cute_little_R_functions.R 978 KB
Newer Older
Gael  MILLOT's avatar
Gael MILLOT committed
1
2
################################################################
##                                                            ##
Gael's avatar
Gael committed
3
##     CUTE FUNCTIONS                                         ##
Gael  MILLOT's avatar
Gael MILLOT committed
4
5
6
7
8
##                                                            ##
##     Gael A. Millot                                         ##
##                                                            ##
##                                                            ##
################################################################
Gael  MILLOT's avatar
Gael MILLOT committed
9
10


11
# color palette: see https://github.com/EmilHvitfeldt/r-color-palettes
Gael  MILLOT's avatar
Gael MILLOT committed
12
# https://usethis.r-lib.org/ and usethat also
13
# change everywhere: if( ! is.null(arg.check)){
Gael  MILLOT's avatar
Gael MILLOT committed
14
# BEWARE: do not forget to save the modifications in the .R file (through RSTUDIO for indentation)
Gael's avatar
tempo    
Gael committed
15
# update examples with good comment, as in fun_gg_boxplot
16
# Make a "first round" check for each function if required
Gael  MILLOT's avatar
Gael MILLOT committed
17
# Update all argument description, saying, character vector, etc.
Gael  MILLOT's avatar
Gael MILLOT committed
18
# check all the functions using fun_test
19
# check all(, na.rm = TRUE) and any(, na.rm = TRUE)
20
# fun_mat_fill does not recognize half matrix anymore
Gael  MILLOT's avatar
Gael MILLOT committed
21
22
23
24
25
# Templates: https://prettydoc.statr.me/themes.html
# # package: http://r-pkgs.had.co.nz/
# https://pkgdown.r-lib.org/
# https://rdrr.io/github/gastonstat/cointoss/
# doc:https://www.sphinx-doc.org/en/master/man/sphinx-autogen.html considering that https://www.ericholscher.com/blog/2014/feb/11/sphinx-isnt-just-for-python/
Gael  MILLOT's avatar
Gael MILLOT committed
26
27
28
# https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html
# https://docs.gitlab.com/ee/user/project/pages/
# also register into biotools
Gael  MILLOT's avatar
Gael MILLOT committed
29
# For heatmap: see https://bioinfo-fr.net/creer-des-heatmaps-a-partir-de-grosses-matrices-en-r
Gael  MILLOT's avatar
Gael MILLOT committed
30

Gael  MILLOT's avatar
Gael MILLOT committed
31

Gael  MILLOT's avatar
Gael MILLOT committed
32
################################ OUTLINE ################################
Gael  MILLOT's avatar
Gael MILLOT committed
33
34


Gael  MILLOT's avatar
Gael MILLOT committed
35
36
################ Object analysis    2
######## fun_check() #### check class, type, length, etc., of objects   2
Gael's avatar
Gael committed
37
38
39
40
41
######## fun_secu() #### verif that local variables are not present in other envs   11
######## fun_info() #### recover object information 13
######## fun_head() #### head of the left or right of big 2D objects    15
######## fun_tail() #### tail of the left or right of big 2D objects    16
######## fun_comp_1d() #### comparison of two 1D datasets (vectors, factors, 1D tables) 17
42
######## fun_comp_2d() #### comparison of two 2D datasets (row & col names, dimensions, etc.)   22
Gael's avatar
Gael committed
43
######## fun_comp_list() #### comparison of two lists   29
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
######## fun_test() #### test combinations of argument values of a function and return errors (and graphs)  32
################ Object modification    47
######## fun_name_change() #### check a vector of character strings and modify any string if present in another vector  47
######## fun_df_remod() #### remodeling a data frame to have column name as a qualitative values and vice-versa 48
######## fun_round() #### rounding number if decimal present    51
######## fun_mat_rotate() #### 90° clockwise matrix rotation    53
######## fun_mat_num2color() #### convert a numeric matrix into hexadecimal color matrix    54
######## fun_mat_op() #### assemble several matrices with operation 58
######## fun_mat_inv() #### return the inverse of a square matrix   60
######## fun_mat_fill() #### fill the empty half part of a symmetric square matrix  62
######## fun_permut() #### progressively breaks a vector order  65
######## fun_slide() #### return a computation made on a vector using a sliding window  76
################ Graphics management    85
######## fun_width() #### window width depending on classes to plot 85
######## fun_open() #### open a GUI or pdf graphic window   87
######## fun_prior_plot() #### set graph param before plotting (erase axes for instance)    91
######## fun_scale() #### select nice label numbers when setting number of ticks on an axis 95
######## fun_inter_ticks() #### define coordinates of secondary ticks   100
######## fun_post_plot() #### set graph param after plotting (axes redesign for instance)   105
######## fun_close() #### close specific graphic windows    117
################ Standard graphics  118
######## fun_empty_graph() #### text to display for empty graphs    118
################ gg graphics    120
######## fun_gg_palette() #### ggplot2 default color palette    120
######## fun_gg_just() #### ggplot2 justification of the axis labeling, depending on angle  122
######## fun_gg_get_legend() #### get the legend of ggplot objects  127
######## fun_gg_point_rast() #### ggplot2 raster scatterplot layer  129
######## fun_gg_boxplot() #### ggplot2 boxplot + background dots if required    133
######## fun_gg_scatter() #### ggplot2 scatterplot + lines (up to 6 overlays totally)   133
######## fun_gg_heatmap() #### ggplot2 heatmap + overlaid mask if required  133
######## fun_gg_empty_graph() #### text to display for empty graphs 141
################ Graphic extraction 143
######## fun_trim() #### display values from a quantitative variable and trim according to defined cut-offs 143
######## fun_segmentation() #### segment a dot cloud on a scatterplot and define the dots from another cloud outside the segmentation   152
################ Import 187
######## fun_pack() #### check if R packages are present and import into the working environment    187
######## fun_python_pack() #### check if python packages are present    189
################ Print / Exporting results (text & tables)  192
######## fun_report() #### print string or data object into output file 192
######## fun_get_message() #### return error/warning/other messages of an expression (that can be exported) 195
Gael  MILLOT's avatar
Gael MILLOT committed
84
85


Gael  MILLOT's avatar
Gael MILLOT committed
86
################################ FUNCTIONS ################################
Gael  MILLOT's avatar
Gael MILLOT committed
87

Gael  MILLOT's avatar
Gael MILLOT committed
88
89
90
91
92
93
94

################ Object analysis


######## fun_check() #### check class, type, length, etc., of objects


95
# Check r_debugging_tools-v1.2.R OK
96
97
# Check fun_test() (see cute_checks.docx) Ok
# check manual: example to scan again
98
# clear to go Apollo
Gael's avatar
tempo    
Gael committed
99
fun_check <- function(
Gael's avatar
Gael committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    data, 
    class = NULL, 
    typeof = NULL, 
    mode = NULL, 
    length = NULL, 
    prop = FALSE, 
    double.as.integer.allowed = FALSE, 
    options = NULL, 
    all.options.in.data = FALSE, 
    na.contain = FALSE, 
    neg.values = TRUE, 
    print = FALSE, 
    data.name = NULL, 
    fun.name = NULL
Gael's avatar
tempo    
Gael committed
114
){
Gael's avatar
Gael committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    # AIM
    # check the class, type, mode and length of the data argument
    # mainly used to check the arguments of other functions
    # check also other kind of data parameters, is it a proportion? Is it type double but numbers without decimal part?
    # if options == NULL, then at least class or type or mode or length argument must be non null
    # if options is non null, then class, type and mode must be NULL, and length can be NULL or specified
    # WARNINGS
    # The function tests what is written in arguments, even if what is written is incoherent. For instance, fun_check(data = factor(1), class = "factor", mode = "character") will return a problem, and this, what ever the object tested in the data argument, because no object can be class "factor" and mode "character" (factors are class "factor" and mode "numeric")
    # Since R >= 4.0.0, class(matrix()) returns "matrix" "array", and not "matrix" alone as before. However, use argument class = "matrix" to check for matrix object (of class "matrix" "array" in R >= 4.0.0) and use argument class = "array" to check for array object (of class "array" in R >= 4.0.0)
    # ARGUMENTS
    # data: object to test
    # class: character string. Either one of the class() result (But see the warning section above) or "vector" or "ggplot2" (i.e., objects of class c("gg", "ggplot")) or NULL
    # typeof: character string. Either one of the typeof() result or NULL
    # mode: character string. Either one of the mode() result (for non vector object) or NULL
    # length: numeric value indicating the length of the object. Not considered if NULL
    # prop: logical. Are the numeric values between 0 and 1 (proportion)? If TRUE, can be used alone, without considering class, etc.
    # double.as.integer.allowed: logical. If TRUE, no error is reported if argument is set to typeof == "integer" or class == "integer", while the reality is typeof == "double" or class == "numeric" but the numbers strictly have zero as modulo (remainder of a division). This means that i <- 1 , which is typeof(i) -> "double" is considered as integer with double.as.integer.allowed = TRUE. WARNING: data%%1 == 0 but not isTRUE(all.equal(data%%1, 0)) is used here because the argument checks for integers stored as double (does not check for decimal numbers that are approximate integers)
    # options: a vector of character strings indicating all the possible option values for data
    # all.options.in.data: logical. If TRUE, all of the options must be present at least once in data, and nothing else. If FALSE, some or all of the options must be present in data, and nothing else. Ignored if options is NULL
    # na.contain: logical. Can data contain NA?
    # neg.values: logical. Are negative numeric values authorized? Warning: only considered if set to FALSE, to check for non negative values when class is set to "vector", "numeric", "matrix", "array", "data.frame", "table", or typeof is set to "double", "integer", or mode is set to "numeric". Ignored in other cases, notably with prop argument (which checks for values between 0 and 1 anyhow)
    # print: logical. Print the error message if $problem is TRUE? WARNING: set by default to FALSE, which facilitates the control of the error message output when using fun_check() inside functions. See the example section
    # data.name: character string indicating the name of the object to test. If NULL, use the name of the object assigned to the data argument
    # fun.name: character string indicating the name of the function checked (i.e., when fun_check() is used to check its argument). If non NULL, name will be added into the error message returned by fun_check()
    # RETURN
    # a list containing:
    # $problem: logical. Is there any problem detected?
    # $text: the problem detected
    # $fun.name: name of the checked parameter
    # REQUIRED PACKAGES
    # none
    # REQUIRED FUNCTIONS FROM CUTE_LITTLE_R_FUNCTION
    # none
    # EXAMPLES
    # test <- matrix(1:3) ; fun_check(data = test, print = TRUE, class = "vector", mode = "numeric")
    # DEBUGGING
    # data = expression(TEST) ; data.name = NULL ; class = "vector" ; typeof = NULL ; mode = NULL ; length = 1 ; prop = FALSE ; double.as.integer.allowed = FALSE ; options = NULL ; all.options.in.data = FALSE ; na.contain = FALSE ; neg.values = TRUE ; print = TRUE ; fun.name = NULL
    # function name: no used in this function for the error message, to avoid env colliding
    # argument checking
    # fun.name checked first because required next
    if( ! is.null(fun.name)){
        if( ! (all(class(fun.name) == "character") & length(fun.name) == 1)){
            tempo.cat <- paste0("ERROR IN fun_check(): THE fun.name ARGUMENT MUST BE A CHARACTER VECTOR OF LENGTH 1: ", paste(fun.name, collapse = " "))
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
    }
    # end fun.name checked first because required next
    # arg with no default values
    if(missing(data)){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": ARGUMENT data HAS NO DEFAULT VALUE AND REQUIRES ONE")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    # end arg with no default values
    # dealing with NA
    if(any(is.na(data.name)) | any(is.na(class)) | any(is.na(typeof)) | any(is.na(mode)) | any(is.na(length)) | any(is.na(prop)) | any(is.na(double.as.integer.allowed)) | any(is.na(all.options.in.data)) | any(is.na(na.contain)) | any(is.na(neg.values)) | any(is.na(print)) | any(is.na(fun.name))){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": NO ARGUMENT EXCEPT data AND options CAN HAVE NA VALUES\nPROBLEMATIC ARGUMENTS ARE: ", paste(c("data.name", "class", "typeof", "mode", "length", "prop", "double.as.integer.allowed", "all.options.in.data", "na.contain", "neg.values", "print", "fun.name")[c(any(is.na(data.name)), any(is.na(class)), any(is.na(typeof)), any(is.na(mode)), any(is.na(length)), any(is.na(prop)), any(is.na(double.as.integer.allowed)), any(is.na(all.options.in.data)), any(is.na(na.contain)), any(is.na(neg.values)), any(is.na(print)), any(is.na(fun.name)))], collapse = " "))
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    # end dealing with NA
    # dealing with NULL
    if(is.null(prop) | is.null(double.as.integer.allowed) | is.null(all.options.in.data) | is.null(na.contain) | is.null(neg.values) | is.null(print)){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": THESE ARGUMENTS\nprop\ndouble.as.integer.allowed\nall.options.in.data\nna.contain\nneg.values\nprint\nCANNOT BE NULL\nPROBLEMATIC ARGUMENTS ARE: ", paste(c("prop", "double.as.integer.allowed", "all.options.in.data", "na.contain", "neg.values", "print")[c(is.null(prop), is.null(double.as.integer.allowed), is.null(all.options.in.data), is.null(na.contain), is.null(neg.values), is.null(print))], collapse = " "))
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    # end dealing with NULL
    # dealing with logical
    # tested below
    # end dealing with logical
    if( ! is.null(data.name)){
        if( ! (length(data.name) == 1 & all(class(data.name) == "character"))){
            tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": data.name ARGUMENT MUST BE A SINGLE CHARACTER ELEMENT AND NOT ", paste(data.name, collapse = " "))
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
    }
    if(is.null(options) & is.null(class) & is.null(typeof) & is.null(mode) &  prop == FALSE & is.null(length)){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": AT LEAST ONE OF THE options, class, typeof, mode, prop, OR length ARGUMENT MUST BE SPECIFIED (I.E, TRUE FOR prop)")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    if( ! is.null(options) & ( ! is.null(class) | ! is.null(typeof) | ! is.null(mode) | prop == TRUE)){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": THE class, typeof, mode ARGUMENTS MUST BE NULL, AND prop FALSE, IF THE options ARGUMENT IS SPECIFIED\nTHE options ARGUMENT MUST BE NULL IF THE class AND/OR typeof AND/OR mode AND/OR prop ARGUMENT IS SPECIFIED")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    if( ! (all(class(neg.values) == "logical") & length(neg.values) == 1 & any(is.na(neg.values)) != TRUE)){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": THE neg.values ARGUMENT MUST BE TRUE OR FALSE ONLY")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    if(neg.values == FALSE & is.null(class) & is.null(typeof) & is.null(mode)){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": THE neg.values ARGUMENT CANNOT BE SWITCHED TO FALSE IF class, typeof AND mode ARGUMENTS ARE NULL")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    if( ! is.null(class)){
        if( ! all(class %in% c("vector", "logical", "integer", "numeric", "complex", "character", "matrix", "array", "data.frame", "list", "factor", "table", "expression", "name", "symbol", "function", "uneval", "environment", "ggplot2", "ggplot_built") & any(is.na(class)) != TRUE & length(class) == 1)){ # length == 1 here because of class(matrix()) since R4.0.0
            tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": class ARGUMENT MUST BE ONE OF THESE VALUE:\n\"vector\", \"logical\", \"integer\", \"numeric\", \"complex\", \"character\", \"matrix\", \"array\", \"data.frame\", \"list\", \"factor\", \"table\", \"expression\", \"name\", \"symbol\", \"function\", \"environment\", \"ggplot2\", \"ggplot_built\"")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
        if(neg.values == FALSE & ! any(class %in% c("vector", "numeric", "integer", "matrix", "array", "data.frame", "table"))){
            tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": class ARGUMENT CANNOT BE OTHER THAN \"vector\", \"numeric\", \"integer\", \"matrix\", \"array\", \"data.frame\", \"table\" IF neg.values ARGUMENT IS SWITCHED TO FALSE")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
    }
    if( ! is.null(typeof)){
        if( ! (all(typeof %in% c("logical", "integer", "double", "complex", "character", "list", "expression", "name", "symbol", "closure", "special", "builtin", "environment", "S4")) & length(typeof) == 1 & any(is.na(typeof)) != TRUE)){
            tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": typeof ARGUMENT MUST BE ONE OF THESE VALUE:\n\"logical\", \"integer\", \"double\", \"complex\", \"character\", \"list\", \"expression\", \"name\", \"symbol\", \"closure\", \"special\", \"builtin\", \"environment\", \"S4\"")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
        if(neg.values == FALSE & ! typeof %in% c("double", "integer")){
            tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": typeof ARGUMENT CANNOT BE OTHER THAN \"double\" OR \"integer\" IF neg.values ARGUMENT IS SWITCHED TO FALSE")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
    }
    if( ! is.null(mode)){
        if( ! (all(mode %in% c("logical", "numeric", "complex", "character", "list", "expression", "name", "symbol", "function", "environment", "S4")) & length(mode) == 1 & any(is.na(mode)) != TRUE)){
            tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": mode ARGUMENT MUST BE ONE OF THESE VALUE:\n\"logical\", \"numeric\", \"complex\", \"character\", \"list\", \"expression\", \"name\", \"symbol\", \"function\", \"environment\", \"S4\"")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
        if(neg.values == FALSE & mode != "numeric"){
            tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": mode ARGUMENT CANNOT BE OTHER THAN \"numeric\" IF neg.values ARGUMENT IS SWITCHED TO FALSE")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
    }
    if( ! is.null(length)){
        if( ! (is.numeric(length) & length(length) == 1 & ! grepl(length, pattern = "\\.") & any(is.na(length)) != TRUE)){
            tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": length ARGUMENT MUST BE A SINGLE INTEGER VALUE")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
    }
    if( ! (is.logical(prop) | (length(prop) == 1 & any(is.na(prop)) != TRUE))){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": prop ARGUMENT MUST BE TRUE OR FALSE ONLY")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }else if(prop == TRUE){
        if( ! is.null(class)){
            if( ! any(class %in% c("vector", "numeric", "matrix", "array", "data.frame", "table"))){
                tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": class ARGUMENT CANNOT BE OTHER THAN NULL, \"vector\", \"numeric\", \"matrix\", \"array\", \"data.frame\", \"table\" IF prop ARGUMENT IS TRUE") # not integer because prop
                stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
            }
        }
        if( ! is.null(mode)){
            if(mode != "numeric"){
                tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": mode ARGUMENT CANNOT BE OTHER THAN NULL OR \"numeric\" IF prop ARGUMENT IS TRUE")
                stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
            }
        }
        if( ! is.null(typeof)){
            if(typeof != "double"){
                tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": typeof ARGUMENT CANNOT BE OTHER THAN NULL OR \"double\" IF prop ARGUMENT IS TRUE")
                stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
            }
        }
    }
    if( ! (all(class(double.as.integer.allowed) == "logical") & length(double.as.integer.allowed) == 1 & any(is.na(double.as.integer.allowed)) != TRUE)){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": THE double.as.integer.allowed ARGUMENT MUST BE TRUE OR FALSE ONLY: ", paste(double.as.integer.allowed, collapse = " "))
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    if( ! (is.logical(all.options.in.data) & length(all.options.in.data) == 1 & any(is.na(all.options.in.data)) != TRUE)){
        tempo.cat <- paste0("ERROR IN fun_check()", ifelse(is.null(fun.name), "", paste0(" IN ", fun.name)), ": all.options.in.data ARGUMENT MUST BE A SINGLE LOGICAL VALUE (TRUE OR FALSE ONLY): ", paste(all.options.in.data, collapse = " "))
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    if( ! (all(class(na.contain) == "logical") & length(na.contain) == 1 & any(is.na(na.contain)) != TRUE)){
        tempo.cat <- paste0("ERROR IN fun_check(): THE na.contain ARGUMENT MUST BE TRUE OR FALSE ONLY: ", paste(na.contain, collapse = " "))
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    if( ! (all(class(print) == "logical") & length(print) == 1 & any(is.na(print)) != TRUE)){
        tempo.cat <- paste0("ERROR IN fun_check(): THE print ARGUMENT MUST BE TRUE OR FALSE ONLY: ", paste(print, collapse = " "))
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    # data.name and fun.name tested at the beginning
    # source("C:/Users/Gael/Documents/Git_versions_to_use/debugging_tools_for_r_dev-v1.2/r_debugging_tools-v1.2.R") ; eval(parse(text = str_basic_arg_check_dev)) # activate this line and use the function to check arguments status
    # end argument checking
    # main code
    if(is.null(data.name)){
        data.name <- deparse(substitute(data))
    }
    problem <- FALSE
    text <- paste0(ifelse(is.null(fun.name), "", paste0("IN ", fun.name, ": ")), "NO PROBLEM DETECTED FOR THE ", data.name, " PARAMETER")
    if( ! is.null(options)){
        text <- ""
        if( ! all(data %in% options, na.rm = TRUE)){
            problem <- TRUE
            text <- paste0(ifelse(is.null(fun.name), "ERROR", paste0("ERROR IN ", fun.name)), ": THE ", data.name, " PARAMETER MUST BE SOME OF THESE OPTIONS: ", paste(options, collapse = " "), "\nTHE PROBLEMATIC ELEMENTS OF ", data.name, " ARE: ", paste(unique(data[ ! (data %in% options)]), collapse = " "))
        }
        if(all.options.in.data == TRUE){
            if( ! all(options %in% data)){ # no need of na.rm = TRUE for all because %in% does not output NA
                problem <- TRUE
                text <- paste0(ifelse(text == "", "", paste0(text, "\n")), ifelse(is.null(fun.name), "ERROR", paste0("ERROR IN ", fun.name)), ": THE ", data.name, " PARAMETER MUST BE MADE OF ALL THESE OPTIONS: ", paste(options, collapse = " "), "\nTHE MISSING ELEMENTS OF THE options ARGUMENT ARE: ",  paste(unique(options[ ! (options %in% data)]), collapse = " "))
            }
        }
        if( ! is.null(length)){
            if(length(data) != length){
                problem <- TRUE
                text <- paste0(ifelse(text == "", "", paste0(text, "\n")), ifelse(is.null(fun.name), "ERROR", paste0("ERROR IN ", fun.name)), ": THE LENGTH OF ", data.name, " MUST BE ", length, " AND NOT ", length(data))
            }
        }
        if(text == ""){
            text <- paste0(ifelse(is.null(fun.name), "", paste0("IN ", fun.name, ": ")), "NO PROBLEM DETECTED FOR THE ", data.name, " PARAMETER")
        }
    }
    arg.names <- c("class", "typeof", "mode", "length")
    if( ! is.null(class)){
        if(class == "matrix"){ # because of class(matric()) since R4.0.0
            class <- c("matrix", "array")
        }else if(class == "factor" & all(class(data) %in% c("factor", "ordered"))){ # to deal with ordered factors
            class <- c("factor", "ordered")
        }
    }
    if(is.null(options)){
        for(i2 in 1:length(arg.names)){
            if( ! is.null(get(arg.names[i2], env = sys.nframe(), inherit = FALSE))){
                # script to execute
                tempo.script <- '
Gael  MILLOT's avatar
Gael MILLOT committed
324
325
326
problem <- TRUE ;
if(identical(text, paste0(ifelse(is.null(fun.name), "", paste0("IN ", fun.name, ": ")), "NO PROBLEM DETECTED FOR THE ", data.name, " PARAMETER"))){
text <- paste0(ifelse(is.null(fun.name), "ERROR", paste0("ERROR IN ", fun.name)), ": THE ", data.name, " PARAMETER MUST BE ") ;
Gael  MILLOT's avatar
Gael MILLOT committed
327
}else{
Gael  MILLOT's avatar
Gael MILLOT committed
328
text <- paste0(text, " AND ") ; 
Gael  MILLOT's avatar
Gael MILLOT committed
329
}
330
text <- paste0(text, toupper(arg.names[i2]), " ", if(all(get(arg.names[i2], env = sys.nframe(), inherit = FALSE) %in% c("matrix", "array"))){"matrix"}else if(all(get(arg.names[i2], env = sys.nframe(), inherit = FALSE) %in% c("factor", "ordered"))){"factor"}else{get(arg.names[i2], env = sys.nframe(), inherit = FALSE)})
Gael  MILLOT's avatar
Gael MILLOT committed
331
'
Gael's avatar
Gael committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
            # end script to execute
            if(typeof(data) == "double" & double.as.integer.allowed == TRUE & ((arg.names[i2] == "class" & all(get(arg.names[i2], env = sys.nframe(), inherit = FALSE) == "integer")) | (arg.names[i2] == "typeof" & all(get(arg.names[i2], env = sys.nframe(), inherit = FALSE) == "integer")))){
                if( ! all(data %% 1 == 0, na.rm = TRUE)){ # to check integers (use %%, meaning the remaining of a division): see the precedent line. isTRUE(all.equal(data%%1, rep(0, length(data)))) not used because we strictly need zero as a result
                    eval(parse(text = tempo.script)) # execute tempo.script
                }
            }else if( ! any(all(get(arg.names[i2], env = sys.nframe(), inherit = FALSE) %in% c("vector", "ggplot2"))) & ! all(eval(parse(text = paste0(arg.names[i2], "(data)"))) %in% get(arg.names[i2], env = sys.nframe(), inherit = FALSE))){ # test the four c("class", "typeof", "mode", "length") arguments with their corresponding function. No need of na.rm = TRUE for all because %in% does not output NA
                eval(parse(text = tempo.script)) # execute tempo.script
            }else if(arg.names[i2] == "class" & all(get(arg.names[i2], env = sys.nframe(), inherit = FALSE) == "vector") & ! (all(class(data) %in% "numeric") | all(class(data) %in% "integer") | all(class(data) %in% "character") | all(class(data) %in% "logical"))){ # test class == "vector". No need of na.rm = TRUE for all because %in% does not output NA
                eval(parse(text = tempo.script)) # execute tempo.script
            }else if(arg.names[i2] == "class" & all(get(arg.names[i2], env = sys.nframe(), inherit = FALSE) == "ggplot2") & ! all(class(data) %in% c("gg", "ggplot"))){ # test ggplot object
                eval(parse(text = tempo.script)) # execute tempo.script
            }
            }
        }
    }
Gael  MILLOT's avatar
Gael MILLOT committed
347
if(prop == TRUE){
Gael's avatar
Gael committed
348
349
350
351
352
353
354
355
356
    if(is.null(data) | any(data < 0 | data > 1, na.rm = TRUE)){
        problem <- TRUE
        if(identical(text, paste0(ifelse(is.null(fun.name), "", paste0("IN ", fun.name, ": ")), "NO PROBLEM DETECTED FOR THE ", data.name, " PARAMETER"))){
            text <- paste0(ifelse(is.null(fun.name), "ERROR", paste0("ERROR IN ", fun.name)), ": ")
        }else{
            text <- paste0(text, " AND ")
        }
        text <- paste0(text, "THE ", data.name, " PARAMETER MUST BE DECIMAL VALUES BETWEEN 0 AND 1")
    }
357
}
358
if(all(class(data) %in% "expression")){  # no need of na.rm = TRUE for all because %in% does not output NA
Gael's avatar
Gael committed
359
    data <- as.character(data) # to evaluate the presence of NA
Gael  MILLOT's avatar
Gael MILLOT committed
360
}
361
if(na.contain == FALSE & (mode(data) %in% c("logical", "numeric", "complex", "character", "list", "expression", "name", "symbol"))){ # before it was ! (class(data) %in% c("function", "environment"))
Gael's avatar
Gael committed
362
363
364
365
366
367
368
369
370
    if(any(is.na(data)) == TRUE){ # not on the same line because when data is class envir or function , do not like that
        problem <- TRUE
        if(identical(text, paste0(ifelse(is.null(fun.name), "", paste0("IN ", fun.name, ": ")), "NO PROBLEM DETECTED FOR THE ", data.name, " PARAMETER"))){
            text <- paste0(ifelse(is.null(fun.name), "ERROR", paste0("ERROR IN ", fun.name)), ": ")
        }else{
            text <- paste0(text, " AND ")
        }
        text <- paste0(text, "THE ", data.name, " PARAMETER CONTAINS NA WHILE NOT AUTHORIZED")
    }
Gael  MILLOT's avatar
Gael MILLOT committed
371
}
Gael  MILLOT's avatar
Gael MILLOT committed
372
if(neg.values == FALSE){
Gael's avatar
Gael committed
373
374
375
376
377
378
379
380
381
    if(any(data < 0, na.rm = TRUE)){
        problem <- TRUE
        if(identical(text, paste0(ifelse(is.null(fun.name), "", paste0("IN ", fun.name, ": ")), "NO PROBLEM DETECTED FOR THE ", data.name, " PARAMETER"))){
            text <- paste0(ifelse(is.null(fun.name), "ERROR", paste0("ERROR IN ", fun.name)), ": ")
        }else{
            text <- paste0(text, " AND ")
        }
        text <- paste0(text, "THE ", data.name, " PARAMETER MUST BE NON NEGATIVE NUMERIC VALUES")
    }
Gael  MILLOT's avatar
Gael MILLOT committed
382
}
Gael  MILLOT's avatar
Gael MILLOT committed
383
if(print == TRUE & problem == TRUE){
Gael's avatar
Gael committed
384
    cat(paste0("\n\n================\n\n", text, "\n\n================\n\n"))
Gael  MILLOT's avatar
Gael MILLOT committed
385
}
Gael  MILLOT's avatar
Gael MILLOT committed
386
387
output <- list(problem = problem, text = text, fun.name = data.name)
return(output)
Gael  MILLOT's avatar
Gael MILLOT committed
388
}
Gael  MILLOT's avatar
Gael MILLOT committed
389

390
######## fun_secu() #### verif that local variables are not present in other envs
Gael  MILLOT's avatar
Gael MILLOT committed
391
392
393


fun_secu <- function(pos = 1, name = NULL){
Gael's avatar
Gael committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    # AIM
    # verif that local variables are not present in other environments, in order to avoid scope preference usage. The fun_secu() function checks by default the parent environment. This means that when used inside a function, it checks the local environment of this function. When used in the Global environment, it would check this environment
    # ARGUMENTS
    # pos: single integer indicating the position of the environment checked (argument n of parent.frame()). VaLue 1 means one step above the fun_secu() local environment. Thus, if fun_secu() is used in the working environment, with pos ==1, variables of this env will be checked in the above envs. If fun_secu() is used in a function, with pos ==1, variables presents in the local env of the functions will be checked in the above envs (which includes the working environment (Global env)
    # name: single character string indicating the name of the function checked
    # RETURN
    # a character string of the local variables that match variables in the different environments of the R scope, or NULL if no match
    # REQUIRED PACKAGES
    # none
    # REQUIRED FUNCTIONS FROM CUTE_LITTLE_R_FUNCTION
    # fun_check()
    # EXAMPLES
    # fun_secu()
    # fun_secu(pos = 2)
    # mean <- 0 ; fun1 <- function(){sd <- 1 ; fun_secu(name = as.character(sys.calls()[[length(sys.calls())]]))} ; fun2 <- function(){cor <- 2 ; fun1()} ; fun1() ; fun2() ; rm(mean) # sys.calls() gives the the function name at top stack of the imbricated functions, sys.calls()[[length(sys.calls())]] the name of the just above function. This can also been used for the above function: as.character(sys.call(1))
    # test.pos <- 2 ; mean <- 0 ; fun1 <- function(){sd <- 1 ; fun_secu(pos = test.pos, name = if(length(sys.calls()) >= test.pos){as.character(sys.calls()[[length(sys.calls()) + 1 - test.pos]])}else{search()[ (1:length(search()))[test.pos - length(sys.calls())]]})} ; fun2 <- function(){cor <- 2 ; fun1()} ; fun1() ; fun2() ; rm(mean) # for argument name, here is a way to have the name of the tested environment according to test.pos value
    # DEBUGGING
    # pos = 1 ; name = NULL # for function debugging
    # function name
    function.name <- paste0(as.list(match.call(expand.dots = FALSE))[[1]], "()")
    # end function name
    # required function checking
    if(length(utils::find("fun_check", mode = "function")) == 0){
        tempo.cat <- paste0("ERROR IN ", function.name, ": REQUIRED fun_check() FUNCTION IS MISSING IN THE R ENVIRONMENT")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    # end required function checking
    # argument checking
    arg.check <- NULL #
    text.check <- NULL #
    checked.arg.names <- NULL # for function debbuging: used by r_debugging_tools
    ee <- expression(arg.check <- c(arg.check, tempo$problem) , text.check <- c(text.check, tempo$text) , checked.arg.names <- c(checked.arg.names, tempo$fun.name))
    tempo <- fun_check(data = pos, class = "vector", typeof = "integer", double.as.integer.allowed = TRUE, length = 1, fun.name = function.name) ; eval(ee)
    if( ! is.null(name)){
        tempo <- fun_check(data = name, class = "vector", typeof = "character", length = 1, fun.name = function.name) ; eval(ee)
    }
    if(any(arg.check) == TRUE){
        stop(paste0("\n\n================\n\n", paste(text.check[arg.check], collapse = "\n"), "\n\n================\n\n"), call. = FALSE) #
    }
    # source("C:/Users/Gael/Documents/Git_versions_to_use/debugging_tools_for_r_dev-v1.2/r_debugging_tools-v1.2.R") ; eval(parse(text = str_basic_arg_check_dev)) ; eval(parse(text = str_arg_check_with_fun_check_dev)) # activate this line and use the function (with no arguments left as NULL) to check arguments status and if they have been checked using fun_check()
    # end argument checking
    # main code
    # match.list <- vector("list", length = (length(sys.calls()) - 1 + length(search()) + ifelse(length(sys.calls()) == 1, -1, 0))) # match.list is a list of all the environment tested (local of functions and R envs), length(sys.calls()) - 1 to remove the level of the fun_secu() function, sys.calls() giving all the names of the imbricated functions, including fun_secu, ifelse(length(sys.calls()) == 1, -1, 0) to remove Global env if this one is tested
    tempo.name <- rev(as.character(unlist(sys.calls()))) # get names of frames (i.e., enclosed env)
    tempo.frame <- rev(sys.frames())  # get frames (i.e., enclosed env)
    # dealing with source()
    # source() used in the Global env creates three frames above the Global env, which should be removed because not very interesting for variable duplications. Add a <<-(sys.frames()) in this code and source anova_contrasts code to see this. With ls(a[[4]]), we can see the content of each env, which are probably elements of source()
    if(any(sapply(tempo.frame, FUN = environmentName) %in% "R_GlobalEnv")){
        global.pos <- which(sapply(tempo.frame, FUN = environmentName) %in% "R_GlobalEnv")
        # remove the global env (because already in search(), and all the oabove env
        tempo.name <- tempo.name[-c(global.pos:length(tempo.frame))]
        tempo.frame <- tempo.frame[-c(global.pos:length(tempo.frame))]
    }
    # end dealing with source()
    # might have a problem if(length(tempo.name) == 0){
    match.list <- vector("list", length = length(tempo.name) + length(search())) # match.list is a list of all the environment tested (local of functions and R envs), length(sys.calls()) - 1 to remove the level of the fun_secu() function, sys.calls() giving all the names of the imbricated functions, including fun_secu, ifelse(length(sys.calls()) == 1, -1, 0) to remove Global env if this one is tested
    ls.names <- c(tempo.name, search()) # names of the functions + names of the search() environments
    ls.input <- c(tempo.frame, as.list(search())) # environements of the functions + names of the search() environments
    names(match.list) <- ls.names # 
    match.list <- match.list[-c(1:(pos + 1))] # because we check only above pos
    ls.tested <- ls.input[[pos + 1]]
    ls.input <- ls.input[-c(1:(pos + 1))]
    for(i1 in 1:length(match.list)){
        if(any(ls(name = ls.input[[i1]], all.names = TRUE) %in% ls(name = ls.tested, all.names = TRUE))){
            match.list[i1] <- list(ls(name = ls.input[[i1]], all.names = TRUE)[ls(name = ls.input[[i1]], all.names = TRUE) %in% ls(name = ls.tested, all.names = TRUE)])
        }
    }
    if( ! all(sapply(match.list, FUN = is.null))){
        output <- paste0("SOME VARIABLES ", ifelse(is.null(name), "OF THE CHECKED ENVIRONMENT", paste0("OF ", name)), " ARE ALSO PRESENT IN :\n", paste0(names(match.list[ ! sapply(match.list, FUN = is.null)]), ": ", sapply(match.list[ ! sapply(match.list, FUN = is.null)], FUN = paste0, collapse = " "), collapse = "\n"))
    }else{
        output <- NULL
    }
    return(output)
Gael  MILLOT's avatar
Gael MILLOT committed
467
468
}

Gael  MILLOT's avatar
Gael MILLOT committed
469
470
471
472
473

######## fun_info() #### recover object information


# Check OK: clear to go Apollo
474
fun_info <- function(data, n = 20, full = FALSE, warn.print = TRUE){
Gael's avatar
Gael committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    # AIM
    # provide a complete description of an object. Using complete = TRUE allows data recovering. Using complete = FALSE is a convenient display feature (in case of large dataset)
    # ARGUMENTS
    # data: object to test
    # n: positive integer value indicating the number of element to display per compartment of the output list (i.e., head(..., n)). Ignored if full argument is TRUE. Also ignored for the STRUCTURE compartment output, corresponding to ls.str() information (because head() removes almost everything)
    # full: logical. Return the full information?
    # warn.print: logical. Print potential warnings at the end of the execution? If FALSE the message or NULL (if no message) is added in the output as an additional compartment
    # RETURN
    # a list containing information, depending on the class and type of data
    # if data is made of numerics, provide range, sum, mean, number of NA and number of Inf
    # REQUIRED PACKAGES
    # none
    # REQUIRED FUNCTIONS FROM CUTE_LITTLE_R_FUNCTION
    # fun_check()
    # EXAMPLES
    # fun_info(data = 1:3)
    # fun_info(data = 1:3, n = 2)
    # fun_info(data = 1:3, n = 2, full = TRUE)
    # fun_info(data.frame(a = 1:2, b = ordered(factor(c("A", "B"))), stringsAsFactors = TRUE))
    # fun_info(list(a = 1:3, b = ordered(factor(c("A", "B")))))
    # DEBUGGING
    # data = NULL # for function debugging
    # data = 1:3 # for function debugging
    # data = matrix(1:3) # for function debugging
    # data = data.frame(a = 1:2, b = c("A", "B"), stringsAsFactors = TRUE) # for function debugging
    # data = factor(c("b", "a")) # for function debugging
    # data = ordered(factor(c("b", "a"))) # for function debugging
    # data = list(a = 1:3, b = factor(c("A", "B"))) # for function debugging
    # data = list(a = 1:3, b = ordered(factor(c("A", "B")))) # for function debugging
    # function name
    function.name <- paste0(as.list(match.call(expand.dots = FALSE))[[1]], "()")
    # end function name
    # required function checking
    if(length(utils::find("fun_check", mode = "function")) == 0){
        tempo.cat <- paste0("ERROR IN ", function.name, ": REQUIRED fun_check() FUNCTION IS MISSING IN THE R ENVIRONMENT")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    # end required function checking
    # argument checking
    arg.check <- NULL #
    text.check <- NULL #
    checked.arg.names <- NULL # for function debbuging: used by r_debugging_tools
    ee <- expression(arg.check <- c(arg.check, tempo$problem) , text.check <- c(text.check, tempo$text) , checked.arg.names <- c(checked.arg.names, tempo$fun.name))
    tempo <- fun_check(data = n, class = "vector", typeof = "integer", length = 1, double.as.integer.allowed = TRUE, fun.name = function.name) ; eval(ee)
    if(tempo$problem == FALSE & n < 1){
        tempo.cat <- paste0("ERROR IN ", function.name, ": n ARGUMENT MUST BE A POSITIVE AND NON NULL INTEGER")
        text.check <- c(text.check, tempo.cat)
        arg.check <- c(arg.check, TRUE)
    }
    tempo <- fun_check(data = full, class = "logical", length = 1, fun.name = function.name) ; eval(ee)
    tempo <- fun_check(data = warn.print, class = "logical", length = 1, fun.name = function.name) ; eval(ee)
    if(any(arg.check) == TRUE){
        stop(paste0("\n\n================\n\n", paste(text.check[arg.check], collapse = "\n"), "\n\n================\n\n"), call. = FALSE) #
    }
    # end argument checking
    # source("C:/Users/Gael/Documents/Git_versions_to_use/debugging_tools_for_r_dev-v1.2/r_debugging_tools-v1.2.R") ; eval(parse(text = str_basic_arg_check_dev)) # activate this line and use the function to check arguments status
    # main code
    warn <- NULL
    if(full == FALSE){
        warn <- paste0("FROM ", function.name, ":\n\nSOME COMPARTMENTS CAN BE TRUNCATED (n ARGUMENT IS ", n, ")\n\n")
    }
    data.name <- deparse(substitute(data))
    output <- list("NAME" = data.name)
    tempo <- list("CLASS" = class(data))
    output <- c(output, tempo)
    tempo <- list("TYPE" = typeof(data))
    output <- c(output, tempo)
    tempo <- list("LENGTH" = length(data))
    output <- c(output, tempo)
    if(all(typeof(data) %in% c("integer", "numeric", "double"))){
        tempo <- list("RANGE" = range(data[ ! is.infinite(data)], na.rm = TRUE))
        output <- c(output, tempo)
        tempo <- list("SUM" = sum(data[ ! is.infinite(data)], na.rm = TRUE))
        output <- c(output, tempo)
        tempo <- list("MEAN" = mean(data[ ! is.infinite(data)], na.rm = TRUE))
        output <- c(output, tempo)
        tempo <- list("NA.NB" = sum(is.na(data)))
        output <- c(output, tempo)
        tempo <- list("INF.NB" = sum(is.infinite(data)))
        output <- c(output, tempo)
    }
    tempo <- list("HEAD" = head(data))
    output <- c(output, tempo)
    if( ! is.null(data)){
        tempo <- list("TAIL" = tail(data))
        output <- c(output, tempo)
        if( ! is.null(dim(data))){
            tempo <- list("DIMENSION" = dim(data))
            names(tempo[[1]]) <- c("NROW", "NCOL")
            output <- c(output, tempo)
        }
        tempo <- list("SUMMARY" = summary(data))
        output <- c(output, tempo)
    }
    if(all(class(data) == "data.frame" | all(class(data) %in% c("matrix", "array")))){
        tempo <- list("ROW_NAMES" = dimnames(data)[[1]])
        output <- c(output, tempo)
        tempo <- list("COLUM_NAMES" = dimnames(data)[[2]])
        output <- c(output, tempo)
    }
    if(all(class(data) == "data.frame")){
        tempo <- list("STRUCTURE" = ls.str(data)) # str() print automatically, ls.str() not but does not give the order of the data.frame
        output <- c(output, tempo)
        tempo <- list("COLUMN_TYPE" = sapply(data, FUN = "typeof"))
        if(any(sapply(data, FUN = "class") %in% "factor")){ # if an ordered factor is present, then sapply(data, FUN = "class") return a list but works with any(sapply(data, FUN = "class") %in% "factor") 
            tempo.class <- sapply(data, FUN = "class")
            if(any(unlist(tempo.class) %in% "ordered")){
                tempo2 <- sapply(tempo.class, paste, collapse = " ") # paste the "ordered" factor" in "ordered factor"
            }else{
                tempo2 <- unlist(tempo.class)
            }
            tempo[["COLUMN_TYPE"]][grepl(x = tempo2, pattern = "factor")] <- tempo2[grepl(x = tempo2, pattern = "factor")]
        }
        output <- c(output, tempo)
    }
    if(all(class(data) == "list")){
        tempo <- list("COMPARTMENT_NAMES" = names(data))
        output <- c(output, tempo)
        tempo <- list("COMPARTMENT_TYPE" = sapply(data, FUN = "typeof"))
        if(any(unlist(sapply(data, FUN = "class")) %in% "factor")){ # if an ordered factor is present, then sapply(data, FUN = "class") return a list but works with any(sapply(data, FUN = "class") %in% "factor") 
            tempo.class <- sapply(data, FUN = "class")
            if(any(unlist(tempo.class) %in% "ordered")){
                tempo2 <- sapply(tempo.class, paste, collapse = " ") # paste the "ordered" factor" in "ordered factor"
            }else{
                tempo2 <- unlist(tempo.class)
            }
            tempo[["COMPARTMENT_TYPE"]][grepl(x = tempo2, pattern = "factor")] <- tempo2[grepl(x = tempo2, pattern = "factor")]
        }
        output <- c(output, tempo)
        tempo <- list("STRUCTURE" = ls.str(data)) # str() print automatically, ls.str() not but does not give the order of the data.frame
        output <- c(output, tempo)
    }
    if(full == FALSE){
        output[names(output) != "STRUCTURE"] <- lapply(X = output[names(output) != "STRUCTURE"], FUN = head, n = n, simplify = FALSE)
    }
    if(warn.print == FALSE){
        output <- c(output, WARNING = warn)
    }else if(warn.print == TRUE & ! is.null(warn)){
        on.exit(warning(warn, call. = FALSE))
    }
    return(output)
Gael  MILLOT's avatar
Gael MILLOT committed
616
}
Gael  MILLOT's avatar
Gael MILLOT committed
617
618
619
620
621
622


######## fun_head() #### head of the left or right of big 2D objects


# Check OK: clear to go Apollo
Gael's avatar
tempo    
Gael committed
623
fun_head <- function(
Gael's avatar
Gael committed
624
625
626
    data1, 
    n = 6, 
    side = "l"
Gael's avatar
tempo    
Gael committed
627
){
Gael's avatar
Gael committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
    # AIM
    # as head() but display the left or right head of big 2D objects
    # ARGUMENTS
    # data1: any object but more dedicated for matrix, data frame or table
    # n: as in head() but for for matrix, data frame or table, number of dimension to print (10 means 10 rows and columns)
    # side: either "l" or "r" for the left or right side of the 2D object (only for matrix, data frame or table)
    # BEWARE: other arguments of head() not used
    # RETURN
    # the head
    # REQUIRED PACKAGES
    # none
    # REQUIRED FUNCTIONS FROM CUTE_LITTLE_R_FUNCTION
    # fun_check()
    # EXAMPLES
    # obs1 = matrix(1:30, ncol = 5, dimnames = list(letters[1:6], LETTERS[1:5])) ; obs1 ; fun_head(obs1, 3)
    # obs1 = matrix(1:30, ncol = 5, dimnames = list(letters[1:6], LETTERS[1:5])) ; obs1 ; fun_head(obs1, 3, "right")
    # DEBUGGING
    # data1 = matrix(1:30, ncol = 5) # for function debugging
    # data1 = matrix(1:30, ncol = 5, dimnames = list(letters[1:2], LETTERS[1:5])) # for function debugging
    # function name
    function.name <- paste0(as.list(match.call(expand.dots = FALSE))[[1]], "()")
    # end function name
    # required function checking
    if(length(utils::find("fun_check", mode = "function")) == 0){
        tempo.cat <- paste0("ERROR IN ", function.name, ": REQUIRED fun_check() FUNCTION IS MISSING IN THE R ENVIRONMENT")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    # end required function checking
    # argument checking
    arg.check <- NULL #
    text.check <- NULL #
    checked.arg.names <- NULL # for function debbuging: used by r_debugging_tools
    ee <- expression(arg.check <- c(arg.check, tempo$problem) , text.check <- c(text.check, tempo$text) , checked.arg.names <- c(checked.arg.names, tempo$fun.name))
    tempo <- fun_check(data = n, class = "vector", typeof = "integer", double.as.integer.allowed = TRUE, length = 1, fun.name = function.name) ; eval(ee)
    tempo <- fun_check(data = side, options = c("l", "r"), length = 1, fun.name = function.name) ; eval(ee)
    if(any(arg.check) == TRUE){
        stop(paste0("\n\n================\n\n", paste(text.check[arg.check], collapse = "\n"), "\n\n================\n\n"), call. = FALSE) #
    }
    # source("C:/Users/Gael/Documents/Git_versions_to_use/debugging_tools_for_r_dev-v1.2/r_debugging_tools-v1.2.R") ; eval(parse(text = str_basic_arg_check_dev)) ; eval(parse(text = str_arg_check_with_fun_check_dev)) # activate this line and use the function (with no arguments left as NULL) to check arguments status and if they have been checked using fun_check()
    # end argument checking
    # main code
    if( ! (any(class(data1) %in% c("data.frame", "table")) | all(class(data1) %in% c("matrix", "array")))){ # before R4.0.0, it was  ! any(class(data1) %in% c("matrix", "data.frame", "table"))
        return(head(data1, n))
    }else{
        obs.dim <- dim(data1)
        row <- 1:ifelse(obs.dim[1] < n, obs.dim[1], n)
        if(side == "l"){
            col <- 1:ifelse(obs.dim[2] < n, obs.dim[2], n)
        }
        if(side == "r"){
            col <- ifelse(obs.dim[2] < n, 1, obs.dim[2] - n + 1):obs.dim[2]
        }
        return(data1[row, col])
    }
Gael  MILLOT's avatar
Gael MILLOT committed
682
683
684
}


Gael  MILLOT's avatar
Gael MILLOT committed
685
686
687
688
######## fun_tail() #### tail of the left or right of big 2D objects


# Check OK: clear to go Apollo
Gael's avatar
tempo    
Gael committed
689
fun_tail <- function(
Gael's avatar
Gael committed
690
691
692
    data1, 
    n = 10, 
    side = "l"
Gael's avatar
tempo    
Gael committed
693
){
Gael's avatar
Gael committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
    # AIM
    # as tail() but display the left or right head of big 2D objects
    # ARGUMENTS
    # data1: any object but more dedicated for matrix, data frame or table
    # n: as in tail() but for for matrix, data frame or table, number of dimension to print (10 means 10 rows and columns)
    # side: either "l" or "r" for the left or right side of the 2D object (only for matrix, data frame or table)
    # BEWARE: other arguments of tail() not used
    # RETURN
    # the tail
    # REQUIRED PACKAGES
    # none
    # REQUIRED FUNCTIONS FROM CUTE_LITTLE_R_FUNCTION
    # fun_check()
    # EXAMPLES
    # obs1 = matrix(1:30, ncol = 5, dimnames = list(letters[1:6], LETTERS[1:5])) ; obs1 ; fun_tail(obs1, 3)
    # obs1 = matrix(1:30, ncol = 5, dimnames = list(letters[1:6], LETTERS[1:5])) ; obs1 ; fun_tail(obs1, 3, "r")
    # DEBUGGING
    # data1 = matrix(1:10, ncol = 5) # for function debugging
    # data1 = matrix(1:10, ncol = 5, dimnames = list(letters[1:2], LETTERS[1:5])) # for function debugging
    # function name
    function.name <- paste0(as.list(match.call(expand.dots = FALSE))[[1]], "()")
    # end function name
    # required function checking
    if(length(utils::find("fun_check", mode = "function")) == 0){
        tempo.cat <- paste0("ERROR IN ", function.name, ": REQUIRED fun_check() FUNCTION IS MISSING IN THE R ENVIRONMENT")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }
    # end required function checking
    # argument checking
    arg.check <- NULL #
    text.check <- NULL #
    checked.arg.names <- NULL # for function debbuging: used by r_debugging_tools
    ee <- expression(arg.check <- c(arg.check, tempo$problem) , text.check <- c(text.check, tempo$text) , checked.arg.names <- c(checked.arg.names, tempo$fun.name))
    tempo <- fun_check(data = n, class = "vector", typeof = "integer", double.as.integer.allowed = TRUE, length = 1, fun.name = function.name) ; eval(ee)
    tempo <- fun_check(data = side, options = c("l", "r"), length = 1, fun.name = function.name) ; eval(ee)
    if(any(arg.check) == TRUE){
        stop(paste0("\n\n================\n\n", paste(text.check[arg.check], collapse = "\n"), "\n\n================\n\n"), call. = FALSE) #
    }
    # source("C:/Users/Gael/Documents/Git_versions_to_use/debugging_tools_for_r_dev-v1.2/r_debugging_tools-v1.2.R") ; eval(parse(text = str_basic_arg_check_dev)) ; eval(parse(text = str_arg_check_with_fun_check_dev)) # activate this line and use the function (with no arguments left as NULL) to check arguments status and if they have been checked using fun_check()
    # end argument checking
    # main code
    if( ! (any(class(data1) %in% c("data.frame", "table")) | all(class(data1) %in% c("matrix", "array")))){ # before R4.0.0, it was  ! any(class(data1) %in% c("matrix", "data.frame", "table"))
        return(tail(data1, n))
    }else{
        obs.dim <- dim(data1)
        row <- ifelse(obs.dim[1] < n, 1, obs.dim[1] - n + 1):obs.dim[1]
        if(side == "l"){
            col <- 1:ifelse(obs.dim[2] < n, obs.dim[2], n)
        }
        if(side == "r"){
            col <- ifelse(obs.dim[2] < n, 1, obs.dim[2] - n + 1):obs.dim[2]
        }
        return(data1[row, col])
    }
Gael  MILLOT's avatar
Gael MILLOT committed
748
}
Gael  MILLOT's avatar
Gael MILLOT committed
749
750


Gael  MILLOT's avatar
Gael MILLOT committed
751
######## fun_comp_1d() #### comparison of two 1D datasets (vectors, factors, 1D tables)
Gael  MILLOT's avatar
Gael MILLOT committed
752

Gael  MILLOT's avatar
Gael MILLOT committed
753
754
755

# Check OK: clear to go Apollo
fun_comp_1d <- function(data1, data2){
Gael's avatar
Gael committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    # AIM
    # compare two 1D datasets (vector or factor or 1D table, or 1D matrix or 1D array) of the same class or not. Check and report in a list if the 2 datasets have:
    # same class
    # common elements
    # common element names (except factors)
    # common levels (factors only)
    # ARGUMENTS
    # data1: vector or factor or 1D table, or 1D matrix or 1D array
    # data2: vector or factor or 1D table, or 1D matrix or 1D array
    # RETURN
    # a list containing:
    # $same.class: logical. Are class identical?
    # $class: class of the 2 datasets (NULL otherwise)
    # $same.length: logical. Are number of elements identical?
    # $length: number of elements in the 2 datasets (NULL otherwise)
    # $same.levels: logical. Are levels identical? NULL if data1 and data2 are not factors
    # $levels: levels of the 2 datasets if identical (NULL otherwise or NULL if data1 and data2 are not factors)
    # $any.id.levels: logical. Is there any identical levels? (NULL if data1 and data2 are not factors)
    # $same.levels.pos1: position, in data1, of the levels identical in data2 (NULL if data1 and data2 are not factors)
    # $same.levels.pos2: position, in data2, of the levels identical in data1 (NULL if data1 and data2 are not factors)
    # $common.levels: common levels between data1 and data2 (can be a subset of $levels or not). NULL if no common levels or if data1 and data2 are not factors
    # $same.name: logical. Are element names identical? NULL if data1 and data2 have no names
    # $name: name of elements of the 2 datasets if identical (NULL otherwise)
    # $any.id.name: logical. Is there any element names identical ?
    # $same.name.pos1: position, in data1, of the element names identical in data2. NULL if no identical names
    # $same.name.pos2: position, in data2, of the elements names identical in data1. NULL if no identical names
    # $common.names: common element names between data1 and data2 (can be a subset of $name or not). NULL if no common element names
    # $any.id.element: logical. is there any identical elements ?
    # $same.element.pos1: position, in data1, of the elements identical in data2. NULL if no identical elements
    # $same.element.pos2: position, in data2, of the elements identical in data1. NULL if no identical elements
    # $common.elements: common elements between data1 and data2. NULL if no common elements
    # $same.order: logical. Are all elements in the same order? TRUE or FALSE if elements of data1 and data2 are identical but not necessary in the same order. NULL otherwise (different length for instance)
    # $order1: order of all elements of data1. NULL if $same.order is FALSE
    # $order2: order of all elements of data2. NULL if $same.order is FALSE
    # $identical.object: logical. Are objects identical (kind of object, element names, content, including content order)?
    # $identical.content: logical. Are content objects identical (identical elements, including order, excluding kind of object and element names)?
    # REQUIRED PACKAGES
    # none
    # REQUIRED FUNCTIONS FROM CUTE_LITTLE_R_FUNCTION
    # none
    # EXAMPLES
    # obs1 = 1:5 ; obs2 = 1:5 ; names(obs1) <- LETTERS[1:5] ; names(obs2) <- LETTERS[1:5] ; fun_comp_1d(obs1, obs2)
    # obs1 = 1:5 ; obs2 = 1:5 ; names(obs1) <- LETTERS[1:5] ; fun_comp_1d(obs1, obs2)
    # obs1 = 1:5 ; obs2 = 3:6 ; names(obs1) <- LETTERS[1:5] ; names(obs2) <- LETTERS[1:4] ; fun_comp_1d(obs1, obs2)
    # obs1 = factor(LETTERS[1:5]) ; obs2 = factor(LETTERS[1:5]) ; fun_comp_1d(obs1, obs2)
    # obs1 = factor(LETTERS[1:5]) ; obs2 = factor(LETTERS[10:11]) ; fun_comp_1d(obs1, obs2)
    # obs1 = factor(LETTERS[1:5]) ; obs2 = factor(LETTERS[4:7]) ; fun_comp_1d(obs1, obs2)
    # obs1 = factor(c(LETTERS[1:4], "E")) ; obs2 = factor(c(LETTERS[1:4], "F")) ; fun_comp_1d(obs1, obs2)
    # obs1 = 1:5 ; obs2 = factor(LETTERS[1:5]) ; fun_comp_1d(obs1, obs2)
    # obs1 = 1:5 ; obs2 = 1.1:6.1 ; fun_comp_1d(obs1, obs2)
    # obs1 = as.table(1:5); obs2 = as.table(1:5) ; fun_comp_1d(obs1, obs2)
    # obs1 = as.table(1:5); obs2 = 1:5 ; fun_comp_1d(obs1, obs2)
    # DEBUGGING
    # data1 = 1:5 ; data2 = 1:5 ; names(data1) <- LETTERS[1:5] ; names(data2) <- LETTERS[1:5] # for function debugging
    # function name
    function.name <- paste0(as.list(match.call(expand.dots = FALSE))[[1]], "()")
    # end function name
    # argument checking
    if( ! any(class(data1) %in% c("logical", "integer", "numeric", "character", "factor", "table"))){
        tempo.cat <- paste0("ERROR IN ", function.name, ": THE data1 ARGUMENT MUST BE A NON NULL VECTOR, FACTOR OR 1D TABLE")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }else if(all(class(data1) %in% "table")){
        if(length(dim(data1)) > 1){
            tempo.cat <- paste0("ERROR IN ", function.name, ": THE data1 ARGUMENT MUST BE A 1D TABLE")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
    }
    if( ! any(class(data2) %in% c("logical", "integer", "numeric", "character", "factor", "table"))){
        tempo.cat <- paste0("ERROR IN ", function.name, ": THE data2 ARGUMENT MUST BE A NON NULL VECTOR, FACTOR OR 1D TABLE")
        stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
    }else if(all(class(data2) %in% "table")){
        if(length(dim(data2)) > 1){
            tempo.cat <- paste0("ERROR IN ", function.name, ": THE data2 ARGUMENT MUST BE A 1D TABLE")
            stop(paste0("\n\n================\n\n", tempo.cat, "\n\n================\n\n"), call. = FALSE) # == in stop() to be able to add several messages between ==
        }
    }
    # source("C:/Users/Gael/Documents/Git_versions_to_use/debugging_tools_for_r_dev-v1.2/r_debugging_tools-v1.2.R") ; eval(parse(text = str_basic_arg_check_dev)) # activate this line and use the function to check arguments status
    # end argument checking
    # main code
    same.class <- FALSE
    class <- NULL
    same.length <- FALSE
    length <- NULL
    same.levels <- NULL # not FALSE to deal with no factors
    levels <- NULL
    any.id.levels <- NULL
    same.levels.pos1 <- NULL
    same.levels.pos2 <- NULL
    common.levels <- NULL
    same.name <- NULL # not FALSE to deal with absence of name
    name <- NULL
    any.id.name <- FALSE
    same.name.pos1 <- NULL
    same.name.pos2 <- NULL
    common.names <- NULL
    any.id.element <- FALSE
    same.element.pos1 <- NULL
    same.element.pos2 <- NULL
    common.elements <- NULL
    same.order <- NULL
    order1 <- NULL
    order2 <- NULL
    identical.object <- FALSE
    identical.content <- FALSE
    if(identical(data1, data2)){
        same.class <- TRUE
        class <- class(data1)
        same.length <- TRUE
        length <- length(data1)
        if(any(class(data1) %in% "factor")){
            same.levels <- TRUE
            levels <- levels(data1)
            any.id.levels <- TRUE
            same.levels.pos1 <- 1:length(levels(data1))
            same.levels.pos2 <- 1:length(levels(data2))
            common.levels <- levels(data1)
        }
        if( ! is.null(names(data1))){
            same.name <- TRUE
            name <- names(data1)
            any.id.name <- TRUE
            same.name.pos1 <- 1:length(data1)
            same.name.pos2 <- 1:length(data2)
            common.names <- names(data1)
        }
        any.id.element <- TRUE
        same.element.pos1 <- 1:length(data1)
        same.element.pos2 <- 1:length(data2)
        common.elements <- data1
        same.order <- TRUE
        order1 <- order(data1)
        order2 <- order(data2)
        identical.object <- TRUE
        identical.content <- TRUE
    }else{
        if(identical(class(data1), class(data2))){
            same.class <- TRUE
            class <- class(data1)
        }
        if(identical(length(data1), length(data2))){
            same.length<- TRUE
            length <- length(data1)
        }
        if(any(class(data1) %in% "factor") & any(class(data2) %in% "factor")){
            if(identical(levels(data1), levels(data2))){
                same.levels <- TRUE
                levels <- levels(data1)
            }else{
                same.levels <- FALSE
            }
            if(any(levels(data1) %in% levels(data2))){
                any.id.levels <- TRUE
                same.levels.pos1 <- which(levels(data1) %in% levels(data2))
            }
            if(any(levels(data2) %in% levels(data1))){
                any.id.levels <- TRUE
                same.levels.pos2 <- which(levels(data2) %in% levels(data1))
            }
            if(any.id.levels == TRUE){
                common.levels <- unique(c(levels(data1)[same.levels.pos1], levels(data2)[same.levels.pos2]))
            }
        }
        if(any(class(data1) %in% "factor")){ # to compare content
            data1 <- as.character(data1)
        }
        if(any(class(data2) %in% "factor")){ # to compare content
            data2 <- as.character(data2)
        }
        if( ! (is.null(names(data1)) & is.null(names(data2)))){
            if(identical(names(data1), names(data2))){
                same.name <- TRUE
                name <- names(data1)
            }else{
                same.name <- FALSE
            }
            if(any(names(data1) %in% names(data2))){
                any.id.name <- TRUE
                same.name.pos1 <- which(names(data1) %in% names(data2))
            }
            if(any(names(data2) %in% names(data1))){
                any.id.name <- TRUE
                same.name.pos2 <- which(names(data2) %in% names(data1))
            }
            if(any.id.name == TRUE){
                common.names <- unique(c(names(data1)[same.name.pos1], names(data2)[same.name.pos2]))
            }
        }
        names(data1) <- NULL # names solved -> to do not be disturbed by names
        names(data2) <- NULL # names solved -> to do not be disturbed by names
        if(any(data1 %in% data2)){
            any.id.element <- TRUE
            same.element.pos1 <- which(data1 %in% data2)
        }
        if(any(data2 %in% data1)){
            any.id.element <- TRUE
            same.element.pos2 <- which(data2 %in% data1)
        }
        if(any.id.element == TRUE){
            common.elements <- unique(c(data1[same.element.pos1], data2[same.element.pos2]))
        }
        if(identical(data1, data2)){
            identical.content <- TRUE
            same.order <- TRUE
        }else if(identical(sort(data1), sort(data2))){
            same.order <- FALSE
            order1 <- order(data1)
            order2 <- order(data2)
        }
    }
    output <- list(same.class = same.class, class = class, same.length = same.length, length = length, same.levels = same.levels, levels = levels, any.id.levels = any.id.levels, same.levels.pos1 = same.levels.pos1, same.levels.pos2 = same.levels.pos2, common.levels = common.levels, same.name = same.name, name = name, any.id.name = any.id.name, same.name.pos1 = same.name.pos1, same.name.pos2 = same.name.pos2, common.names = common.names, any.id.element = any.id.element, same.element.pos1 = same.element.pos1, same.element.pos2 = same.element.pos2, common.elements = common.elements, same.order = same.order, order1 = order1, order2 = order2, identical.object = identical.object, identical.content = identical.content)
    return(output)
Gael  MILLOT's avatar
Gael MILLOT committed
967
968
969
}


Gael  MILLOT's avatar
Gael MILLOT committed
970
971
972
973
974
######## fun_comp_2d() #### comparison of two 2D datasets (row & col names, dimensions, etc.)


# Check OK: clear to go Apollo
fun_comp_2d <- function(data1, data2){
Gael's avatar
Gael committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    # AIM
    # compare two 2D datasets of the same class or not. Check and report in a list if the 2 datasets have:
    # same class
    # common row names
    # common column names
    # same row number
    # same column number
    # potential identical rows between the 2 datasets
    # potential identical columns between the 2 datasets
    # ARGUMENTS
    # data1: matrix, data frame or table
    # data2: matrix, data frame or table
    # RETURN
    # a list containing:
    # $same.class: logical. Are class identical ?
    # $class: classes of the 2 datasets (NULL otherwise)
    # $same.dim: logical. Are dimension identical ?
    # $dim: dimension of the 2 datasets (NULL otherwise)
    # $same.row.nb: logical. Are number of rows identical ?
    # $row.nb: nb of rows of the 2 datasets if identical (NULL otherwise)
    # $same.col.nb: logical. Are number of columns identical ?
    # $col.nb: nb of columns of the 2 datasets if identical (NULL otherwise)
    # $same.row.name: logical. Are row names identical ? NULL if no row names in the two 2D datasets
    # $row.name: name of rows of the 2 datasets if identical (NULL otherwise)
    # $any.id.row.name: logical. Is there any row names identical ? NULL if no row names in the two 2D datasets
    # $same.row.name.pos1: position, in data1, of the row names identical in data2