":9.6,"q1":9.78,"q2":10.55,"q3":11.38,"max":11.9,"minLabel":"base_freq (8)","maxLabel":"base_freq (3)","q1Label":"base_freq (5)","q2Label":"base_freq (1)","q3Label":"base_freq (4)"},"process":"base_freq","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":236107.75,"min":180638,"q1":184404.75,"q2":236694,"q3":288698.25,"max":289470,"minLabel":"base_freq (7)","maxLabel":"base_freq (3)","q1Label":"base_freq (6)","q2Label":"base_freq (5)","q3Label":"base_freq (2)"},"cpu":{"mean":10.63,"min":9.6,"q1":9.78,"q2":10.55,"q3":11.38,"max":11.9,"minLabel":"base_freq (8)","maxLabel":"base_freq (3)","q1Label":"base_freq (5)","q2Label":"base_freq (1)","q3Label":"base_freq (4)"},"time":{"mean":291.5,"min":109,"q1":190.75,"q2":298.5,"q3":405.75,"max":432,"minLabel":"base_freq (6)","maxLabel":"base_freq (4)","q1Label":"base_freq (7)","q2Label":"base_freq (8)","q3Label":"base_freq (2)"},"writes":{"mean":12565.5,"min":2832,"q1":6651,"q2":13156,"q3":19383,"max":20168,"minLabel":"base_freq (7)","maxLabel":"base_freq (3)","q1Label":"base_freq (6)","q2Label":"base_freq (5)","q3Label":"base_freq (2)"}},{"cpuUsage":{"mean":5.6,"min":5.6,"q1":5.6,"q2":5.6,"q3":5.6,"max":5.6,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"process":"report2","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":135292,"min":135292,"q1":135292,"q2":135292,"q3":135292,"max":135292,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"cpu":{"mean":5.6,"min":5.6,"q1":5.6,"q2":5.6,"q3":5.6,"max":5.6,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"time":{"mean":45,"min":45,"q1":45,"q2":45,"q3":45,"max":45,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"writes":{"mean":2465,"min":2465,"q1":2465,"q2":2465,"q3":2465,"max":2465,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"}},{"cpuUsage":{"mean":57.3,"min":57.3,"q1":57.3,"q2":57.3,"q3":57.3,"max":57.3,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"process":"random_insertion","mem":{"mean":368607232,"min":368607232,"q1":368607232,"q2":368607232,"q3":368607232,"max":368607232,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"memUsage":{"mean":0.54,"min":0.54,"q1":0.54,"q2":0.54,"q3":0.54,"max":0.54,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"timeUsage":null,"vmem":{"mean":511254528,"min":511254528,"q1":511254528,"q2":511254528,"q3":511254528,"max":511254528,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"reads":{"mean":31432716,"min":31432716,"q1":31432716,"q2":31432716,"q3":31432716,"max":31432716,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"cpu":{"mean":57.3,"min":57.3,"q1":57.3,"q2":57.3,"q3":57.3,"max":57.3,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"time":{"mean":8510,"min":8510,"q1":8510,"q2":8510,"q3":8510,"max":8510,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"writes":{"mean":1296711,"min":1296711,"q1":1296711,"q2":1296711,"q3":1296711,"max":1296711,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"}},{"cpuUsage":{"mean":42.58,"min":38.5,"q1":42.03,"q2":43.7,"q3":44.25,"max":44.4,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (4)"},"process":"logo","mem":{"mean":139066368,"min":123715584,"q1":125405184,"q2":127938560,"q3":141599744,"max":176672768,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"memUsage":{"mean":0.2,"min":0.18,"q1":0.18,"q2":0.19,"q3":0.21,"max":0.26,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"timeUsage":null,"vmem":{"mean":303022080,"min":271462400,"q1":298628096,"q2":309430272,"q3":313824256,"max":321765376,"minLabel":"logo (3)","maxLabel":"logo (1)","q1Label":"logo (3)","q2Label":"logo (4)","q3Label":"logo (2)"},"reads":{"mean":14488300,"min":14488278,"q1":14488295.25,"q2":14488304.5,"q3":14488309.25,"max":14488313,"minLabel":"logo (4)","maxLabel":"logo (3)","q1Label":"logo (4)","q2Label":"logo (2)","q3Label":"logo (1)"},"cpu":{"mean":42.58,"min":38.5,"q1":42.03,"q2":43.7,"q3":44.25,"max":44.4,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (4)"},"time":{"mean":15518.25,"min":14490,"q1":14706.75,"q2":14938.5,"q3":15750,"max":17706,"minLabel":"logo (2)","maxLabel":"logo (1)","q1Label":"logo (2)","q2Label":"logo (4)","q3Label":"logo (3)"},"writes":{"mean":924469,"min":873213,"q1":889121.25,"q2":899255,"q3":934602.75,"max":1026153,"minLabel":"logo (1)","maxLabel":"logo (4)","q1Label":"logo (1)","q2Label":"logo (3)","q3Label":"logo (2)"}},{"cpuUsage":{"mean":46.35,"min":46.3,"q1":46.33,"q2":46.35,"q3":46.38,"max":46.4,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"process":"global_logo","mem":{"mean":122226688,"min":122126336,"q1":122176512,"q2":122226688,"q3":122276864,"max":122327040,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"memUsage":{"mean":0.18,"min":0.18,"q1":0.18,"q2":0.18,"q3":0.18,"max":0.18,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"timeUsage":null,"vmem":{"mean":267350016,"min":266952704,"q1":267151360,"q2":267350016,"q3":267548672,"max":267747328,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"reads":{"mean":14496797,"min":14496507,"q1":14496652,"q2":14496797,"q3":14496942,"max":14497087,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"cpu":{"mean":46.35,"min":46.3,"q1":46.33,"q2":46.35,"q3":46.38,"max":46.4,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"time":{"mean":15583.5,"min":15576,"q1":15579.75,"q2":15583.5,"q3":15587.25,"max":15591,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"writes":{"mean":929099,"min":867376,"q1":898237.5,"q2":929099,"q3":959960.5,"max":990822,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"}},{"cpuUsage":{"mean":5.3,"min":5.3,"q1":5.3,"q2":5.3,"q3":5.3,"max":5.3,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"process":"init","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106462,"min":106462,"q1":106462,"q2":106462,"q3":106462,"max":106462,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"cpu":{"mean":5.3,"min":5.3,"q1":5.3,"q2":5.3,"q3":5.3,"max":5.3,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"time":{"mean":17,"min":17,"q1":17,"q2":17,"q3":17,"max":17,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"writes":{"mean":659,"min":659,"q1":659,"q2":659,"q3":659,"max":659,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"}},{"cpuUsage":{"mean":6.3,"min":6.3,"q1":6.3,"q2":6.3,"q3":6.3,"max":6.3,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"process":"backup","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106668,"min":106668,"q1":106668,"q2":106668,"q3":106668,"max":106668,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"cpu":{"mean":6.3,"min":6.3,"q1":6.3,"q2":6.3,"q3":6.3,"max":6.3,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"time":{"mean":11,"min":11,"q1":11,"q2":11,"q3":11,"max":11,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"writes":{"mean":494,"min":494,"q1":494,"q2":494,"q3":494,"max":494,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"}},{"cpuUsage":{"mean":14.3,"min":14.3,"q1":14.3,"q2":14.3,"q3":14.3,"max":14.3,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"process":"workflowVersion","mem":{"mean":5267456,"min":5267456,"q1":5267456,"q2":5267456,"q3":5267456,"max":5267456,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"memUsage":{"mean":0.16,"min":0.16,"q1":0.16,"q2":0.16,"q3":0.16,"max":0.16,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"timeUsage":null,"vmem":{"mean":40312832,"min":40312832,"q1":40312832,"q2":40312832,"q3":40312832,"max":40312832,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"reads":{"mean":136704,"min":136704,"q1":136704,"q2":136704,"q3":136704,"max":136704,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"cpu":{"mean":14.3,"min":14.3,"q1":14.3,"q2":14.3,"q3":14.3,"max":14.3,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"time":{"mean":744,"min":744,"q1":744,"q2":744,"q3":744,"max":744,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"writes":{"mean":2126,"min":2126,"q1":2126,"q2":2126,"q3":2126,"max":2126,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"}},{"cpuUsage":{"mean":64.5,"min":64.5,"q1":64.5,"q2":64.5,"q3":64.5,"max":64.5,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"process":"dup_insertion_and_logo","mem":{"mean":283983872,"min":283983872,"q1":283983872,"q2":283983872,"q3":283983872,"max":283983872,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"memUsage":{"mean":0.41,"min":0.41,"q1":0.41,"q2":0.41,"q3":0.41,"max":0.41,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"timeUsage":null,"vmem":{"mean":426561536,"min":426561536,"q1":426561536,"q2":426561536,"q3":426561536,"max":426561536,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"reads":{"mean":17562590,"min":17562590,"q1":17562590,"q2":17562590,"q3":17562590,"max":17562590,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"cpu":{"mean":64.5,"min":64.5,"q1":64.5,"q2":64.5,"q3":64.5,"max":64.5,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"time":{"mean":10997,"min":10997,"q1":10997,"q2":10997,"q3":10997,"max":10997,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"writes":{"mean":600302,"min":600302,"q1":600302,"q2":600302,"q3":600302,"max":600302,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"}},{"cpuUsage":{"mean":2.98,"min":2.98,"q1":2.98,"q2":2.98,"q3":2.98,"max":2.98,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"process":"plot_insertion","mem":{"mean":414097408,"min":414097408,"q1":414097408,"q2":414097408,"q3":414097408,"max":414097408,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"memUsage":{"mean":0.6,"min":0.6,"q1":0.6,"q2":0.6,"q3":0.6,"max":0.6,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"timeUsage":null,"vmem":{"mean":572731392,"min":572731392,"q1":572731392,"q2":572731392,"q3":572731392,"max":572731392,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"reads":{"mean":46946944,"min":46946944,"q1":46946944,"q2":46946944,"q3":46946944,"max":46946944,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"cpu":{"mean":35.7,"min":35.7,"q1":35.7,"q2":35.7,"q3":35.7,"max":35.7,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"time":{"mean":239503,"min":239503,"q1":239503,"q2":239503,"q3":239503,"max":239503,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"writes":{"mean":23740340,"min":23740340,"q1":23740340,"q2":23740340,"q3":23740340,"max":23740340,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"}},{"cpuUsage":{"mean":45.4,"min":45.4,"q1":45.4,"q2":45.4,"q3":45.4,"max":45.4,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"process":"print_report","mem":{"mean":279404544,"min":279404544,"q1":279404544,"q2":279404544,"q3":279404544,"max":279404544,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"memUsage":{"mean":0.41,"min":0.41,"q1":0.41,"q2":0.41,"q3":0.41,"max":0.41,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"timeUsage":null,"vmem":{"mean":1100167069696,"min":1100167069696,"q1":1100167069696,"q2":1100167069696,"q3":1100167069696,"max":1100167069696,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"reads":{"mean":54377295,"min":54377295,"q1":54377295,"q2":54377295,"q3":54377295,"max":54377295,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"cpu":{"mean":45.4,"min":45.4,"q1":45.4,"q2":45.4,"q3":45.4,"max":45.4,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"time":{"mean":9314,"min":9314,"q1":9314,"q2":9314,"q3":9314,"max":9314,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"writes":{"mean":27580275,"min":27580275,"q1":27580275,"q2":27580275,"q3":27580275,"max":27580275,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"}}] }; +{"task_id":"1","hash":"07\/33d925","native_id":"1329","process":"init","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"init","status":"COMPLETED","exit":"0","submit":"1657729208633","start":"1657729208699","complete":"1657729209930","duration":"1297","realtime":"10","%cpu":"6.7","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106530","wchar":"664","syscr":"190","syscw":"26","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/07\/33d925912ea7000238caff5220da3f","script":"\n echo \"---\n title: \'Insertion Sites Report\'\n author: \'Gael Millot\'\n date: \'`r Sys.Date()`\'\n output:\n html_document:\n toc: TRUE\n toc_float: TRUE\n ---\n\n \\n\\n<br \/><br \/>\\n\\n\n \" > report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"2","hash":"d8\/bcda22","native_id":"1356","process":"Nremove","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"Nremove (1)","status":"COMPLETED","exit":"0","submit":"1657729208673","start":"1657729208724","complete":"1657729210519","duration":"1846","realtime":"430","%cpu":"50.3","%mem":"0.0","rss":"12324864","vmem":"73990144","peak_rss":"12324864","peak_vmem":"74002432","rchar":"17604784","wchar":"15167116","syscr":"1863","syscw":"1271","read_bytes":"568320","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d8\/bcda225c238fc81e6044c5de245a36","script":"\n Nremove.sh test.fastq2.gz \"test.fastq2_Nremove.gz\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"863","inv_ctxt":"10"},{"task_id":"3","hash":"32\/0ca22b","native_id":"1393","process":"report1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report1","status":"COMPLETED","exit":"0","submit":"1657729208710","start":"1657729208798","complete":"1657729210119","duration":"1409","realtime":"15","%cpu":"9.4","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106896","wchar":"682","syscr":"189","syscw":"54","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/32\/0ca22b4abe25ac54d847fd10e04df0","script":"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n### Read coverage\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' > report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"5","hash":"32\/daee1c","native_id":"1481","process":"backup","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"backup","status":"COMPLETED","exit":"0","submit":"1657729208882","start":"1657729208898","complete":"1657729210318","duration":"1436","realtime":"49","%cpu":"8.9","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"106737","wchar":"499","syscr":"189","syscw":"23","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/32\/daee1ce79d442290bfa03589f40bf7","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Backup\\n\\n\" > report.rmd\n echo -e \"See the [reports](.\/reports) folder for all the details of the analysis, including the parameters used in the .config file\" >> report.rmd\n echo -e \"\\n\\nFull .nextflow.log is in: \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot<br \/>The one in the [reports](.\/reports) folder is not complete (miss the end)\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"6","hash":"e4\/9b44e5","native_id":"1505","process":"workflowVersion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"workflowVersion","status":"COMPLETED","exit":"0","submit":"1657729208910","start":"1657729208998","complete":"1657729211158","duration":"2248","realtime":"1022","%cpu":"12.8","%mem":"0.0","rss":"5214208","vmem":"40312832","peak_rss":"5214208","peak_vmem":"40312832","rchar":"193482","wchar":"26577","syscr":"321","syscw":"70","read_bytes":"3288064","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e4\/9b44e5dc872aa0d91709e25c2a6ac1","script":"\n modules= # this is just to deal with variable interpretation during the creation of the .command.sh file by nextflow. See also $modules below\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Workflow Version\\n\\n\" > report.rmd\n echo -e \"\\n\\n#### General\\n\\n\n| Variable | Value |\n| :-- | :-- |\n| Project<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot remote -v | head -n 1) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo\n| Git info<br \/>(empty means no .git folder where the main.nf file is present) | $(git -C \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot describe --abbrev=10 --dirty --always --tags) | # idem. Provide the small commit number of the script and nextflow.config used in the execution\n| Cmd line | nextflow run main.nf -c nextflow.config |\n| execution mode | local |\" >> report.rmd \n\n if [[ ! -z $modules ]] ; then\n echo \"| loaded modules (according to specification by the user thanks to the --modules argument of main.nf) | |\" >> report.rmd\n fi\n \n echo \"| Manifest\'s pipeline version | null |\n| result path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206 |\n| nextflow version | 21.04.2 |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Implicit variables\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| launchDir | Directory where the workflow is run | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| nprojectDir | Directory where the main.nf script is located | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot |\n| workDir | Directory where tasks temporary files are created | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### User variables\\n\\n\n| Name | Description | Value | \n| :-- | :-- | :-- |\n| out_path | output folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206 |\n| in_path | input folder path | \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset |\n \" >> report.rmd\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Workflow diagram\\n\\nSee the [nf_dag.png](.\/reports\/nf_dag.png) file\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"31","inv_ctxt":"1"},{"task_id":"4","hash":"4f\/cb0182","native_id":"2144","process":"motif","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"motif","status":"COMPLETED","exit":"0","submit":"1657729210407","start":"1657729210419","complete":"1657729225908","duration":"15501","realtime":"14623","%cpu":"50.6","%mem":"0.2","rss":"196534272","vmem":"327684096","peak_rss":"201019392","peak_vmem":"333217792","rchar":"49872565","wchar":"41616686","syscr":"5761","syscw":"34231","read_bytes":"28351488","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/4f\/cb018272b048edd56f7f0814423c9a","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Motif selected for the random insertions\\n\\n\" > report.rmd\n echo -e \"\\n\\nThe forward motif is: G[AT]T\\n\\n\" >> report.rmd\n echo -e \"\\n\\nThe reverse motif is: A[AT]C\\n\\n\" >> report.rmd\n if [[ G[AT]T != \"NULL\" ]] ; then\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'G[AT]T\' > motif_fw.pos\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'A[AT]C\' > motif_rev.pos\n else\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_fw.pos\n cat Ecoli-K12-MG1655_ORI_CENTERED.fasta | sed \'1d\' | grep -Ebo \'[ACGT]\' > motif_rev.pos\n fi\n echo -e \"\\n\\nWarning: the position indicated is the first nucleotide of the genomic part of the read (the W of the 5\'GWT3\' consensus site). This means that in FORWARD, the cutting site is before the position. But in REVERSE, the cutting site is after the position.\\n\\n\" >> report.rmd\n motif.R \"motif_fw.pos\" \"motif_rev.pos\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"G[AT]T\" \"A[AT]C\" \"cute_little_R_functions.R\" \"motif_report.txt\" \"report.rmd\"\n\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"46916","inv_ctxt":"203"},{"task_id":"7","hash":"d3\/55e04f","native_id":"2198","process":"trim","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-alien_trimmer_v0.4.0-gitlab_v8.1.img","tag":"-","name":"trim (1)","status":"COMPLETED","exit":"0","submit":"1657729210558","start":"1657729210620","complete":"1657729213748","duration":"3190","realtime":"2120","%cpu":"42.5","%mem":"0.0","rss":"41426944","vmem":"5903519744","peak_rss":"41426944","peak_vmem":"5903519744","rchar":"17145203","wchar":"12629480","syscr":"2382","syscw":"647","read_bytes":"9977856","write_bytes":"32768","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d3\/55e04fe36e9144a44907944519a25d","script":"\n trim.sh test.fastq2_Nremove.gz \"test.fastq2_trim.fq\" 20200520_adapters_TruSeq_B2699_14985_CL.fasta 30 \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"3276","inv_ctxt":"0"},{"task_id":"10","hash":"03\/a38aa6","native_id":"2810","process":"kraken","module":"-","container":"-","tag":"-","name":"kraken (1)","status":"COMPLETED","exit":"0","submit":"1657729213778","start":"1657729213848","complete":"1657729213864","duration":"86","realtime":"8","%cpu":"57.1","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"154412","wchar":"220","syscr":"228","syscw":"13","read_bytes":"159744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/03\/a38aa607f3411d81ba8734b6de2d34","script":"\n echo \"No kraken analysis performed in local running\" > test.fastq2_trim_kraken_std.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"8","hash":"29\/0de1d1","native_id":"2832","process":"fastqc1","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc1 (1)","status":"COMPLETED","exit":"0","submit":"1657729213804","start":"1657729213872","complete":"1657729220868","duration":"7064","realtime":"6113","%cpu":"55.0","%mem":"0.2","rss":"169955328","vmem":"3289477120","peak_rss":"170041344","peak_vmem":"3289899008","rchar":"14603822","wchar":"1278924","syscr":"7605","syscw":"5193","read_bytes":"20000768","write_bytes":"712704","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/29\/0de1d1d5d22097b97ec9ecc4b2e7d3","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Read QC n\u00B01\\n\\n\" > report.rmd\n echo -e \"Results are published in the [fastQC1](.\/fastQC1) folder\\n\\n\" >> report.rmd\n fastqc test.fastq2_trim.fq | tee tempo.txt\n cat tempo.txt >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4334","inv_ctxt":"1"},{"task_id":"9","hash":"ad\/589edd","native_id":"2897","process":"fivep_filtering","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"fivep_filtering (1)","status":"COMPLETED","exit":"0","submit":"1657729213828","start":"1657729213886","complete":"1657729216448","duration":"2620","realtime":"1644","%cpu":"27.0","%mem":"0.0","rss":"10145792","vmem":"64376832","peak_rss":"10145792","peak_vmem":"64376832","rchar":"29337212","wchar":"16061719","syscr":"9149","syscw":"5789","read_bytes":"437248","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ad\/589eddb789f253e7adf6a166829fa7","script":"\n fivep_filtering.sh test.fastq2_trim.fq \"test.fastq2\" \"^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\" 48 3 51 \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1158","inv_ctxt":"2"},{"task_id":"12","hash":"9a\/bb6bb5","native_id":"3641","process":"fastqc2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-fastqc-v0.11.8.img","tag":"-","name":"fastqc2 (1)","status":"COMPLETED","exit":"0","submit":"1657729216503","start":"1657729216548","complete":"1657729223138","duration":"6635","realtime":"5753","%cpu":"88.7","%mem":"0.2","rss":"204603392","vmem":"3289477120","peak_rss":"204603392","peak_vmem":"3294511104","rchar":"12766784","wchar":"1245410","syscr":"7360","syscw":"5096","read_bytes":"19984384","write_bytes":"688128","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9a\/bb6bb57571a91ffcbcbc9e6a2dbb70","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Read QC n\u00B02\\n\\n\" > report.rmd\n echo -e \"Results are published in the [fastQC2](.\/fastQC2) folder\\n\\n\" >> report.rmd\n fastqc test.fastq2_5pAtccRm.fq | tee tempo.txt\n cat tempo.txt >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"4335","inv_ctxt":"2"},{"task_id":"11","hash":"ef\/88d2e7","native_id":"3685","process":"cutoff","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"cutoff (1)","status":"COMPLETED","exit":"0","submit":"1657729216532","start":"1657729216563","complete":"1657729218228","duration":"1696","realtime":"652","%cpu":"19.9","%mem":"0.0","rss":"9936896","vmem":"64237568","peak_rss":"9936896","peak_vmem":"64237568","rchar":"7307990","wchar":"4049154","syscr":"2784","syscw":"2034","read_bytes":"384000","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/ef\/88d2e7555ad9d8b1f861fbaa9957fd","script":"\n cutoff.sh test.fastq2_5pAtccRm.fq 25 \"test.fastq2\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1146","inv_ctxt":"2"},{"task_id":"15","hash":"7a\/473ae2","native_id":"4475","process":"bowtie2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bowtie2_v2.3.4.3_extended_v2.0-gitlab_v8.0.img","tag":"-","name":"bowtie2 (1)","status":"COMPLETED","exit":"0","submit":"1657729219237","start":"1657729219330","complete":"1657729224048","duration":"4811","realtime":"3721","%cpu":"54.8","%mem":"0.0","rss":"65777664","vmem":"249090048","peak_rss":"120528896","peak_vmem":"251150336","rchar":"36678343","wchar":"17009936","syscr":"3391","syscw":"2516","read_bytes":"7209984","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/7a\/473ae2a25f71ea4dead130ab064dbe","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 indexing of the reference sequence\\n\\n\" >> bowtie2_report.txt\n bowtie2-build Ecoli-K12-MG1655_ORI_CENTERED.fasta Ecoli-K12-MG1655_ORI_CENTERED |& tee -a bowtie2_report.txt\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 alignment\\n\\n\" > report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Bowtie2 alignment\\n\\n\" >> bowtie2_report.txt\n bowtie2 --very-sensitive -x Ecoli-K12-MG1655_ORI_CENTERED -U test.fastq2_cutoff.fq -t -S test.fastq2_bowtie2.sam |& tee -a tempo.txt\n # --very-sensitive: no soft clipping allowed and very sensitive seed alignment\n # -t time displayed\n cat tempo.txt >> bowtie2_report.txt\n sed -i -e \':a;N;$!ba;s\/\\n\/\\n<br \\\/>\/g\' tempo.txt\n cat tempo.txt >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### samtools conversion\\n\\n\" >> bowtie2_report.txt\n # samtools faidx Ecoli-K12-MG1655_ORI_CENTERED.fasta\n samtools view -bh -o tempo.bam test.fastq2_bowtie2.sam |& tee -a bowtie2_report.txt\n samtools sort -o test.fastq2_bowtie2.bam tempo.bam |& tee -a bowtie2_report.txt\n samtools index test.fastq2_bowtie2.bam |& tee -a bowtie2_report.txt\n ","scratch":"-","queue":"-","cpus":"12","memory":"17179869184","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"5227","inv_ctxt":"49"},{"task_id":"17","hash":"4b\/0af112","native_id":"5571","process":"Q20","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"Q20 (1)","status":"COMPLETED","exit":"0","submit":"1657729225055","start":"1657729225150","complete":"1657729226603","duration":"1548","realtime":"390","%cpu":"16.2","%mem":"0.0","rss":"6692864","vmem":"45260800","peak_rss":"6762496","peak_vmem":"45391872","rchar":"3392016","wchar":"2260604","syscr":"879","syscw":"567","read_bytes":"1301504","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/4b\/0af112ef31583a36f3c231cd4847fc","script":"\n samtools view -q 20 -b test.fastq2_bowtie2.bam > test.fastq2_q20_dup.bam |& tee q20_report.txt\n samtools index test.fastq2_q20_dup.bam\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Q20 filtering\\n\\n\" > report.rmd\n read_nb_before=$(samtools view test.fastq2_bowtie2.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n read_nb_after=$(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \') # -h to add the header\n echo -e \"\\n\\nNumber of sequences before Q20 filtering: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of sequences after Q20 filtering: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n echo $read_nb_before > read_nb_before # because nf cannot output values easily\n echo $read_nb_after > read_nb_after\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"917","inv_ctxt":"1"},{"task_id":"18","hash":"d3\/8b18bf","native_id":"5597","process":"multiQC","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/ewels-multiqc-1.10.1.img","tag":"-","name":"multiQC","status":"COMPLETED","exit":"0","submit":"1657729225075","start":"1657729225162","complete":"1657729233339","duration":"8264","realtime":"8000","%cpu":"42.0","%mem":"0.1","rss":"76664832","vmem":"87621632","peak_rss":"76664832","peak_vmem":"87621632","rchar":"29716354","wchar":"2404868","syscr":"9278","syscw":"294","read_bytes":"22820864","write_bytes":"1253376","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/d3\/8b18bf740f0ad3c0386242eb736129","script":"\n multiqc . -n multiqc_report.html\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### MultiQC\\n\\n\" > report.rmd\n if [[ local == \"local\" ]] ; then\n echo -e \"\\n\\nWarning: no Kraken performed when using local run\\n\" >> report.rmd\n fi\n echo -e \"\\n\\nResults are published in the [Report](.\/reports\/multiqc_report.html) folder\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"-","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"35008","inv_ctxt":"356"},{"task_id":"13","hash":"20\/8b2e3e","native_id":"5791","process":"plot_fivep_filtering_stat","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_fivep_filtering_stat (1)","status":"COMPLETED","exit":"0","submit":"1657729225918","start":"1657729226008","complete":"1657729238318","duration":"12400","realtime":"11577","%cpu":"56.3","%mem":"0.2","rss":"217604096","vmem":"362532864","peak_rss":"217604096","peak_vmem":"362565632","rchar":"19122509","wchar":"811478","syscr":"3774","syscw":"392","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/20\/8b2e3e8410a5a3280500b845882762","script":"\n echo -e \"\n\\n\\n<br \/><br \/>\\n\\n### Base frequencies at the 5\' extremity of reads\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \" > report.rmd\n plot_fivep_filtering_stat.R \"test.fastq2_5pAttc_1-51.stat\" \"CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\" \"cute_little_R_functions.R\" \"plot_fivep_filtering_stat_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"44358","inv_ctxt":"87"},{"task_id":"19","hash":"10\/a73c63","native_id":"6094","process":"no_soft_clipping","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"no_soft_clipping (1)","status":"COMPLETED","exit":"0","submit":"1657729227612","start":"1657729227704","complete":"1657729228978","duration":"1366","realtime":"257","%cpu":"13.9","%mem":"0.0","rss":"3563520","vmem":"40300544","peak_rss":"3563520","peak_vmem":"40300544","rchar":"2188546","wchar":"1583807","syscr":"703","syscw":"417","read_bytes":"1153024","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/10\/a73c636ddb5eeca2a8681734e8fd51","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Control that no more soft clipping in reads\\n\\n\" > report.rmd\n echo -e \"nb of reads with soft clipping (S) in CIGAR: $(printf \"%\'d\" $(samtools view test.fastq2_q20_dup.bam | awk \'$6 ~ \/.*[S].*\/{print $0}\' | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n echo -e \"\\n\\ntotal nb of reads: $(printf \"%\'d\" $(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \'))\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"31","inv_ctxt":"0"},{"task_id":"21","hash":"6d\/e18f26","native_id":"6119","process":"duplicate_removal","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"duplicate_removal (1)","status":"COMPLETED","exit":"0","submit":"1657729227632","start":"1657729227716","complete":"1657729230549","duration":"2917","realtime":"1792","%cpu":"26.4","%mem":"0.0","rss":"6619136","vmem":"40308736","peak_rss":"6619136","peak_vmem":"40308736","rchar":"13491656","wchar":"6920705","syscr":"7195","syscw":"5709","read_bytes":"1376256","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/6d\/e18f261ac36d6440fb9593e7d0fd49","script":"\n duplicate_removal.sh test.fastq2_q20_dup.bam Ecoli-K12-MG1655_ORI_CENTERED.fasta \"test.fastq2_q20_nodup.bam\" \"dup_report.txt\" \"report.rmd\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"236","inv_ctxt":"3"},{"task_id":"23","hash":"53\/120110","native_id":"7181","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (1)","status":"COMPLETED","exit":"0","submit":"1657729231557","start":"1657729231650","complete":"1657729233047","duration":"1490","realtime":"470","%cpu":"20.2","%mem":"0.0","rss":"9687040","vmem":"68902912","peak_rss":"9687040","peak_vmem":"68902912","rchar":"2614576","wchar":"1832308","syscr":"1551","syscw":"1173","read_bytes":"1236992","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/53\/120110294259912e7020cc8d59993f","script":"\n if [[ test.fastq2_q20_nodup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n echo -e \"\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n fi\n\n # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ\n samtools view test.fastq2_q20_nodup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n echo -e \"\\n\\n######## test.fastq2_q20_nodup.bam file\\n\\n\" > insertion_report.txt\n cat tempo | head -60 | tail -20 >> insertion_report.txt\n echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n # redefinition of POS according to FLAG\n awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n echo -e \"\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0)\\n\\n\" >> insertion_report.txt\n cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2_q20_nodup.pos\n echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n cat test.fastq2_q20_nodup.pos | head -60 | tail -20 >> insertion_report.txt\n\n read_nb_before=$(samtools view test.fastq2_q20_nodup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n read_nb_after=$(wc -l test.fastq2_q20_nodup.pos | cut -f1 -d\' \')\n if [[ test.fastq2_q20_nodup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n else\n echo -e \"\\n\\n\" >> report.rmd\n fi\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1030","inv_ctxt":"2"},{"task_id":"24","hash":"99\/5749d0","native_id":"7202","process":"insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-samtools_v1.14-gitlab_v8.0.img","tag":"-","name":"insertion (2)","status":"COMPLETED","exit":"0","submit":"1657729231578","start":"1657729231661","complete":"1657729233108","duration":"1530","realtime":"512","%cpu":"21.7","%mem":"0.0","rss":"10031104","vmem":"68907008","peak_rss":"10031104","peak_vmem":"68907008","rchar":"3142123","wchar":"2312411","syscr":"1885","syscw":"1514","read_bytes":"1267712","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/99\/5749d0145dc1dd36381be500c91070","script":"\n if [[ test.fastq2_q20_dup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion positions\\n\\n\" > report.rmd\n echo -e \"\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](.\/reports\/insertion_report.txt) file in the reports folders for details\\n\\n\" >> report.rmd\n fi\n\n # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ\n samtools view test.fastq2_q20_dup.bam | awk \'BEGIN{FS=\"\\t\" ; OFS=\"\" ; ORS=\"\"}{print \">\"$2\"\\t\"$4\"\\n\"$10\"\\n\" }\' > tempo\n # Of note, samtools fasta $DIR\/$SAMPLE_NAME > ${OUTPUT}.fasta # convert bam into fasta\n echo -e \"\\n\\n######## test.fastq2_q20_dup.bam file\\n\\n\" > insertion_report.txt\n cat tempo | head -60 | tail -20 >> insertion_report.txt\n echo -e \"\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n\" >> insertion_report.txt\n # redefinition of POS according to FLAG\n awk \'BEGIN{FS=\"\t\" ; OFS=\"\" ; ORS=\"\"}{lineKind=(NR-1)%2}lineKind==0{orient=($1~\">16\") ; if(orient){var1 = $1 ; var2 = $2}else{print $0\"\\n\"}}lineKind==1{if(orient){var3 = length($0) ; var4 = var2 + var3 - 1 ; print var1\"\\t\"var4\"\\n\"$0\"\\n\"}else{print $0\"\\n\"}}\' tempo > test.fastq2_reorient.fasta\n echo -e \"\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0)\\n\\n\" >> insertion_report.txt\n cat test.fastq2_reorient.fasta | head -60 | tail -20 >> insertion_report.txt\n awk \'{lineKind=(NR-1)%2}lineKind==0{gsub(\/>\/, \"\", $1) ; print $0}\' test.fastq2_reorient.fasta > test.fastq2_q20_dup.pos\n echo -e \"\\n\\nFinal pos file\\n\\n\" >> insertion_report.txt\n cat test.fastq2_q20_dup.pos | head -60 | tail -20 >> insertion_report.txt\n\n read_nb_before=$(samtools view test.fastq2_q20_dup.bam | wc -l | cut -f1 -d\' \') # -h to add the header. Thus do not put here\n read_nb_after=$(wc -l test.fastq2_q20_dup.pos | cut -f1 -d\' \')\n if [[ test.fastq2_q20_dup.bam == \"test.fastq2_q20_nodup.bam\" ]] ; then\n echo -e \"\\n\\nNumber of reads used for insertion computation: $(printf \"%\'d\" ${read_nb_before})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of insertions: $(printf \"%\'d\" ${read_nb_after})\\n\" >> report.rmd\n echo -e \"Ratio: \" >> report.rmd\n echo -e $(printf \"%.2f\n\" $(echo $\" $read_nb_after \/ $read_nb_before \" | bc -l)) >> report.rmd # the number in \'%.2f\\n\' is the number of decimals\n echo -e \"\\n\\n\" >> report.rmd\n else\n echo -e \"\\n\\n\" >> report.rmd\n fi\n ","scratch":"-","queue":"-","cpus":"1","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"1049","inv_ctxt":"2"},{"task_id":"14","hash":"16\/40e161","native_id":"8047","process":"plot_read_length","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_read_length (1)","status":"COMPLETED","exit":"0","submit":"1657729238326","start":"1657729238418","complete":"1657729250599","duration":"12273","realtime":"11553","%cpu":"65.4","%mem":"0.2","rss":"264704000","vmem":"407347200","peak_rss":"290496512","peak_vmem":"433303552","rchar":"19621096","wchar":"708052","syscr":"4089","syscw":"430","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/16\/40e161c30dd9886aac9aa3b844314c","script":"\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n### Length of initial reads\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Length of reads after selection of attC in 5 prime \\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Length of reads after trimming \\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n### Read length after cut-off\\n\\n\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' > report.rmd\n plot_read_length.R \"test.fastq2_ini.length\" \"test.fastq2_5pAttc.length\" \"test.fastq2_5pAtccRm.stat\" \"test.fastq2_cutoff.length\" \"cute_little_R_functions.R\" \"plot_read_length_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"45593","inv_ctxt":"10"},{"task_id":"16","hash":"1e\/df6e9e","native_id":"8831","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (1)","status":"COMPLETED","exit":"0","submit":"1657729250605","start":"1657729250698","complete":"1657729252228","duration":"1623","realtime":"619","%cpu":"17.8","%mem":"0.0","rss":"5353472","vmem":"46727168","peak_rss":"5353472","peak_vmem":"46727168","rchar":"491151","wchar":"93145","syscr":"251","syscw":"3116","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/1e\/df6e9edbbf9c8694caf7614ef8cca4","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_bowtie2.bam > test.fastq2_bowtie2_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"731","inv_ctxt":"0"},{"task_id":"20","hash":"59\/eb24cd","native_id":"8991","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (2)","status":"COMPLETED","exit":"0","submit":"1657729252234","start":"1657729252328","complete":"1657729253618","duration":"1384","realtime":"566","%cpu":"18.8","%mem":"0.0","rss":"5320704","vmem":"46727168","peak_rss":"5320704","peak_vmem":"46727168","rchar":"343030","wchar":"84344","syscr":"239","syscw":"2824","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/59\/eb24cdb108b3cde6c30f3bb86203a9","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_q20_dup.bam > test.fastq2_q20_dup_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"808","inv_ctxt":"0"},{"task_id":"22","hash":"12\/80c100","native_id":"9147","process":"coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"coverage (3)","status":"COMPLETED","exit":"0","submit":"1657729253624","start":"1657729253718","complete":"1657729254968","duration":"1344","realtime":"547","%cpu":"19.4","%mem":"0.0","rss":"5378048","vmem":"46727168","peak_rss":"5378048","peak_vmem":"46727168","rchar":"317647","wchar":"84028","syscr":"235","syscw":"2820","read_bytes":"1806336","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/12\/80c100625ea5a6b60dfac61f693cb2","script":"\n # bedtools genomecov -d -ibam ${bam} > ${bam.baseName}.cov |& tee cov_report.txt # coverage per base if ever required but long process\n # to add the chr names | awk \'{h[$NF]++}; END { for(k in h) print k, h[k] }\' | sort -V > ${bam.baseName}.cov\n bedtools genomecov -bga -ibam test.fastq2_q20_nodup.bam > test.fastq2_q20_nodup_mini.cov |& tee cov_report.txt\n # -g ${ref} not required when inputs are bam files\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"806","inv_ctxt":"0"},{"task_id":"25","hash":"3c\/9192fc","native_id":"9303","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"final_insertion_files (1)","status":"COMPLETED","exit":"0","submit":"1657729254975","start":"1657729255068","complete":"1657729260268","duration":"5293","realtime":"4602","%cpu":"46.9","%mem":"0.1","rss":"127737856","vmem":"259059712","peak_rss":"127737856","peak_vmem":"259092480","rchar":"18003711","wchar":"275691","syscr":"2302","syscw":"549","read_bytes":"28325888","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3c\/9192fc3a8e028bdc7634f456bb774c","script":"\n final_insertion_files.R \"test.fastq2_q20_nodup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"6\" \"test.fastq2_q20_nodup\" \"cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27640","inv_ctxt":"5"},{"task_id":"26","hash":"38\/7955e0","native_id":"9692","process":"final_insertion_files","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"final_insertion_files (2)","status":"COMPLETED","exit":"0","submit":"1657729260275","start":"1657729260368","complete":"1657729265728","duration":"5453","realtime":"4618","%cpu":"45.4","%mem":"0.1","rss":"127963136","vmem":"259473408","peak_rss":"127963136","peak_vmem":"259506176","rchar":"18009195","wchar":"285503","syscr":"2303","syscw":"563","read_bytes":"28325888","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/38\/7955e058f1b99376846947887fdb69","script":"\n final_insertion_files.R \"test.fastq2_q20_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"6\" \"test.fastq2_q20_dup\" \"cute_little_R_functions.R\" \"final_insertion_files_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27666","inv_ctxt":"6"},{"task_id":"31","hash":"3a\/7d7d11","native_id":"9703","process":"report3","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report3 (1)","status":"COMPLETED","exit":"0","submit":"1657729260297","start":"1657729260380","complete":"1657729261368","duration":"1071","realtime":"54","%cpu":"11.7","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"306027","wchar":"44869","syscr":"275","syscw":"54","read_bytes":"405504","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3a\/7d7d1119297bad1cc36ab27c8cf405","script":"\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Final insertion site files\\n\\n\" > report.rmd\n echo -e \"\\n\\nWarning: in these files, the position indicated is the first nucleotide of the genomic part of the read (the W of the 5\'GWT3\' consensus site). This means that in FORWARD, the cutting site is before the position. But in REVERSE, the cutting site is after the position.\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the [test.fastq2_q20_nodup_annot.pos](.\/files\/test.fastq2_q20_nodup_annot.pos) and [test.fastq2_q20_nodup_annot.freq](.\/files\/test.fastq2_q20_nodup_annot.freq) files\\n\\n\" >> report.rmd\n pos_nb=$(( $(wc -l test.fastq2_q20_nodup_annot.pos | cut -f1 -d\' \') - 1)) # -1 because first line is the header\n pos_uniq_nb=$(( $(sort -u test.fastq2_q20_nodup_annot.pos | wc -l | cut -f1 -d\' \') - 1)) # -1 because first line is the header\n echo -e \"\\n\\nNumber of total positions without duplicates: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n echo -e \"\\n\\nNumber of different positions without duplicates: $(printf \"%\'d\" ${pos_uniq_nb})\\n\" >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"27","hash":"c1\/4ec175","native_id":"10214","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (1)","status":"COMPLETED","exit":"0","submit":"1657729265735","start":"1657729265828","complete":"1657729276448","duration":"10713","realtime":"9987","%cpu":"61.1","%mem":"0.2","rss":"229625856","vmem":"372568064","peak_rss":"232247296","peak_vmem":"376274944","rchar":"19158378","wchar":"450684","syscr":"3788","syscw":"294","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/c1\/4ec175f671d03bb1a6f531fb3f09e7","script":"\n plot_coverage.R \"test.fastq2_bowtie2_mini\" \"read_nb_before\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"45347","inv_ctxt":"8"},{"task_id":"28","hash":"fa\/28ed19","native_id":"10872","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (2)","status":"COMPLETED","exit":"0","submit":"1657729276456","start":"1657729276548","complete":"1657729287448","duration":"10992","realtime":"10323","%cpu":"61.1","%mem":"0.2","rss":"227549184","vmem":"370569216","peak_rss":"227549184","peak_vmem":"370601984","rchar":"19149581","wchar":"444679","syscr":"3786","syscw":"292","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/fa\/28ed194022fd1493bac8e24d08b321","script":"\n plot_coverage.R \"test.fastq2_q20_dup_mini\" \"read_nb_after\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"45353","inv_ctxt":"8"},{"task_id":"29","hash":"9d\/bb1716","native_id":"11525","process":"plot_coverage","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_coverage (3)","status":"COMPLETED","exit":"0","submit":"1657729287455","start":"1657729287549","complete":"1657729298308","duration":"10853","realtime":"10083","%cpu":"61.2","%mem":"0.2","rss":"229519360","vmem":"372596736","peak_rss":"229519360","peak_vmem":"372629504","rchar":"19149270","wchar":"445347","syscr":"3786","syscw":"293","read_bytes":"46611456","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9d\/bb17161b6b6bb4f3630ba5383f80d8","script":"\n plot_coverage.R \"test.fastq2_q20_nodup_mini\" \"dup_read_nb\" \"2320711 2320942\" \"4627368 4627400\" \"5\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"cute_little_R_functions.R\" \"plot_coverage_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"45359","inv_ctxt":"9"},{"task_id":"30","hash":"9c\/909d2f","native_id":"12178","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"seq_around_insertion (1)","status":"COMPLETED","exit":"0","submit":"1657729298315","start":"1657729298408","complete":"1657729303498","duration":"5183","realtime":"4483","%cpu":"46.2","%mem":"0.1","rss":"128569344","vmem":"259690496","peak_rss":"128569344","peak_vmem":"259723264","rchar":"18001623","wchar":"213509","syscr":"2298","syscw":"375","read_bytes":"28199936","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/9c\/909d2f0266c849905245df29a765f4","script":"\n seq_around_insertion.R \"test.fastq2_q20_nodup_selected_if_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2_q20_nodup_selected_if_dup\" \"cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27636","inv_ctxt":"32"},{"task_id":"32","hash":"0a\/d92a3c","native_id":"12557","process":"random_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"random_insertion (1)","status":"COMPLETED","exit":"0","submit":"1657729303506","start":"1657729303597","complete":"1657729312388","duration":"8882","realtime":"8185","%cpu":"57.6","%mem":"0.3","rss":"333017088","vmem":"475217920","peak_rss":"368943104","peak_vmem":"511254528","rchar":"31432684","wchar":"1296709","syscr":"5927","syscw":"1485","read_bytes":"35685376","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/0a\/d92a3cf8eb6ecd7e24ac1da66f94ca","script":"\n random_insertion.R \"test.fastq2_q20_nodup_annot.pos\" \"motif_sites.pos\" \"2320711 2320942\" \"4627368 4627400\" \"G[AT]T\" \"4641652\" \"test.fastq2\" \"cute_little_R_functions.R\" \"random_insertion_report.txt\"\n\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Random insertion sites\\n\\n\" > report.rmd\n echo -e \"\\n\\n#### Insertion site counts\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the [random_insertion_report.txt](.\/reports\/random_insertion_report.txt) file for details, notably the number of random sites (which should be the same as the number of observed sites)\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Insertion site proportions\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<\/center>\\n\\n\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=500}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"38985","inv_ctxt":"16"},{"task_id":"33","hash":"3b\/051e3e","native_id":"13098","process":"seq_around_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"seq_around_insertion (2)","status":"COMPLETED","exit":"0","submit":"1657729312395","start":"1657729312489","complete":"1657729317587","duration":"5192","realtime":"4429","%cpu":"45.2","%mem":"0.1","rss":"128364544","vmem":"259506176","peak_rss":"128364544","peak_vmem":"259538944","rchar":"17988600","wchar":"146402","syscr":"2295","syscw":"273","read_bytes":"28199936","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3b\/051e3e2a0f2fb956fd80d5137f7d5f","script":"\n seq_around_insertion.R \"test.fastq2_q20_dup_selected_if_dup.pos\" \"2320711 2320942\" \"4627368 4627400\" \"20\" \"test.fastq2_q20_dup_selected_if_dup\" \"cute_little_R_functions.R\" \"seq_around_insertion_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27647","inv_ctxt":"6"},{"task_id":"34","hash":"68\/10705c","native_id":"13490","process":"dup_insertion_and_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"dup_insertion_and_logo (1)","status":"COMPLETED","exit":"0","submit":"1657729317596","start":"1657729317687","complete":"1657729329178","duration":"11582","realtime":"10856","%cpu":"65.8","%mem":"0.2","rss":"247386112","vmem":"426381312","peak_rss":"283508736","peak_vmem":"426565632","rchar":"17562712","wchar":"600308","syscr":"3936","syscw":"456","read_bytes":"44530688","write_bytes":"20480","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/68\/10705cb81383c5c72b44dcc72551b3","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Analysis with duplicates\\n\\n\" > report.rmd\n dup_insertion_and_logo.R \"test.fastq2_q20_dup_annot.freq\" \"test.fastq2_q20_dup_annot_selected.freq\" \"2320711 2320942\" \"4627368 4627400\" \"4641652\" \"Ecoli Genome (bp)\" \"test.fastq2\" \"dup\" \"20\" \"cute_little_R_functions.R\" \"dup_insertion_and_logo_report.txt\" # logo\n\n echo -e \"\\n\\nSee the [test.fastq2_q20_dup_selected_if_dup.pos](.\/files\/test.fastq2_q20_dup_selected_if_dup.pos) and [test.fastq2_q20_dup_annot_selected.freq](.\/files\/test.fastq2_q20_dup_annot_selected.freq) files\\n\\n\" >> report.rmd\n echo -e \"\\n\\nWarning: more than the 6 most frequent used sites can be present in the case of frequency equality\\n\\n\" >> report.rmd\n\n pos_nb=$(( $(wc -l test.fastq2_q20_dup_annot.pos | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n echo -e \"\\n\\nNumber of total positions using duplicated reads: $(printf \"%\'d\" ${pos_nb})\\n\" >> report.rmd\n\n freq_nb=$(( $(wc -l test.fastq2_q20_dup_annot.freq | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n echo -e \"\\n\\nNumber of different positions using duplicated reads: $(printf \"%\'d\" ${freq_nb})\\n\" >> report.rmd\n\n pos_selected_nb=$(wc -l test.fastq2_q20_dup_selected_if_dup.pos | cut -f1 -d\' \')\n echo -e \"\\n\\nNumber of total positions after selection of the 6 highest used sites: $(printf \"%\'d\" ${pos_selected_nb})\\n\" >> report.rmd\n\n freq_selected_nb=$(( $(wc -l test.fastq2_q20_dup_annot_selected.freq | cut -f1 -d\' \') - 1 )) # -1 because first line is the header\n echo -e \"\\n\\nNumber of different positions after selection of the 6 highest used sites: $(printf \"%\'d\" ${freq_selected_nb})\\n\" >> report.rmd\n\n TEMPO=(50000 200000 500000)\n FIG_NB_BEFORE=$(($(echo ${#TEMPO[@]}) * 2)) # nb of elements in the window size * nb of figure plotted\n if [[ \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt != \"NULL\" ]] ; then\n FIG_NB=$(( 34 + $FIG_NB_BEFORE + 1 + 1)) # 2 * because two figures\n else\n FIG_NB=$(( 24 + $FIG_NB_BEFORE + 1 + 1))\n fi\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\nSelected sites with frequencies:\\n\\n\" >> report.rmd\n echo \"\n\\`\\`\\`{r, echo = FALSE}\ntempo <- read.table(\'.\/files\/test.fastq2_q20_dup_annot_selected.freq\', header = TRUE, colClasses = \'character\', sep = \'\\t\', check.names = FALSE) ; \nkableExtra::kable_styling(knitr::kable(tempo, row.names = TRUE, digits = 0, caption = NULL, format=\'html\'), c(\'striped\', \'bordered\', \'responsive\', \'condensed\'), font_size=10, full_width = FALSE, position = \'left\')\n\\`\\`\\`\n \n\n\n \" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n to extend)](.\/figures\/alignment.html){width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\nWarning: the frequency of each position is taken into account in the logo plot\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"43405","inv_ctxt":"8"},{"task_id":"35","hash":"55\/ebbde4","native_id":"14219","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (1)","status":"COMPLETED","exit":"0","submit":"1657729329185","start":"1657729329278","complete":"1657729330838","duration":"1653","realtime":"781","%cpu":"18.7","%mem":"0.0","rss":"6156288","vmem":"52846592","peak_rss":"6156288","peak_vmem":"52846592","rchar":"9503291","wchar":"4763905","syscr":"866","syscw":"3349","read_bytes":"6359040","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/55\/ebbde485ba925626f74c3c728783f6","script":"\n echo -e \"\n\n######## test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed file\n\n\" > extract_seq_report.txt\n # make a bed file from the reference genome\n echo \">ref\" > tempo.ref.fasta\n awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_q20_nodup_selected_if_dup_around_insertion.bed -fo \"test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n rm tempo.ref.fasta\n rm tempo.ref.fasta.fai\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"653","inv_ctxt":"0"},{"task_id":"36","hash":"54\/bcf3c8","native_id":"14414","process":"plot_insertion","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"plot_insertion (1)","status":"COMPLETED","exit":"0","submit":"1657729330847","start":"1657729330938","complete":"1657729572408","duration":"241561","realtime":"240577","%cpu":"36.1","%mem":"0.4","rss":"413851648","vmem":"573362176","peak_rss":"414507008","peak_vmem":"573440000","rchar":"46947001","wchar":"23740350","syscr":"34549","syscw":"18913","read_bytes":"53133312","write_bytes":"450560","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/54\/bcf3c803346b96d6a6a8f7aaea212b","script":"\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Insertion plots\\n\\n\" > report.rmd\n plot_insertion.R \"obs_rd_insertions.pos\" \"obs_rd_insertions.freq\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/Essential_genes_MG1655.tsv\" \"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/cds_ORI_CENTERED.txt\" \"2320711 2320942\" \"4627368 4627400\" \"Ecoli Genome (bp)\" \"4641652\" \"0.88\" \"0.08\" \"50000 200000 500000\" \"100\" \"test.fastq2\" \"12\" \"cute_little_R_functions.R\" \"plot_insertion_report.txt\"\n echo -e \"\\n\\n#### Histograms\\n\\n\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Raw frequencies\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the CL Labbook section 24.7.3 to explain the limitation around 100 bp\\n\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n echo -e \"\\n\\n<br \/><br \/>\\n\\n#### Binned frequencies\\n\\n\" >> report.rmd\n count=1\n for i in 50000 200000 500000 ; do\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n done\n if [[ \/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\/TSS_compatible_essential.txt != \"NULL\" ]] ; then\n echo -e \"\\n\\n<br \/><br \/>\\n\\n### Transcription start site (TSS) plots\\n\\n\" >> report.rmd\n echo -e \"\\n\\nSee the CL Labbook section 48.3 to to get the theoretical proportion of the codant\/non codant essential\/non essential genome\\n\\nSee the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details about the plotted values.\" >> report.rmd\n echo -e \'\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=400}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \\n\\n<br \/><br \/>\\n\\nThe number of insertions sites are indicated above graphs.\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \\n\\n<br \/><br \/>\\n\\n### Coding sequences (CDS) plots\\n\\nThe number of insertions sites inside CDS are indicated above graphs.\\n\\nSee the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details about the plotted values.\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \\n\\nWarning: the number of observed and random insertions indicated above graphs can be greater than those indicated above Figure \'$((28 + $count))\', since a position that overlaps two genes is counted twice (see the [plot_insertion_report.txt](.\/reports\/plot_insertion_report.txt) file for details).\\n\\n\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n<br \/><br \/>\\n\\n\n \' >> report.rmd\n fi\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"99746","inv_ctxt":"131"},{"task_id":"39","hash":"8b\/4e5ce1","native_id":"14438","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (2)","status":"COMPLETED","exit":"0","submit":"1657729330870","start":"1657729330951","complete":"1657729332348","duration":"1478","realtime":"87","%cpu":"12.4","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288630","wchar":"19342","syscr":"530","syscw":"50","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/8b\/4e5ce1ea937cca280dc5c764001561","script":"\n # file splitting into seq\n awk -v var1=LEADING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"38","hash":"29\/443a5b","native_id":"14493","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (1)","status":"COMPLETED","exit":"0","submit":"1657729330914","start":"1657729330963","complete":"1657729332428","duration":"1514","realtime":"92","%cpu":"9.4","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"286492","wchar":"17177","syscr":"526","syscw":"46","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/29\/443a5b84f9b6b8093bfee45316822f","script":"\n # file splitting into seq\n awk -v var1=LEADING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"41","hash":"7c\/b40174","native_id":"14544","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (4)","status":"COMPLETED","exit":"0","submit":"1657729330934","start":"1657729330976","complete":"1657729332627","duration":"1693","realtime":"96","%cpu":"11.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"288797","wchar":"19498","syscr":"531","syscw":"51","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/7c\/b401748402f640f6b278fbb36c6ea5","script":"\n # file splitting into seq\n awk -v var1=LAGGING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"40","hash":"cf\/abb905","native_id":"14579","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (3)","status":"COMPLETED","exit":"0","submit":"1657729330953","start":"1657729331038","complete":"1657729332638","duration":"1685","realtime":"98","%cpu":"11.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"289446","wchar":"20166","syscr":"532","syscw":"52","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/cf\/abb905bcd5a9839463ac27990024f2","script":"\n # file splitting into seq\n awk -v var1=LAGGING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_nodup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.seq > test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"37","hash":"2d\/a978bc","native_id":"21252","process":"extract_seq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bedtools_v2.30.0-gitlab_v8.0.img","tag":"-","name":"extract_seq (2)","status":"COMPLETED","exit":"0","submit":"1657729572416","start":"1657729572508","complete":"1657729573748","duration":"1332","realtime":"452","%cpu":"20.6","%mem":"0.0","rss":"6074368","vmem":"52641792","peak_rss":"6074368","peak_vmem":"52658176","rchar":"9452241","wchar":"4672190","syscr":"859","syscw":"845","read_bytes":"2721792","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/2d\/a978bca367df6269ab4da133fdfd1f","script":"\n echo -e \"\n\n######## test.fastq2_q20_dup_selected_if_dup_around_insertion.bed file\n\n\" > extract_seq_report.txt\n # make a bed file from the reference genome\n echo \">ref\" > tempo.ref.fasta\n awk \'{lineKind=(NR-1)%2}lineKind==1{print $0}\' Ecoli-K12-MG1655_ORI_CENTERED.fasta >> tempo.ref.fasta |& tee extract_seq_report.txt\n bedtools getfasta -fi tempo.ref.fasta -bed test.fastq2_q20_dup_selected_if_dup_around_insertion.bed -fo \"test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta\" -name |& tee extract_seq_report.txt\n rm tempo.ref.fasta\n rm tempo.ref.fasta.fai\n ","scratch":"-","queue":"-","cpus":"12","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"594","inv_ctxt":"0"},{"task_id":"43","hash":"f4\/73666f","native_id":"21470","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (2)","status":"COMPLETED","exit":"0","submit":"1657729573756","start":"1657729573848","complete":"1657729580668","duration":"6912","realtime":"5847","%cpu":"46.6","%mem":"0.2","rss":"179806208","vmem":"325083136","peak_rss":"179806208","peak_vmem":"325115904","rchar":"14488463","wchar":"1018960","syscr":"2474","syscw":"333","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f4\/73666f7766ccafad5741a17d990016","script":"\n logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"29908","inv_ctxt":"1558"},{"task_id":"46","hash":"f8\/483905","native_id":"21480","process":"goalign","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/evolbioinfo-goalign-v0.3.5.img","tag":"-","name":"goalign (1)","status":"COMPLETED","exit":"0","submit":"1657729573778","start":"1657729573867","complete":"1657729575688","duration":"1910","realtime":"767","%cpu":"15.1","%mem":"0.0","rss":"5242880","vmem":"731348992","peak_rss":"5242880","peak_vmem":"731357184","rchar":"131186","wchar":"356115","syscr":"276","syscw":"108","read_bytes":"3785728","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/f8\/4839052ccd72ad1ab14969dabf08c7","script":"\n # Remove duplicated data in a fasta file according to duplicated header\n awk \'\n \/^>\/{f=!d[$1];d[$1]=1}f\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > tempo\n\n # split the fasta file according to forward or reverse sequences\n PATTERN=\'LEADING_16|LAGGING_16\'\n awk -v var1=$PATTERN \'\n BEGIN{ORS=\"\\n\"}\n {lineKind=(NR-1)%2}\n lineKind==0{record=$0 ; next}\n lineKind==1{\n toGet=(record ~ var1)\n if(toGet){\n print record > \"reverse.fasta\"\n print $0 > \"reverse.fasta\"\n }else{\n print record > \"forward.fasta\"\n print $0 > \"forward.fasta\"\n }\n next\n }\n \' tempo\n\n # Goalign\n if [ -s reverse.fasta ] ; then\n goalign revcomp --unaligned -i reverse.fasta -o tempo2 # rev-comp the 16 sequences\n cat forward.fasta tempo2 > final.fasta\n else # we cannot have neither reverse nor forward\n cp forward.fasta final.fasta\n fi\n # add a hyphen before or after the sequence, to have correct alignment\n awk -v var1=$PATTERN \'\n BEGIN{ORS=\"\\n\"}\n {lineKind=(NR-1)%2}\n lineKind==0{record=$0 ; print $0 ; next}\n lineKind==1{\n toGet=(record ~ var1)\n if(toGet){\n print \"-\"$0 ; next\n }else{\n print $0\"-\" ; next\n }\n }\n \' final.fasta > tempo3\n goalign draw biojs --auto-detect -i tempo3 -o alignment.html |& tee -a goalign_report.txt\n ","scratch":"-","queue":"-","cpus":"12","memory":"1073741824","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"931","inv_ctxt":"0"},{"task_id":"48","hash":"40\/f4cbe7","native_id":"21560","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (6)","status":"COMPLETED","exit":"0","submit":"1657729573836","start":"1657729573879","complete":"1657729575368","duration":"1532","realtime":"36","%cpu":"8.4","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"180609","wchar":"2829","syscr":"319","syscw":"18","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/40\/f4cbe733142a100d9347cf8e542690","script":"\n # file splitting into seq\n awk -v var1=LAGGING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"50","hash":"bd\/ea2f89","native_id":"21598","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (8)","status":"COMPLETED","exit":"0","submit":"1657729573862","start":"1657729573948","complete":"1657729575519","duration":"1657","realtime":"47","%cpu":"10.8","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"184838","wchar":"7116","syscr":"328","syscw":"27","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/bd\/ea2f89c6d5c09beff7086171b29776","script":"\n # file splitting into seq\n awk -v var1=LAGGING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"49","hash":"3d\/46265a","native_id":"21632","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (7)","status":"COMPLETED","exit":"0","submit":"1657729573881","start":"1657729573959","complete":"1657729575530","duration":"1649","realtime":"46","%cpu":"10.9","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"182993","wchar":"5247","syscr":"324","syscw":"23","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/3d\/46265a1b1686adb97b6cc7350f5c0a","script":"\n # file splitting into seq\n awk -v var1=LEADING_16 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"47","hash":"e8\/a25744","native_id":"22144","process":"base_freq","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"base_freq (5)","status":"COMPLETED","exit":"0","submit":"1657729575376","start":"1657729575468","complete":"1657729576478","duration":"1102","realtime":"29","%cpu":"13.5","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"186842","wchar":"9129","syscr":"332","syscw":"31","read_bytes":"279552","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/e8\/a257442d93dfaee7d6d8b4c0d05183","script":"\n # file splitting into seq\n awk -v var1=LEADING_0 \'\n {lineKind=(NR-1)%2}\n lineKind==0{toGet=($0 ~ \">\" var1) ; next}\n lineKind==1{if(toGet){print $0}}\n \' test.fastq2_q20_dup_selected_if_dup_around_insertion.fasta > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq |& tee base_freq_report.txt\n # ATGC contingency\n gawk \'{\n L=length($0);\n for(i=1;i<=L;i++) {\n B=substr($0,i,1);\n T[i][B]++;\n }\n }\n END{\n for(BI=0;BI<5;BI++) {\n B=(BI==0?\"A\":(BI==1?\"C\":(BI==2?\"G\":(BI==3?\"T\":\"Other\"))));\n printf(\"%s\",B); \n for(i in T) {\n tot=0.0;\n for(B2 in T[i]){\n tot+=T[i][B2];\n }\n printf(\"\t%0.5f\",(T[i][B])); # T[i][B]\/tot for proportion\n } \n printf(\"\\n\");\n }\n }\' test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.seq > test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat |& tee base_freq_report.txt\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"51","hash":"46\/95072b","native_id":"22422","process":"report2","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-bash-extended_v4.0-gitlab_v8.0.img","tag":"-","name":"report2","status":"COMPLETED","exit":"0","submit":"1657729577485","start":"1657729577580","complete":"1657729578408","duration":"923","realtime":"23","%cpu":"12.9","%mem":"0.0","rss":"0","vmem":"0","peak_rss":"0","peak_vmem":"0","rchar":"135265","wchar":"2463","syscr":"248","syscw":"103","read_bytes":"242688","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/46\/95072b73c1bcdeb338ec644d26f20f","script":"\n echo -e \"\n\\n\\n<br \/><br \/>\\n\\n### Logos\\n\\n\n\\n\\nIn each sequence of length $((20 * 2)) <br \/>position $((20 + 1)) corresponds to the first nucleotide of the reference genome part of the read\n\" > report.rmd\n count=0 # always goes to 4 because 4 figures, one for each forward\/reverse leading\/lagging\n for i in $(echo [test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16, test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0] | sed \'s\/^\\[\/\/\' | sed \'s\/\\]$\/\/\' | sed \'s\/,\/\/g\') ; do\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n count=$((count + 1))\n done\n echo -e \'\n\\n\\n<br \/><br \/>\\n\\n<\/center>\\n\\n\n{width=600}\n\\n\\n<\/center>\\n\\n\n \' >> report.rmd\n ","scratch":"-","queue":"-","cpus":"1","memory":"3221225472","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"0","inv_ctxt":"0"},{"task_id":"42","hash":"1f\/497ee9","native_id":"22727","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (1)","status":"COMPLETED","exit":"0","submit":"1657729580674","start":"1657729580768","complete":"1657729586698","duration":"6024","realtime":"5301","%cpu":"50.5","%mem":"0.2","rss":"173649920","vmem":"319934464","peak_rss":"173649920","peak_vmem":"319967232","rchar":"14488496","wchar":"865984","syscr":"2474","syscw":"312","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/1f\/497ee93d79fe46ee17ad35f9c50025","script":"\n logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"27156","inv_ctxt":"1"},{"task_id":"44","hash":"6f\/524be5","native_id":"23161","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (3)","status":"COMPLETED","exit":"0","submit":"1657729586705","start":"1657729586798","complete":"1657729592758","duration":"6053","realtime":"5400","%cpu":"51.0","%mem":"0.2","rss":"172462080","vmem":"317677568","peak_rss":"177479680","peak_vmem":"322445312","rchar":"14488489","wchar":"896195","syscr":"2474","syscw":"314","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/6f\/524be5fe599a7447720b4e9dc9012e","script":"\n logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"30317","inv_ctxt":"4"},{"task_id":"45","hash":"6b\/1f0539","native_id":"23593","process":"logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"logo (4)","status":"COMPLETED","exit":"0","submit":"1657729592765","start":"1657729592858","complete":"1657729598838","duration":"6073","realtime":"5346","%cpu":"50.8","%mem":"0.2","rss":"174174208","vmem":"320438272","peak_rss":"177438720","peak_vmem":"322330624","rchar":"14488501","wchar":"886578","syscr":"2474","syscw":"312","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/6b\/1f0539459ac05b646a37a12cd4f007","script":"\n logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat\" 20 \"cute_little_R_functions.R\" \"logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"30533","inv_ctxt":"3"},{"task_id":"52","hash":"53\/48195c","native_id":"24028","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"global_logo (1)","status":"COMPLETED","exit":"0","submit":"1657729598845","start":"1657729598939","complete":"1657729605268","duration":"6423","realtime":"5716","%cpu":"53.5","%mem":"0.1","rss":"142831616","vmem":"286076928","peak_rss":"178249728","peak_vmem":"322113536","rchar":"14497060","wchar":"867359","syscr":"2488","syscw":"311","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/53\/48195ca49a6becb2ad1fec4cc63309","script":"\n global_logo.R \"test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.stat\" \"test.fastq2\" \"20\" \"cute_little_R_functions.R\" \"global_logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"30090","inv_ctxt":"7"},{"task_id":"53","hash":"8b\/8edeb9","native_id":"24470","process":"global_logo","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"global_logo (2)","status":"COMPLETED","exit":"0","submit":"1657729605275","start":"1657729605367","complete":"1657729611758","duration":"6483","realtime":"5787","%cpu":"53.2","%mem":"0.2","rss":"180166656","vmem":"323776512","peak_rss":"180166656","peak_vmem":"323809280","rchar":"14496481","wchar":"990780","syscr":"2488","syscw":"331","read_bytes":"30879744","write_bytes":"0","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/8b\/8edeb95ccf853271355916ade3a00b","script":"\n global_logo.R \"test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_0.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LAGGING_16.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_16.stat test.fastq2_q20_dup_selected_if_dup_around_insertion_LEADING_0.stat\" \"test.fastq2\" \"20\" \"cute_little_R_functions.R\" \"global_logo_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"30079","inv_ctxt":"5"},{"task_id":"54","hash":"b2\/9012a5","native_id":"24917","process":"print_report","module":"-","container":"\/mnt\/c\/Users\/Gael\/Documents\/singularity\/gmillot-r_v4.1.2_extended_v2.0-gitlab_v8.2.img","tag":"-","name":"print_report (1)","status":"COMPLETED","exit":"0","submit":"1657729612365","start":"1657729612459","complete":"1657729623068","duration":"10703","realtime":"9929","%cpu":"43.6","%mem":"0.3","rss":"315035648","vmem":"1100166938624","peak_rss":"315035648","peak_vmem":"1100167086080","rchar":"54280457","wchar":"27511769","syscr":"7189","syscw":"2189","read_bytes":"48487424","write_bytes":"4096","attempt":"1","workdir":"\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/work\/b2\/9012a5247c813391e8b16456cc2c56","script":"\n cp report.rmd report_file.rmd # this is to get hard files, not symlinks\n mkdir figures\n mkdir files\n mkdir reports\n cat stat_tempo > .\/files\/test.fastq2_5pAttc_1-51.stat # this is to get hard files, not symlinks\n cp head.fw.txt head.rv.txt table1.txt table2.txt table3.txt table4.txt table8.txt test.fastq2_q20_dup_annot_selected.freq .\/files\/ # this is to get hard files, not symlinks\n cp plot_fivep_filtering_stat.png plot_read_length_cutoff.png plot_read_length_fivep_filtering.png plot_read_length_fivep_filtering_cut.png plot_read_length_ini.png plot_test.fastq2_bowtie2_mini.png plot_test.fastq2_q20_dup_mini.png plot_test.fastq2_q20_nodup_mini.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_0.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LEADING_16.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_16.png logo_test.fastq2_q20_nodup_selected_if_dup_around_insertion_LAGGING_0.png global_logo_nodup_test.fastq2.png global_logo_dup_test.fastq2.png plot_motif_insertion_per_fork.png plot_motif_insertion_per_fork_and_strand.png plot_motif_insertion_per_fork_and_strand_prop.png plot_motif_insertion_per_fork_prop.png plot_motif_insertion_per_strand.png plot_motif_insertion_per_strand_prop.png barplot_test.fastq2_all.png barplot_test.fastq2_all_relative.png barplot_test.fastq2_ess_uness.png barplot_test.fastq2_inside_outside.png boxplot_test.fastq2_cds.png boxplot_test.fastq2_cds_wo_unknown.png boxplot_test.fastq2_tss.png boxplot_test.fastq2_tss_wo_unknown.png hist_test.fastq2_tss_distance_freq.png hist_test.fastq2_tss_distance_freq_Nlaw.png plot_test.fastq2_insertion_bin_200000.png plot_test.fastq2_insertion_bin_50000.png plot_test.fastq2_insertion_bin_500000.png plot_test.fastq2_insertion_hist_forward.png plot_test.fastq2_insertion_hist_reverse.png plot_test.fastq2_insertion_hist_tot.png plot_test.fastq2_insertion_hist_tot_zoom.png plot_test.fastq2_insertion_raw.png plot_test.fastq2_lead_lag_insertion_bin_200000.png plot_test.fastq2_lead_lag_insertion_bin_50000.png plot_test.fastq2_lead_lag_insertion_bin_500000.png plot_test.fastq2_promoter_per_genes.png alignment.html plot_test.fastq2_insertion_dup_raw.png plot_test.fastq2_insertion_dup_selected.png plot_test.fastq2_insertion_hist_tot_selected.png .\/figures\/ # Warning several files\n cp plot_fivep_filtering_stat.png .\/reports\/nf_dag.png # trick to delude the knitting during the print report\n cp multiqc_report.html .\/reports\/ # this is to get hard files from html from multiqc_ch, not symlinks\n print_report.R \"cute_little_R_functions.R\" \"report_file.rmd\" \"print_report.txt\"\n ","scratch":"-","queue":"-","cpus":"1","memory":"68719476736","disk":"-","time":"-","env":"git_path=https:\/\/gitlab.pasteur.fr\/gmillot\/14985_loot\/\nin_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\nfastq_file=test.fastq2.gz\nkraken_db=\/pasteur\/zeus\/services\/p01\/banques-prod\/prod\/rel\/kraken_standard\/current\/kraken\/2.1.1\/standard\/\nprimer_fasta=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/20200520_adapters_TruSeq_B2699_14985_CL.fasta\nalientrimmer_l_param=30\nattc_seq=CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG\nfivep_seq_filtering=^CAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAATTCAAGCG.+$\nfivep_seq_nb=48\nadded_nb=3\ncutoff_nb=25\nref_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/dataset\/coli_K12_MG1655_NC_000913.3_ORI_CENTERED\/\nref_file=Ecoli-K12-MG1655_ORI_CENTERED.fasta\ntss_file=TSS_compatible_essential.txt\ness_file=Essential_genes_MG1655.tsv\ncds_file=cds_ORI_CENTERED.txt\nori_coord=2320711 2320942\nter_coord=4627368 4627400\ncolor_coverage=5\nxlab=Ecoli Genome (bp)\ngenome_size=4641652\nprop_coding_genome=0.88\nprop_ess_coding_genome=0.08\ninsertion_dist=20\nmotif_fw=G[AT]T\nmotif_rev=A[AT]C\nwindow_size=50000 200000 500000\nstep=100\nnb_max_insertion_sites=6\ncute_path=https:\/\/gitlab.pasteur.fr\/gmillot\/cute_little_R_functions\/-\/raw\/v11.4.0\/cute_little_R_functions.R\nsystem_exec=local\nout_path=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/results\/20220120_test_1657729206\nPATH=\/mnt\/c\/Users\/Gael\/Documents\/Git_projects\/14985_loot\/bin:$PATH\n","error_action":"-","vol_ctxt":"42506","inv_ctxt":"20"}], "summary":[{"cpuUsage":{"mean":6.7,"min":6.7,"q1":6.7,"q2":6.7,"q3":6.7,"max":6.7,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"process":"init","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106530,"min":106530,"q1":106530,"q2":106530,"q3":106530,"max":106530,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"cpu":{"mean":6.7,"min":6.7,"q1":6.7,"q2":6.7,"q3":6.7,"max":6.7,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"time":{"mean":10,"min":10,"q1":10,"q2":10,"q3":10,"max":10,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"},"writes":{"mean":664,"min":664,"q1":664,"q2":664,"q3":664,"max":664,"minLabel":"init","maxLabel":"init","q1Label":"init","q2Label":"init","q3Label":"init"}},{"cpuUsage":{"mean":9.4,"min":9.4,"q1":9.4,"q2":9.4,"q3":9.4,"max":9.4,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"process":"report1","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106896,"min":106896,"q1":106896,"q2":106896,"q3":106896,"max":106896,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"cpu":{"mean":9.4,"min":9.4,"q1":9.4,"q2":9.4,"q3":9.4,"max":9.4,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"time":{"mean":15,"min":15,"q1":15,"q2":15,"q3":15,"max":15,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"},"writes":{"mean":682,"min":682,"q1":682,"q2":682,"q3":682,"max":682,"minLabel":"report1","maxLabel":"report1","q1Label":"report1","q2Label":"report1","q3Label":"report1"}},{"cpuUsage":{"mean":8.9,"min":8.9,"q1":8.9,"q2":8.9,"q3":8.9,"max":8.9,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"process":"backup","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":106737,"min":106737,"q1":106737,"q2":106737,"q3":106737,"max":106737,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"cpu":{"mean":8.9,"min":8.9,"q1":8.9,"q2":8.9,"q3":8.9,"max":8.9,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"time":{"mean":49,"min":49,"q1":49,"q2":49,"q3":49,"max":49,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"},"writes":{"mean":499,"min":499,"q1":499,"q2":499,"q3":499,"max":499,"minLabel":"backup","maxLabel":"backup","q1Label":"backup","q2Label":"backup","q3Label":"backup"}},{"cpuUsage":{"mean":50.3,"min":50.3,"q1":50.3,"q2":50.3,"q3":50.3,"max":50.3,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"process":"Nremove","mem":{"mean":12324864,"min":12324864,"q1":12324864,"q2":12324864,"q3":12324864,"max":12324864,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"memUsage":{"mean":0.38,"min":0.38,"q1":0.38,"q2":0.38,"q3":0.38,"max":0.38,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"timeUsage":null,"vmem":{"mean":74002432,"min":74002432,"q1":74002432,"q2":74002432,"q3":74002432,"max":74002432,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"reads":{"mean":17604784,"min":17604784,"q1":17604784,"q2":17604784,"q3":17604784,"max":17604784,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"cpu":{"mean":50.3,"min":50.3,"q1":50.3,"q2":50.3,"q3":50.3,"max":50.3,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"time":{"mean":430,"min":430,"q1":430,"q2":430,"q3":430,"max":430,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"},"writes":{"mean":15167116,"min":15167116,"q1":15167116,"q2":15167116,"q3":15167116,"max":15167116,"minLabel":"Nremove (1)","maxLabel":"Nremove (1)","q1Label":"Nremove (1)","q2Label":"Nremove (1)","q3Label":"Nremove (1)"}},{"cpuUsage":{"mean":12.8,"min":12.8,"q1":12.8,"q2":12.8,"q3":12.8,"max":12.8,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"process":"workflowVersion","mem":{"mean":5214208,"min":5214208,"q1":5214208,"q2":5214208,"q3":5214208,"max":5214208,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"memUsage":{"mean":0.16,"min":0.16,"q1":0.16,"q2":0.16,"q3":0.16,"max":0.16,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"timeUsage":null,"vmem":{"mean":40312832,"min":40312832,"q1":40312832,"q2":40312832,"q3":40312832,"max":40312832,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"reads":{"mean":193482,"min":193482,"q1":193482,"q2":193482,"q3":193482,"max":193482,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"cpu":{"mean":12.8,"min":12.8,"q1":12.8,"q2":12.8,"q3":12.8,"max":12.8,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"time":{"mean":1022,"min":1022,"q1":1022,"q2":1022,"q3":1022,"max":1022,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"},"writes":{"mean":26577,"min":26577,"q1":26577,"q2":26577,"q3":26577,"max":26577,"minLabel":"workflowVersion","maxLabel":"workflowVersion","q1Label":"workflowVersion","q2Label":"workflowVersion","q3Label":"workflowVersion"}},{"cpuUsage":{"mean":42.5,"min":42.5,"q1":42.5,"q2":42.5,"q3":42.5,"max":42.5,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"process":"trim","mem":{"mean":41426944,"min":41426944,"q1":41426944,"q2":41426944,"q3":41426944,"max":41426944,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"memUsage":{"mean":1.29,"min":1.29,"q1":1.29,"q2":1.29,"q3":1.29,"max":1.29,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"timeUsage":null,"vmem":{"mean":5903519744,"min":5903519744,"q1":5903519744,"q2":5903519744,"q3":5903519744,"max":5903519744,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"reads":{"mean":17145203,"min":17145203,"q1":17145203,"q2":17145203,"q3":17145203,"max":17145203,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"cpu":{"mean":42.5,"min":42.5,"q1":42.5,"q2":42.5,"q3":42.5,"max":42.5,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"time":{"mean":2120,"min":2120,"q1":2120,"q2":2120,"q3":2120,"max":2120,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"},"writes":{"mean":12629480,"min":12629480,"q1":12629480,"q2":12629480,"q3":12629480,"max":12629480,"minLabel":"trim (1)","maxLabel":"trim (1)","q1Label":"trim (1)","q2Label":"trim (1)","q3Label":"trim (1)"}},{"cpuUsage":{"mean":57.1,"min":57.1,"q1":57.1,"q2":57.1,"q3":57.1,"max":57.1,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"process":"kraken","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":154412,"min":154412,"q1":154412,"q2":154412,"q3":154412,"max":154412,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"cpu":{"mean":57.1,"min":57.1,"q1":57.1,"q2":57.1,"q3":57.1,"max":57.1,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"time":{"mean":8,"min":8,"q1":8,"q2":8,"q3":8,"max":8,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"},"writes":{"mean":220,"min":220,"q1":220,"q2":220,"q3":220,"max":220,"minLabel":"kraken (1)","maxLabel":"kraken (1)","q1Label":"kraken (1)","q2Label":"kraken (1)","q3Label":"kraken (1)"}},{"cpuUsage":{"mean":27,"min":27,"q1":27,"q2":27,"q3":27,"max":27,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"process":"fivep_filtering","mem":{"mean":10145792,"min":10145792,"q1":10145792,"q2":10145792,"q3":10145792,"max":10145792,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"timeUsage":null,"vmem":{"mean":64376832,"min":64376832,"q1":64376832,"q2":64376832,"q3":64376832,"max":64376832,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"reads":{"mean":29337212,"min":29337212,"q1":29337212,"q2":29337212,"q3":29337212,"max":29337212,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"cpu":{"mean":27,"min":27,"q1":27,"q2":27,"q3":27,"max":27,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"time":{"mean":1644,"min":1644,"q1":1644,"q2":1644,"q3":1644,"max":1644,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"},"writes":{"mean":16061719,"min":16061719,"q1":16061719,"q2":16061719,"q3":16061719,"max":16061719,"minLabel":"fivep_filtering (1)","maxLabel":"fivep_filtering (1)","q1Label":"fivep_filtering (1)","q2Label":"fivep_filtering (1)","q3Label":"fivep_filtering (1)"}},{"cpuUsage":{"mean":19.9,"min":19.9,"q1":19.9,"q2":19.9,"q3":19.9,"max":19.9,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"process":"cutoff","mem":{"mean":9936896,"min":9936896,"q1":9936896,"q2":9936896,"q3":9936896,"max":9936896,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"memUsage":{"mean":0.31,"min":0.31,"q1":0.31,"q2":0.31,"q3":0.31,"max":0.31,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"timeUsage":null,"vmem":{"mean":64237568,"min":64237568,"q1":64237568,"q2":64237568,"q3":64237568,"max":64237568,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"reads":{"mean":7307990,"min":7307990,"q1":7307990,"q2":7307990,"q3":7307990,"max":7307990,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"cpu":{"mean":19.9,"min":19.9,"q1":19.9,"q2":19.9,"q3":19.9,"max":19.9,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"time":{"mean":652,"min":652,"q1":652,"q2":652,"q3":652,"max":652,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"},"writes":{"mean":4049154,"min":4049154,"q1":4049154,"q2":4049154,"q3":4049154,"max":4049154,"minLabel":"cutoff (1)","maxLabel":"cutoff (1)","q1Label":"cutoff (1)","q2Label":"cutoff (1)","q3Label":"cutoff (1)"}},{"cpuUsage":{"mean":55,"min":55,"q1":55,"q2":55,"q3":55,"max":55,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"process":"fastqc1","mem":{"mean":170041344,"min":170041344,"q1":170041344,"q2":170041344,"q3":170041344,"max":170041344,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3289899008,"min":3289899008,"q1":3289899008,"q2":3289899008,"q3":3289899008,"max":3289899008,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"reads":{"mean":14603822,"min":14603822,"q1":14603822,"q2":14603822,"q3":14603822,"max":14603822,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"cpu":{"mean":55,"min":55,"q1":55,"q2":55,"q3":55,"max":55,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"time":{"mean":6113,"min":6113,"q1":6113,"q2":6113,"q3":6113,"max":6113,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"},"writes":{"mean":1278924,"min":1278924,"q1":1278924,"q2":1278924,"q3":1278924,"max":1278924,"minLabel":"fastqc1 (1)","maxLabel":"fastqc1 (1)","q1Label":"fastqc1 (1)","q2Label":"fastqc1 (1)","q3Label":"fastqc1 (1)"}},{"cpuUsage":{"mean":88.7,"min":88.7,"q1":88.7,"q2":88.7,"q3":88.7,"max":88.7,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"process":"fastqc2","mem":{"mean":204603392,"min":204603392,"q1":204603392,"q2":204603392,"q3":204603392,"max":204603392,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"memUsage":null,"timeUsage":null,"vmem":{"mean":3294511104,"min":3294511104,"q1":3294511104,"q2":3294511104,"q3":3294511104,"max":3294511104,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"reads":{"mean":12766784,"min":12766784,"q1":12766784,"q2":12766784,"q3":12766784,"max":12766784,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"cpu":{"mean":88.7,"min":88.7,"q1":88.7,"q2":88.7,"q3":88.7,"max":88.7,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"time":{"mean":5753,"min":5753,"q1":5753,"q2":5753,"q3":5753,"max":5753,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"},"writes":{"mean":1245410,"min":1245410,"q1":1245410,"q2":1245410,"q3":1245410,"max":1245410,"minLabel":"fastqc2 (1)","maxLabel":"fastqc2 (1)","q1Label":"fastqc2 (1)","q2Label":"fastqc2 (1)","q3Label":"fastqc2 (1)"}},{"cpuUsage":{"mean":4.57,"min":4.57,"q1":4.57,"q2":4.57,"q3":4.57,"max":4.57,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"process":"bowtie2","mem":{"mean":120528896,"min":120528896,"q1":120528896,"q2":120528896,"q3":120528896,"max":120528896,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"memUsage":{"mean":0.7,"min":0.7,"q1":0.7,"q2":0.7,"q3":0.7,"max":0.7,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"timeUsage":null,"vmem":{"mean":251150336,"min":251150336,"q1":251150336,"q2":251150336,"q3":251150336,"max":251150336,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"reads":{"mean":36678343,"min":36678343,"q1":36678343,"q2":36678343,"q3":36678343,"max":36678343,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"cpu":{"mean":54.8,"min":54.8,"q1":54.8,"q2":54.8,"q3":54.8,"max":54.8,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"time":{"mean":3721,"min":3721,"q1":3721,"q2":3721,"q3":3721,"max":3721,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"},"writes":{"mean":17009936,"min":17009936,"q1":17009936,"q2":17009936,"q3":17009936,"max":17009936,"minLabel":"bowtie2 (1)","maxLabel":"bowtie2 (1)","q1Label":"bowtie2 (1)","q2Label":"bowtie2 (1)","q3Label":"bowtie2 (1)"}},{"cpuUsage":{"mean":50.6,"min":50.6,"q1":50.6,"q2":50.6,"q3":50.6,"max":50.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"process":"motif","mem":{"mean":201019392,"min":201019392,"q1":201019392,"q2":201019392,"q3":201019392,"max":201019392,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"memUsage":{"mean":0.29,"min":0.29,"q1":0.29,"q2":0.29,"q3":0.29,"max":0.29,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"timeUsage":null,"vmem":{"mean":333217792,"min":333217792,"q1":333217792,"q2":333217792,"q3":333217792,"max":333217792,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"reads":{"mean":49872565,"min":49872565,"q1":49872565,"q2":49872565,"q3":49872565,"max":49872565,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"cpu":{"mean":50.6,"min":50.6,"q1":50.6,"q2":50.6,"q3":50.6,"max":50.6,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"time":{"mean":14623,"min":14623,"q1":14623,"q2":14623,"q3":14623,"max":14623,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"},"writes":{"mean":41616686,"min":41616686,"q1":41616686,"q2":41616686,"q3":41616686,"max":41616686,"minLabel":"motif","maxLabel":"motif","q1Label":"motif","q2Label":"motif","q3Label":"motif"}},{"cpuUsage":{"mean":16.2,"min":16.2,"q1":16.2,"q2":16.2,"q3":16.2,"max":16.2,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"process":"Q20","mem":{"mean":6762496,"min":6762496,"q1":6762496,"q2":6762496,"q3":6762496,"max":6762496,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"memUsage":{"mean":0.63,"min":0.63,"q1":0.63,"q2":0.63,"q3":0.63,"max":0.63,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"timeUsage":null,"vmem":{"mean":45391872,"min":45391872,"q1":45391872,"q2":45391872,"q3":45391872,"max":45391872,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"reads":{"mean":3392016,"min":3392016,"q1":3392016,"q2":3392016,"q3":3392016,"max":3392016,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"cpu":{"mean":16.2,"min":16.2,"q1":16.2,"q2":16.2,"q3":16.2,"max":16.2,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"time":{"mean":390,"min":390,"q1":390,"q2":390,"q3":390,"max":390,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"},"writes":{"mean":2260604,"min":2260604,"q1":2260604,"q2":2260604,"q3":2260604,"max":2260604,"minLabel":"Q20 (1)","maxLabel":"Q20 (1)","q1Label":"Q20 (1)","q2Label":"Q20 (1)","q3Label":"Q20 (1)"}},{"cpuUsage":{"mean":13.9,"min":13.9,"q1":13.9,"q2":13.9,"q3":13.9,"max":13.9,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"process":"no_soft_clipping","mem":{"mean":3563520,"min":3563520,"q1":3563520,"q2":3563520,"q3":3563520,"max":3563520,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"memUsage":{"mean":0.33,"min":0.33,"q1":0.33,"q2":0.33,"q3":0.33,"max":0.33,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"timeUsage":null,"vmem":{"mean":40300544,"min":40300544,"q1":40300544,"q2":40300544,"q3":40300544,"max":40300544,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"reads":{"mean":2188546,"min":2188546,"q1":2188546,"q2":2188546,"q3":2188546,"max":2188546,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"cpu":{"mean":13.9,"min":13.9,"q1":13.9,"q2":13.9,"q3":13.9,"max":13.9,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"time":{"mean":257,"min":257,"q1":257,"q2":257,"q3":257,"max":257,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"},"writes":{"mean":1583807,"min":1583807,"q1":1583807,"q2":1583807,"q3":1583807,"max":1583807,"minLabel":"no_soft_clipping (1)","maxLabel":"no_soft_clipping (1)","q1Label":"no_soft_clipping (1)","q2Label":"no_soft_clipping (1)","q3Label":"no_soft_clipping (1)"}},{"cpuUsage":{"mean":26.4,"min":26.4,"q1":26.4,"q2":26.4,"q3":26.4,"max":26.4,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"process":"duplicate_removal","mem":{"mean":6619136,"min":6619136,"q1":6619136,"q2":6619136,"q3":6619136,"max":6619136,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"memUsage":{"mean":0.62,"min":0.62,"q1":0.62,"q2":0.62,"q3":0.62,"max":0.62,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"timeUsage":null,"vmem":{"mean":40308736,"min":40308736,"q1":40308736,"q2":40308736,"q3":40308736,"max":40308736,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"reads":{"mean":13491656,"min":13491656,"q1":13491656,"q2":13491656,"q3":13491656,"max":13491656,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"cpu":{"mean":26.4,"min":26.4,"q1":26.4,"q2":26.4,"q3":26.4,"max":26.4,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"time":{"mean":1792,"min":1792,"q1":1792,"q2":1792,"q3":1792,"max":1792,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"},"writes":{"mean":6920705,"min":6920705,"q1":6920705,"q2":6920705,"q3":6920705,"max":6920705,"minLabel":"duplicate_removal (1)","maxLabel":"duplicate_removal (1)","q1Label":"duplicate_removal (1)","q2Label":"duplicate_removal (1)","q3Label":"duplicate_removal (1)"}},{"cpuUsage":{"mean":20.95,"min":20.2,"q1":20.58,"q2":20.95,"q3":21.33,"max":21.7,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"process":"insertion","mem":{"mean":9859072,"min":9687040,"q1":9773056,"q2":9859072,"q3":9945088,"max":10031104,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"memUsage":{"mean":0.92,"min":0.9,"q1":0.91,"q2":0.92,"q3":0.93,"max":0.93,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"timeUsage":null,"vmem":{"mean":68904960,"min":68902912,"q1":68903936,"q2":68904960,"q3":68905984,"max":68907008,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"reads":{"mean":2878349.5,"min":2614576,"q1":2746462.75,"q2":2878349.5,"q3":3010236.25,"max":3142123,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"cpu":{"mean":20.95,"min":20.2,"q1":20.58,"q2":20.95,"q3":21.33,"max":21.7,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"time":{"mean":491,"min":470,"q1":480.5,"q2":491,"q3":501.5,"max":512,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"},"writes":{"mean":2072359.5,"min":1832308,"q1":1952333.75,"q2":2072359.5,"q3":2192385.25,"max":2312411,"minLabel":"insertion (1)","maxLabel":"insertion (2)","q1Label":"insertion (1)","q2Label":"insertion (1)","q3Label":"insertion (1)"}},{"cpuUsage":{"mean":42,"min":42,"q1":42,"q2":42,"q3":42,"max":42,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"process":"multiQC","mem":{"mean":76664832,"min":76664832,"q1":76664832,"q2":76664832,"q3":76664832,"max":76664832,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"memUsage":null,"timeUsage":null,"vmem":{"mean":87621632,"min":87621632,"q1":87621632,"q2":87621632,"q3":87621632,"max":87621632,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"reads":{"mean":29716354,"min":29716354,"q1":29716354,"q2":29716354,"q3":29716354,"max":29716354,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"cpu":{"mean":42,"min":42,"q1":42,"q2":42,"q3":42,"max":42,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"time":{"mean":8000,"min":8000,"q1":8000,"q2":8000,"q3":8000,"max":8000,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"},"writes":{"mean":2404868,"min":2404868,"q1":2404868,"q2":2404868,"q3":2404868,"max":2404868,"minLabel":"multiQC","maxLabel":"multiQC","q1Label":"multiQC","q2Label":"multiQC","q3Label":"multiQC"}},{"cpuUsage":{"mean":56.3,"min":56.3,"q1":56.3,"q2":56.3,"q3":56.3,"max":56.3,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"process":"plot_fivep_filtering_stat","mem":{"mean":217604096,"min":217604096,"q1":217604096,"q2":217604096,"q3":217604096,"max":217604096,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"memUsage":{"mean":0.32,"min":0.32,"q1":0.32,"q2":0.32,"q3":0.32,"max":0.32,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"timeUsage":null,"vmem":{"mean":362565632,"min":362565632,"q1":362565632,"q2":362565632,"q3":362565632,"max":362565632,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"reads":{"mean":19122509,"min":19122509,"q1":19122509,"q2":19122509,"q3":19122509,"max":19122509,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"cpu":{"mean":56.3,"min":56.3,"q1":56.3,"q2":56.3,"q3":56.3,"max":56.3,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"time":{"mean":11577,"min":11577,"q1":11577,"q2":11577,"q3":11577,"max":11577,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"},"writes":{"mean":811478,"min":811478,"q1":811478,"q2":811478,"q3":811478,"max":811478,"minLabel":"plot_fivep_filtering_stat (1)","maxLabel":"plot_fivep_filtering_stat (1)","q1Label":"plot_fivep_filtering_stat (1)","q2Label":"plot_fivep_filtering_stat (1)","q3Label":"plot_fivep_filtering_stat (1)"}},{"cpuUsage":{"mean":65.4,"min":65.4,"q1":65.4,"q2":65.4,"q3":65.4,"max":65.4,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"process":"plot_read_length","mem":{"mean":290496512,"min":290496512,"q1":290496512,"q2":290496512,"q3":290496512,"max":290496512,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"memUsage":{"mean":0.42,"min":0.42,"q1":0.42,"q2":0.42,"q3":0.42,"max":0.42,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"timeUsage":null,"vmem":{"mean":433303552,"min":433303552,"q1":433303552,"q2":433303552,"q3":433303552,"max":433303552,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"reads":{"mean":19621096,"min":19621096,"q1":19621096,"q2":19621096,"q3":19621096,"max":19621096,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"cpu":{"mean":65.4,"min":65.4,"q1":65.4,"q2":65.4,"q3":65.4,"max":65.4,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"time":{"mean":11553,"min":11553,"q1":11553,"q2":11553,"q3":11553,"max":11553,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"},"writes":{"mean":708052,"min":708052,"q1":708052,"q2":708052,"q3":708052,"max":708052,"minLabel":"plot_read_length (1)","maxLabel":"plot_read_length (1)","q1Label":"plot_read_length (1)","q2Label":"plot_read_length (1)","q3Label":"plot_read_length (1)"}},{"cpuUsage":{"mean":1.56,"min":1.48,"q1":1.53,"q2":1.57,"q3":1.59,"max":1.62,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"process":"coverage","mem":{"mean":5350741.33,"min":5320704,"q1":5337088,"q2":5353472,"q3":5365760,"max":5378048,"minLabel":"coverage (2)","maxLabel":"coverage (3)","q1Label":"coverage (2)","q2Label":"coverage (1)","q3Label":"coverage (1)"},"memUsage":{"mean":0.01,"min":0.01,"q1":0.01,"q2":0.01,"q3":0.01,"max":0.01,"minLabel":"coverage (2)","maxLabel":"coverage (3)","q1Label":"coverage (2)","q2Label":"coverage (1)","q3Label":"coverage (1)"},"timeUsage":null,"vmem":{"mean":46727168,"min":46727168,"q1":46727168,"q2":46727168,"q3":46727168,"max":46727168,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"reads":{"mean":383942.67,"min":317647,"q1":330338.5,"q2":343030,"q3":417090.5,"max":491151,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"cpu":{"mean":18.67,"min":17.8,"q1":18.3,"q2":18.8,"q3":19.1,"max":19.4,"minLabel":"coverage (1)","maxLabel":"coverage (3)","q1Label":"coverage (1)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"time":{"mean":577.33,"min":547,"q1":556.5,"q2":566,"q3":592.5,"max":619,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"},"writes":{"mean":87172.33,"min":84028,"q1":84186,"q2":84344,"q3":88744.5,"max":93145,"minLabel":"coverage (3)","maxLabel":"coverage (1)","q1Label":"coverage (3)","q2Label":"coverage (2)","q3Label":"coverage (2)"}},{"cpuUsage":{"mean":46.15,"min":45.4,"q1":45.78,"q2":46.15,"q3":46.53,"max":46.9,"minLabel":"final_insertion_files (2)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (2)","q2Label":"final_insertion_files (2)","q3Label":"final_insertion_files (2)"},"process":"final_insertion_files","mem":{"mean":127850496,"min":127737856,"q1":127794176,"q2":127850496,"q3":127906816,"max":127963136,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"memUsage":{"mean":0.19,"min":0.19,"q1":0.19,"q2":0.19,"q3":0.19,"max":0.19,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"timeUsage":null,"vmem":{"mean":259299328,"min":259092480,"q1":259195904,"q2":259299328,"q3":259402752,"max":259506176,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"reads":{"mean":18006453,"min":18003711,"q1":18005082,"q2":18006453,"q3":18007824,"max":18009195,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"cpu":{"mean":46.15,"min":45.4,"q1":45.78,"q2":46.15,"q3":46.53,"max":46.9,"minLabel":"final_insertion_files (2)","maxLabel":"final_insertion_files (1)","q1Label":"final_insertion_files (2)","q2Label":"final_insertion_files (2)","q3Label":"final_insertion_files (2)"},"time":{"mean":4610,"min":4602,"q1":4606,"q2":4610,"q3":4614,"max":4618,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"},"writes":{"mean":280597,"min":275691,"q1":278144,"q2":280597,"q3":283050,"max":285503,"minLabel":"final_insertion_files (1)","maxLabel":"final_insertion_files (2)","q1Label":"final_insertion_files (1)","q2Label":"final_insertion_files (1)","q3Label":"final_insertion_files (1)"}},{"cpuUsage":{"mean":11.7,"min":11.7,"q1":11.7,"q2":11.7,"q3":11.7,"max":11.7,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"process":"report3","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":306027,"min":306027,"q1":306027,"q2":306027,"q3":306027,"max":306027,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"cpu":{"mean":11.7,"min":11.7,"q1":11.7,"q2":11.7,"q3":11.7,"max":11.7,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"time":{"mean":54,"min":54,"q1":54,"q2":54,"q3":54,"max":54,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"},"writes":{"mean":44869,"min":44869,"q1":44869,"q2":44869,"q3":44869,"max":44869,"minLabel":"report3 (1)","maxLabel":"report3 (1)","q1Label":"report3 (1)","q2Label":"report3 (1)","q3Label":"report3 (1)"}},{"cpuUsage":{"mean":61.13,"min":61.1,"q1":61.1,"q2":61.1,"q3":61.15,"max":61.2,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"process":"plot_coverage","mem":{"mean":229771946.67,"min":227549184,"q1":228534272,"q2":229519360,"q3":230883328,"max":232247296,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"memUsage":{"mean":0.33,"min":0.33,"q1":0.33,"q2":0.33,"q3":0.34,"max":0.34,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"timeUsage":null,"vmem":{"mean":373168810.67,"min":370601984,"q1":371615744,"q2":372629504,"q3":374452224,"max":376274944,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"reads":{"mean":19152409.67,"min":19149270,"q1":19149425.5,"q2":19149581,"q3":19153979.5,"max":19158378,"minLabel":"plot_coverage (3)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (3)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"cpu":{"mean":61.13,"min":61.1,"q1":61.1,"q2":61.1,"q3":61.15,"max":61.2,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (3)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (2)","q3Label":"plot_coverage (2)"},"time":{"mean":10131,"min":9987,"q1":10035,"q2":10083,"q3":10203,"max":10323,"minLabel":"plot_coverage (1)","maxLabel":"plot_coverage (2)","q1Label":"plot_coverage (1)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"},"writes":{"mean":446903.33,"min":444679,"q1":445013,"q2":445347,"q3":448015.5,"max":450684,"minLabel":"plot_coverage (2)","maxLabel":"plot_coverage (1)","q1Label":"plot_coverage (2)","q2Label":"plot_coverage (3)","q3Label":"plot_coverage (3)"}},{"cpuUsage":{"mean":45.7,"min":45.2,"q1":45.45,"q2":45.7,"q3":45.95,"max":46.2,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"process":"seq_around_insertion","mem":{"mean":128466944,"min":128364544,"q1":128415744,"q2":128466944,"q3":128518144,"max":128569344,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"memUsage":{"mean":0.19,"min":0.19,"q1":0.19,"q2":0.19,"q3":0.19,"max":0.19,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"timeUsage":null,"vmem":{"mean":259631104,"min":259538944,"q1":259585024,"q2":259631104,"q3":259677184,"max":259723264,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"reads":{"mean":17995111.5,"min":17988600,"q1":17991855.75,"q2":17995111.5,"q3":17998367.25,"max":18001623,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"cpu":{"mean":45.7,"min":45.2,"q1":45.45,"q2":45.7,"q3":45.95,"max":46.2,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"time":{"mean":4456,"min":4429,"q1":4442.5,"q2":4456,"q3":4469.5,"max":4483,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"},"writes":{"mean":179955.5,"min":146402,"q1":163178.75,"q2":179955.5,"q3":196732.25,"max":213509,"minLabel":"seq_around_insertion (2)","maxLabel":"seq_around_insertion (1)","q1Label":"seq_around_insertion (2)","q2Label":"seq_around_insertion (2)","q3Label":"seq_around_insertion (2)"}},{"cpuUsage":{"mean":57.6,"min":57.6,"q1":57.6,"q2":57.6,"q3":57.6,"max":57.6,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"process":"random_insertion","mem":{"mean":368943104,"min":368943104,"q1":368943104,"q2":368943104,"q3":368943104,"max":368943104,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"memUsage":{"mean":0.54,"min":0.54,"q1":0.54,"q2":0.54,"q3":0.54,"max":0.54,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"timeUsage":null,"vmem":{"mean":511254528,"min":511254528,"q1":511254528,"q2":511254528,"q3":511254528,"max":511254528,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"reads":{"mean":31432684,"min":31432684,"q1":31432684,"q2":31432684,"q3":31432684,"max":31432684,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"cpu":{"mean":57.6,"min":57.6,"q1":57.6,"q2":57.6,"q3":57.6,"max":57.6,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"time":{"mean":8185,"min":8185,"q1":8185,"q2":8185,"q3":8185,"max":8185,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"},"writes":{"mean":1296709,"min":1296709,"q1":1296709,"q2":1296709,"q3":1296709,"max":1296709,"minLabel":"random_insertion (1)","maxLabel":"random_insertion (1)","q1Label":"random_insertion (1)","q2Label":"random_insertion (1)","q3Label":"random_insertion (1)"}},{"cpuUsage":{"mean":65.8,"min":65.8,"q1":65.8,"q2":65.8,"q3":65.8,"max":65.8,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"process":"dup_insertion_and_logo","mem":{"mean":283508736,"min":283508736,"q1":283508736,"q2":283508736,"q3":283508736,"max":283508736,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"memUsage":{"mean":0.41,"min":0.41,"q1":0.41,"q2":0.41,"q3":0.41,"max":0.41,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"timeUsage":null,"vmem":{"mean":426565632,"min":426565632,"q1":426565632,"q2":426565632,"q3":426565632,"max":426565632,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"reads":{"mean":17562712,"min":17562712,"q1":17562712,"q2":17562712,"q3":17562712,"max":17562712,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"cpu":{"mean":65.8,"min":65.8,"q1":65.8,"q2":65.8,"q3":65.8,"max":65.8,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"time":{"mean":10856,"min":10856,"q1":10856,"q2":10856,"q3":10856,"max":10856,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"},"writes":{"mean":600308,"min":600308,"q1":600308,"q2":600308,"q3":600308,"max":600308,"minLabel":"dup_insertion_and_logo (1)","maxLabel":"dup_insertion_and_logo (1)","q1Label":"dup_insertion_and_logo (1)","q2Label":"dup_insertion_and_logo (1)","q3Label":"dup_insertion_and_logo (1)"}},{"cpuUsage":{"mean":1.64,"min":1.56,"q1":1.6,"q2":1.64,"q3":1.68,"max":1.72,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (2)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"process":"extract_seq","mem":{"mean":6115328,"min":6074368,"q1":6094848,"q2":6115328,"q3":6135808,"max":6156288,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"memUsage":{"mean":0.01,"min":0.01,"q1":0.01,"q2":0.01,"q3":0.01,"max":0.01,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"timeUsage":null,"vmem":{"mean":52752384,"min":52658176,"q1":52705280,"q2":52752384,"q3":52799488,"max":52846592,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"reads":{"mean":9477766,"min":9452241,"q1":9465003.5,"q2":9477766,"q3":9490528.5,"max":9503291,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"cpu":{"mean":19.65,"min":18.7,"q1":19.18,"q2":19.65,"q3":20.13,"max":20.6,"minLabel":"extract_seq (1)","maxLabel":"extract_seq (2)","q1Label":"extract_seq (1)","q2Label":"extract_seq (1)","q3Label":"extract_seq (1)"},"time":{"mean":616.5,"min":452,"q1":534.25,"q2":616.5,"q3":698.75,"max":781,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"},"writes":{"mean":4718047.5,"min":4672190,"q1":4695118.75,"q2":4718047.5,"q3":4740976.25,"max":4763905,"minLabel":"extract_seq (2)","maxLabel":"extract_seq (1)","q1Label":"extract_seq (2)","q2Label":"extract_seq (2)","q3Label":"extract_seq (2)"}},{"cpuUsage":{"mean":11.05,"min":8.4,"q1":10.45,"q2":11.2,"q3":11.73,"max":13.5,"minLabel":"base_freq (6)","maxLabel":"base_freq (5)","q1Label":"base_freq (1)","q2Label":"base_freq (7)","q3Label":"base_freq (3)"},"process":"base_freq","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":236080.88,"min":180609,"q1":184376.75,"q2":236667,"q3":288671.75,"max":289446,"minLabel":"base_freq (6)","maxLabel":"base_freq (3)","q1Label":"base_freq (7)","q2Label":"base_freq (5)","q3Label":"base_freq (2)"},"cpu":{"mean":11.05,"min":8.4,"q1":10.45,"q2":11.2,"q3":11.73,"max":13.5,"minLabel":"base_freq (6)","maxLabel":"base_freq (5)","q1Label":"base_freq (1)","q2Label":"base_freq (7)","q3Label":"base_freq (3)"},"time":{"mean":66.38,"min":29,"q1":43.5,"q2":67,"q3":93,"max":98,"minLabel":"base_freq (5)","maxLabel":"base_freq (3)","q1Label":"base_freq (6)","q2Label":"base_freq (8)","q3Label":"base_freq (1)"},"writes":{"mean":12563,"min":2829,"q1":6648.75,"q2":13153,"q3":19381,"max":20166,"minLabel":"base_freq (6)","maxLabel":"base_freq (3)","q1Label":"base_freq (7)","q2Label":"base_freq (5)","q3Label":"base_freq (2)"}},{"cpuUsage":{"mean":3.01,"min":3.01,"q1":3.01,"q2":3.01,"q3":3.01,"max":3.01,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"process":"plot_insertion","mem":{"mean":414507008,"min":414507008,"q1":414507008,"q2":414507008,"q3":414507008,"max":414507008,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"memUsage":{"mean":0.6,"min":0.6,"q1":0.6,"q2":0.6,"q3":0.6,"max":0.6,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"timeUsage":null,"vmem":{"mean":573440000,"min":573440000,"q1":573440000,"q2":573440000,"q3":573440000,"max":573440000,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"reads":{"mean":46947001,"min":46947001,"q1":46947001,"q2":46947001,"q3":46947001,"max":46947001,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"cpu":{"mean":36.1,"min":36.1,"q1":36.1,"q2":36.1,"q3":36.1,"max":36.1,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"time":{"mean":240577,"min":240577,"q1":240577,"q2":240577,"q3":240577,"max":240577,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"},"writes":{"mean":23740350,"min":23740350,"q1":23740350,"q2":23740350,"q3":23740350,"max":23740350,"minLabel":"plot_insertion (1)","maxLabel":"plot_insertion (1)","q1Label":"plot_insertion (1)","q2Label":"plot_insertion (1)","q3Label":"plot_insertion (1)"}},{"cpuUsage":{"mean":1.26,"min":1.26,"q1":1.26,"q2":1.26,"q3":1.26,"max":1.26,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"process":"goalign","mem":{"mean":5242880,"min":5242880,"q1":5242880,"q2":5242880,"q3":5242880,"max":5242880,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"memUsage":{"mean":0.49,"min":0.49,"q1":0.49,"q2":0.49,"q3":0.49,"max":0.49,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"timeUsage":null,"vmem":{"mean":731357184,"min":731357184,"q1":731357184,"q2":731357184,"q3":731357184,"max":731357184,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"reads":{"mean":131186,"min":131186,"q1":131186,"q2":131186,"q3":131186,"max":131186,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"cpu":{"mean":15.1,"min":15.1,"q1":15.1,"q2":15.1,"q3":15.1,"max":15.1,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"time":{"mean":767,"min":767,"q1":767,"q2":767,"q3":767,"max":767,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"},"writes":{"mean":356115,"min":356115,"q1":356115,"q2":356115,"q3":356115,"max":356115,"minLabel":"goalign (1)","maxLabel":"goalign (1)","q1Label":"goalign (1)","q2Label":"goalign (1)","q3Label":"goalign (1)"}},{"cpuUsage":{"mean":12.9,"min":12.9,"q1":12.9,"q2":12.9,"q3":12.9,"max":12.9,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"process":"report2","mem":null,"memUsage":null,"timeUsage":null,"vmem":null,"reads":{"mean":135265,"min":135265,"q1":135265,"q2":135265,"q3":135265,"max":135265,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"cpu":{"mean":12.9,"min":12.9,"q1":12.9,"q2":12.9,"q3":12.9,"max":12.9,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"time":{"mean":23,"min":23,"q1":23,"q2":23,"q3":23,"max":23,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"},"writes":{"mean":2463,"min":2463,"q1":2463,"q2":2463,"q3":2463,"max":2463,"minLabel":"report2","maxLabel":"report2","q1Label":"report2","q2Label":"report2","q3Label":"report2"}},{"cpuUsage":{"mean":49.72,"min":46.6,"q1":49.53,"q2":50.65,"q3":50.85,"max":51,"minLabel":"logo (2)","maxLabel":"logo (3)","q1Label":"logo (2)","q2Label":"logo (1)","q3Label":"logo (4)"},"process":"logo","mem":{"mean":177093632,"min":173649920,"q1":176491520,"q2":177459200,"q3":178061312,"max":179806208,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (4)","q3Label":"logo (3)"},"memUsage":{"mean":0.26,"min":0.25,"q1":0.26,"q2":0.26,"q3":0.26,"max":0.26,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (4)","q3Label":"logo (3)"},"timeUsage":null,"vmem":{"mean":322464768,"min":319967232,"q1":321739776,"q2":322387968,"q3":323112960,"max":325115904,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (4)","q3Label":"logo (3)"},"reads":{"mean":14488487.25,"min":14488463,"q1":14488482.5,"q2":14488492.5,"q3":14488497.25,"max":14488501,"minLabel":"logo (2)","maxLabel":"logo (4)","q1Label":"logo (2)","q2Label":"logo (3)","q3Label":"logo (1)"},"cpu":{"mean":49.72,"min":46.6,"q1":49.53,"q2":50.65,"q3":50.85,"max":51,"minLabel":"logo (2)","maxLabel":"logo (3)","q1Label":"logo (2)","q2Label":"logo (1)","q3Label":"logo (4)"},"time":{"mean":5473.5,"min":5301,"q1":5334.75,"q2":5373,"q3":5511.75,"max":5847,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (4)","q3Label":"logo (3)"},"writes":{"mean":916929.25,"min":865984,"q1":881429.5,"q2":891386.5,"q3":926886.25,"max":1018960,"minLabel":"logo (1)","maxLabel":"logo (2)","q1Label":"logo (1)","q2Label":"logo (4)","q3Label":"logo (3)"}},{"cpuUsage":{"mean":53.35,"min":53.2,"q1":53.28,"q2":53.35,"q3":53.43,"max":53.5,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"process":"global_logo","mem":{"mean":179208192,"min":178249728,"q1":178728960,"q2":179208192,"q3":179687424,"max":180166656,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"memUsage":{"mean":0.26,"min":0.26,"q1":0.26,"q2":0.26,"q3":0.26,"max":0.26,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"timeUsage":null,"vmem":{"mean":322961408,"min":322113536,"q1":322537472,"q2":322961408,"q3":323385344,"max":323809280,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"reads":{"mean":14496770.5,"min":14496481,"q1":14496625.75,"q2":14496770.5,"q3":14496915.25,"max":14497060,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"cpu":{"mean":53.35,"min":53.2,"q1":53.28,"q2":53.35,"q3":53.43,"max":53.5,"minLabel":"global_logo (2)","maxLabel":"global_logo (1)","q1Label":"global_logo (2)","q2Label":"global_logo (2)","q3Label":"global_logo (2)"},"time":{"mean":5751.5,"min":5716,"q1":5733.75,"q2":5751.5,"q3":5769.25,"max":5787,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"},"writes":{"mean":929069.5,"min":867359,"q1":898214.25,"q2":929069.5,"q3":959924.75,"max":990780,"minLabel":"global_logo (1)","maxLabel":"global_logo (2)","q1Label":"global_logo (1)","q2Label":"global_logo (1)","q3Label":"global_logo (1)"}},{"cpuUsage":{"mean":43.6,"min":43.6,"q1":43.6,"q2":43.6,"q3":43.6,"max":43.6,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"process":"print_report","mem":{"mean":315035648,"min":315035648,"q1":315035648,"q2":315035648,"q3":315035648,"max":315035648,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"memUsage":{"mean":0.46,"min":0.46,"q1":0.46,"q2":0.46,"q3":0.46,"max":0.46,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"timeUsage":null,"vmem":{"mean":1100167086080,"min":1100167086080,"q1":1100167086080,"q2":1100167086080,"q3":1100167086080,"max":1100167086080,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"reads":{"mean":54280457,"min":54280457,"q1":54280457,"q2":54280457,"q3":54280457,"max":54280457,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"cpu":{"mean":43.6,"min":43.6,"q1":43.6,"q2":43.6,"q3":43.6,"max":43.6,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"time":{"mean":9929,"min":9929,"q1":9929,"q2":9929,"q3":9929,"max":9929,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"},"writes":{"mean":27511769,"min":27511769,"q1":27511769,"q2":27511769,"q3":27511769,"max":27511769,"minLabel":"print_report (1)","maxLabel":"print_report (1)","q1Label":"print_report (1)","q2Label":"print_report (1)","q3Label":"print_report (1)"}}] }; </script> diff --git a/example_of_result/20220120_test_1649703168/reports/nf_timeline.html b/example_of_result/20220120_test_1657729206/reports/nf_timeline.html similarity index 93% rename from example_of_result/20220120_test_1649703168/reports/nf_timeline.html rename to example_of_result/20220120_test_1657729206/reports/nf_timeline.html index ac295357b5057b903b74f43e335747ef5932184d..e003a2673c08c7a5c33140c56c19cc3545e864c1 100644 --- a/example_of_result/20220120_test_1649703168/reports/nf_timeline.html +++ b/example_of_result/20220120_test_1657729206/reports/nf_timeline.html @@ -205,64 +205,64 @@ $(function() { // Nextflow report data window.data = { - "elapsed": "4m 27s", - "beginningMillis": 1649517331366, - "endingMillis": 1649703436276, + "elapsed": "6m 57s", + "beginningMillis": 1657729206806, + "endingMillis": 1657729624097, "processes": [ - {"label": "Nremove (1)", "cached": true, "index": 0, "times": [{"starting_time": 1649517331366, "ending_time": 1649517331460}, {"starting_time": 1649517331460, "ending_time": 1649517332733, "label": "5.4s \/ 11.9 MB \/ CACHED"}, {"starting_time": 1649517332733, "ending_time": 1649517336786}]}, - {"label": "report1", "cached": true, "index": 1, "times": [{"starting_time": 1649517331415, "ending_time": 1649517331494}, {"starting_time": 1649517331494, "ending_time": 1649517331579, "label": "4.7s \/ 0 \/ CACHED"}, {"starting_time": 1649517331579, "ending_time": 1649517336099}]}, - {"label": "trim (1)", "cached": true, "index": 2, "times": [{"starting_time": 1649517336960, "ending_time": 1649517336984}, {"starting_time": 1649517336984, "ending_time": 1649517344332, "label": "10.5s \/ 63.5 MB \/ CACHED"}, {"starting_time": 1649517344332, "ending_time": 1649517347469}]}, - {"label": "init", "cached": false, "index": 3, "times": [{"starting_time": 1649703170952, "ending_time": 1649703171054}, {"starting_time": 1649703171054, "ending_time": 1649703171071, "label": "1.8s \/ 0"}, {"starting_time": 1649703171071, "ending_time": 1649703172718}]}, - {"label": "kraken (1)", "cached": true, "index": 4, "times": [{"starting_time": 1649517347569, "ending_time": 1649517347669}, {"starting_time": 1649517347669, "ending_time": 1649517347703, "label": "311ms \/ 0 \/ CACHED"}, {"starting_time": 1649517347703, "ending_time": 1649517347880}]}, - {"label": "fivep_filtering (1)", "cached": true, "index": 5, "times": [{"starting_time": 1649517347765, "ending_time": 1649517347828}, {"starting_time": 1649517347828, "ending_time": 1649517354004, "label": "8.2s \/ 11.6 MB \/ CACHED"}, {"starting_time": 1649517354004, "ending_time": 1649517355984}]}, - {"label": "fastqc1 (1)", "cached": true, "index": 6, "times": [{"starting_time": 1649517347681, "ending_time": 1649517347770}, {"starting_time": 1649517347770, "ending_time": 1649517364797, "label": "19s \/ 165.2 MB \/ CACHED"}, {"starting_time": 1649517364797, "ending_time": 1649517366659}]}, - {"label": "cutoff (1)", "cached": true, "index": 7, "times": [{"starting_time": 1649517356282, "ending_time": 1649517356311}, {"starting_time": 1649517356311, "ending_time": 1649517357299, "label": "3.4s \/ 9.8 MB \/ CACHED"}, {"starting_time": 1649517357299, "ending_time": 1649517359645}]}, - {"label": "fastqc2 (1)", "cached": true, "index": 8, "times": [{"starting_time": 1649517356193, "ending_time": 1649517356286}, {"starting_time": 1649517356286, "ending_time": 1649517369084, "label": "14.7s \/ 176.1 MB \/ CACHED"}, {"starting_time": 1649517369084, "ending_time": 1649517370882}]}, - {"label": "bowtie2 (1)", "cached": true, "index": 9, "times": [{"starting_time": 1649517360685, "ending_time": 1649517360746}, {"starting_time": 1649517360746, "ending_time": 1649517370079, "label": "13.5s \/ 114.8 MB \/ CACHED"}, {"starting_time": 1649517370079, "ending_time": 1649517374142}]}, - {"label": "Q20 (1)", "cached": true, "index": 10, "times": [{"starting_time": 1649517375154, "ending_time": 1649517375243}, {"starting_time": 1649517375243, "ending_time": 1649517375950, "label": "2.7s \/ 4.5 MB \/ CACHED"}, {"starting_time": 1649517375950, "ending_time": 1649517377849}]}, - {"label": "coverage (1)", "cached": true, "index": 11, "times": [{"starting_time": 1649517438784, "ending_time": 1649517438890}, {"starting_time": 1649517438890, "ending_time": 1649517440890, "label": "4.6s \/ 43.4 MB \/ CACHED"}, {"starting_time": 1649517440890, "ending_time": 1649517443338}]}, - {"label": "no_soft_clipping (1)", "cached": true, "index": 12, "times": [{"starting_time": 1649517378863, "ending_time": 1649517379002}, {"starting_time": 1649517379002, "ending_time": 1649517380230, "label": "4.3s \/ 5.1 MB \/ CACHED"}, {"starting_time": 1649517380230, "ending_time": 1649517383173}]}, - {"label": "multiQC", "cached": true, "index": 13, "times": [{"starting_time": 1649517375192, "ending_time": 1649517375268}, {"starting_time": 1649517375268, "ending_time": 1649517398268, "label": "23.2s \/ 70.7 MB \/ CACHED"}, {"starting_time": 1649517398268, "ending_time": 1649517398413}]}, - {"label": "coverage (2)", "cached": true, "index": 11, "times": [{"starting_time": 1649517443376, "ending_time": 1649517443438}, {"starting_time": 1649517443438, "ending_time": 1649517445349, "label": "4.3s \/ 43.6 MB \/ CACHED"}, {"starting_time": 1649517445349, "ending_time": 1649517447638}]}, - {"label": "duplicate_removal (1)", "cached": true, "index": 14, "times": [{"starting_time": 1649517378891, "ending_time": 1649517379023}, {"starting_time": 1649517379023, "ending_time": 1649517385648, "label": "9.7s \/ 12.4 MB \/ CACHED"}, {"starting_time": 1649517385648, "ending_time": 1649517388551}]}, - {"label": "insertion (1)", "cached": true, "index": 15, "times": [{"starting_time": 1649517389566, "ending_time": 1649517389651}, {"starting_time": 1649517389651, "ending_time": 1649517391911, "label": "4.3s \/ 7.8 MB \/ CACHED"}, {"starting_time": 1649517391911, "ending_time": 1649517393899}]}, - {"label": "insertion (2)", "cached": true, "index": 15, "times": [{"starting_time": 1649517389595, "ending_time": 1649517389671}, {"starting_time": 1649517389671, "ending_time": 1649517392146, "label": "4.5s \/ 9.2 MB \/ CACHED"}, {"starting_time": 1649517392146, "ending_time": 1649517394064}]}, - {"label": "coverage (3)", "cached": true, "index": 11, "times": [{"starting_time": 1649517447665, "ending_time": 1649517447738}, {"starting_time": 1649517447738, "ending_time": 1649517449583, "label": "4.2s \/ 43.5 MB \/ CACHED"}, {"starting_time": 1649517449583, "ending_time": 1649517451839}]}, - {"label": "backup", "cached": false, "index": 16, "times": [{"starting_time": 1649703171343, "ending_time": 1649703171363}, {"starting_time": 1649703171363, "ending_time": 1649703171374, "label": "1.8s \/ 0"}, {"starting_time": 1649703171374, "ending_time": 1649703173137}]}, - {"label": "workflowVersion", "cached": false, "index": 17, "times": [{"starting_time": 1649703171403, "ending_time": 1649703171460}, {"starting_time": 1649703171460, "ending_time": 1649703172204, "label": "2.3s \/ 5 MB"}, {"starting_time": 1649703172204, "ending_time": 1649703173707}]}, - {"label": "plot_coverage (2)", "cached": true, "index": 18, "times": [{"starting_time": 1649517509257, "ending_time": 1649517509329}, {"starting_time": 1649517509329, "ending_time": 1649517533615, "label": "26.4s \/ 215.2 MB \/ CACHED"}, {"starting_time": 1649517533615, "ending_time": 1649517535648}]}, - {"label": "plot_coverage (3)", "cached": true, "index": 18, "times": [{"starting_time": 1649517535680, "ending_time": 1649517535748}, {"starting_time": 1649517535748, "ending_time": 1649517559608, "label": "25.9s \/ 216.1 MB \/ CACHED"}, {"starting_time": 1649517559608, "ending_time": 1649517561551}]}, - {"label": "plot_coverage (1)", "cached": true, "index": 18, "times": [{"starting_time": 1649517482485, "ending_time": 1649517482559}, {"starting_time": 1649517482559, "ending_time": 1649517507042, "label": "26.7s \/ 210.1 MB \/ CACHED"}, {"starting_time": 1649517507042, "ending_time": 1649517509228}]}, - {"label": "final_insertion_files (1)", "cached": true, "index": 19, "times": [{"starting_time": 1649517451877, "ending_time": 1649517451940}, {"starting_time": 1649517451940, "ending_time": 1649517464898, "label": "15.1s \/ 121.6 MB \/ CACHED"}, {"starting_time": 1649517464898, "ending_time": 1649517466971}]}, - {"label": "final_insertion_files (2)", "cached": true, "index": 19, "times": [{"starting_time": 1649517466998, "ending_time": 1649517467072}, {"starting_time": 1649517467072, "ending_time": 1649517480093, "label": "15.5s \/ 121.6 MB \/ CACHED"}, {"starting_time": 1649517480093, "ending_time": 1649517482460}]}, - {"label": "report3 (1)", "cached": true, "index": 20, "times": [{"starting_time": 1649631364071, "ending_time": 1649631364094}, {"starting_time": 1649631364094, "ending_time": 1649631364159, "label": "1.5s \/ 0 \/ CACHED"}, {"starting_time": 1649631364159, "ending_time": 1649631365539}]}, - {"label": "motif", "cached": true, "index": 21, "times": [{"starting_time": 1649517332488, "ending_time": 1649517332563}, {"starting_time": 1649517332563, "ending_time": 1649517375070, "label": "46.5s \/ 200.7 MB \/ CACHED"}, {"starting_time": 1649517375070, "ending_time": 1649517378942}]}, - {"label": "plot_read_length (1)", "cached": true, "index": 22, "times": [{"starting_time": 1649517410093, "ending_time": 1649517410161}, {"starting_time": 1649517410161, "ending_time": 1649517436637, "label": "28.7s \/ 198.8 MB \/ CACHED"}, {"starting_time": 1649517436637, "ending_time": 1649517438749}]}, - {"label": "plot_fivep_filtering_stat (1)", "cached": true, "index": 23, "times": [{"starting_time": 1649517378958, "ending_time": 1649517379042}, {"starting_time": 1649517379042, "ending_time": 1649517407499, "label": "31.1s \/ 210.2 MB \/ CACHED"}, {"starting_time": 1649517407499, "ending_time": 1649517410062}]}, - {"label": "seq_around_insertion (2)", "cached": true, "index": 24, "times": [{"starting_time": 1649517601464, "ending_time": 1649517601588}, {"starting_time": 1649517601588, "ending_time": 1649517614251, "label": "14.8s \/ 121.7 MB \/ CACHED"}, {"starting_time": 1649517614251, "ending_time": 1649517616248}]}, - {"label": "seq_around_insertion (1)", "cached": true, "index": 24, "times": [{"starting_time": 1649517561578, "ending_time": 1649517561650}, {"starting_time": 1649517561650, "ending_time": 1649517574581, "label": "15.1s \/ 121.8 MB \/ CACHED"}, {"starting_time": 1649517574581, "ending_time": 1649517576718}]}, - {"label": "extract_seq (1)", "cached": true, "index": 25, "times": [{"starting_time": 1649517644033, "ending_time": 1649517644135}, {"starting_time": 1649517644135, "ending_time": 1649517646939, "label": "5.2s \/ 17.6 MB \/ CACHED"}, {"starting_time": 1649517646939, "ending_time": 1649517649189}]}, - {"label": "extract_seq (2)", "cached": true, "index": 25, "times": [{"starting_time": 1649517996849, "ending_time": 1649517997120}, {"starting_time": 1649517997120, "ending_time": 1649517998577, "label": "3.7s \/ 6 MB \/ CACHED"}, {"starting_time": 1649517998577, "ending_time": 1649518000598}]}, - {"label": "dup_insertion_and_logo (1)", "cached": false, "index": 26, "times": [{"starting_time": 1649703172046, "ending_time": 1649703172061}, {"starting_time": 1649703172061, "ending_time": 1649703183058, "label": "12.1s \/ 270.8 MB"}, {"starting_time": 1649703183058, "ending_time": 1649703184167}]}, - {"label": "goalign (1)", "cached": true, "index": 27, "times": [{"starting_time": 1649518000735, "ending_time": 1649518000798}, {"starting_time": 1649518000798, "ending_time": 1649518003671, "label": "6.3s \/ 13.6 MB \/ CACHED"}, {"starting_time": 1649518003671, "ending_time": 1649518007039}]}, - {"label": "base_freq (1)", "cached": true, "index": 28, "times": [{"starting_time": 1649517649698, "ending_time": 1649517649791}, {"starting_time": 1649517649791, "ending_time": 1649517650187, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650187, "ending_time": 1649517654517}]}, - {"label": "base_freq (8)", "cached": true, "index": 28, "times": [{"starting_time": 1649518001036, "ending_time": 1649518001118}, {"starting_time": 1649518001118, "ending_time": 1649518001319, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649518001319, "ending_time": 1649518005804}]}, - {"label": "base_freq (2)", "cached": true, "index": 28, "times": [{"starting_time": 1649517649332, "ending_time": 1649517649389}, {"starting_time": 1649517649389, "ending_time": 1649517649788, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517649788, "ending_time": 1649517654136}]}, - {"label": "base_freq (5)", "cached": true, "index": 28, "times": [{"starting_time": 1649518001008, "ending_time": 1649518001099}, {"starting_time": 1649518001099, "ending_time": 1649518001296, "label": "4.6s \/ 0 \/ CACHED"}, {"starting_time": 1649518001296, "ending_time": 1649518005653}]}, - {"label": "base_freq (4)", "cached": true, "index": 28, "times": [{"starting_time": 1649517649523, "ending_time": 1649517649590}, {"starting_time": 1649517649590, "ending_time": 1649517650022, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650022, "ending_time": 1649517654353}]}, - {"label": "base_freq (7)", "cached": true, "index": 28, "times": [{"starting_time": 1649518000971, "ending_time": 1649518000999}, {"starting_time": 1649518000999, "ending_time": 1649518001171, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649518001171, "ending_time": 1649518005740}]}, - {"label": "base_freq (3)", "cached": true, "index": 28, "times": [{"starting_time": 1649517649606, "ending_time": 1649517649691}, {"starting_time": 1649517649691, "ending_time": 1649517650117, "label": "4.8s \/ 0 \/ CACHED"}, {"starting_time": 1649517650117, "ending_time": 1649517654451}]}, - {"label": "base_freq (6)", "cached": true, "index": 28, "times": [{"starting_time": 1649518005691, "ending_time": 1649518005866}, {"starting_time": 1649518005866, "ending_time": 1649518005975, "label": "3s \/ 0 \/ CACHED"}, {"starting_time": 1649518005975, "ending_time": 1649518008672}]}, - {"label": "report2", "cached": true, "index": 29, "times": [{"starting_time": 1649518009697, "ending_time": 1649518009773}, {"starting_time": 1649518009773, "ending_time": 1649518009818, "label": "2.7s \/ 0 \/ CACHED"}, {"starting_time": 1649518009818, "ending_time": 1649518012408}]}, - {"label": "random_insertion (1)", "cached": true, "index": 30, "times": [{"starting_time": 1649699456918, "ending_time": 1649699456985}, {"starting_time": 1649699456985, "ending_time": 1649699465495, "label": "9.5s \/ 351.5 MB \/ CACHED"}, {"starting_time": 1649699465495, "ending_time": 1649699466417}]}, - {"label": "logo (4)", "cached": true, "index": 31, "times": [{"starting_time": 1649518055457, "ending_time": 1649518055529}, {"starting_time": 1649518055529, "ending_time": 1649518070308, "label": "16.9s \/ 120.1 MB \/ CACHED"}, {"starting_time": 1649518070308, "ending_time": 1649518072378}]}, - {"label": "logo (1)", "cached": true, "index": 31, "times": [{"starting_time": 1649518000631, "ending_time": 1649518000698}, {"starting_time": 1649518000698, "ending_time": 1649518018404, "label": "21.1s \/ 168.5 MB \/ CACHED"}, {"starting_time": 1649518018404, "ending_time": 1649518021750}]}, - {"label": "logo (2)", "cached": true, "index": 31, "times": [{"starting_time": 1649518021775, "ending_time": 1649518021849}, {"starting_time": 1649518021849, "ending_time": 1649518036339, "label": "16.5s \/ 123.9 MB \/ CACHED"}, {"starting_time": 1649518036339, "ending_time": 1649518038231}]}, - {"label": "logo (3)", "cached": true, "index": 31, "times": [{"starting_time": 1649518038258, "ending_time": 1649518038331}, {"starting_time": 1649518038331, "ending_time": 1649518053429, "label": "17.2s \/ 118 MB \/ CACHED"}, {"starting_time": 1649518053429, "ending_time": 1649518055429}]}, - {"label": "global_logo (1)", "cached": true, "index": 32, "times": [{"starting_time": 1649518090164, "ending_time": 1649518090253}, {"starting_time": 1649518090253, "ending_time": 1649518105829, "label": "17.6s \/ 116.7 MB \/ CACHED"}, {"starting_time": 1649518105829, "ending_time": 1649518107759}]}, - {"label": "global_logo (2)", "cached": true, "index": 32, "times": [{"starting_time": 1649518072403, "ending_time": 1649518072478}, {"starting_time": 1649518072478, "ending_time": 1649518088069, "label": "17.7s \/ 116.5 MB \/ CACHED"}, {"starting_time": 1649518088069, "ending_time": 1649518090138}]}, - {"label": "plot_insertion (1)", "cached": false, "index": 33, "times": [{"starting_time": 1649703184174, "ending_time": 1649703184268}, {"starting_time": 1649703184268, "ending_time": 1649703423771, "label": "4m \/ 394.9 MB"}, {"starting_time": 1649703423771, "ending_time": 1649703424377}]}, - {"label": "print_report (1)", "cached": false, "index": 34, "times": [{"starting_time": 1649703425043, "ending_time": 1649703425078}, {"starting_time": 1649703425078, "ending_time": 1649703434392, "label": "10.2s \/ 266.5 MB"}, {"starting_time": 1649703434392, "ending_time": 1649703435217}]} + {"label": "init", "cached": false, "index": 0, "times": [{"starting_time": 1657729208633, "ending_time": 1657729208699}, {"starting_time": 1657729208699, "ending_time": 1657729208709, "label": "1.3s \/ 0"}, {"starting_time": 1657729208709, "ending_time": 1657729209930}]}, + {"label": "Nremove (1)", "cached": false, "index": 1, "times": [{"starting_time": 1657729208673, "ending_time": 1657729208724}, {"starting_time": 1657729208724, "ending_time": 1657729209154, "label": "1.8s \/ 11.8 MB"}, {"starting_time": 1657729209154, "ending_time": 1657729210519}]}, + {"label": "report1", "cached": false, "index": 2, "times": [{"starting_time": 1657729208710, "ending_time": 1657729208798}, {"starting_time": 1657729208798, "ending_time": 1657729208813, "label": "1.4s \/ 0"}, {"starting_time": 1657729208813, "ending_time": 1657729210119}]}, + {"label": "backup", "cached": false, "index": 3, "times": [{"starting_time": 1657729208882, "ending_time": 1657729208898}, {"starting_time": 1657729208898, "ending_time": 1657729208947, "label": "1.4s \/ 0"}, {"starting_time": 1657729208947, "ending_time": 1657729210318}]}, + {"label": "workflowVersion", "cached": false, "index": 4, "times": [{"starting_time": 1657729208910, "ending_time": 1657729208998}, {"starting_time": 1657729208998, "ending_time": 1657729210020, "label": "2.2s \/ 5 MB"}, {"starting_time": 1657729210020, "ending_time": 1657729211158}]}, + {"label": "motif", "cached": false, "index": 5, "times": [{"starting_time": 1657729210407, "ending_time": 1657729210419}, {"starting_time": 1657729210419, "ending_time": 1657729225042, "label": "15.5s \/ 191.7 MB"}, {"starting_time": 1657729225042, "ending_time": 1657729225908}]}, + {"label": "trim (1)", "cached": false, "index": 6, "times": [{"starting_time": 1657729210558, "ending_time": 1657729210620}, {"starting_time": 1657729210620, "ending_time": 1657729212740, "label": "3.2s \/ 39.5 MB"}, {"starting_time": 1657729212740, "ending_time": 1657729213748}]}, + {"label": "kraken (1)", "cached": false, "index": 7, "times": [{"starting_time": 1657729213778, "ending_time": 1657729213848}, {"starting_time": 1657729213848, "ending_time": 1657729213856, "label": "86ms \/ 0"}, {"starting_time": 1657729213856, "ending_time": 1657729213864}]}, + {"label": "fastqc1 (1)", "cached": false, "index": 8, "times": [{"starting_time": 1657729213804, "ending_time": 1657729213872}, {"starting_time": 1657729213872, "ending_time": 1657729219985, "label": "7.1s \/ 162.2 MB"}, {"starting_time": 1657729219985, "ending_time": 1657729220868}]}, + {"label": "fivep_filtering (1)", "cached": false, "index": 9, "times": [{"starting_time": 1657729213828, "ending_time": 1657729213886}, {"starting_time": 1657729213886, "ending_time": 1657729215530, "label": "2.6s \/ 9.7 MB"}, {"starting_time": 1657729215530, "ending_time": 1657729216448}]}, + {"label": "fastqc2 (1)", "cached": false, "index": 10, "times": [{"starting_time": 1657729216503, "ending_time": 1657729216548}, {"starting_time": 1657729216548, "ending_time": 1657729222301, "label": "6.6s \/ 195.1 MB"}, {"starting_time": 1657729222301, "ending_time": 1657729223138}]}, + {"label": "cutoff (1)", "cached": false, "index": 11, "times": [{"starting_time": 1657729216532, "ending_time": 1657729216563}, {"starting_time": 1657729216563, "ending_time": 1657729217215, "label": "1.7s \/ 9.5 MB"}, {"starting_time": 1657729217215, "ending_time": 1657729218228}]}, + {"label": "bowtie2 (1)", "cached": false, "index": 12, "times": [{"starting_time": 1657729219237, "ending_time": 1657729219330}, {"starting_time": 1657729219330, "ending_time": 1657729223051, "label": "4.8s \/ 114.9 MB"}, {"starting_time": 1657729223051, "ending_time": 1657729224048}]}, + {"label": "Q20 (1)", "cached": false, "index": 13, "times": [{"starting_time": 1657729225055, "ending_time": 1657729225150}, {"starting_time": 1657729225150, "ending_time": 1657729225540, "label": "1.5s \/ 6.4 MB"}, {"starting_time": 1657729225540, "ending_time": 1657729226603}]}, + {"label": "multiQC", "cached": false, "index": 14, "times": [{"starting_time": 1657729225075, "ending_time": 1657729225162}, {"starting_time": 1657729225162, "ending_time": 1657729233162, "label": "8.3s \/ 73.1 MB"}, {"starting_time": 1657729233162, "ending_time": 1657729233339}]}, + {"label": "plot_fivep_filtering_stat (1)", "cached": false, "index": 15, "times": [{"starting_time": 1657729225918, "ending_time": 1657729226008}, {"starting_time": 1657729226008, "ending_time": 1657729237585, "label": "12.4s \/ 207.5 MB"}, {"starting_time": 1657729237585, "ending_time": 1657729238318}]}, + {"label": "no_soft_clipping (1)", "cached": false, "index": 16, "times": [{"starting_time": 1657729227612, "ending_time": 1657729227704}, {"starting_time": 1657729227704, "ending_time": 1657729227961, "label": "1.4s \/ 3.4 MB"}, {"starting_time": 1657729227961, "ending_time": 1657729228978}]}, + {"label": "duplicate_removal (1)", "cached": false, "index": 17, "times": [{"starting_time": 1657729227632, "ending_time": 1657729227716}, {"starting_time": 1657729227716, "ending_time": 1657729229508, "label": "2.9s \/ 6.3 MB"}, {"starting_time": 1657729229508, "ending_time": 1657729230549}]}, + {"label": "insertion (1)", "cached": false, "index": 18, "times": [{"starting_time": 1657729231557, "ending_time": 1657729231650}, {"starting_time": 1657729231650, "ending_time": 1657729232120, "label": "1.5s \/ 9.2 MB"}, {"starting_time": 1657729232120, "ending_time": 1657729233047}]}, + {"label": "insertion (2)", "cached": false, "index": 18, "times": [{"starting_time": 1657729231578, "ending_time": 1657729231661}, {"starting_time": 1657729231661, "ending_time": 1657729232173, "label": "1.5s \/ 9.6 MB"}, {"starting_time": 1657729232173, "ending_time": 1657729233108}]}, + {"label": "plot_read_length (1)", "cached": false, "index": 19, "times": [{"starting_time": 1657729238326, "ending_time": 1657729238418}, {"starting_time": 1657729238418, "ending_time": 1657729249971, "label": "12.3s \/ 277 MB"}, {"starting_time": 1657729249971, "ending_time": 1657729250599}]}, + {"label": "coverage (1)", "cached": false, "index": 20, "times": [{"starting_time": 1657729250605, "ending_time": 1657729250698}, {"starting_time": 1657729250698, "ending_time": 1657729251317, "label": "1.6s \/ 5.1 MB"}, {"starting_time": 1657729251317, "ending_time": 1657729252228}]}, + {"label": "coverage (2)", "cached": false, "index": 20, "times": [{"starting_time": 1657729252234, "ending_time": 1657729252328}, {"starting_time": 1657729252328, "ending_time": 1657729252894, "label": "1.4s \/ 5.1 MB"}, {"starting_time": 1657729252894, "ending_time": 1657729253618}]}, + {"label": "coverage (3)", "cached": false, "index": 20, "times": [{"starting_time": 1657729253624, "ending_time": 1657729253718}, {"starting_time": 1657729253718, "ending_time": 1657729254265, "label": "1.3s \/ 5.1 MB"}, {"starting_time": 1657729254265, "ending_time": 1657729254968}]}, + {"label": "final_insertion_files (1)", "cached": false, "index": 21, "times": [{"starting_time": 1657729254975, "ending_time": 1657729255068}, {"starting_time": 1657729255068, "ending_time": 1657729259670, "label": "5.3s \/ 121.8 MB"}, {"starting_time": 1657729259670, "ending_time": 1657729260268}]}, + {"label": "final_insertion_files (2)", "cached": false, "index": 21, "times": [{"starting_time": 1657729260275, "ending_time": 1657729260368}, {"starting_time": 1657729260368, "ending_time": 1657729264986, "label": "5.5s \/ 122 MB"}, {"starting_time": 1657729264986, "ending_time": 1657729265728}]}, + {"label": "report3 (1)", "cached": false, "index": 22, "times": [{"starting_time": 1657729260297, "ending_time": 1657729260380}, {"starting_time": 1657729260380, "ending_time": 1657729260434, "label": "1.1s \/ 0"}, {"starting_time": 1657729260434, "ending_time": 1657729261368}]}, + {"label": "plot_coverage (1)", "cached": false, "index": 23, "times": [{"starting_time": 1657729265735, "ending_time": 1657729265828}, {"starting_time": 1657729265828, "ending_time": 1657729275815, "label": "10.7s \/ 221.5 MB"}, {"starting_time": 1657729275815, "ending_time": 1657729276448}]}, + {"label": "plot_coverage (2)", "cached": false, "index": 23, "times": [{"starting_time": 1657729276456, "ending_time": 1657729276548}, {"starting_time": 1657729276548, "ending_time": 1657729286871, "label": "11s \/ 217 MB"}, {"starting_time": 1657729286871, "ending_time": 1657729287448}]}, + {"label": "plot_coverage (3)", "cached": false, "index": 23, "times": [{"starting_time": 1657729287455, "ending_time": 1657729287549}, {"starting_time": 1657729287549, "ending_time": 1657729297632, "label": "10.9s \/ 218.9 MB"}, {"starting_time": 1657729297632, "ending_time": 1657729298308}]}, + {"label": "seq_around_insertion (1)", "cached": false, "index": 24, "times": [{"starting_time": 1657729298315, "ending_time": 1657729298408}, {"starting_time": 1657729298408, "ending_time": 1657729302891, "label": "5.2s \/ 122.6 MB"}, {"starting_time": 1657729302891, "ending_time": 1657729303498}]}, + {"label": "random_insertion (1)", "cached": false, "index": 25, "times": [{"starting_time": 1657729303506, "ending_time": 1657729303597}, {"starting_time": 1657729303597, "ending_time": 1657729311782, "label": "8.9s \/ 351.9 MB"}, {"starting_time": 1657729311782, "ending_time": 1657729312388}]}, + {"label": "seq_around_insertion (2)", "cached": false, "index": 24, "times": [{"starting_time": 1657729312395, "ending_time": 1657729312489}, {"starting_time": 1657729312489, "ending_time": 1657729316918, "label": "5.2s \/ 122.4 MB"}, {"starting_time": 1657729316918, "ending_time": 1657729317587}]}, + {"label": "dup_insertion_and_logo (1)", "cached": false, "index": 26, "times": [{"starting_time": 1657729317596, "ending_time": 1657729317687}, {"starting_time": 1657729317687, "ending_time": 1657729328543, "label": "11.6s \/ 270.4 MB"}, {"starting_time": 1657729328543, "ending_time": 1657729329178}]}, + {"label": "extract_seq (1)", "cached": false, "index": 27, "times": [{"starting_time": 1657729329185, "ending_time": 1657729329278}, {"starting_time": 1657729329278, "ending_time": 1657729330059, "label": "1.7s \/ 5.9 MB"}, {"starting_time": 1657729330059, "ending_time": 1657729330838}]}, + {"label": "plot_insertion (1)", "cached": false, "index": 28, "times": [{"starting_time": 1657729330847, "ending_time": 1657729330938}, {"starting_time": 1657729330938, "ending_time": 1657729571515, "label": "4m 2s \/ 395.3 MB"}, {"starting_time": 1657729571515, "ending_time": 1657729572408}]}, + {"label": "base_freq (2)", "cached": false, "index": 29, "times": [{"starting_time": 1657729330870, "ending_time": 1657729330951}, {"starting_time": 1657729330951, "ending_time": 1657729331038, "label": "1.5s \/ 0"}, {"starting_time": 1657729331038, "ending_time": 1657729332348}]}, + {"label": "base_freq (1)", "cached": false, "index": 29, "times": [{"starting_time": 1657729330914, "ending_time": 1657729330963}, {"starting_time": 1657729330963, "ending_time": 1657729331055, "label": "1.5s \/ 0"}, {"starting_time": 1657729331055, "ending_time": 1657729332428}]}, + {"label": "base_freq (4)", "cached": false, "index": 29, "times": [{"starting_time": 1657729330934, "ending_time": 1657729330976}, {"starting_time": 1657729330976, "ending_time": 1657729331072, "label": "1.7s \/ 0"}, {"starting_time": 1657729331072, "ending_time": 1657729332627}]}, + {"label": "base_freq (3)", "cached": false, "index": 29, "times": [{"starting_time": 1657729330953, "ending_time": 1657729331038}, {"starting_time": 1657729331038, "ending_time": 1657729331136, "label": "1.7s \/ 0"}, {"starting_time": 1657729331136, "ending_time": 1657729332638}]}, + {"label": "extract_seq (2)", "cached": false, "index": 27, "times": [{"starting_time": 1657729572416, "ending_time": 1657729572508}, {"starting_time": 1657729572508, "ending_time": 1657729572960, "label": "1.3s \/ 5.8 MB"}, {"starting_time": 1657729572960, "ending_time": 1657729573748}]}, + {"label": "logo (2)", "cached": false, "index": 30, "times": [{"starting_time": 1657729573756, "ending_time": 1657729573848}, {"starting_time": 1657729573848, "ending_time": 1657729579695, "label": "6.9s \/ 171.5 MB"}, {"starting_time": 1657729579695, "ending_time": 1657729580668}]}, + {"label": "goalign (1)", "cached": false, "index": 31, "times": [{"starting_time": 1657729573778, "ending_time": 1657729573867}, {"starting_time": 1657729573867, "ending_time": 1657729574634, "label": "1.9s \/ 5 MB"}, {"starting_time": 1657729574634, "ending_time": 1657729575688}]}, + {"label": "base_freq (6)", "cached": false, "index": 29, "times": [{"starting_time": 1657729573836, "ending_time": 1657729573879}, {"starting_time": 1657729573879, "ending_time": 1657729573915, "label": "1.5s \/ 0"}, {"starting_time": 1657729573915, "ending_time": 1657729575368}]}, + {"label": "base_freq (8)", "cached": false, "index": 29, "times": [{"starting_time": 1657729573862, "ending_time": 1657729573948}, {"starting_time": 1657729573948, "ending_time": 1657729573995, "label": "1.7s \/ 0"}, {"starting_time": 1657729573995, "ending_time": 1657729575519}]}, + {"label": "base_freq (7)", "cached": false, "index": 29, "times": [{"starting_time": 1657729573881, "ending_time": 1657729573959}, {"starting_time": 1657729573959, "ending_time": 1657729574005, "label": "1.6s \/ 0"}, {"starting_time": 1657729574005, "ending_time": 1657729575530}]}, + {"label": "base_freq (5)", "cached": false, "index": 29, "times": [{"starting_time": 1657729575376, "ending_time": 1657729575468}, {"starting_time": 1657729575468, "ending_time": 1657729575497, "label": "1.1s \/ 0"}, {"starting_time": 1657729575497, "ending_time": 1657729576478}]}, + {"label": "report2", "cached": false, "index": 32, "times": [{"starting_time": 1657729577485, "ending_time": 1657729577580}, {"starting_time": 1657729577580, "ending_time": 1657729577603, "label": "923ms \/ 0"}, {"starting_time": 1657729577603, "ending_time": 1657729578408}]}, + {"label": "logo (1)", "cached": false, "index": 30, "times": [{"starting_time": 1657729580674, "ending_time": 1657729580768}, {"starting_time": 1657729580768, "ending_time": 1657729586069, "label": "6s \/ 165.6 MB"}, {"starting_time": 1657729586069, "ending_time": 1657729586698}]}, + {"label": "logo (3)", "cached": false, "index": 30, "times": [{"starting_time": 1657729586705, "ending_time": 1657729586798}, {"starting_time": 1657729586798, "ending_time": 1657729592198, "label": "6.1s \/ 169.3 MB"}, {"starting_time": 1657729592198, "ending_time": 1657729592758}]}, + {"label": "logo (4)", "cached": false, "index": 30, "times": [{"starting_time": 1657729592765, "ending_time": 1657729592858}, {"starting_time": 1657729592858, "ending_time": 1657729598204, "label": "6.1s \/ 169.2 MB"}, {"starting_time": 1657729598204, "ending_time": 1657729598838}]}, + {"label": "global_logo (1)", "cached": false, "index": 33, "times": [{"starting_time": 1657729598845, "ending_time": 1657729598939}, {"starting_time": 1657729598939, "ending_time": 1657729604655, "label": "6.4s \/ 170 MB"}, {"starting_time": 1657729604655, "ending_time": 1657729605268}]}, + {"label": "global_logo (2)", "cached": false, "index": 33, "times": [{"starting_time": 1657729605275, "ending_time": 1657729605367}, {"starting_time": 1657729605367, "ending_time": 1657729611154, "label": "6.5s \/ 171.8 MB"}, {"starting_time": 1657729611154, "ending_time": 1657729611758}]}, + {"label": "print_report (1)", "cached": false, "index": 34, "times": [{"starting_time": 1657729612365, "ending_time": 1657729612459}, {"starting_time": 1657729612459, "ending_time": 1657729622388, "label": "10.7s \/ 300.4 MB"}, {"starting_time": 1657729622388, "ending_time": 1657729623068}]} ] } ; diff --git a/example_of_result/20220120_test_1657729206/reports/nf_trace.txt b/example_of_result/20220120_test_1657729206/reports/nf_trace.txt new file mode 100644 index 0000000000000000000000000000000000000000..b172f578ab31af0daad44f4805d243f8f91f9303 --- /dev/null +++ b/example_of_result/20220120_test_1657729206/reports/nf_trace.txt @@ -0,0 +1,55 @@ +task_id hash native_id name status exit submit duration realtime %cpu peak_rss peak_vmem rchar wchar +1 07/33d925 1329 init COMPLETED 0 2022-07-13 18:20:08.633 1.3s 10ms 6.7% 0 0 104 KB 664 B +3 32/0ca22b 1393 report1 COMPLETED 0 2022-07-13 18:20:08.710 1.4s 15ms 9.4% 0 0 104.4 KB 682 B +5 32/daee1c 1481 backup COMPLETED 0 2022-07-13 18:20:08.882 1.4s 49ms 8.9% 0 0 104.2 KB 499 B +2 d8/bcda22 1356 Nremove (1) COMPLETED 0 2022-07-13 18:20:08.673 1.8s 430ms 50.3% 11.8 MB 70.6 MB 16.8 MB 14.5 MB +6 e4/9b44e5 1505 workflowVersion COMPLETED 0 2022-07-13 18:20:08.910 2.2s 1s 12.8% 5 MB 38.4 MB 188.9 KB 26 KB +7 d3/55e04f 2198 trim (1) COMPLETED 0 2022-07-13 18:20:10.558 3.2s 2.1s 42.5% 39.5 MB 5.5 GB 16.4 MB 12 MB +10 03/a38aa6 2810 kraken (1) COMPLETED 0 2022-07-13 18:20:13.778 86ms 8ms 57.1% 0 0 150.8 KB 220 B +9 ad/589edd 2897 fivep_filtering (1) COMPLETED 0 2022-07-13 18:20:13.828 2.6s 1.6s 27.0% 9.7 MB 61.4 MB 28 MB 15.3 MB +11 ef/88d2e7 3685 cutoff (1) COMPLETED 0 2022-07-13 18:20:16.532 1.7s 652ms 19.9% 9.5 MB 61.3 MB 7 MB 3.9 MB +8 29/0de1d1 2832 fastqc1 (1) COMPLETED 0 2022-07-13 18:20:13.804 7.1s 6.1s 55.0% 162.2 MB 3.1 GB 13.9 MB 1.2 MB +12 9a/bb6bb5 3641 fastqc2 (1) COMPLETED 0 2022-07-13 18:20:16.503 6.6s 5.8s 88.7% 195.1 MB 3.1 GB 12.2 MB 1.2 MB +15 7a/473ae2 4475 bowtie2 (1) COMPLETED 0 2022-07-13 18:20:19.237 4.8s 3.7s 54.8% 114.9 MB 239.5 MB 35 MB 16.2 MB +4 4f/cb0182 2144 motif COMPLETED 0 2022-07-13 18:20:10.407 15.5s 14.6s 50.6% 191.7 MB 317.8 MB 47.6 MB 39.7 MB +17 4b/0af112 5571 Q20 (1) COMPLETED 0 2022-07-13 18:20:25.055 1.5s 390ms 16.2% 6.4 MB 43.3 MB 3.2 MB 2.2 MB +19 10/a73c63 6094 no_soft_clipping (1) COMPLETED 0 2022-07-13 18:20:27.612 1.4s 257ms 13.9% 3.4 MB 38.4 MB 2.1 MB 1.5 MB +21 6d/e18f26 6119 duplicate_removal (1) COMPLETED 0 2022-07-13 18:20:27.632 2.9s 1.8s 26.4% 6.3 MB 38.4 MB 12.9 MB 6.6 MB +23 53/120110 7181 insertion (1) COMPLETED 0 2022-07-13 18:20:31.557 1.5s 470ms 20.2% 9.2 MB 65.7 MB 2.5 MB 1.7 MB +24 99/5749d0 7202 insertion (2) COMPLETED 0 2022-07-13 18:20:31.578 1.5s 512ms 21.7% 9.6 MB 65.7 MB 3 MB 2.2 MB +18 d3/8b18bf 5597 multiQC COMPLETED 0 2022-07-13 18:20:25.075 8.3s 8s 42.0% 73.1 MB 83.6 MB 28.3 MB 2.3 MB +13 20/8b2e3e 5791 plot_fivep_filtering_stat (1) COMPLETED 0 2022-07-13 18:20:25.918 12.4s 11.6s 56.3% 207.5 MB 345.8 MB 18.2 MB 792.5 KB +14 16/40e161 8047 plot_read_length (1) COMPLETED 0 2022-07-13 18:20:38.326 12.3s 11.6s 65.4% 277 MB 413.2 MB 18.7 MB 691.5 KB +16 1e/df6e9e 8831 coverage (1) COMPLETED 0 2022-07-13 18:20:50.605 1.6s 619ms 17.8% 5.1 MB 44.6 MB 479.6 KB 91 KB +20 59/eb24cd 8991 coverage (2) COMPLETED 0 2022-07-13 18:20:52.234 1.4s 566ms 18.8% 5.1 MB 44.6 MB 335 KB 82.4 KB +22 12/80c100 9147 coverage (3) COMPLETED 0 2022-07-13 18:20:53.624 1.3s 547ms 19.4% 5.1 MB 44.6 MB 310.2 KB 82.1 KB +25 3c/9192fc 9303 final_insertion_files (1) COMPLETED 0 2022-07-13 18:20:54.975 5.3s 4.6s 46.9% 121.8 MB 247.1 MB 17.2 MB 269.2 KB +31 3a/7d7d11 9703 report3 (1) COMPLETED 0 2022-07-13 18:21:00.297 1.1s 54ms 11.7% 0 0 298.9 KB 43.8 KB +26 38/7955e0 9692 final_insertion_files (2) COMPLETED 0 2022-07-13 18:21:00.275 5.5s 4.6s 45.4% 122 MB 247.5 MB 17.2 MB 278.8 KB +27 c1/4ec175 10214 plot_coverage (1) COMPLETED 0 2022-07-13 18:21:05.735 10.7s 10s 61.1% 221.5 MB 358.8 MB 18.3 MB 440.1 KB +28 fa/28ed19 10872 plot_coverage (2) COMPLETED 0 2022-07-13 18:21:16.456 11s 10.3s 61.1% 217 MB 353.4 MB 18.3 MB 434.3 KB +29 9d/bb1716 11525 plot_coverage (3) COMPLETED 0 2022-07-13 18:21:27.455 10.9s 10.1s 61.2% 218.9 MB 355.4 MB 18.3 MB 434.9 KB +30 9c/909d2f 12178 seq_around_insertion (1) COMPLETED 0 2022-07-13 18:21:38.315 5.2s 4.5s 46.2% 122.6 MB 247.7 MB 17.2 MB 208.5 KB +32 0a/d92a3c 12557 random_insertion (1) COMPLETED 0 2022-07-13 18:21:43.506 8.9s 8.2s 57.6% 351.9 MB 487.6 MB 30 MB 1.2 MB +33 3b/051e3e 13098 seq_around_insertion (2) COMPLETED 0 2022-07-13 18:21:52.395 5.2s 4.4s 45.2% 122.4 MB 247.5 MB 17.2 MB 143 KB +34 68/10705c 13490 dup_insertion_and_logo (1) COMPLETED 0 2022-07-13 18:21:57.596 11.6s 10.9s 65.8% 270.4 MB 406.8 MB 16.7 MB 586.2 KB +35 55/ebbde4 14219 extract_seq (1) COMPLETED 0 2022-07-13 18:22:09.185 1.7s 781ms 18.7% 5.9 MB 50.4 MB 9.1 MB 4.5 MB +39 8b/4e5ce1 14438 base_freq (2) COMPLETED 0 2022-07-13 18:22:10.870 1.5s 87ms 12.4% 0 0 281.9 KB 18.9 KB +38 29/443a5b 14493 base_freq (1) COMPLETED 0 2022-07-13 18:22:10.914 1.5s 92ms 9.4% 0 0 279.8 KB 16.8 KB +41 7c/b40174 14544 base_freq (4) COMPLETED 0 2022-07-13 18:22:10.934 1.7s 96ms 11.5% 0 0 282 KB 19 KB +40 cf/abb905 14579 base_freq (3) COMPLETED 0 2022-07-13 18:22:10.953 1.7s 98ms 11.5% 0 0 282.7 KB 19.7 KB +36 54/bcf3c8 14414 plot_insertion (1) COMPLETED 0 2022-07-13 18:22:10.847 4m 2s 4m 1s 36.1% 395.3 MB 546.9 MB 44.8 MB 22.6 MB +37 2d/a978bc 21252 extract_seq (2) COMPLETED 0 2022-07-13 18:26:12.416 1.3s 452ms 20.6% 5.8 MB 50.2 MB 9 MB 4.5 MB +48 40/f4cbe7 21560 base_freq (6) COMPLETED 0 2022-07-13 18:26:13.836 1.5s 36ms 8.4% 0 0 176.4 KB 2.8 KB +50 bd/ea2f89 21598 base_freq (8) COMPLETED 0 2022-07-13 18:26:13.862 1.7s 47ms 10.8% 0 0 180.5 KB 6.9 KB +49 3d/46265a 21632 base_freq (7) COMPLETED 0 2022-07-13 18:26:13.881 1.6s 46ms 10.9% 0 0 178.7 KB 5.1 KB +46 f8/483905 21480 goalign (1) COMPLETED 0 2022-07-13 18:26:13.778 1.9s 767ms 15.1% 5 MB 697.5 MB 128.1 KB 347.8 KB +47 e8/a25744 22144 base_freq (5) COMPLETED 0 2022-07-13 18:26:15.376 1.1s 29ms 13.5% 0 0 182.5 KB 8.9 KB +51 46/95072b 22422 report2 COMPLETED 0 2022-07-13 18:26:17.485 923ms 23ms 12.9% 0 0 132.1 KB 2.4 KB +43 f4/73666f 21470 logo (2) COMPLETED 0 2022-07-13 18:26:13.756 6.9s 5.8s 46.6% 171.5 MB 310.1 MB 13.8 MB 995.1 KB +42 1f/497ee9 22727 logo (1) COMPLETED 0 2022-07-13 18:26:20.674 6s 5.3s 50.5% 165.6 MB 305.1 MB 13.8 MB 845.7 KB +44 6f/524be5 23161 logo (3) COMPLETED 0 2022-07-13 18:26:26.705 6.1s 5.4s 51.0% 169.3 MB 307.5 MB 13.8 MB 875.2 KB +45 6b/1f0539 23593 logo (4) COMPLETED 0 2022-07-13 18:26:32.765 6.1s 5.3s 50.8% 169.2 MB 307.4 MB 13.8 MB 865.8 KB +52 53/48195c 24028 global_logo (1) COMPLETED 0 2022-07-13 18:26:38.845 6.4s 5.7s 53.5% 170 MB 307.2 MB 13.8 MB 847 KB +53 8b/8edeb9 24470 global_logo (2) COMPLETED 0 2022-07-13 18:26:45.275 6.5s 5.8s 53.2% 171.8 MB 308.8 MB 13.8 MB 967.6 KB +54 b2/9012a5 24917 print_report (1) COMPLETED 0 2022-07-13 18:26:52.365 10.7s 9.9s 43.6% 300.4 MB 1 TB 51.8 MB 26.2 MB diff --git a/example_of_result/20220120_test_1649703168/reports/plot_cov_report.txt b/example_of_result/20220120_test_1657729206/reports/plot_cov_report.txt similarity index 95% rename from example_of_result/20220120_test_1649703168/reports/plot_cov_report.txt rename to example_of_result/20220120_test_1657729206/reports/plot_cov_report.txt index b645fd8ce4883759c1355cdf8fecb3493e1345b5..e619b361a764cadee0d27a9c6192cf9035613faf 100644 --- a/example_of_result/20220120_test_1649703168/reports/plot_cov_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/plot_cov_report.txt @@ -12,7 +12,7 @@ -2022-04-09 15:18:43 +2022-07-13 16:21:32 @@ -31,12 +31,12 @@ -END TIME: 2022-04-09 15:18:54 +END TIME: 2022-07-13 16:21:37 -TOTAL TIME LAPSE: 12S +TOTAL TIME LAPSE: 6S @@ -64,9 +64,9 @@ erase.objects TRUE erase.graphs TRUE script plot_coverage run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_q20_dup_mini,read_nb_after,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,cute_little_R_functions.R,plot_coverage_report.txt -cov test.fastq2_q20_dup_mini -read_nb read_nb_after +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_q20_nodup_mini,dup_read_nb,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,cute_little_R_functions.R,plot_coverage_report.txt +cov test.fastq2_q20_nodup_mini +read_nb dup_read_nb ori_coord 2320711 2320942 ter_coord 4627368 4627400 color_coverage 5 @@ -121,9 +121,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:18:54 +TIME: 2022-07-13 16:21:37 -TOTAL TIME LAPSE: 12S +TOTAL TIME LAPSE: 6S @@ -141,7 +141,7 @@ TOTAL TIME LAPSE: 12S -2022-04-09 15:18:16 +2022-07-13 16:21:21 @@ -160,12 +160,12 @@ TOTAL TIME LAPSE: 12S -END TIME: 2022-04-09 15:18:28 +END TIME: 2022-07-13 16:21:27 -TOTAL TIME LAPSE: 12S +TOTAL TIME LAPSE: 6S @@ -193,9 +193,9 @@ erase.objects TRUE erase.graphs TRUE script plot_coverage run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_bowtie2_mini,read_nb_before,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,cute_little_R_functions.R,plot_coverage_report.txt -cov test.fastq2_bowtie2_mini -read_nb read_nb_before +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_q20_dup_mini,read_nb_after,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,cute_little_R_functions.R,plot_coverage_report.txt +cov test.fastq2_q20_dup_mini +read_nb read_nb_after ori_coord 2320711 2320942 ter_coord 4627368 4627400 color_coverage 5 @@ -250,9 +250,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:18:28 +TIME: 2022-07-13 16:21:27 -TOTAL TIME LAPSE: 12S +TOTAL TIME LAPSE: 6S @@ -270,7 +270,7 @@ TOTAL TIME LAPSE: 12S -2022-04-09 15:19:08 +2022-07-13 16:21:10 @@ -289,12 +289,12 @@ TOTAL TIME LAPSE: 12S -END TIME: 2022-04-09 15:19:20 +END TIME: 2022-07-13 16:21:16 -TOTAL TIME LAPSE: 12S +TOTAL TIME LAPSE: 6S @@ -322,9 +322,9 @@ erase.objects TRUE erase.graphs TRUE script plot_coverage run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_q20_nodup_mini,dup_read_nb,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,cute_little_R_functions.R,plot_coverage_report.txt -cov test.fastq2_q20_nodup_mini -read_nb dup_read_nb +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/plot_coverage.R,--args,test.fastq2_bowtie2_mini,read_nb_before,2320711 2320942,4627368 4627400,5,Ecoli Genome (bp),test.fastq2,cute_little_R_functions.R,plot_coverage_report.txt +cov test.fastq2_bowtie2_mini +read_nb read_nb_before ori_coord 2320711 2320942 ter_coord 4627368 4627400 color_coverage 5 @@ -379,9 +379,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:19:20 +TIME: 2022-07-13 16:21:16 -TOTAL TIME LAPSE: 12S +TOTAL TIME LAPSE: 6S diff --git a/example_of_result/20220120_test_1649703168/reports/plot_fivep_filtering_stat_report.txt b/example_of_result/20220120_test_1657729206/reports/plot_fivep_filtering_stat_report.txt similarity index 95% rename from example_of_result/20220120_test_1649703168/reports/plot_fivep_filtering_stat_report.txt rename to example_of_result/20220120_test_1657729206/reports/plot_fivep_filtering_stat_report.txt index a5b3b87b4eefeb40d28da2b7088e427d1d6a91e9..3c3cb1b8ad781ed6010e0a4f61d935e9da27bf26 100644 --- a/example_of_result/20220120_test_1649703168/reports/plot_fivep_filtering_stat_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/plot_fivep_filtering_stat_report.txt @@ -12,7 +12,7 @@ -2022-04-09 15:16:37 +2022-07-13 16:20:31 @@ -31,12 +31,12 @@ -END TIME: 2022-04-09 15:16:49 +END TIME: 2022-07-13 16:20:38 -TOTAL TIME LAPSE: 12S +TOTAL TIME LAPSE: 7S @@ -116,9 +116,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:16:49 +TIME: 2022-07-13 16:20:38 -TOTAL TIME LAPSE: 12S +TOTAL TIME LAPSE: 7S diff --git a/example_of_result/20220120_test_1649703168/reports/plot_insertion_report.txt b/example_of_result/20220120_test_1657729206/reports/plot_insertion_report.txt similarity index 99% rename from example_of_result/20220120_test_1649703168/reports/plot_insertion_report.txt rename to example_of_result/20220120_test_1657729206/reports/plot_insertion_report.txt index 482a02780195c52d09d4a190fff35c506abeaa0c..81e1c72663afd52ab00ec0aba55673e8f50547dc 100644 --- a/example_of_result/20220120_test_1649703168/reports/plot_insertion_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/plot_insertion_report.txt @@ -12,7 +12,7 @@ -2022-04-11 18:53:09 +2022-07-13 16:22:16 @@ -512,7 +512,7 @@ LINES REPLACED IN THE GENE OBJECT: -PARALLELIZATION INITIATED AT: 2022-04-11 18:56:05 +PARALLELIZATION INITIATED AT: 2022-07-13 16:25:11 @@ -1668,12 +1668,12 @@ NUMBER OF INSERTIONS IN REANNOTATED res3 FILE (NORMALIZATION TO MAX 1): -END TIME: 2022-04-11 18:57:03 +END TIME: 2022-07-13 16:26:11 -TOTAL TIME LAPSE: 59S +TOTAL TIME LAPSE: 1M 0S @@ -1767,9 +1767,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-11 18:57:03 +TIME: 2022-07-13 16:26:11 -TOTAL TIME LAPSE: 59S +TOTAL TIME LAPSE: 1M 0S diff --git a/example_of_result/20220120_test_1649703168/reports/plot_read_length_report.txt b/example_of_result/20220120_test_1657729206/reports/plot_read_length_report.txt similarity index 95% rename from example_of_result/20220120_test_1649703168/reports/plot_read_length_report.txt rename to example_of_result/20220120_test_1657729206/reports/plot_read_length_report.txt index 9c56e3bef0525584139b95c127af4e404c830833..e545a7b5cb2d24d42825b1daa29a3019f856658d 100644 --- a/example_of_result/20220120_test_1649703168/reports/plot_read_length_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/plot_read_length_report.txt @@ -12,7 +12,7 @@ -2022-04-09 15:17:03 +2022-07-13 16:20:43 @@ -31,12 +31,12 @@ -END TIME: 2022-04-09 15:17:18 +END TIME: 2022-07-13 16:20:50 -TOTAL TIME LAPSE: 14S +TOTAL TIME LAPSE: 7S @@ -118,9 +118,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:17:18 +TIME: 2022-07-13 16:20:50 -TOTAL TIME LAPSE: 14S +TOTAL TIME LAPSE: 7S diff --git a/example_of_result/20220120_test_1649703168/reports/print_report.txt b/example_of_result/20220120_test_1657729206/reports/print_report.txt similarity index 95% rename from example_of_result/20220120_test_1649703168/reports/print_report.txt rename to example_of_result/20220120_test_1657729206/reports/print_report.txt index d7ba680ccc1ca3e4493bfede49b71df2c37f46b5..730769375579dc83f45357b103399f0cc174e234 100644 --- a/example_of_result/20220120_test_1649703168/reports/print_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/print_report.txt @@ -12,7 +12,7 @@ -2022-04-11 18:57:09 +2022-07-13 16:26:56 @@ -31,12 +31,12 @@ -END TIME: 2022-04-11 18:57:14 +END TIME: 2022-07-13 16:27:02 -TOTAL TIME LAPSE: 5S +TOTAL TIME LAPSE: 6S @@ -114,9 +114,9 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-11 18:57:14 +TIME: 2022-07-13 16:27:02 -TOTAL TIME LAPSE: 5S +TOTAL TIME LAPSE: 6S diff --git a/example_of_result/20220120_test_1649703168/reports/q20_report.txt b/example_of_result/20220120_test_1657729206/reports/q20_report.txt similarity index 100% rename from example_of_result/20220120_test_1649703168/reports/q20_report.txt rename to example_of_result/20220120_test_1657729206/reports/q20_report.txt diff --git a/example_of_result/20220120_test_1649703168/reports/random_insertion_report.txt b/example_of_result/20220120_test_1657729206/reports/random_insertion_report.txt similarity index 98% rename from example_of_result/20220120_test_1649703168/reports/random_insertion_report.txt rename to example_of_result/20220120_test_1657729206/reports/random_insertion_report.txt index 7150bfae31d6e1a7a681160b5a9d1a9a5d95bd7c..6e13623e0cbecbda8f4ca1790bff87c97abe0767 100644 --- a/example_of_result/20220120_test_1649703168/reports/random_insertion_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/random_insertion_report.txt @@ -12,7 +12,7 @@ -2022-04-11 17:51:02 +2022-07-13 16:21:48 @@ -131,7 +131,7 @@ random: -END TIME: 2022-04-11 17:51:06 +END TIME: 2022-07-13 16:21:52 @@ -221,7 +221,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-11 17:51:06 +TIME: 2022-07-13 16:21:52 TOTAL TIME LAPSE: 4S diff --git a/example_of_result/20220120_test_1649703168/reports/report.rmd b/example_of_result/20220120_test_1657729206/reports/report.rmd similarity index 95% rename from example_of_result/20220120_test_1649703168/reports/report.rmd rename to example_of_result/20220120_test_1657729206/reports/report.rmd index 3d54215a177d7d534c88c09364008a9d982e8b0b..fe7d0bcc2c37b177a860b958e044d5513207c391 100644 --- a/example_of_result/20220120_test_1649703168/reports/report.rmd +++ b/example_of_result/20220120_test_1657729206/reports/report.rmd @@ -32,7 +32,7 @@ Ratio: AlienTrimmer main options: -k 10 -l 30 -m 5 -q 20 -p 0 (Phred+33) / 26 alien sequence(s) / 810 k-mers (k=10) -<br />[00:02] 8,932 reads processed: 4,767 trimmed 223 removed +<br />[00:00] 8,932 reads processed: 4,767 trimmed 223 removed <br /><br />AlienTrimmer also removes reads according to quality criteria Number of sequence before trimming: 8,932 @@ -226,15 +226,15 @@ Analysis complete for test.fastq2_5pAtccRm.fq Time loading reference: 00:00:00 <br />Time loading forward index: 00:00:00 <br />Time loading mirror index: 00:00:00 -<br />Multiseed full-index search: 00:00:01 +<br />Multiseed full-index search: 00:00:00 <br />3742 reads; of these: <br /> 3742 (100.00%) were unpaired; of these: <br /> 1240 (33.14%) aligned 0 times <br /> 2308 (61.68%) aligned exactly 1 time <br /> 194 (5.18%) aligned >1 times <br />66.86% overall alignment rate -<br />Time searching: 00:00:01 -<br />Overall time: 00:00:01 +<br />Time searching: 00:00:00 +<br />Overall time: 00:00:00 <br /><br /> @@ -403,7 +403,7 @@ In each sequence of length 40 <br />position 21 corresponds to the first nucleot </center> -{width=600} +{width=600} </center> @@ -418,7 +418,7 @@ In each sequence of length 40 <br />position 21 corresponds to the first nucleot </center> -{width=600} +{width=600} </center> @@ -433,7 +433,7 @@ In each sequence of length 40 <br />position 21 corresponds to the first nucleot </center> -{width=600} +{width=600} </center> @@ -464,6 +464,11 @@ In each sequence of length 40 <br />position 21 corresponds to the first nucleot +Warning: in these files, the position indicated is the first nucleotide of the genomic part of the read (the W of the 5'GWT3' consensus site). This means that in FORWARD, the cutting site is before the position. But in REVERSE, the cutting site is after the position. + + + + See the [test.fastq2_q20_nodup_annot.pos](./files/test.fastq2_q20_nodup_annot.pos) and [test.fastq2_q20_nodup_annot.freq](./files/test.fastq2_q20_nodup_annot.freq) files @@ -494,6 +499,11 @@ The reverse motif is: A[AT]C +Warning: the position indicated is the first nucleotide of the genomic part of the read (the W of the 5'GWT3' consensus site). This means that in FORWARD, the cutting site is before the position. But in REVERSE, the cutting site is after the position. + + + + Beginning of the motif positions in the forward strand: @@ -1209,11 +1219,11 @@ Full .nextflow.log is in: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br | Variable | Value | | :-- | :-- | | Project<br />(empty means no .git folder where the main.nf file is present) | loot https://gitlab.pasteur.fr/gmillot/14985_loot (fetch) | # works only if the main script run is located in a directory that has a .git folder, i.e., that is connected to a distant repo -| Git info<br />(empty means no .git folder where the main.nf file is present) | v8.5.0-dirty | # idem. Provide the small commit number of the script and nextflow.config used in the execution -| Cmd line | nextflow run main.nf -resume | +| Git info<br />(empty means no .git folder where the main.nf file is present) | v8.6.0-dirty | # idem. Provide the small commit number of the script and nextflow.config used in the execution +| Cmd line | nextflow run main.nf -c nextflow.config | | execution mode | local | | Manifest's pipeline version | null | -| result path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649703168 | +| result path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1657729206 | | nextflow version | 21.04.2 | @@ -1238,7 +1248,7 @@ Full .nextflow.log is in: /mnt/c/Users/Gael/Documents/Git_projects/14985_loot<br | Name | Description | Value | | :-- | :-- | :-- | -| out_path | output folder path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1649703168 | +| out_path | output folder path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/results/20220120_test_1657729206 | | in_path | input folder path | /mnt/c/Users/Gael/Documents/Git_projects/14985_loot/dataset | diff --git a/example_of_result/20220120_test_1649703168/reports/seq_around_insertion_report.txt b/example_of_result/20220120_test_1657729206/reports/seq_around_insertion_report.txt similarity index 97% rename from example_of_result/20220120_test_1649703168/reports/seq_around_insertion_report.txt rename to example_of_result/20220120_test_1657729206/reports/seq_around_insertion_report.txt index 1828cf73e3c3cf190f06ae8b9a601a62bd5210a7..c7c2207da2eaa2a89bd3b2e3c1d000cc4b4b548e 100644 --- a/example_of_result/20220120_test_1649703168/reports/seq_around_insertion_report.txt +++ b/example_of_result/20220120_test_1657729206/reports/seq_around_insertion_report.txt @@ -12,7 +12,7 @@ -2022-04-09 15:19:35 +2022-07-13 16:21:57 @@ -31,7 +31,7 @@ -END TIME: 2022-04-09 15:19:35 +END TIME: 2022-07-13 16:21:57 @@ -64,12 +64,12 @@ erase.objects TRUE erase.graphs TRUE script seq_around_insertion run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/seq_around_insertion.R,--args,test.fastq2_q20_nodup_selected_if_dup.pos,2320711 2320942,4627368 4627400,20,test.fastq2_q20_nodup_selected_if_dup,cute_little_R_functions.R,seq_around_insertion_report.txt -pos test.fastq2_q20_nodup_selected_if_dup.pos +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/seq_around_insertion.R,--args,test.fastq2_q20_dup_selected_if_dup.pos,2320711 2320942,4627368 4627400,20,test.fastq2_q20_dup_selected_if_dup,cute_little_R_functions.R,seq_around_insertion_report.txt +pos test.fastq2_q20_dup_selected_if_dup.pos ori_coord 2320711 2320942 ter_coord 4627368 4627400 insertion_dist 20 -file_name test.fastq2_q20_nodup_selected_if_dup +file_name test.fastq2_q20_dup_selected_if_dup cute cute_little_R_functions.R log seq_around_insertion_report.txt @@ -118,7 +118,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:19:35 +TIME: 2022-07-13 16:21:57 TOTAL TIME LAPSE: 0S @@ -138,7 +138,7 @@ TOTAL TIME LAPSE: 0S -2022-04-09 15:20:15 +2022-07-13 16:21:43 @@ -157,7 +157,7 @@ TOTAL TIME LAPSE: 0S -END TIME: 2022-04-09 15:20:15 +END TIME: 2022-07-13 16:21:43 @@ -190,12 +190,12 @@ erase.objects TRUE erase.graphs TRUE script seq_around_insertion run.way SCRIPT -command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/seq_around_insertion.R,--args,test.fastq2_q20_dup_selected_if_dup.pos,2320711 2320942,4627368 4627400,20,test.fastq2_q20_dup_selected_if_dup,cute_little_R_functions.R,seq_around_insertion_report.txt -pos test.fastq2_q20_dup_selected_if_dup.pos +command /usr/lib/R/bin/exec/R,--no-echo,--no-restore,--file=/mnt/c/Users/Gael/Documents/Git_projects/14985_loot/bin/seq_around_insertion.R,--args,test.fastq2_q20_nodup_selected_if_dup.pos,2320711 2320942,4627368 4627400,20,test.fastq2_q20_nodup_selected_if_dup,cute_little_R_functions.R,seq_around_insertion_report.txt +pos test.fastq2_q20_nodup_selected_if_dup.pos ori_coord 2320711 2320942 ter_coord 4627368 4627400 insertion_dist 20 -file_name test.fastq2_q20_dup_selected_if_dup +file_name test.fastq2_q20_nodup_selected_if_dup cute cute_little_R_functions.R log seq_around_insertion_report.txt @@ -244,7 +244,7 @@ loaded via a namespace (and not attached): ################################ JOB END -TIME: 2022-04-09 15:20:15 +TIME: 2022-07-13 16:21:43 TOTAL TIME LAPSE: 0S diff --git a/main.nf b/main.nf index 5a62214a72c79ba7678aa80e92ee92c0e764e554..f89a89c584201b27e7be17002f101bb0b5a889bd 100755 --- a/main.nf +++ b/main.nf @@ -638,7 +638,7 @@ process insertion { // section 24.7 of the labbook 20200707 """ if [[ ${bam} == "${file_name}_q20_nodup.bam" ]] ; then echo -e "\\n\\n<br /><br />\\n\\n### Insertion positions\\n\\n" > report.rmd - echo -e "\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3\' end of the read as insertion site and not the 5\' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](./reports/insertion_report.txt) file in the reports folders for details\\n\\n" >> report.rmd + echo -e "\\n\\nOne of the step is to recover positions of reverse reads (16), that use the 3' end of the read as insertion site and not the 5' part as with forward reads (0).\\nIt consist in the redefinition of POS according to FLAG in the bam file. See the [insertion_report.txt](./reports/insertion_report.txt) file in the reports folders for details\\n\\n" >> report.rmd fi # extraction of bam column 2, 4 and 10, i.e., FLAG, POS and SEQ @@ -649,7 +649,7 @@ process insertion { // section 24.7 of the labbook 20200707 echo -e "\\n\\nExtraction of the FLAG (containing the read orientation) the POS and the SEQ of the bams\\nHeader is the 1) sens of insersion (0 or 16) and 2) insertion site position\\n\\n" >> insertion_report.txt # redefinition of POS according to FLAG awk 'BEGIN{FS="\t" ; OFS="" ; ORS=""}{lineKind=(NR-1)%2}lineKind==0{orient=(\$1~">16") ; if(orient){var1 = \$1 ; var2 = \$2}else{print \$0"\\n"}}lineKind==1{if(orient){var3 = length(\$0) ; var4 = var2 + var3 - 1 ; print var1"\\t"var4"\\n"\$0"\\n"}else{print \$0"\\n"}}' tempo > ${file_name}_reorient.fasta - echo -e "\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3\\' end of the read as insertion site and not the 5\\' part as with forward reads (0)\\n\\n" >> insertion_report.txt + echo -e "\\n\\nFinal fasta file\\n\\nPositions of reverse reads (16) use the 3' end of the read as insertion site and not the 5' part as with forward reads (0)\\n\\n" >> insertion_report.txt cat ${file_name}_reorient.fasta | head -60 | tail -20 >> insertion_report.txt awk '{lineKind=(NR-1)%2}lineKind==0{gsub(/>/, "", \$1) ; print \$0}' ${file_name}_reorient.fasta > ${bam.baseName}.pos echo -e "\\n\\nFinal pos file\\n\\n" >> insertion_report.txt @@ -952,6 +952,7 @@ process report3 { """ echo -e "\\n\\n<br /><br />\\n\\n### Final insertion site files\\n\\n" > report.rmd + echo -e "\\n\\nWarning: in these files, the position indicated is the first nucleotide of the genomic part of the read (the W of the 5'GWT3' consensus site). This means that in FORWARD, the cutting site is before the position. But in REVERSE, the cutting site is after the position.\\n\\n" >> report.rmd echo -e "\\n\\nSee the [${pos.baseName}.pos](./files/${pos.baseName}.pos) and [${pos.baseName}.freq](./files/${pos.baseName}.freq) files\\n\\n" >> report.rmd pos_nb=\$(( \$(wc -l ${pos} | cut -f1 -d' ') - 1)) # -1 because first line is the header pos_uniq_nb=\$(( \$(sort -u ${pos} | wc -l | cut -f1 -d' ') - 1)) # -1 because first line is the header @@ -997,7 +998,7 @@ process motif { // 43 of the labbook 20201209 cat ${ref} | sed '1d' | grep -Ebo '[ACGT]' > motif_fw.pos cat ${ref} | sed '1d' | grep -Ebo '[ACGT]' > motif_rev.pos fi - echo -e "\nINDICATED POSITIONS IN FILES START AT ZERO AND CORRESPOND TO THE FIRST LEFT BASE OF THE MOTIF\n" + echo -e "\\n\\nWarning: the position indicated is the first nucleotide of the genomic part of the read (the W of the 5'GWT3' consensus site). This means that in FORWARD, the cutting site is before the position. But in REVERSE, the cutting site is after the position.\\n\\n" >> report.rmd motif.R "motif_fw.pos" "motif_rev.pos" "${ori_coord}" "${ter_coord}" "${genome_size}" "${motif_fw}" "${motif_rev}" "${cute_file}" "motif_report.txt" "report.rmd" """ diff --git a/nextflow.config b/nextflow.config index 8e518669f5e7beb06dc75e73fc47bf61c005833b..cd6733931b3ad4fd05ae93c4604d4744b1292439 100755 --- a/nextflow.config +++ b/nextflow.config @@ -90,6 +90,7 @@ result_folder_name="20220120_test" //// end general variables //// slurm variables +// see https://confluence.pasteur.fr/pages/viewpage.action?pageId=69304504 fastqueue = 'common,dedicated' // fast for -p option of slurm. Example: fastqueue = 'common,dedicated'. Example: fastqueue = 'hubbioit' fastqos= '--qos=fast' // fast for --qos option of slurm. Example: fastqos= '--qos=fast' normalqueue = 'hubbioit' // normal for -p option of slurm. Example: normalqueue = 'bioevo'