Collection_Data_Types.rst 19.1 KB
Newer Older
1
2
3
.. sectnum::
   :start: 5
   
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
4
5
6
7
8
.. _Collection_Data_types:

*********************
Collection Data Types
*********************
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
9

10
Exercises
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
11
12
=========

13
Exercise
14
15
--------

16
17
| Draw the representation in memory of the following expressions.
| what is the data type of each object?
18
19
20
21
22
23
24
25

::   

   x = [1, 2, 3, 4]
   y = x[1]
   y = 3.14
   x[1] = 'foo'
   
26
27
28
29
30
.. figure:: _static/figs/list_1.png
   :width: 400px
   :alt: set
   :figclass: align-center
   
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
::

   x = [1, 2, 3, 4]
   x += [5, 6]

.. figure:: _static/figs/augmented_assignment_list.png  
   :width: 400px
   :alt: set
   :figclass: align-center 

::

   >>> x = [1, 2, 3, 4]
   >>> id(x)
   139950507563632
   >>> x += [5,6]
   >>> id(x)
   139950507563632
   
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
50
51
With mutable object like ``list`` when we mutate the object the state of the object is modified.
But the reference to the object is still unchanged.
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
52
So in this example we have two ways to access to the list [1,2] if we modify the state of the list itself.
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
53
54
but not the references to this object, then the 2 variables x and y still reference the list containing
[1,2,3,4]. 
55

56
57
58
59
60
61
62
compare with the exercise on string and integers:

Since list are mutable, when ``+=`` is used the original list object is modified, so no rebinding of *x* is necessary.
We can observe this using *id()* which give the memory adress of an object. This adress does not change after the
``+=`` operation.

.. note::
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
63
   even the results is the same there is a subtelty to use augmented operator.
64
65
66
   in ``a operator= b`` python looks up ``a`` ’s value only once, so it is potentially faster
   than the ``a = a operator b``.

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

compare ::

   x = 3
   y = x
   y += 3
   x = ?
   y = ?
   
   
.. figure:: _static/figs/augmented_assignment_int2.png  
   :width: 400px
   :alt: augmented_assignment
   :figclass: align-center 

   
and ::

   x = [1,2]
   y = x
   y += [3,4]
   x = ?
   y = ?  


.. figure:: _static/figs/augmented_assignment_list2.png  
   :width: 400px
   :alt: list extend
   :figclass: align-center 



99
Exercise
100
101
102
103
104
105
106
107
--------

wihout using python shell, what is the results of the following statements:  
 
.. note:: 
   sum is a function which return the sum of each elements of a list.
      
::
108

109
110
111
112
   x = [1, 2, 3, 4]
   x[3] = -4 # what is the value of x now ?
   y = sum(x)/len(x) #what is the value of y ? why ?
   
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
113
114
   y = 0.5
.. warning::
115

Bertrand  NÉRON's avatar
Bertrand NÉRON committed
116
117
118
    In python2 the result is ::

        y = 0
119

Bertrand  NÉRON's avatar
Bertrand NÉRON committed
120
121
    because sum(x) is an integer, len(x) is also an integer so in python2.x the result is an integer,
    all the digits after the periods are discarded.
122
123


124
Exercise
125
126
--------

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
Draw the representation in memory of the following expressions. ::

   x = [1, ['a','b','c'], 3, 4]
   y = x[1]
   y[2] = 'z'
   # what is the value of x ?
   
.. figure:: _static/figs/list_2-1.png
   :width: 400px
   :alt: set
   :figclass: align-center
   

.. container:: clearer

    .. image :: _static/figs/spacer.png
       
 When we execute *y = x[1]*, we create ``y`` wich reference the list ``['a', 'b', 'c']``.
 This list has 2 references on it: ``y`` and ``x[1]`` .
   
   
.. figure:: _static/figs/list_2-2.png
   :width: 400px
   :alt: set
   :figclass: align-center
 
   
.. container:: clearer

    .. image :: _static/figs/spacer.png
       
   
 This object is a list so it is a mutable object.
 So we can access **and** modify it by the two ways ``y`` or ``x[1]`` ::
 
   x = [1, ['a','b','z'], 3, 4]
    
164
165
166
167
168
169
170
171
172
Exercise
--------

from the list l = [1, 2, 3, 4, 5, 6, 7, 8, 9] generate 2 lists l1 containing all odd values, and l2 all even values.::

   l = [1, 2, 3, 4, 5, 6, 7, 8, 9]
   l1 = l[::2]
   l2 = l[1::2]

173
    
174
Exercise
175
176
--------
   
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
generate a list containing all codons.
   
pseudocode:
"""""""""""

| *function all_codons()*
|     *all_codons <- empty list*
|     *let varying the first base*
|     *for each first base let varying the second base*
|     *for each combination first base, second base let varying the third base*
|     *add the concatenation base 1 base 2 base 3 to all_codons*
|     *return all_codons*

first implementation:
"""""""""""""""""""""
.. literalinclude:: _static/code/codons.py
   :linenos:
   :language: python

::

   python -i codons.py 
   >>> codons = all_codons()
   
:download:`codons.py <_static/code/codons.py>` .  

second implementation:
""""""""""""""""""""""

Bertrand  NÉRON's avatar
Bertrand NÉRON committed
206
Mathematically speaking the generation of all codons can be the cartesian product
207
between 3 vectors 'acgt'. 
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
208
In python there is a function to do that in ``itertools module``: `https://docs.python.org/3/library/itertools.html#itertools.product <product>`_
209
210
211
212
213
214
215
216
217
218


.. literalinclude:: _static/code/codons_itertools.py
   :linenos:
   :language: python

::

   python -i codons.py 
   >>> codons = all_codons()
219
   
220
221
:download:`codons_itertools.py <_static/code/codons_itertools.py>` .

222
               
223
Exercise
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
224
225
226
227
228
229
230
231
232
233
--------

From a list return a new list without any duplicate, regardless of the order of items. 
For example: ::

   >>> l = [5,2,3,2,2,3,5,1]
   >>> uniqify(l)
   >>> [1,2,3,5] #is one of the solutions 


234
235
pseudocode:
"""""""""""
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
236

237
238
239
240
241
| *function uniqify(l)*
|     *uniq <- empty list*
|     *for each element of l*
|        *add element if is not in uniq*
|     *return uniq*
242

243
244
implementation:
"""""""""""""""
245

246
247
248
.. literalinclude:: _static/code/uniqify.py
   :linenos:
   :language: python
249

250
::
251

252
253
254
   >>> l=[1,2,3,2,3,4,5,1,2,3,3,2,7,8,9]
   >>> uniqify(l)
   [1, 2, 3, 4, 5, 7, 8, 9]
255

256
:download:`codons_itertools.py <_static/code/codons_itertools.py>` .
257

258
259
second implementation:
""""""""""""""""""""""
260

261
262
263
264
265
The problem with the first implementation come from the line 4.
Remember that the membership operator uses a linear search for list, which can be slow for very large collections.
If we plan to use ``uniqify`` with large list we should find a better algorithm.
In the specification we can read that uniqify can work *regardless the order of the resulting list*.
So we can use the specifycity of set ::
266

267
268
 
   >>> list(set(l))
269

270

271
272
Exercise
--------
273

Bertrand  NÉRON's avatar
Bertrand NÉRON committed
274
We need to compute the occurrence of all kmers of a given length present in a sequence.
275

276
Below we propose 2 algorithms. 
277

278
279
pseudo code 1
"""""""""""""
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|   *function get_kmer_occurences(seq, kmer_len)*
|      *all_kmers <- generate all possible kmer of kmer_len*
|      *occurences <- 0* 
|      *for each kmer in all_kmers*
|         *count occurence of kmer*
|         *store occurence*
     
pseudo code 2
"""""""""""""

|  *function get_kmer_occurences(seq, kmer_len)*
|     *all_kmers <- empty*
|     *from i = 0 to sequence length - kmer_len*
|        *kmer <- kmer startin at pos i im sequence*
|        *increase by of occurence of kmer*
 
297

298
.. note::
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
   Computer scientists typically measure an algorithm’s efficiency in terms of its worst-case running time, 
   which is the largest amount of time an algorithm can take given the most difficult input of a fixed size. 
   The advantage to considering the worst case running time is that we are guaranteed that our algorithm 
   will never behave worse than our worst-case estimate.
   
   Big-O notation compactly describes the running time of an algorithm. 
   For example, if your algorithm for sorting an array of n numbers takes roughly n2 operations for the most difficult dataset, 
   then we say that the running time of your algorithm is O(n2). In reality, depending on your implementation, it may be use any number of operations, 
   such as 1.5n2, n2 + n + 2, or 0.5n2 + 1; all these algorithms are O(n2) because big-O notation only cares about the term that grows the fastest with 
   respect to the size of the input. This is because as n grows very large, the difference in behavior between two O(n2) functions, 
   like 999 · n2 and n2 + 3n + 9999999, is negligible when compared to the behavior of functions from different classes, 
   say O(n2) and O(n6). Of course, we would prefer an algorithm requiring 1/2 · n2 steps to an algorithm requiring 1000 · n2 steps.

   When we write that the running time of an algorithm is O(n2), we technically mean that it does not grow faster than a function with a 
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
314
   leading term of c · n2, for some constant c. Formally, a function f(n) is Big-O of function g(n), or O(g(n)), when f(n) <= c · g(n) for some 
315
316
317
318
   constant c and sufficiently large n.

   For more on Big-O notation, see A `http://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/Beginner's <Guide to Big-O Notation>`_.
   
319

320
Compare the pseudocode of each of them and implement the fastest one. ::
321

322
323
324
325
326
327
328
329
330
   """gtcagaccttcctcctcagaagctcacagaaaaacacgctttctgaaagattccacactcaatgccaaaatataccacag
      gaaaattttgcaaggctcacggatttccagtgcaccactggctaaccaagtaggagcacctcttctactgccatgaaagg
      aaaccttcaaaccctaccactgagccattaactaccatcctgtttaagatctgaaaaacatgaagactgtattgctcctg
      atttgtcttctaggatctgctttcaccactccaaccgatccattgaactaccaatttggggcccatggacagaaaactgc
      agagaagcataaatatactcattctgaaatgccagaggaagagaacacagggtttgtaaacaaaggtgatgtgctgtctg
      gccacaggaccataaaagcagaggtaccggtactggatacacagaaggatgagccctgggcttccagaagacaaggacaa
      ggtgatggtgagcatcaaacaaaaaacagcctgaggagcattaacttccttactctgcacagtaatccagggttggcttc
      tgataaccaggaaagcaactctggcagcagcagggaacagcacagctctgagcaccaccagcccaggaggcacaggaaac
      acggcaacatggctggccagtgggctctgagaggagaaagtccagtggatgctcttggtctggttcgtgagcgcaacaca"""
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
331
332


333
In the first alogrithm. 
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
334

335
336
337
| we first compute all kmers we generate 4\ :sup:`kmer length`
| then we count the occurence of each kmer in the sequence
| so for each kmer we read all the sequence so the algorith is in O( 4\ :sup:`kmer length` * ``sequence length``) 
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
338

339
340
| In the secon algorithm we read the sequence only once 
| So the algorithm is in O(sequence length)
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
341
342


343
Compute the 6 mers occurences of the sequence above, and print each 6mer and it's occurence one per line.
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
344

345
346
347
.. literalinclude:: _static/code/kmer.py
   :linenos:
   :language: python
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
348

349
::
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
   >>> s = """"gtcagaccttcctcctcagaagctcacagaaaaacacgctttctgaaagattccacactcaatgccaaaatataccacag
   ... gaaaattttgcaaggctcacggatttccagtgcaccactggctaaccaagtaggagcacctcttctactgccatgaaagg
   ... aaaccttcaaaccctaccactgagccattaactaccatcctgtttaagatctgaaaaacatgaagactgtattgctcctg
   ... atttgtcttctaggatctgctttcaccactccaaccgatccattgaactaccaatttggggcccatggacagaaaactgc
   ... agagaagcataaatatactcattctgaaatgccagaggaagagaacacagggtttgtaaacaaaggtgatgtgctgtctg
   ... gccacaggaccataaaagcagaggtaccggtactggatacacagaaggatgagccctgggcttccagaagacaaggacaa
   ... ggtgatggtgagcatcaaacaaaaaacagcctgaggagcattaacttccttactctgcacagtaatccagggttggcttc
   ... tgataaccaggaaagcaactctggcagcagcagggaacagcacagctctgagcaccaccagcccaggaggcacaggaaac
   ... acggcaacatggctggccagtgggctctgagaggagaaagtccagtggatgctcttggtctggttcgtgagcgcaacaca"""
   >>> s = s.replace('\n', '')
   >>> kmers = get_kmer_occurences(s, 6)
   >>> for kmer in kmers:
   >>>   print kmer[0], '..', kmer[1]
   gcagag .. 2
   aacttc .. 1
   gcaact .. 1
   aaatat .. 2
   
   
:download:`kmer.py <_static/code/kmer.py>` .
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
371
372
373


bonus:
374
""""""
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
375

376
Print the kmers by ordered by occurences.
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
377

Bertrand  NÉRON's avatar
Bertrand NÉRON committed
378
379
| see `https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types <sort>`_
| see `https://docs.python.org/3/library/operator.html#operator.itemgetter <operator.itemgetter>`_
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
380
381


382
383
384
.. literalinclude:: _static/code/kmer_2.py
   :linenos:
   :language: python
385

386
::
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
   >>> s = """"gtcagaccttcctcctcagaagctcacagaaaaacacgctttctgaaagattccacactcaatgccaaaatataccacag
   ... gaaaattttgcaaggctcacggatttccagtgcaccactggctaaccaagtaggagcacctcttctactgccatgaaagg
   ... aaaccttcaaaccctaccactgagccattaactaccatcctgtttaagatctgaaaaacatgaagactgtattgctcctg
   ... atttgtcttctaggatctgctttcaccactccaaccgatccattgaactaccaatttggggcccatggacagaaaactgc
   ... agagaagcataaatatactcattctgaaatgccagaggaagagaacacagggtttgtaaacaaaggtgatgtgctgtctg
   ... gccacaggaccataaaagcagaggtaccggtactggatacacagaaggatgagccctgggcttccagaagacaaggacaa
   ... ggtgatggtgagcatcaaacaaaaaacagcctgaggagcattaacttccttactctgcacagtaatccagggttggcttc
   ... tgataaccaggaaagcaactctggcagcagcagggaacagcacagctctgagcaccaccagcccaggaggcacaggaaac
   ... acggcaacatggctggccagtgggctctgagaggagaaagtccagtggatgctcttggtctggttcgtgagcgcaacaca"""
   >>> s = s.replace('\n', '')
   >>> kmers = get_kmer_occurences(s, 6)
   >>> for kmer, occ in kmers:
   >>>   print kmer, '..', occ
   cacagg .. 4
   aggaaa .. 4
   ttctga .. 3
   ccagtg .. 3
   
   
:download:`kmer_2.py <_static/code/kmer_2.py>` .
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
408
409


410
411
412
Exercise
--------

413
414
415
416
417
| Write a function which take a sequence as parameter and return it's reversed complement.
| Write the pseudocode before to propose an implementation.

pseudocode:
"""""""""""
418

419
420
421
422
423
424
| *function reverse_comp(sequence)*
|     *complement <- establish a correpondance and each base and its complement*
|     *rev_seq <- revert the sequence*
|     *rev_comp <- empty*
|     *for each nt of rev_seq*
|        *concatenate nt complement to rev_comp*
425
|     *return rev_comp*
426

427
.. literalinclude:: _static/code/rev_comp.py
428
429
   :linenos:
   :language: python
430

431
432
433
434
435
::
   >>> from rev_comp import rev_comp
   >>>
   >>> seq = 'acggcaacatggctggccagtgggctctgagaggagaaagtccagtggatgctcttggtctggttcgtgagcgcaacaca'
   >>> print rev_comp(seq)
436
   tgtgttgcgctcacgaaccagaccaagagcatccactggactttctcctctcagagcccactggccagccatgttgccgt
437
438
439
   
:download:`rev_comp.py <_static/code/rev_comp.py>` .

440
  
441
442
443
444
445
446
447
448
449
450
451
452
453
454
other solution
""""""""""""""

python provide an interresting method for our problem. 
The ``translate`` method work on string and need a parameter which is a object
that can do the correspondance between characters in old string a the new one.
``maketrans`` is a function in module ``string`` that allow us to build this object.
``maketrans`` take 2 arguments, two strings, the first string contains the characters
to change, the second string the corresponding characters in the new string.
Thus the two strings **must** have the same lenght. The correspondance between
the characters to change and their new values is made in funtion of thier position.
the first character of the first string will be replaced by the first character of the second string,
the second character of the first string will be replaced by the second character of the second string, on so on.   
So we can write the reverse complement without loop.
455
456
457
458
   
.. literalinclude:: _static/code/rev_comp2.py
   :linenos:
   :language: python
459
460

::
461
462
463
464
465
466
467
   >>> from rev_comp2 import rev_comp
   >>>
   >>> seq = 'acggcaacatggctggccagtgggctctgagaggagaaagtccagtggatgctcttggtctggttcgtgagcgcaacaca'
   >>> print rev_comp(seq)
   tgtgttgcgctcacgaaccagaccaagagcatccactggactttctcctctcagagcccactggccagccatgttgccgt
   
:download:`rev_comp2.py <_static/code/rev_comp2.py>` .
468

469
470
471
Exercise
--------

Bertrand  NÉRON's avatar
Bertrand NÉRON committed
472
473
474
475
let the following enzymes collection:
We decide to implement enzymes as tuple with the following structure
("name", "comment", "sequence", "cut", "end")
::
476
 
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
477
478
479
480
481
482
483
484
485
486

   ecor1 = ("EcoRI", "Ecoli restriction enzime I", "gaattc", 1, "sticky")
   ecor5 = ("EcoRV", "Ecoli restriction enzime V", "gatatc", 3, "blunt")
   bamh1 = ("BamHI", "type II restriction endonuclease from Bacillus amyloliquefaciens ", "ggatcc", 1, "sticky")
   hind3 = ("HindIII", "type II site-specific nuclease from Haemophilus influenzae", "aagctt", 1 , "sticky")
   taq1 = ("TaqI", "Thermus aquaticus", "tcga", 1 , "sticky")
   not1 = ("NotI", "Nocardia otitidis", "gcggccgc", 2 , "sticky")
   sau3a1 = ("Sau3aI", "Staphylococcus aureus", "gatc", 0 , "sticky")
   hae3 = ("HaeIII", "Haemophilus aegyptius", "ggcc", 2 , "blunt")
   sma1 =  ("SmaI", "Serratia marcescens", "cccggg", 3 , "blunt")
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

and the 2 dna fragments: ::

   dna_1 = """tcgcgcaacgtcgcctacatctcaagattcagcgccgagatccccgggggttgagcgatccccgtcagttggcgtgaattcag
   cagcagcgcaccccgggcgtagaattccagttgcagataatagctgatttagttaacttggatcacagaagcttccaga
   ccaccgtatggatcccaacgcactgttacggatccaattcgtacgtttggggtgatttgattcccgctgcctgccagg"""

   dna_2 = """gagcatgagcggaattctgcatagcgcaagaatgcggccgcttagagcgatgctgccctaaactctatgcagcgggcgtgagg
   attcagtggcttcagaattcctcccgggagaagctgaatagtgaaacgattgaggtgttgtggtgaaccgagtaag
   agcagcttaaatcggagagaattccatttactggccagggtaagagttttggtaaatatatagtgatatctggcttg"""

| which enzymes cut the dna_1 ?
|                  the dna_2 ?
|                  the dna_1 but not the dna_2?


Bertrand  NÉRON's avatar
Bertrand NÉRON committed
503
504
505
506
507
508
509
510
511
* In a file <my_file.py>
    #. Write a function *seq_one_line* which take a multi lines sequence and return a sequence in one line.
    #. Write a function *enz_filter* which take a sequence and a list of enzymes and return a new list containing
       the enzymes which have a binding site in the sequence
    #. open a terminal with the command python -i <my_file.py>
    #. copy paste the enzymes and dna fragments
    #. use the functions above to compute the enzymes which cut the dna_1
       apply the same functions to compute the enzymes which cut the dna_2
       compute the difference between the enzymes which cut the dna_1 and enzymes which cut the dna_2
512
   
513
.. literalinclude:: _static/code/enzyme_1.py
514
515
516
517
518
519
520
521
522
523
524
525
526
   :linenos:
   :language: python

::
   from enzyme_1 import *
   
   enzymes = [ecor1, ecor5, bamh1, hind3, taq1, not1, sau3a1, hae3, sma1]
   dna_1 = one_line(dna_1)
   dans_2 = one_line(dna_2)
   enz_1 = enz_filter(enzymes, dna_1)
   enz_2 = enz_filter(enzymes, dna_2) 
   enz1_only = set(enz_1) - set(enz_2)

527
:download:`enzymes_1.py <_static/code/enzyme_1.py>` .
528
529
530
531
532
533
534
535

with this algorithm we find if an enzyme cut the dna but we cannot find all cuts in the dna for an enzyme. ::

   enzymes = [ecor1, ecor5, bamh1, hind3, taq1, not1, sau3a1, hae3, sma1]
   digest_1 = []
   for enz in enzymes:
      print enz.name, dna_1.count(enz.sequence)

Bertrand  NÉRON's avatar
Bertrand NÉRON committed
536
the latter algorithm display the number of occurrence of each enzyme, But we cannot determine the position of every sites.
537
We will see how to do this later.
538

Bertrand  NÉRON's avatar
Bertrand NÉRON committed
539
Bonus
540
^^^^^
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

There is another kind of tuple which allow to access to itmes by index or name.
This data collection is called NamedTuple. The NamedTuple are not accessible directly they are in `collections` package,
so we have to import it before to use it.
We also have to define which name correspond to which item::

    import collections
    RestrictEnzyme = collections.namedtuple("RestrictEnzyme", ("name", "comment", "sequence", "cut", "end"))

The we can use this new kind of tuple::

    ecor1 = RestrictEnzyme("EcoRI", "Ecoli restriction enzime I", "gaattc", 1, "sticky")
    ecor5 = RestrictEnzyme("EcoRV", "Ecoli restriction enzime V", "gatatc", 3, "blunt")
    bamh1 = RestrictEnzyme("BamHI", "type II restriction endonuclease from Bacillus amyloliquefaciens ", "ggatcc", 1, "sticky")
    hind3 = RestrictEnzyme("HindIII", "type II site-specific nuclease from Haemophilus influenzae", "aagctt", 1 , "sticky")
    taq1 = RestrictEnzyme("TaqI", "Thermus aquaticus", "tcga", 1 , "sticky")
    not1 = RestrictEnzyme("NotI", "Nocardia otitidis", "gcggccgc", 2 , "sticky")
    sau3a1 = RestrictEnzyme("Sau3aI", "Staphylococcus aureus", "gatc", 0 , "sticky")
    hae3 = RestrictEnzyme("HaeIII", "Haemophilus aegyptius", "ggcc", 2 , "blunt")
    sma1 =  RestrictEnzyme("SmaI", "Serratia marcescens", "cccggg", 3 , "blunt")

The code must be adapted as below

.. literalinclude:: _static/code/enzyme_1_namedtuple.py
   :linenos:
   :language: python

568
:download:`enzymes_1_namedtuple.py <_static/code/enzyme_1_namedtuple.py>` .
569

570
Exercise
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
--------

given the following dict : ::

   d = {1 : 'a', 2 : 'b', 3 : 'c' , 4 : 'd'}
   
We want obtain a new dict with the keys and the values inverted so we will obtain: ::

   inverted_d  {'a': 1, 'c': 3, 'b': 2, 'd': 4}

solution ::

   inverted_d = {}
   for key in d.keys():
       inverted_d[d[key]] = key
       
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
587
588
589
590
591
592
solution ::

   inverted_d = {}
   for key, value in d.items():
       inverted_d[value] = key
              
Bertrand  NÉRON's avatar
Bertrand NÉRON committed
593
594
solution ::

595
596
   inverted_d = {v : k for k, v in d.items()}