diff --git a/notebooks/images/ada_lovelace.png b/notebooks/images/ada_lovelace.png new file mode 100644 index 0000000000000000000000000000000000000000..2026ac234aeb94dcb470939132c7779774fd2cdd Binary files /dev/null and b/notebooks/images/ada_lovelace.png differ diff --git a/notebooks/images/donald_knuth.png b/notebooks/images/donald_knuth.png new file mode 100644 index 0000000000000000000000000000000000000000..92167d129c5aa7bc30ce96b0d509bf3fd8a9067e Binary files /dev/null and b/notebooks/images/donald_knuth.png differ diff --git a/notebooks/images/jupyter.png b/notebooks/images/jupyter.png new file mode 100644 index 0000000000000000000000000000000000000000..32b3854d393973f17f6f0c45677ff6c593720d21 Binary files /dev/null and b/notebooks/images/jupyter.png differ diff --git a/notebooks/images/logo_ip_color.png b/notebooks/images/logo_ip_color.png new file mode 100644 index 0000000000000000000000000000000000000000..2064abbf84b40c692108ac67fcfff4ec051880be Binary files /dev/null and b/notebooks/images/logo_ip_color.png differ diff --git a/notebooks/images/tools.png b/notebooks/images/tools.png new file mode 100644 index 0000000000000000000000000000000000000000..c13c4ea438ce95e13be6d5c0f263f1ba1795cdea Binary files /dev/null and b/notebooks/images/tools.png differ diff --git a/notebooks/jupyter_cours.ipynb b/notebooks/jupyter_cours.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c5b9ef6237a6e6cb8d1d3a2c92dfb80d59dffe4d --- /dev/null +++ b/notebooks/jupyter_cours.ipynb @@ -0,0 +1,3165 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "danish-perfume", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Introduction to Notebooks and Jupyter\n", + "\n", + "Etienne Kornobis, Bertrand Néron, François Laurent\n", + "\n", + "2021/09/27\n", + "Institut Pasteur" + ] + }, + { + "cell_type": "markdown", + "id": "successful-hampshire", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## The concept of literate programming\n", + ">*Literate programming: Instead of imagining that our main task is to instruct a\n", + ">computer what to do, let us concentrate rather on explaining to human beings\n", + ">what we want a computer to do.*\n", + "\n", + "<img src=\"images/donald_knuth.png\" style=\"width: 20%;\" align=\"left\" margin:0 auto/>\n", + "\n", + "Donald Knuth (1984)" + ] + }, + { + "cell_type": "markdown", + "id": "valued-royal", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## The concept of notebook\n", + "\n", + "A single place where live happily together:\n", + "- code\n", + "- documentation\n", + "- reasoning\n", + "- visualizations" + ] + }, + { + "cell_type": "markdown", + "id": "relative-settlement", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Many flavors of notebooks\n", + "\n", + "Many technologies have been developed in this direction:\n", + "\n", + "- Jupyter: https://jupyter.org/\n", + "- R Markdown: https://rmarkdown.rstudio.com/\n", + "- Apache zeppelin: https://zeppelin.apache.org/\n", + "- Google Colaboratory: https://colab.research.google.com\n", + "- Observable (client-side): https://observablehq.com/\n", + "- Spark notebooks (http://spark-notebook.io/)\n", + "- Beaker (engulfed by Jupyter)\n", + "- ..." + ] + }, + { + "cell_type": "markdown", + "id": "hungry-developer", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Caveats\n", + "- Notebooks downsides:\n", + " - Can be cumbersome (cell order execution...), not necessarily good as first entry point in Programming\n", + " - Beware of bad coding practices (no proper module/library design)\n", + " - Difficult for source control\n", + " - Testability\n", + " \n", + "But these issues are currently addressed !" + ] + }, + { + "cell_type": "markdown", + "id": "international-measurement", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Why choosing Jupyter\n", + "\n", + "- 40+ languages supported\n", + "- Extensibility\n", + "- Community\n", + "- Recognized and pretty formatted by GitLab and GitHub" + ] + }, + { + "cell_type": "markdown", + "id": "composite-insulin", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## The main idea of Jupyter <img src=\"images/jupyter.png\" style=\"width: 20%\" align=\"right\" margin:0 auto/>\n", + "\n", + "An open-source web application to interactively represent a single json file where live happily together:\n", + "- code\n", + "- documentation\n", + "- reasoning\n", + "- visualizations (simple and interactive)\n", + "\n", + "Feature overview:\n", + "- Easy sharing\n", + "- Multitude of export: interactive notebook, voilà dashboard, html blog, presentation, or simple script.\n", + "- the future of scientific article publication (at least in programming related fields)" + ] + }, + { + "cell_type": "markdown", + "id": "naughty-kazakhstan", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Many IDE flavors for jupyter notebooks\n", + "\n", + "- Jupyter notebook (+ extensions)\n", + "- Jupyter lab (+ extensions)\n", + "- nteract\n", + "- Your own editor (visual studio code / pycharm / jupytext / Emacs modes ...)\n", + "\n", + "Jupyter lab is the main IDE for Jupyter now but:\n", + "- extensions do not necessarily work for both Jupyter notebook and lab\n", + "- Nice features in nteract but cannot use previous extensions" + ] + }, + { + "cell_type": "markdown", + "id": "joined-landing", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Setup\n", + "### Locally\n", + "\n", + "https://jupyter.org/install\n", + "\n", + "- Using conda (recommended on jupyter website)\n", + "\n", + "```conda env create -n jupyter jupyterlab```\n", + "\n", + "- Using pip\n", + "\n", + "```pip install jupyterlab```\n", + "\n", + "### On tars\n", + "\n", + "Check https://confluence.pasteur.fr/display/FAQA/How+to+use+Jupyter-Notebook+on+the+cluster" + ] + }, + { + "cell_type": "markdown", + "id": "decreased-window", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Exporting/sharing:\n", + "`jupyter nbconvert` to:\n", + "- HTML\n", + "- LaTeX\n", + "- PDF\n", + "- Reveal JS\n", + "- Markdown (md)\n", + "- ReStructured Text (rst)\n", + "- executable script\n", + "\n", + "JupyterHub https://jupyter.org/hub\n", + "\n", + "Binder https://gke.mybinder.org/\n", + "\n", + "Github/Gitlab formatting. Ex: https://gitlab.com/khourhin/reproducibility/blob/master/code/analysis_framework/analysis.ipynb" + ] + }, + { + "cell_type": "markdown", + "id": "demonstrated-poultry", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "id": "lightweight-latex", + "metadata": {}, + "source": [ + "### Markdown \n", + "\n", + "In order to provide clear explanations within your analysis notebooks, you can:\n", + "\n", + "- Use *classical* **markdown** ~~eye candy~~ `features` \n", + "\n", + "- Include mathematical expressions:\n", + "\n", + "$$e^x=\\sum_{i=0}^\\infty \\frac{1}{i!}x^i$$\n", + "\n", + "- code snippets in quoteblocks:\n", + "\n", + ">```python\n", + ">x = 42\n", + ">print(f\"The answer is {x}\")\n", + ">```\n", + "\n", + "- Links: [More on markdown](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet)\n", + "\n", + "- Insert pictures as markdown or html: <img src=\"images/ada_lovelace.png\" width=\"20%\" align=\"right\"/>" + ] + }, + { + "cell_type": "markdown", + "id": "important-launch", + "metadata": {}, + "source": [ + "### Code examples" + ] + }, + { + "cell_type": "markdown", + "id": "significant-prison", + "metadata": {}, + "source": [ + "#### Python" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "loose-shame", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello Reproducibility\n" + ] + } + ], + "source": [ + "print(\"Hello Reproducibility\")" + ] + }, + { + "cell_type": "markdown", + "id": "chronic-lyric", + "metadata": {}, + "source": [ + "#### Bash" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "studied-accent", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "yes\n" + ] + } + ], + "source": [ + "%%bash\n", + "\n", + "echo \"yes\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "political-machinery", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "yes\n" + ] + } + ], + "source": [ + "! echo \"yes\"" + ] + }, + { + "cell_type": "markdown", + "id": "herbal-budget", + "metadata": {}, + "source": [ + "#### Julia" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "naval-tsunami", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here comes Julia !\n" + ] + } + ], + "source": [ + "%%script julia\n", + "\n", + "println(\"Here comes Julia !\")" + ] + }, + { + "cell_type": "markdown", + "id": "offensive-separation", + "metadata": {}, + "source": [ + "#### NB\n", + "\n", + "Making a single notebook with multiple languages is not necessarily easy, especially to pass variables (for example: R cells with a python kernel)." + ] + }, + { + "cell_type": "markdown", + "id": "alternate-housing", + "metadata": {}, + "source": [ + "### Inline plotting" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "educated-superintendent", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "brilliant-resolution", + "metadata": {}, + "outputs": [], + "source": [ + "mi_df = pd.read_csv(\"../data/mi.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "cleared-federal", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEdCAYAAABZtfMGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgUUlEQVR4nO3de5xVdb3/8dcbUNEQlZQRVCRPXsbw6NFRjkfSmVDrZIqVlJhFNedgFzGziyj9jnaKwi6ni9ZRDBWPR4Q0kzBNo5mMX2p5LZTKEkQCQUVSDEnoc/5Y39HtMPe9h7Vm9vv5eOzH3uuyv9/P2mvP/sz3u75rLUUEZmZmRTMg7wDMzMza4gRlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARl25ykkPTGvOPIk6R6SSs7WN7nPiNJyyUd386yRyTVb9uIrK9zgqpi6Qdlo6QNkp6TdKukffKOq4WkD0panHccfZmk7SV9XdLKtJ+XSfrGto4jIt4UEc3bul7r25yg7OSIGAKMANYAl+YcT6+RNCjvGHJwAVAHHAXsDDQAD+YakVkXOUEZABHxEnAjcHDLPEm7SLpW0tOSnpD0OUkDJA1L/5GfnNYbIumPkj6Qpq+RdLmkOyW9IOnnkvZtq94O6qgFLgeOTv/5r2/n/W+QdFeq56eSviPpurRsdOoqa5S0AvhZKvtzqa61qe5d0vpbdbuVdltJuljSjZLmpfoekHRoybojJd2UtmWZpHNKlu2YPpfnJD0KHNmF3fJ2SY9LekbSV1PsO0haJ+mQkrKHp5bwHm2UcSRwc0SsiszyiLi21fZ9RtJvJL0oabakGkm3lXymu5Wsf0rqrlsvqTntp7b2y0HpMzi9nc9xfvrsX0jl1ZW893BJD6Zl30+f9xe78HlZP+MEZQBI2gl4L3BPyexLgV2A/YDjgA8AH4qIdcCHgSslDQe+ATxU+sMHvA/4ArA78BDwv+1U3V4dS4GPAHdHxJCI2LWd918P/Ap4PXAx8P421jkOqAXeCnwwPRpSnUOAy9opuy0TgO8Dw1LdP5S0naQBwI+Ah4G9gPHAuZLemt53EfAP6fFWYHIX6nonWevn8FTvhyNiE3ADcGbJepOAn0bE022UcQ9wnqSPSTpEktpY593ACcABwMnAbcCFZPtuAHAOgKQDgLnAucAewI+BH0navrQwSYcDdwBTI+KGdrbtlLQduwILSPsglXUzcA3ZZzw3fQ5WjSLCjyp9AMuBDcB6YDOwCjgkLRsIbAIOLln/LKC5ZPpS4Lfpfa8vmX8NcEPJ9BBgC7BPmg7gjZ3VQZZIFncQ/6gU904l864DrkuvR6e69itZvgj4WMn0gcDLwCCgHljZxmd0fHp9MXBPybIBwGrgzcBYYEWr914AXJ1ePw68rWTZlNZ1tXpvtFr/Y8Ci9Hos8CQwIE3fB7ynnXIGAh8H/n/6rFcBk1tt3/tKpm8C/rtkeirww/T6/wHzW23/n4H6krI+D6wEGjr5HH9asuxgYGN6fWwqUyXLFwNfzPvvxY9t/3ALyk6NrHWyA3A28HNJe5L997w98ETJuk+QtQ5azALGkP0IP9uq3CdbXkTEBmAdMLLVOl2poyMjgXUR8de26m1n3sg26hsE1HSxztLt+jvZj/FIYF9gZOr6Wp+6JC8sKXdkqzhKY+i0rrT+yFTvvcCLwHGSDiJL9gvaKiAitkTEdyLiGLLWygzgqlZdc2tKXm9sY3pIyTa8Enfa/id57f76CPDLiGjqZNueKnn9V2CwsmOEI4E/R0TpVazb2qdWBZygDHjlh+wHZC2dccAzZC2L0mNHo8j+u0XSQOAK4Frgo9p6SPQrowElDSHrrlnVap0O6yBrRXRkNTAsdU9uVW/p5pW8XtVGfZvJfpRfBF4pK21j6+M6pds1ANg7lfkksCwidi157BwRby+JtTS2UZ1sW+ttGcVrP785ZN187wdujOwYYociYmNEfAd4jpJjjd3wms8udRfuw6v7C7IENUo9Hym4GtirVVdkYUaW2rblBGVA9mMjaQKwG7A0IrYA84EZknZOgxzOI+tCg6x1ANmxqK8B16Yf9BZvlzQuHVP4AnBvRLzmP+Eu1LEG2Lv1MY6S9z9B1r11sbLh1EeTHUPpyFzgk2lwxRDgS8C8iNgM/IHsP/mTJG0HfI6sZVnqCEnvSv/tn0vWbXYP2XGw5yWdnwZEDJQ0RlLLYIj5wAWSdpO0N1nXWWc+k9bfB/gEMK9k2f+QHZs5k+yfhDZJOjcN/thR0iBJk8lG8/VkJN984CRJ49Pn8ymy7f9lyTovAG8DjpU0swd13E32T9LZKd4JZCMQrQo5QdmPJG0Anifr/pkcEY+kZVPJWhWPkx0HuJ6se+gIskTygZRkLiFrpUwrKfd6soEB64AjyAZNtKXNOtKynwGPAE9Jeqad978POBp4Fvgi2Y/4pg629yqyH/e7gGXASykGIuIvZMd6vkfWKniRrAuv1C1kg0meI2u9vCsiXk6fw8nAYancZ1I5u6T3fZ6se2wZ2QCC/+kgxtK67icbZHIrMLtlQUSsBB4g+9x/0UEZG4Gvk3WpPUN2POrdEfF4F+p/jYj4PVlCvDSVdTLZaQp/a7XeerJBF/8q6QvdrONvwLuARrJjo2cCC+l4n1o/pdd29ZqVT9I1ZAMAPpdD3fOA30XERb1Q9sXAGyPizM7W3RYkXQWsyuNz3pYk3QtcHhFX5x2LbVtuQVmfJulISf+QzhF6G9lw7B/mHFavkzSarKUxu5NV+xxJx0nas6RL8h+B2/OOy7a9ajyz3vqXPYEfkJ0HtRL4aET06yslpG6zTwJfjohlecfTCw4kO941BPgTcFpErM43JMuDu/jMzKyQ3MVnZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlVkLScknHt5r3QUmLe6m+kPTGkul6SX+XtEHSC5J+L+lD3SivWdK/9UasZtuaE5RZDiQN6mDxqogYAgwlu7X7lZIO3DaRmRWHE5RZN0gaKekmSU9LWibpnJJlR0m6W9J6SaslXSZp+5LlIenjkh4DHpN0V1r0cGoxvbe0rsj8GFgH/GMqYzdJC1P9z6XXe6dlM4A3A5el8i5L8w+SdKekdalF9p7e/IzMKsUJyqyLJA0AfgQ8DOwFjAfOlfTWtMoWshbP7sDRafnHWhVzKjAWODgijk3zDo2IIRExr3V9kk5J5f0xzR4AXA3sC4wCNgKXAUTEdOAXwNmpvLMlvQ64E7geGA5MAr4r6U1lfhxmva6jbgazavVDSZtLprcHHgCOBPaIiP9M8x+XdCVwOvCTiLi/5D3LJV0BHAd8s2T+lyNiXSf1j5S0HtiR7G/0vIh4ECAingVualkxtZqaOijrHcDyiLg6TT8g6SbgNOCRTuIwy5VbUGZbOzUidm158GoraF9S8mh5ABcCNQCSDkhdbk9Jeh74Elnrp9STXah/Vap3KPBt4C0tCyTtJOkKSU+kOu4CdpU0sJ2y9gXGtor5fcCeXYjDLFdOUGZd9ySwrDR5RcTOEfH2tPy/gd8B+0fEULLkpVZlRFcri4hNwPnAIZJOTbM/BRwIjE11tHQTttTTuvwngZ+3inlIRHy0q3GY5cUJyqzrfgU8L+l8STtKGihpjKQj0/KdgeeBDZIOArqSBNYA+7W3MCL+Bnwd+I+SOjYC6yUNAy7qpLyFwAGS3i9pu/Q4UlJtF2Izy5UTlFkXRcQW4GTgMGAZ8AzwPWCXtMqngTOAF4ArgXlbl7KVi4E5qfutvdF1VwGjJJ1Mdjxrx1T3PcDtrdb9FnBaGuH37Yh4ATiR7DjZKuAp4BJghy7EZpYrRXS5x8HMzGybcQvKzMwKyQnKzMwKyQnKzMwKyQnKzMwKqRBXkth9991j9OjReYeRmxdffJHXve51eYdhOfH+t2r/Dtx///3PRMQerecXIkGNHj2a++67L+8wctPc3Ex9fX3eYVhOvP+t2r8Dkp5oa767+MzMrJCcoMzMrJCcoMzMrJCcoMzMrJA6TVCSrpK0VtKSknnD0h06H0vPu5Usu0DSH9OdO9/adqkGMHfuXMaMGcP48eMZM2YMc+fOzTskM7PC6MoovmvI7th5bcm8acCiiJgpaVqaPl/SwWQXpXwTMBL4qaQD0kU2rcTcuXOZPn06s2fPZsuWLQwcOJDGxkYAJk2alHN0Zmb567QFFRF3Aa3vADoBmJNezyG7jXXL/BsiYlNELCO7TfVRlQm1f5kxYwazZ8+moaGBQYMG0dDQwOzZs5kxY0beoZmZFUJPz4OqiYjVABGxWtLwNH8vslsAtFiZ5m1F0hRgCkBNTQ3Nzc09DKVvWrp0KVu2bKG5uZkNGzbQ3NzMli1bWLp0adV9FtWuZf9b9fJ3oG2VPlG39d1DoZ07iEbELGAWQF1dXVTbSWq1tbUMHDiQ+vr6V07Sa2pqora2tqpP2KtG1X6Spvk70J6ejuJbI2kEQHpem+avBPYpWW9vspukWSvTp0+nsbGRpqYmNm/eTFNTE42NjUyfPj3v0MzMCqGnLagFwGRgZnq+pWT+9ZL+i2yQxP5kt8m2VloGQkydOpWlS5dSW1vLjBkzPEDCzCzpNEFJmgvUA7tLWglcRJaY5ktqBFYAEwEi4hFJ84FHgc3Axz2Cr32TJk1i0qRJbt6bmbWh0wQVEe39Sz++nfVnAB6KZmZmZfGVJMzMcuKT9TtWiNttmJlVG5+s3zm3oMzMcuCT9TvnBGVmloOlS5cybty418wbN24cS5cuzSmi4nGCMjPLQW1tLYsXL37NvMWLF1NbW5tTRMXjBJUjHyA1q14+Wb9zHiSREx8gNatuPlm/c25B5cQHSM1s0qRJLFmyhEWLFrFkyRInp1acoHLiA6RmZh1zgsqJD5CamXXMCSonPkBqZtYxD5LIiQ+Qmpl1zAkqR76auZlZ+9zFZ2ZmheQEZWZmheQEZWZmheQElSNf6sisuvk3oGMeJJETX+rIrLr5N6BzbkHlxJc6Mqtu/g3oXFkJStInJC2R9Iikc9O8YZLulPRYet6tIpH2M77UkVl1829A53qcoCSNAf4dOAo4FHiHpP2BacCiiNgfWJSmrRVf6sisuvk3oHPltKBqgXsi4q8RsRn4OfBOYAIwJ60zBzi1rAj7KV/qyKy6+Tegc4qInr1RqgVuAY4GNpK1lu4D3h8Ru5as91xEbNXNJ2kKMAWgpqbmiBtuuKFHcfRlixYt4rrrrmPFihWMGjWKM888k/Hjx+cdlm1jGzZsYMiQIXmHYTnwb0CmoaHh/oioaz2/xwkKQFIj8HFgA/AoWaL6UFcSVKm6urq47777ehxHX+dLHVU373+r9u+ApDYTVFmDJCJidkQcHhHHAuuAx4A1kkakSkcAa8upw8zMqlNZ50FJGh4RayWNAt5F1t33BmAyMDM931J2lH2YpIqWV06L18ysLyn3PKibJD0K/Aj4eEQ8R5aYTpD0GHBCmq5aEdHpY9/zF3ZpPScnM6smZbWgIuLNbcx7Fqi+o3xmZlZRvpKEmZkVkhOUmZkVkhOUmZkVkhOUmVlOpk6dyuDBg2loaGDw4MFMnTo175AKxbfbMDPLwdSpU7n88su55JJLOPjgg3n00Uc5//zzAbj00ktzjq4YnKDMzHJw5ZVXMnbsWC688EI2bdrEDjvswNixY7nyyiudoBInKDOzHGzatIl77rmHr3zlK6+0oD772c+yZcuWvEMrDB+DMjPLyUknncR5553H4MGDOe+88zjppJPyDqlQ3IIyM8vJwoUL2XPPPVm7di3Dhw/n6aefzjukQnGCMjPLwaBBgxg4cCDr1q0jIli3bh3bbbedu/hKuIvPzCwHQ4cO5eWXX2bmzJncdtttzJw5k5dffpmhQ4fmHVphuAVlZpaD9evXc9ZZZ71mFN9ZZ53FFVdckXdoheEWlJlZDmpra5k4cSIvvfQSTU1NvPTSS0ycOJHa2tq8QysMJygzsxxMnz6dxsZGmpqa2Lx5M01NTTQ2NjJ9+vS8QysMd/GZmfWSrtyw9C1vectrps844wzOOOOMNtettnvCuQVlZtZLunoj0q7etLTaOEGZmVkhOUGZmVkhOUGZmVkhlZWgJH1S0iOSlkiaK2mwpGGS7pT0WHrerVLBmplZ9ehxgpK0F3AOUBcRY4CBwOnANGBRROwPLErTZmZm3VJuF98gYEdJg4CdgFXABGBOWj4HOLXMOszMrAr1OEFFxJ+BrwErgNXAXyLiDqAmIlandVYDwysRqJmZVZcen6ibji1NAN4ArAe+L+nMbrx/CjAFoKamhubm5p6G0i9U+/b3Vw0NDRUtr6mpqaLlWXH4N2Br5VxJ4nhgWUQ8DSDpB8C/AGskjYiI1ZJGAGvbenNEzAJmAdTV1UV9fX0ZofRxt99KVW9/P9aVkytHT7uV5TN9o7qq5t+ANpVzDGoF8M+SdlJ2PY/xwFJgATA5rTMZuKW8EM3MrBr1uAUVEfdKuhF4ANgMPEjWIhoCzJfUSJbEJlYiUDMzqy5lXSw2Ii4CLmo1exNZa8rMzKzHfCUJMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrJCcoMzMrpB4nKEkHSnqo5PG8pHMlDZN0p6TH0vNulQzYzMyqQ48TVET8PiIOi4jDgCOAvwI3A9OARRGxP7AoTZuZmXVLpbr4xgN/iogngAnAnDR/DnBqheowM7MqMqhC5ZwOzE2vayJiNUBErJY0vK03SJoCTAGoqamhubm5QqH0TdW+/dXO+9/8Hdha2QlK0vbAKcAF3XlfRMwCZgHU1dVFfX19uaH0XbffSlVvf7Xz/jd/B9pUiS6+fwUeiIg1aXqNpBEA6XltBeowM7MqU4kuvkm82r0HsACYDMxMz7dUoI7COfTzd/CXjS9XrLzR026tWFm77LgdD190YsXKMzPLQ1kJStJOwAnAWSWzZwLzJTUCK4CJ5dRRVH/Z+DLLZ55UkbKam5sr2ryvZLIzM8tLWQkqIv4KvL7VvGfJRvWZmZn1mK8kYWZmheQEZWZmheQEZWZmheQEZWZmheQEZWZmheQEZWZmheQEZWZmheQEZWZmhVSpq5mbmVWNSl/qDCp3BZj+dKkzJygzs26q5KXOoLKXO+tPlzpzF5+ZmRWSE5SZmRWSu/jMesC3WzHrfU5QZj3g262Y9T538ZmZWSE5QZmZWSE5QZmZWSE5QZmZWSE5QZmZWSGVNYpP0q7A94AxQAAfBn4PzANGA8uB90TEc+XUU0Q7107jkDnTKlfgnMoVtXMtQOXOcjczy0O5w8y/BdweEadJ2h7YCbgQWBQRMyVNA6YB55dZT+G8sHSmhxmbmfWiHnfxSRoKHAvMBoiIv0XEemACr7YH5gCnlheimZlVo3JaUPsBTwNXSzoUuB/4BFATEasBImK1pOFtvVnSFGAKQE1NDc3NzWWEko9Kxbxhw4aKb39f/Dz7Gu//6lbJz7jS34F+s/8jokcPoA7YDIxN098CvgCsb7Xec52VdcQRR0Rfs+/5CytWVlNTU8XKiqhsbNY27//qVunPuJLfgb64/4H7oo3cUM4ovpXAyoi4N03fCBwOrJE0AiA9ry2jDjMzq1I9TlAR8RTwpKQD06zxwKPAAmBymjcZuKWsCM3MrCqVO4pvKvC/aQTf48CHyJLefEmNwApgYpl1mJkVSsVPM4GKnWrSn04zKStBRcRDZMeiWhtfTrlmZkVWydNMwHfUbY+vJGFmZoXkBGVmZoXkGxaa9YAvdWXW+5ygzHrAl7oy633u4jMzs0JygjIzs0JygjIzs0JygjIzs0LyIIkyVPRg9O2VK2uXHberWFlmZnlxguqhSp5FPnrarRUtz8ysP3AXn5mZFZITlJmZFZITlJmZFZITlJmZFZIHSZiZ9UDFLylVoZG8/WkUrxOUWQ/5NIPqVelRtx7J2zYnKLMe8GkGZr3Px6DMzKyQnKDMzKyQyurik7QceAHYAmyOiDpJw4B5wGhgOfCeiHiuvDDNzKzaVKIF1RARh0VEXZqeBiyKiP2BRWnazMysW3qji28Cr97Aeg5wai/UYWZm/Vy5o/gCuENSAFdExCygJiJWA0TEaknD23qjpCnAFICamhqam5vLDKVvq/btr3be/+bvwNbKTVDHRMSqlITulPS7rr4xJbNZAHV1dVFfX19mKH3Y7bdS1dtf7bz/zd+BNpXVxRcRq9LzWuBm4ChgjaQRAOl5bblBmplZ9elxgpL0Okk7t7wGTgSWAAuAyWm1ycAt5QZpZmbVp5wuvhrgZkkt5VwfEbdL+jUwX1IjsAKYWH6YZmZWbXqcoCLiceDQNuY/C4wvJygzMzNfScLMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzAqp7AQlaaCkByUtTNPDJN0p6bH0vFv5YZqZWbWpRAvqE8DSkulpwKKI2B9YlKbNzMy6pawEJWlv4CTgeyWzJwBz0us5wKnl1GFmZtVpUJnv/ybwWWDnknk1EbEaICJWSxre1hslTQGmANTU1NDc3FxmKMXU0NDQpfV0SdfKa2pqKiMa29a8/62r+utvYDl6nKAkvQNYGxH3S6rv7vsjYhYwC6Curi7q67tdRJ8QEZ2u09zcTH/d/mrn/W9dcvut/g60oZwW1DHAKZLeDgwGhkq6DlgjaURqPY0A1lYiUDMzqy49PgYVERdExN4RMRo4HfhZRJwJLAAmp9UmA7eUHaWZmVWd3jgPaiZwgqTHgBPStJmZWbeUO0gCgIhoBprT62eB8ZUo18zMqpevJGFmZoXkBGVmZoXkBGVmZoVUkWNQZma2NUldX7cLJ2t35by6/sQtKDOzXhIRXXo0NTV1ab1q4wRlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaF5ARlZmaFpCKMrZf0NPBE3nHkaHfgmbyDsNx4/1u1fwf2jYg9Ws8sRIKqdpLui4i6vOOwfHj/m78DbXMXn5mZFZITlJmZFZITVDHMyjsAy5X3v/k70AYfgzIzs0JyC8rMzArJCcrMzArJCarCJL1TUkg6qJP1zpW0U8n0jyXt2usBWq4kbZH0UMljWt4xWeWkv/2vl0x/WtLFOYbUp/kYVIVJmg+MABZFxMUdrLccqIuIaj45r+pI2hARQ/KOw3qHpJeA1cCREfGMpE8DQzr6LSizvkERsbk3yi4Ct6AqSNIQ4BigETg9zRso6WuSfivpN5KmSjoHGAk0SWpK6y2XtLukSyR9rKTMiyV9Kr3+jKRfp3I+v8030HqFpF0k/V7SgWl6rqR/zzsu65HNZCPyPtl6gaQ9JN2U/oZ/LekYSQPS3/6uJev9UVJNW+un5RdLmiXpDuDabbVheRiUdwD9zKnA7RHxB0nrJB0OjAXeAPxTRGyWNCwi1kk6D2hoowV1A/BN4Ltp+j3A2ySdCOwPHAUIWCDp2Ii4q/c3yypoR0kPlUx/OSLmSTobuEbSt4DdIuLKfMKzCvgO8BtJX2k1/1vANyJisaRRwE8iolbSLcA7gasljQWWR8QaSde3Xh+oTWUdAYyLiI3bZpPy4QRVWZPIkgtkiWYSsB9weUszPCLWdVRARDwoabikkcAewHMRsSK1uk4EHkyrDiFLWE5QfcvGiDis9cyIuFPSRLIft0O3eVRWMRHxvKRrgXOA0gRyPHCwpJbpoZJ2BuYB/wFcTdbzMq+T9QEW9PfkBE5QFSPp9cBbgDGSAhgIBHB/eu6OG4HTgD3JEh1kraYvR8QVlYnYikTSALL/jjcCw4CV+UZkZfom8ABZ0mkxADi6dWKRdDfwRkl7kPXCfLGT9QFe7JWoC8bHoCrnNODaiNg3IkZHxD7AMrIv6UckDQKQNCyt/wKwc9tFcQPZf1KnkSUryJr3H07HuZC0l6ThvbMploNPAkvJWt1XSdou53isDKmnZD7Z8egWdwBnt0xIOiytG8DNwH8BSyPi2Y7WryZOUJUziexLVuomssEQK8j6pB8GzkjLZgG3tQySKBURj5Alrz9HxOo07w7geuBuSb8lS1ztJTgrrh1bDTOfKekA4N+AT0XEL8i6bT+Xb5hWAV8nu41Gi3OAujTI6VHgIyXL5gFn8mr3XmfrVwUPMzczs0JyC8rMzArJCcrMzArJCcrMzArJCcrMzArJCcrMzArJCcqsmyRNl/RIGv77ULo8TTnl1Uta2Mb8U3y1c6tmvpKEWTdIOhp4B3B4RGyStDuwfW/UFRELgAW9UbZZX+AWlFn3jACeiYhNABHxTESsSlek/pKkuyXdJ+lwST+R9CdJHwFQ5quSlqSr27+3deGSjpT0oKT9JH1Q0mVp/jWSvi3pl5Iel3Ramj9A0ndTi26hsvuKnbYNPw+zXuMEZdY9dwD7SPpDSgzHlSx7MiKOBn4BXEN2qap/Bv4zLX8XcBjZxWCPB74qaUTLmyX9C3A5MCEiHm+j7hHAOLIW3MySMkcDh5BdjeLo8jfRrBjcxWfWDRGxQdIRwJuBBmBeyXGilu6435LdpO4F4AVJL6X7/YwD5kbEFmCNpJ8DRwLPk10odhZwYkSsaqf6H0bE34FHJdWkeeOA76f5T7V16SyzvsoJyqybUoJpBprTdREnp0Wb0vPfS163TA8iuyJ9e1YDg4F/AtpLUKVlqtWzWb/jLj6zbpB0oKT9S2YdBjzRxbffBbxX2V2W9wCOBX6Vlq0HTgK+JKm+GyEtBt6djkXVAN15r1mhuQVl1j1DgEtTl91m4I/AFLLjQp25mewY0cNk9wj7bEQ8JekggHQX1ZPJrnL/4S7GcxMwHlgC/AG4F/hL1zfHrLh8NXOzPk7SkHRs7PVkLbJjIuKpvOMyK5dbUGZ938LUotse+IKTk/UXbkGZmVkheZCEmZkVkhOUmZkVkhOUmZkVkhOUmZkVkhOUmZkV0v8Br9HydOZfGqcAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "mi_df.boxplot(column=\"HeartRate\", by=\"Smoking\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "knowing-design", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<AxesSubplot:xlabel='Smoking', ylabel='HeartRate'>" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYIUlEQVR4nO3df5RfdX3n8edrEtgkBoSQHwTGNGBG1FpEHW0jLovFxKZSgxZaaD1nVNbUUyTgttvGXXYBN0djrVsNu243bdWxuyIpLJscutjkZBt/nLrgxCAEKJlRQxgSkkkAyU9MyHv/uHcuwzjJfJP53u/ne+f7epwz58699/u99z25J9/X93M/936uIgIzMzOAttQFmJlZ83AomJlZwaFgZmYFh4KZmRUcCmZmVpiYuoCxmD59esydOzd1GWZmlbJp06Y9ETFjpHWVDoW5c+fS09OTugwzs0qR9OTx1vn0kZmZFRwKZmZWcCiYmVnBoWBmZgWHglkJ9uzZw4033sjevXtTl2J2UkoLBUlfkbRb0pYhy6ZJWi+pN5+ePWTdpyT1SXpC0nvLqsusEbq7u3n44Yfp7u5OXYrZSSmzpfA14DeGLVsGbIiIDmBDPo+kNwLXAr+cv+fLkiaUWJtZafbs2cP9999PRHD//fe7tWCVUlooRMR3gGeHLV4MDH516gauGrL8mxHxYkT8FOgD3lFWbWZl6u7uZnBI+mPHjrm1YJXS6D6FWRGxEyCfzsyXnw88NeR1/fmyXyBpiaQeST0DAwOlFmt2KtavX8+RI0cAOHLkCOvWrUtckVntmqWjWSMsG/HpPxGxKiI6I6JzxowR79I2S2rBggWcdtppAJx22mksXLgwcUVmtWt0KOySNBsgn+7Ol/cDrxnyunZgR4NrM6uLrq4upOx7TltbG11dXYkrMqtdo0NhLTD4P6QLWDNk+bWS/oWkC4AO4MEG12ZWF9OnT2fRokVIYtGiRZxzzjmpSzKrWWkD4km6E7gcmC6pH7gVWAGslnQ9sB24BiAiHpW0GngMOArcEBEvlVWbWdm6urrYtm2bWwlWORq8SqKKOjs7w6OkmpmdHEmbIqJzpHXN0tFsw/iOWDNLwaHQpHxHrJml4FBoQr4j1sxScSg0Id8Ra2apOBSakO+INbNUHApNyHfEmlkqDoUm5Dtiq89Xj1lVORSakO+IrT5fPWZV5VBoUl1dXVx88cVuJVSQrx6zKnMoNKnp06dzxx13uJVQQb56zKrMoWBWZ756zKrMoWBWZ756zKrMoWBWZ756zKrMoWBWZ756zKqstOcpmLUyP0/BqsqhYFaCwavHzKrGp4/MzKzgUDAzs4JDoUl57Jxq8/GzqnIoNCmPnVNtPn5WVQ6FJuSxc6rNx8+qzKHQhDx2TrX5+FmVJQkFSTdJ2iLpUUk358umSVovqTefnp2itmbgsXOqzcfPqqzhoSDpTcDHgHcAbwaulNQBLAM2REQHsCGfb0keO6fafPysylK0FN4A/L+IOBgRR4FvAx8AFgOD7exu4KoEtTUFj51TbT5+VmUpQmELcJmkcyRNAX4TeA0wKyJ2AuTTmQlqawoeO6fafPysyho+zEVEPC7pc8B6YD/wI+Bore+XtARYAjBnzpxSamwGHjun2nz8rKo0eJVEsgKkzwD9wE3A5RGxU9JsYGNEXHSi93Z2dkZPT08jyjQzGzckbYqIzpHWJRkQT9LMiNgtaQ7wQWA+cAHQBazIp2tS1GatY+XKlfT19ZWy7f7+fgDa29vrvu158+axdOnSum/XDNKNknqPpHOAI8ANEfGcpBXAaknXA9uBaxLVZjZmhw4dSl2C2SlJfvpoLHz6yJrV4Df5lStXJq7E7Bed6PSR72g2M7OCQ8HMzAoOBTMzKzgUmtTWrVtZtGhRaVfHmJmNxKHQpJYvX86BAwf49Kc/nboUM2shDoUmtHXrVrZt2wbAtm3b3Fows4ZxKDSh5cuXv2LerQUzaxSHQhMabCUcb97MrCwOhSY0e/bsV8yfd955iSoxs1bjUGhCg2Pxm5k1mkOhCe3YseOE82ZmZXEoNKHhI2uWMdKmmdlIHApNaN68ea+Y7+joSFSJmbUah0ITevDBB18x/8ADDySqxMxajUOhCS1YsIAJEyYAMGHCBBYuXJi4IjNrFQ6FJtTV1VWEwsSJE/2cXzNrmFRPXhs3ynqk4+BlqVOnTuX222+v67b9OEczOx63FJpUW1sbbW1tnHvuualLMbMW4pbCGJX1jduPczSzFNxSMDOzgkPBzMwKDgUzMys4FMzMrJAkFCR9UtKjkrZIulPSJEnTJK2X1JtPz05Rm5lZK2t4KEg6H1gKdEbEm4AJwLXAMmBDRHQAG/J5MzNroFSXpE4EJks6AkwBdgCfAi7P13cDG4E/TVGcmTW/sm4c7e/vB8obnbjZbx5teEshIp4G/hzYDuwEfhYR64BZEbEzf81OYOZI75e0RFKPpJ6BgYFGlW1mLeLQoUMcOnQodRnJNLylkPcVLAYuAJ4H/k7Sh2p9f0SsAlYBdHZ2Rhk1mlnz842j5UjR0fwe4KcRMRARR4D/BbwT2CVpNkA+3Z2gNjOzlpYiFLYDvyZpirJR364AHgfWAoPDgXYBaxLUZmbW0hp++igiHpB0N/BD4Ciwmex00FRgtaTryYLjmkbXZmbW6pJcfRQRtwK3Dlv8IlmrwczMEvEdzWZmVnAomJlZwaFgZmYFh4KZmRUcCmZmVnAomJlZwaFgZmYFh4KZmRVqCgVJr5O0QdKWfP5iSbeUW5qZmTVarS2FvyJ73sERgIh4mOzBOGZmNo7UGgpTIuLBYcuO1rsYMzNLq9ZQ2CPptUAASLqa7AE5ZmY2jtQ6IN4NZCOZvl7S08BPgd8vrSozM0ui1lCIiHiPpFcBbRGxT9IFZRZmZmaNV+vpo3sAIuJAROzLl91dTklmZpbKCVsKkl4P/DLwakkfHLLqTGBSmYWZmVnjjXb66CLgSuAs4LeGLN8HfKykmszMLJEThkJErAHWSJofEd9vUE1mZpZIrR3NmyXdQHYqqThtFBEfLaUqMzNLotaO5r8FzgXeC3wbaCc7hWRmZuNIraEwLyL+A3AgIrqB9wG/Ul5ZZmaWQq2hcCSfPi/pTcCrgbmlVGRmZsnUGgqrJJ0N3AKsBR4DPncqO5R0kaSHhvy8IOlmSdMkrZfUm0/PPpXtm5nZqaspFCLiryPiuYj4TkRcGBEzgW+dyg4j4omIuCQiLgHeBhwE7gWWARsiogPYkM+bmVkDjRoKkuZLulrSzHz+YknfAL5Xh/1fAfw4Ip4EFgPd+fJu4Ko6bN/MzE7CCUNB0ueBrwC/Dfy9pFuB9cADQEcd9n8tcGf++6yI2AmQT2cep6Ylknok9QwMDNShBDMzGzTafQrvA94SEYfzc/w7gIsjonesO5Z0OvB+sof31CwiVpGN2EpnZ2eMtQ4zM3vZaKePDkXEYYCIeA54oh6BkFsE/DAiduXzuyTNBsinu+u0HzMzq9FoLYXXSlo7ZH7u0PmIeP8Y9n0dL586guyqpi5gRT5dM4Zt2ziycuVK+vr6UpdxUnp7s+9OS5cuTVxJ7ebNm1epeq0co4XC4mHzX6jHTiVNARYAfzBk8QpgtaTrge3ANfXYl1VfX18fW7f8kDlTX0pdSs1OP5I1wg9v+0HiSmqzff+E1CVYkxhtQLxvA0i6KSK+NHSdpJvIhrw4aRFxEDhn2LK9ZFcjmf2COVNf4pbO/anLGLeW90xNXYI1iVpvXusaYdmH61iHmZk1gdEesnMd8HvAhcP6Fs4A9pZZmJmZNd5ofQr/BOwEpvPK/oR9wMNlFWVmZmmM1qfwpKR+stFRT6n/wMzMqmPUPoWIeAk4KOnVDajHzMwSqvXJa4eBRyStBw4MLowIX9RsZjaO1BoKf5//mJnZOFZTKORPWzMzs3GuplCQ1AF8FngjMGlweURcWFJdZmaWQK2nj74K3Ar8BfBu4COAyiqq3jx2TuN4/Byzaqs1FCZHxAZJyh+Ic5uk75IFRdPr6+tj8yOPcWzKtNSl1Ew/z0YF3/TjZxJXUru2g8+mLsHMxqjmq48ktQG9kj4BPM1xHoLTrI5NmcbhN16ZuoxxbdJj96UuwczGqNaxj24GpgBLyZ6r/CFGHg/JzMwqrNarj34AkJ09io+UW5KZmaVS69VH84G/AaYCcyS9GfiDiPjDMoszs+qr2oUerX6RR619Cl8E3kv2dDQi4keSLhvz3s1s3Ovr62Pzo5vhrNSV1OhYNtn89Oa0dZyM5+u3qVpDgYh4SnrFVajVeQyWmaV1Fhy7/FjqKsatto21dg+PrtZQeErSO4GQdDpZh/PjdavCzMyaQq3x8nHgBuB8oB+4JJ83M7NxpNarj/YAv19yLWZmlthoj+O8A4jjrffQ2WZm48toLYWeIb/fTkWGtTAzs1Mz2uM4iyGzJd3sIbQthf7+fg7sm8DynqmpSxm3ntw3gVf196cuw5rAyVzHdNzTSCdL0lmS7pb0z5IelzRf0jRJ6yX15tOz67U/MzOrTc33KdTZl4BvRcTV+SWuU4B/B2yIiBWSlgHLgD9NVJ81kfb2dg4f3cktnftTlzJuLe+ZyqT29tRlWBMYraN5Hy+3EKZIemFwFRARcebJ7lDSmcBlwIfJNvJz4OeSFgOX5y/rBjbiUDAza6jR+hTOKGGfFwIDwFfzMZQ2ATcBsyJiZ77fnZJGHJpb0hJgCcCcOXNKKM/MrHXV797o2k0E3gr8t4h4C3CA7FRRTSJiVUR0RkTnjBkzyqrRzKwlpQiFfqA/Ih7I5+8mC4ldkmYD5NPdCWozM2tpDe9ojohnJD0l6aKIeAK4Angs/+kCVuTTNfXaZ39/P20Hf+Yng5Ws7eBe+vuPpi7DzMYg1dVHNwL/M7/y6CfAR8haLaslXQ9sB65JVJuZWctKEgoR8RDQOcKqK8rYX3t7O7tenOhnNJds0mP30d5+buoyzGwMUvQpmJlZk3IomJlZIVWfgpm1iP7+fvhZfZ8OZsM8D/1Rn7GrfJTMzKzgloKZlaq9vZ0BDfgZzSVq29hG+/n1GbvKLQUzMys4FMzMrOBQMDOzgvsUrBK276/Wk9d2Hcy+b82aUo3z6Nv3T+B1qYuwpuBQsKY3b9681CWctJ/39gIwaW5H4kpq8zqq+e9s9edQsKa3dOnS1CWctMGaV65cmbgSs5PjPgUzMys4FMzMrOBQMDOzgkPBzMwKLdPR3Hbw2Uo9eU2HXwAgJp2ZuJLatR18FvDzFMyqrCVCoYqX2vX27gOg47VV+pA9t5L/1tYAz1dolNT9+bQ6t8XA88D59dlUS4SCL2k0S6dqXxR683tMOs6vxj0mAJxfv3/nlggFM0unal/KWv0LWUXac2Zm1ggOBTMzKzgUzMyskKRPQdI2YB/wEnA0IjolTQPuAuYC24DfiYjnUtRnZtaqUrYU3h0Rl0REZz6/DNgQER3AhnzezMwaqJlOHy0GuvPfu4Gr0pViZtaaUoVCAOskbZK0JF82KyJ2AuTTmSO9UdISST2SegYGBhpUrplZa0h1n8KlEbFD0kxgvaR/rvWNEbEKWAXQ2dkZZRVoZtaKkrQUImJHPt0N3Au8A9glaTZAPt2dojYzs1bW8FCQ9CpJZwz+DiwEtgBrga78ZV3AmkbXZmbW6lKcPpoF3CtpcP/fiIhvSfoBsFrS9cB24JoEtZmZtbSGh0JE/AR48wjL9wJXNLoeMzN7WTNdkmpmZok5FMzMrOBQMDOzgkPBzMwKDgUzMys4FMzMrOBQMDOzgkPBzMwKDgUzMys4FMzMrOBQMDOzgkPBzMwKDgUzMys4FMzMrOBQMDOzgkPBzMwKDgUzMys4FMzMrOBQMDOzgkPBzMwKDgUzMys4FMzMrJAsFCRNkLRZ0n35/DRJ6yX15tOzU9VmZtaqUrYUbgIeHzK/DNgQER3AhnzezMwaKEkoSGoH3gf89ZDFi4Hu/Pdu4KoGl2Vm1vImJtrvF4E/Ac4YsmxWROwEiIidkmamKMxax8qVK+nr6ytl2729vQAsXbq07tueN29eKdutmrKOX5nHDpr/+DW8pSDpSmB3RGw6xfcvkdQjqWdgYKDO1ZnVx+TJk5k8eXLqMuwUtPqxS9FSuBR4v6TfBCYBZ0r6H8AuSbPzVsJsYPdIb46IVcAqgM7OzmhU0Tb+NPO3NRudj185Gt5SiIhPRUR7RMwFrgX+b0R8CFgLdOUv6wLWNLo2M7NW10z3KawAFkjqBRbk82Zm1kCpOpoBiIiNwMb8973AFSnrMTNrdc3UUjAzs8QcCmZmVnAomJlZIWmfwnhQxRtomv3mGTNLx6HQpFr55hkzS8ehMEb+xm1m44n7FMzMrOBQMDOzgkPBzMwKDgUzMys4FMzMrOBQMDOzgkPBzMwKDgUzMysooroPL5M0ADyZuo4STQf2pC7CTpmPX3WN92P3SxExY6QVlQ6F8U5ST0R0pq7DTo2PX3W18rHz6SMzMys4FMzMrOBQaG6rUhdgY+LjV10te+zcp2BmZgW3FMzMrOBQMDOzgkOhASSFpC8Mmf9jSbclLMlOgqQP5Mfw9aO87mZJU4bM/x9JZ5VeoI2JpJckPTTkZ1nqmlJyn0IDSDoM7ATeHhF7JP0xMDUibitpfxMj4mgZ225FklYDs4ENJzpmkrYBnRExnm96Gnck7Y+IqanraBZuKTTGUbKrGT45fIWkGZLukfSD/OdSSW2Stg39limpT9KskV6fr79N0ipJ64CvN+oPG+8kTQUuBa4Hrs2XTZD055IekfSwpBslLQXOA/5R0j/mr9smabqkz0n6wyHbvE3SH+W//9v8OD4s6faG/4E2IkmvlvSEpIvy+TslfSx1XY3gZzQ3zn8FHpb0Z8OWfwn4i4j4nqQ5wD9ExBskrQE+AHxV0q8C2yJil6RvDH898IZ8W28D3hURhxrzJ7WEq4BvRcRWSc9Keivwq8AFwFsi4qikaRHxrKR/A7x7hJbCN4EvAl/O538H+A1JC4EO4B2AgLWSLouI75T/Z9kQkyU9NGT+sxFxl6RPAF+T9CXg7Ij4qzTlNZZDoUEi4gVJXweWAkM/tN8DvFHS4PyZks4A7gL+I/BVsm+od43yeoC1DoS6u47sAx2yD/frgAuBvxw8RRcRz55oAxGxWdJMSecBM4DnImJ73rpYCGzOXzqVLCQcCo11KCIuGb4wItZLuobsC92bG15VIg6Fxvoi8EOyD/pBbcD84R/mkr4PzJM0g+zb6vJRXg9woJSqW5Skc4BfB94kKYAJQACb8unJuBu4GjiXLFwgax18NiL+e30qtnqS1EbWCj8ETAP601bUGO5TaKD8G+VqsvPTg9YBnxickXRJ/toA7gX+M/B4ROw90eutFFcDX4+IX4qIuRHxGuCnZMH+cUkTASRNy1+/Dzhj5E3xTbIW39VkAQHZqb+P5v0WSDpf0sxy/hQ7BZ8EHidrHX5F0mmJ62kIh0LjfYFsWN5BS4HOvKPxMeDjQ9bdBXyIl08djfZ6q6/ryIJ5qHvIOpS3k/UR/Qj4vXzdKuD+wY7moSLiUbLAeDoidubL1gHfAL4v6RGysDheqFh5Jg+7JHWFpNcB/xr4o4j4LtkpvVvSltkYviTVzMwKbimYmVnBoWBmZgWHgpmZFRwKZmZWcCiYmVnBoWCWk/TvJT2aX+77UD68yFi2d7mk+0ZY/v5WH4nTmpfvaDYDJM0HrgTeGhEvSpoOnF7GviJiLbC2jG2bjZVbCmaZ2cCeiHgRICL2RMSOfKTTz0j6vqQeSW+V9A+Sfizp4wDKfF7Slnzk1N8dvnFJb5e0WdKFkj4s6b/ky78maaWkf5L0E0lX58vbJH05b7ncp+zZDFc38N/DWpRDwSyzDniNpK35h/G/GrLuqYiYD3wX+BrZUBW/Bnw6X/9B4BKyQdPeA3xe0uzBN0t6J/CXwOKI+MkI+54NvIuspbJiyDbnAr9Cdmft/LH/iWaj8+kjMyAi9kt6G/AvgXcDdw057z94qucRsocj7QP2STqs7JkX7wLujIiXgF2Svg28HXiBbEC1VcDCiNhxnN3/74g4BjwmaVa+7F3A3+XLnxlp6AyzMjgUzHL5h/pGYGM+FlFXvurFfHpsyO+D8xPJRjs9np3AJOAtwPFCYeg2NWxq1lA+fWQGSLpIUseQRZcAT9b49u8Av6vsiWwzgMuAB/N1zwPvAz4j6fKTKOl7wG/nfQuzgJN5r9kpc0vBLDMVuCM/HXQU6AOWkJ3nH829ZOf8f0T2nIU/iYhnJL0eIH9i3m+RjaD60RrruQe4AtgCbAUeAH5W+59jdmo8SqpZk5I0Ne/rOIes5XFpRDyTui4b39xSMGte9+Utl9OB/+RAsEZwS8HMzAruaDYzs4JDwczMCg4FMzMrOBTMzKzgUDAzs8L/B5c2aD4iTCjUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(x='Smoking', y='HeartRate', data=mi_df)" + ] + }, + { + "cell_type": "markdown", + "id": "blessed-french", + "metadata": {}, + "source": [ + "### Interactivity\n", + "\n", + "There is a lot of option to produce interactive reports using jupyter notebooks, for example:\n", + "- Plotly/Dash\n", + "- Bokeh\n", + "- ipython widgets\n", + "- voila\n", + "- ..." + ] + }, + { + "cell_type": "markdown", + "id": "hungarian-version", + "metadata": {}, + "source": [ + "#### Ipywidgets" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "economic-stomach", + "metadata": {}, + "outputs": [], + "source": [ + "import ipywidgets as widgets\n", + "from ipywidgets import interact\n", + "from pathlib import Path\n", + "from IPython.display import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "silver-christmas", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "13494bc736e149c4b411b52881ed7b8e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=20, description='x', max=60, min=-20), Output()), _dom_classes=('widget-…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "@interact\n", + "def filter_age(x=20):\n", + " return mi_df.loc[mi_df.Age < x]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "independent-cancer", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "75e21fcb22dd4ed7bef50c62c0e4eb23", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Dropdown(description='file', options=(PosixPath('images/example_anova_workflow.png'), Po…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "@interact\n", + "def show_images(file=Path(\"images\").glob(\"*.png\")):\n", + " display(Image(file))" + ] + }, + { + "cell_type": "markdown", + "id": "engaged-congo", + "metadata": {}, + "source": [ + "#### Plotly" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "nominated-bench", + "metadata": {}, + "outputs": [], + "source": [ + "from plotly import express as px" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "awful-delaware", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hovertemplate": "x=%{x}<br>index=%{y}<extra></extra>", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "orientation": "h", + "showlegend": false, + "type": "scatter", + "x": [ + 20.13, + 21.33, + 22.18, + 18.68, + 29.01, + 27.51, + 22.59, + 21.6, + 22.26, + 23.04, + 20.06, + 19.31, + 24.97, + 18.82, + 28.66, + 27.45, + 19.57, + 21.15, + 23.03, + 21.55, + 19.84, + 23.41, + 25.21, + 25.21, + 28.19, + 21.9, + 20.01, + 23.23, + 22.86, + 27.28, + 21.71, + 21.93, + 23.91, + 22.49, + 20.57, + 24.23, + 20.95, + 24.6, + 21.79, + 19.22, + 19.38, + 23.06, + 21.5, + 18.59, + 19.46, + 21.82, + 20.56, + 21.78, + 19.95, + 24.38, + 18.67, + 21.71, + 26.02, + 24.74, + 20.43, + 19.1, + 31.24, + 27.41, + 22.22, + 19.59, + 20.9, + 29, + 20.9, + 20.32, + 31.83, + 19.88, + 24.87, + 28.73, + 22.34, + 25.43, + 23.5, + 26.75, + 23.25, + 19.92, + 21.95, + 23.04, + 23.05, + 22.49, + 31.14, + 21.63, + 21.55, + 21.95, + 21.36, + 18.92, + 24.75, + 22.83, + 20.45, + 22.22, + 20.3, + 22.28, + 20.01, + 30.63, + 24.3, + 19.26, + 24.89, + 24.41, + 23.16, + 22.53, + 19.95, + 21.32, + 22.72, + 21.29, + 23.87, + 22.47, + 27.71, + 29.66, + 21.27, + 21.29, + 23.66, + 21.16, + 21.22, + 20.6, + 22.85, + 23.25, + 31.91, + 18.72, + 22.43, + 20.98, + 21.19, + 21.61, + 20.65, + 22.71, + 20.32, + 25.39, + 19.05, + 19.83, + 21.09, + 23.14, + 24.38, + 31.23, + 23.04, + 25.21, + 24.43, + 27.47, + 19.59, + 27.28, + 25.72, + 19.22, + 22.75, + 22.98, + 20.51, + 27.39, + 19.57, + 24.85, + 23.18, + 20.43, + 29.31, + 29.41, + 20.04, + 28.8, + 26.02, + 21.1, + 22.06, + 28.98, + 29.96, + 24, + 19.81, + 19.81, + 22.58, + 20.43, + 20.2, + 21.22, + 24.52, + 20.83, + 27.4, + 20.57, + 30.11, + 27.7, + 21.56, + 31.58, + 24.53, + 18.73, + 25.01, + 25.06, + 24.15, + 22.83, + 23.05, + 27.66, + 22.46, + 21.1, + 23.38, + 21.54, + 20.86, + 23.51, + 22.13, + 25.14, + 24.44, + 25.39, + 22.18, + 27.68, + 22.72, + 31.83, + 20.95, + 28.19, + 22.26, + 24.91, + 23.87, + 25.34, + 19.57, + 22.76, + 22.77, + 24.87, + 20.93, + 25.53, + 20.38, + 26.7, + 19.26, + 24.65, + 31.96, + 20.95, + 20.61, + 25.73, + 24.3, + 20.14, + 27.11, + 27.75, + 22.22, + 22.53, + 27.73, + 19.07, + 25.81, + 18.62, + 23.93, + 24.96, + 28.34, + 25.74, + 25.64, + 22.26, + 25.01, + 21.22, + 31.05, + 24.93, + 21.3, + 26.09, + 24.46, + 22.95, + 23.58, + 25.51, + 20.66, + 30.61, + 25.05, + 22.72, + 23.45, + 22.47, + 25.35, + 23.18, + 24.3, + 25.9, + 22.78, + 25.97, + 22.44, + 21.53, + 25.14, + 21.91, + 22.14, + 31.69, + 22.64, + 23.56, + 22.98, + 21.26, + 21.38, + 28.4, + 28.71, + 25.79, + 22.59, + 29.4, + 21.97, + 23.56, + 25.18, + 21.29, + 22.46, + 24.16, + 28.08, + 23.3, + 27.28, + 23.99, + 22.1, + 20.42, + 26.83, + 19.92, + 19.91, + 18.67, + 21.07, + 21.48, + 28.98, + 18.92, + 21.9, + 31.55, + 20.07, + 24.24, + 21.33, + 20.68, + 25.46, + 25.39, + 21.13, + 20.06, + 20.93, + 24.09, + 23.59, + 19.13, + 27.43, + 21.56, + 20.7, + 23.22, + 23.73, + 20.13, + 23.22, + 25.96, + 29.41, + 20.95, + 23.53, + 19.97, + 30.12, + 19.06, + 20.17, + 24.74, + 22.95, + 25.07, + 26.77, + 21.41, + 23.63, + 22.76, + 25.55, + 23.3, + 22.86, + 19.33, + 23.53, + 27.23, + 21.15, + 26.72, + 26.12, + 25.65, + 20.69, + 25.71, + 20.19, + 21.77, + 24.24, + 23.62, + 23.12, + 22.2, + 27.77, + 21.96, + 19.03, + 19.47, + 22.32, + 30.86, + 27.47, + 27.88, + 20.93, + 21.33, + 21.21, + 20.43, + 25.35, + 31.86, + 22.83, + 20.2, + 20.44, + 24.69, + 21.48, + 20.02, + 20.93, + 21.25, + 22.86, + 25.28, + 23.18, + 25.94, + 23.24, + 21.06, + 30.36, + 24.67, + 25.71, + 28.73, + 27.77, + 26.47, + 23.4, + 28.69, + 25.3, + 21.29, + 23.24, + 26.19, + 25.72, + 22.89, + 24.53, + 21.79, + 27.13, + 21.87, + 24.09, + 22.98, + 21.3, + 25.28, + 26.17, + 22.53, + 26.7, + 24.89, + 25.5, + 18.64, + 23.83, + 21.63, + 20.51, + 24.11, + 23.09, + 24.44, + 26.95, + 30.05, + 25.28, + 24.75, + 23.24, + 24.11, + 28.4, + 27.75, + 24.91, + 21.5, + 31.48, + 26.88, + 22.98, + 26.19, + 25.97, + 26.44, + 23.22, + 24.16, + 25, + 23.76, + 23.59, + 22.79, + 26.77, + 22.99, + 26.06, + 22.54, + 23.45, + 21.84, + 30.48, + 22.75, + 23.22, + 23.24, + 24.15, + 22.14, + 29.58, + 30.79, + 20.97, + 28.98, + 20.47, + 29.72, + 24.28, + 27.96, + 26.58, + 19.36, + 27.33, + 23.87, + 30.81, + 26.17, + 27.63, + 20.71, + 19.6, + 25.09, + 30.46, + 18.5, + 25.47, + 20.39, + 22.54, + 23.03, + 23.91, + 19.59, + 19.06, + 19.46, + 31.61, + 20.93, + 23.91, + 26.76, + 30.09, + 20.66, + 21.87, + 24.88, + 26.37, + 27.73, + 19.77, + 20.7, + 31.64, + 26.12, + 24.6, + 22.49, + 24.38, + 22.94, + 25.39, + 21.82, + 21.56, + 25.47, + 24.09, + 22.13, + 19.77, + 20.44, + 23.63, + 20.79, + 23.71, + 22.1, + 21.09, + 20.31, + 30.44, + 28.47, + 28.54, + 27.4, + 29.68, + 21.25, + 24.16, + 21.9, + 27.55, + 18.9, + 24.65, + 24.74, + 23.14, + 24.84, + 26.98, + 23.42, + 26.02, + 26.49, + 24, + 22.14, + 22.83, + 20.83, + 24.65, + 20.02, + 20.96, + 20.79, + 26.17, + 20.83, + 24.69, + 20.68, + 22.06, + 25, + 23.19, + 22.37, + 23.23, + 21.88, + 29.24, + 21.79, + 24.02, + 30.48, + 23.18, + 30.97, + 25.55, + 21.56, + 23.19, + 29.6, + 26.02, + 25.72, + 23.73, + 22.32, + 29.76, + 31.4, + 24.16, + 25.99, + 31.95, + 26.77, + 25.4, + 19.75, + 22.32, + 23.56, + 26.21, + 24.39, + 27.94, + 28.68, + 23.12, + 27.15, + 26.21, + 24.81, + 31.19, + 25.28, + 28.22, + 19.65, + 22.53, + 20.86, + 23.45, + 25.09, + 21.82, + 28.72, + 28.68, + 22.2, + 22.83, + 24.87, + 25.35, + 24.89, + 24.15, + 23.4, + 25.68, + 23.8, + 25.14, + 21.77, + 20.59, + 25.01, + 30.12, + 19.71, + 26.42, + 22.22, + 27.39, + 26.02, + 23.05, + 24.25, + 21.97, + 25.15, + 26.67, + 22.3, + 24.11, + 28.39, + 23.98, + 23.99, + 26.86, + 28.08, + 30.86, + 22.83, + 27.15, + 25.76, + 29.66, + 26.81, + 22.09, + 23.95, + 24.3, + 27.45, + 24.48, + 28.73, + 25.25, + 25.18, + 24.74, + 28.57, + 30.4, + 26.88, + 24.5, + 27.1, + 30.64, + 28.66, + 26.87, + 27.08, + 25.39, + 19.94, + 21.21, + 28.62, + 30.99, + 20.56, + 23.01, + 31.64, + 25.39, + 28.25, + 29.68, + 21.21, + 21.33, + 22.36, + 24.65, + 22.1, + 19.04, + 22.86, + 23.79, + 21.63, + 20.06, + 23.24, + 24.14, + 23.24, + 18.59, + 24.74, + 20.17, + 21.61, + 27.29, + 22.2, + 24.14, + 24.38, + 30.02, + 30.73, + 23.23, + 23.66, + 21.63, + 22.86, + 23.83, + 30.75, + 25.47, + 21.56, + 19.11, + 27.99, + 21.51, + 29.17, + 28.08, + 28.04, + 23.95, + 26.44, + 29.55, + 24.91, + 22.31, + 27.33, + 19.57, + 20.32, + 31.16, + 23.24, + 29.47, + 21.6, + 24.16, + 21.09, + 29.33, + 29.27, + 22.67, + 24.16, + 25.72, + 23.5, + 26.29, + 28.04, + 27.53, + 28.51, + 25.1, + 23.3, + 22.94, + 23.83, + 21.71, + 24.14, + 26.98, + 24.77, + 23.3, + 22.06, + 21.64, + 25, + 26.5, + 21.5, + 25.97, + 31.67, + 27.33, + 21.79, + 23.92, + 26.36, + 24.96, + 21.15, + 25.18, + 32, + 28.08, + 27.06, + 22.06, + 28.99, + 24.28, + 26.75, + 24.15, + 23.73, + 27.33, + 26.21, + 29.76, + 22.22, + 25.3, + 25.05, + 21.63, + 26.6, + 23.03, + 30.4, + 23.04, + 25.61, + 23.35, + 22.49, + 26.07, + 26.17, + 21.77, + 21.46, + 22.4, + 25.1, + 20.28, + 22.2, + 29.98, + 26.86, + 26.47, + 24.67, + 27.17, + 25.3, + 31.57, + 27.21, + 25.34, + 26.72, + 25.59, + 22.2, + 25.25, + 24.22, + 26.36, + 28.4, + 23.51, + 26.56, + 28.08, + 27.33, + 26.67, + 25.45, + 28.05, + 27.08, + 27.68, + 28.08, + 22.65, + 22.27, + 26.49, + 24.02, + 31.97, + 29.33, + 24.03, + 23.73, + 31.8, + 26.06, + 27.35, + 24.53, + 22.79, + 28.51, + 19.59, + 28.72, + 21.14, + 23.14, + 25.05, + 26.17, + 24.5, + 28.25, + 26.12, + 22.86, + 25.95, + 22.57, + 26.39, + 18.51, + 24.69, + 24.75, + 23.53, + 20.07, + 22.77, + 27.39 + ], + "xaxis": "x", + "y": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38, + 39, + 40, + 41, + 42, + 43, + 44, + 45, + 46, + 47, + 48, + 49, + 50, + 51, + 52, + 53, + 54, + 55, + 56, + 57, + 58, + 59, + 60, + 61, + 62, + 63, + 64, + 65, + 66, + 67, + 68, + 69, + 70, + 71, + 72, + 73, + 74, + 75, + 76, + 77, + 78, + 79, + 80, + 81, + 82, + 83, + 84, + 85, + 86, + 87, + 88, + 89, + 90, + 91, + 92, + 93, + 94, + 95, + 96, + 97, + 98, + 99, + 100, + 101, + 102, + 103, + 104, + 105, + 106, + 107, + 108, + 109, + 110, + 111, + 112, + 113, + 114, + 115, + 116, + 117, + 118, + 119, + 120, + 121, + 122, + 123, + 124, + 125, + 126, + 127, + 128, + 129, + 130, + 131, + 132, + 133, + 134, + 135, + 136, + 137, + 138, + 139, + 140, + 141, + 142, + 143, + 144, + 145, + 146, + 147, + 148, + 149, + 150, + 151, + 152, + 153, + 154, + 155, + 156, + 157, + 158, + 159, + 160, + 161, + 162, + 163, + 164, + 165, + 166, + 167, + 168, + 169, + 170, + 171, + 172, + 173, + 174, + 175, + 176, + 177, + 178, + 179, + 180, + 181, + 182, + 183, + 184, + 185, + 186, + 187, + 188, + 189, + 190, + 191, + 192, + 193, + 194, + 195, + 196, + 197, + 198, + 199, + 200, + 201, + 202, + 203, + 204, + 205, + 206, + 207, + 208, + 209, + 210, + 211, + 212, + 213, + 214, + 215, + 216, + 217, + 218, + 219, + 220, + 221, + 222, + 223, + 224, + 225, + 226, + 227, + 228, + 229, + 230, + 231, + 232, + 233, + 234, + 235, + 236, + 237, + 238, + 239, + 240, + 241, + 242, + 243, + 244, + 245, + 246, + 247, + 248, + 249, + 250, + 251, + 252, + 253, + 254, + 255, + 256, + 257, + 258, + 259, + 260, + 261, + 262, + 263, + 264, + 265, + 266, + 267, + 268, + 269, + 270, + 271, + 272, + 273, + 274, + 275, + 276, + 277, + 278, + 279, + 280, + 281, + 282, + 283, + 284, + 285, + 286, + 287, + 288, + 289, + 290, + 291, + 292, + 293, + 294, + 295, + 296, + 297, + 298, + 299, + 300, + 301, + 302, + 303, + 304, + 305, + 306, + 307, + 308, + 309, + 310, + 311, + 312, + 313, + 314, + 315, + 316, + 317, + 318, + 319, + 320, + 321, + 322, + 323, + 324, + 325, + 326, + 327, + 328, + 329, + 330, + 331, + 332, + 333, + 334, + 335, + 336, + 337, + 338, + 339, + 340, + 341, + 342, + 343, + 344, + 345, + 346, + 347, + 348, + 349, + 350, + 351, + 352, + 353, + 354, + 355, + 356, + 357, + 358, + 359, + 360, + 361, + 362, + 363, + 364, + 365, + 366, + 367, + 368, + 369, + 370, + 371, + 372, + 373, + 374, + 375, + 376, + 377, + 378, + 379, + 380, + 381, + 382, + 383, + 384, + 385, + 386, + 387, + 388, + 389, + 390, + 391, + 392, + 393, + 394, + 395, + 396, + 397, + 398, + 399, + 400, + 401, + 402, + 403, + 404, + 405, + 406, + 407, + 408, + 409, + 410, + 411, + 412, + 413, + 414, + 415, + 416, + 417, + 418, + 419, + 420, + 421, + 422, + 423, + 424, + 425, + 426, + 427, + 428, + 429, + 430, + 431, + 432, + 433, + 434, + 435, + 436, + 437, + 438, + 439, + 440, + 441, + 442, + 443, + 444, + 445, + 446, + 447, + 448, + 449, + 450, + 451, + 452, + 453, + 454, + 455, + 456, + 457, + 458, + 459, + 460, + 461, + 462, + 463, + 464, + 465, + 466, + 467, + 468, + 469, + 470, + 471, + 472, + 473, + 474, + 475, + 476, + 477, + 478, + 479, + 480, + 481, + 482, + 483, + 484, + 485, + 486, + 487, + 488, + 489, + 490, + 491, + 492, + 493, + 494, + 495, + 496, + 497, + 498, + 499, + 500, + 501, + 502, + 503, + 504, + 505, + 506, + 507, + 508, + 509, + 510, + 511, + 512, + 513, + 514, + 515, + 516, + 517, + 518, + 519, + 520, + 521, + 522, + 523, + 524, + 525, + 526, + 527, + 528, + 529, + 530, + 531, + 532, + 533, + 534, + 535, + 536, + 537, + 538, + 539, + 540, + 541, + 542, + 543, + 544, + 545, + 546, + 547, + 548, + 549, + 550, + 551, + 552, + 553, + 554, + 555, + 556, + 557, + 558, + 559, + 560, + 561, + 562, + 563, + 564, + 565, + 566, + 567, + 568, + 569, + 570, + 571, + 572, + 573, + 574, + 575, + 576, + 577, + 578, + 579, + 580, + 581, + 582, + 583, + 584, + 585, + 586, + 587, + 588, + 589, + 590, + 591, + 592, + 593, + 594, + 595, + 596, + 597, + 598, + 599, + 600, + 601, + 602, + 603, + 604, + 605, + 606, + 607, + 608, + 609, + 610, + 611, + 612, + 613, + 614, + 615, + 616, + 617, + 618, + 619, + 620, + 621, + 622, + 623, + 624, + 625, + 626, + 627, + 628, + 629, + 630, + 631, + 632, + 633, + 634, + 635, + 636, + 637, + 638, + 639, + 640, + 641, + 642, + 643, + 644, + 645, + 646, + 647, + 648, + 649, + 650, + 651, + 652, + 653, + 654, + 655, + 656, + 657, + 658, + 659, + 660, + 661, + 662, + 663, + 664, + 665, + 666, + 667, + 668, + 669, + 670, + 671, + 672, + 673, + 674, + 675, + 676, + 677, + 678, + 679, + 680, + 681, + 682, + 683, + 684, + 685, + 686, + 687, + 688, + 689, + 690, + 691, + 692, + 693, + 694, + 695, + 696, + 697, + 698, + 699, + 700, + 701, + 702, + 703, + 704, + 705, + 706, + 707, + 708, + 709, + 710, + 711, + 712, + 713, + 714, + 715, + 716, + 717, + 718, + 719, + 720, + 721, + 722, + 723, + 724, + 725, + 726, + 727, + 728, + 729, + 730, + 731, + 732, + 733, + 734, + 735, + 736, + 737, + 738, + 739, + 740, + 741, + 742, + 743, + 744, + 745, + 746, + 747, + 748, + 749, + 750, + 751, + 752, + 753, + 754, + 755, + 756, + 757, + 758, + 759, + 760, + 761, + 762, + 763, + 764, + 765, + 766, + 767, + 768, + 769, + 770, + 771, + 772, + 773, + 774, + 775, + 776, + 777, + 778, + 779, + 780, + 781, + 782, + 783, + 784, + 785, + 786, + 787, + 788, + 789, + 790, + 791, + 792, + 793, + 794, + 795, + 796, + 797, + 798, + 799, + 800, + 801, + 802, + 803, + 804, + 805, + 806, + 807, + 808, + 809, + 810, + 811, + 812, + 813, + 814, + 815 + ], + "yaxis": "y" + } + ], + "layout": { + "autosize": true, + "dragmode": "zoom", + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "autorange": true, + "domain": [ + 0, + 1 + ], + "range": [ + 17.570230105465004, + 32.92976989453499 + ], + "showspikes": false, + "title": { + "text": "x" + }, + "type": "linear" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0, + 1 + ], + "range": [ + -57.78545119705341, + 872.7854511970534 + ], + "showspikes": false, + "title": { + "text": "index" + }, + "type": "linear" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABcQAAAHCCAYAAADB38qAAAAgAElEQVR4nOy9+5skVZnvu/+eec7Zc47jHM8+M2d7ZtzbccbtONtxnGerI1oFKGRXcSmqGLuoAuyqapmqQrAtUehWsKt1xu5CZshS0GwUzBaQBBUDBQwdLpnQDEVLc8lbXd7zQ3RkRUa+KzMiVqwVa0V8v8/zeRS6qcrLittnvetd/4kQBEEQBEEQBEEQBEEQBEEQpAD5T1m/AARBEARBEARBEARBEARBEATREQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxBEEQBEEQBEEQBEEQBEEQpBCBEEcQBEEQBEEQBEEQBEEQBEEKEQhxyTS2msp5s7lN59/uavldAKTFK79vUXdnL/PXAUBctnf26JXftzJ/HQDE4fzbXXqjuZ356wAgDmfPtWhnF/cKwD4627v06uvtzF8HAHF4/a0uvdXCvQKwi5dea9Lenh73ZhuIXCDEJaNjkEOIAxuBEAe2AiEObARCHNgIhDiwFQhxYCMQ4sBGIMTFIHKBEJeMjkEOIQ5sBEIc2AqEOLARCHFgIxDiwFYgxIGNQIgDG4EQF4PIBUJcMjoGOYQ4sBEIcWArEOLARiDEgY1AiANbgRAHNgIhDmwEQlwMIhcIccnoGOQQ4sBGIMSBrUCIAxuBEAc2AiEObAVCHNgIhDiwEQhxMYhcIMQlo2OQQ4gDG4EQB7YCIQ5sBEIc2AiEOLAVCHFgIxDiwEYgxMUgcoEQl4yOQQ4hDmwEQhzYCoQ4sBEIcWAjEOLAViDEgY1AiAMbgRAXg8gFQlwyOgY5hDiwEQhxYCsQ4sBGIMSBjUCIA1uBEAc2AiEObARCXAwiFwhxyegY5BDiwEYgxIGtQIgDG4EQBzYCIQ5sBUIc2AiEOLARCHExiFwgxCWjY5BDiAMbgRAHtgIhDmwEQhzYCIQ4sBUIcWAjEOLARiDExSBygRCXjI5BDiEObARCHNgKhDiwEQhxYCMQ4sBWIMSBjUCIAxuBEBeDyAVCXDI6BjmEOLARCHFgKxDiwEYgxIGNQIgDW4EQBzYCIQ5sBEJcDCIXCHHJ6BjkEOLARiDEga1AiAMbgRAHNgIhDmwFQhzYCIQ4sBEIcTGIXCDEJaNjkEOIAxuBEAe2AiEObARCHNgIhDiwFQhxYCMQ4sBGIMTFIHKBEJeMjkEOIQ5sBEIc2AqEOLARCHFgIxDiwFYgxIGNQIgDG4EQF4PIBUJcMjoGOYQ4sBEIcWArEOLARiDEgY1AiANbgRAHNgIhDmwEQlwMIhcIccnoGOQQ4sBGIMSBrUCIezhuizZPt6haw2dhAxDiwEYgxPONW2/Sqc02Lax26OiJNrn17F9TWkCIAxuBEAc2AiEuBpELhLhkdAxyCHFgI5wQr1TbNDXfofHJLk3Nd6jmZP86AQgDIe4dq6WZLo1PeswudXMlMuJQrbXoyLEOray1qVI1V35AiDep5jRp83QL1xaLgBDPNwcX968j/r1fXq4lEOLARiDEgY1AiItB5AIhLhkdg9wmIe7Wm3T0hFcJcmozX5UgIB5hIe64rb6HovHJLpVmiivZgLlAiDepNN0dOF6PbxTvwb9SbQ98DifLZn4ORRLixzf2J2wWVj3BduRYp/Dj1UZMEeLVWosqZ9qYTEn5Mw2fP00+h8YFQhzYCIQ4sBEIcTGIXAonxL/3wKP0P/7hH+kv/tc0XXTFYXruxbO9P7t9/V76k78+QO96/2V048130c7OLhERPV9/hT5WWqB3vPcS+sAnPks/c37T+290DHJbhLhbb/aqf4NVhVm/LpANYSF+fGNQLI1Pdo2uuATFxHYhXq60+mRhXMFTc5rssXpotdP394rQUiVc3ehXOGb9ujiKIsTLlUHJdu2NHXbMQm6aBbfawgQhHp5MyYuwzRruWM3TZBWEOLARCHFgIxDiYhC5FEqIv/Lq7+ld77+MXmi8QkREx099nz4xuURERA/XnqL3fORqqr/8Kr35VpM+fmCRvvmdChERffzAAt12179Sd3uHfvBQjf7sw1dSd3uHiCDEg5ws88Izz7IEiIEQB7ZisxDnKvKSLFHnjtUjx/ZFcFh0LKyaKYll4SrlxyfNvB7bJMRrTpMqZ9qJ7g8OrQ7K7zHmO8L1xSxEqy2iCHG33qSFwPe+nqJQFUlbx7XzGmAS3MrAPD0XpC3E89xvHZgDhDiwEQhxMYhcCiXEH/v50/SBiw72/vnZ371If/rBA0REdOPNd9Ht6/f2/uyBM0/QRVccpq1z5+md77uUtnd2en/2txfP009/9msighAPIhKe5Uo+bnxBPLiWKWG5NDWXn16SID/YLMSPnkhnYjIsiUrT+4JIJDnSrqp06540rZzJTgyEK0fHJ7u0vGamZLVFiIcnz4MTLVFghfgEL8RVVIhDWiVDtNoiihDnvvOlWzt9K2GSCmzRvWtepG3WlCv99355qr5PW4jnud86MAcIcWAjEOJiELkUSoi/+VaT/uv/nKRf/+Z5IiL6yjf+jaY/dxsREY1dfRN9/8HHen/3d8+/RO/+0BX0+JPP0gc/Odv3c6Zu/DJ9+94fEhGEeBCuMjEoUYBaTNtMjNtUs+Y0aXmtTVNzHVpea2NsaBoXfmVdaaZLpzbz8zCqCpuFeJpyp1pr0fGNNp0s90s/UV/YoyfSG1uO2+prwVWayab9hVvvl3EHF829ptkgxEWTKXEmzrlK4+W19oBMiivaowJplQzRaotRQtyt8ytWwpMgSVv0iVY3mnIvlReqtVbujpM0hTh3XjOxqAgTgvYDIQ5sBEJcDCKXQglxIqJ/vb9K//nPx+i/fOBy+rMPX0nP170e4h+9/BA9+PDPe3+v8fKr9Md/+Wk689gv6SOX3tD3Mw4evoPu/PZ9RES0db6tnGZ7h95ub2v5XbJ853v9AuO+H3Yyf01F4Fvf6a+e+vLXs//cf/9mh7Z39zJ/HUXnmvnBB6wHH85+fJjMzu4e/f5NOz+jXzw9+FB93VI38c978Wyb7rmvQ4tf6NDXv9WhF8/yv2N8skvf+V56n9nqbYMVoYtfyO47efa5Dv3i6ey/32G83d6mt9s7mb+OYfz0Z3yv79XbOvTsc9G/3wcf7tDizV26Zr7bG5db59t03w879K3vdJTde4hef5pjP698+ev8937ujQ7t7g2/V4gixMcnu7HGkM+LZ9t03VL/z/ny15OfM0Fx2N7Zo9ffSmesBJ+fgnzrO+mcW771nQ6Vrt2/liY5VrbODx4r11y/f/4FdvBWa5taHbPvFQAY4I027e3pcW+2gcilUEL81795nv7b309R/eVXiYjovh8+Su/76Azt7OzS+NQ/0Wblkd7ffdp9gd79oSvoiV8+S3/18Wv7fs7Edbf2KsTb3V3l7Ozu0fbOnpbflQbnzu/SL3+1k/nrKAq/eW6HvYn+0Zlsv4PO9i7t7ek5RgDPL3/Fj407vrGd+Wszmb09os529q9D5nv//C3bNH94m+74xjadO5/8Z80f3u4bO9M3dOnc+V1aP9n/7+cPy/2eMAdm+GrSrD9bk9ne2aOdXbPvFUTXq7GJLh24Nvvr1ih+dIZ//RtlnFNHce78Ln3+lu2+c0bj7OC9wrnzu/S90zv0+Vu3af2kd1659fbtwc+dEeIy56AfndmhjfI27l9TIHh9+OLt6V4bTGJ3b4+6Kd0rNM7usueW3zwnPx6589b1n49/znr0cTOfN0A8bLhXAPnh3PldevSJHXr0iR2pa0Gnu6vNvdkGIpdCCfE7v30fXfO5L/f9uz98zxi99MprtHDLN+hLX7u79+83K4/Q2FU30bnX36B3vPcSarU7vT/7q49fS48/+QwRoWUKyB7RhlDHU9x0KglcyxSgl5rDLzVPs7VFHrG5ZUqajFrCLWqpkgZcz+CpOXs37qxU270WMFPzHSX9if2WKSfL+8vZTWzvEu7LHqz0Lc2Yfa+T900CdX2GwXYk4ZYp4WO/NNMlx/X2Rzi42KVDqx06cTffNifr9wb4tl2q2hdlTdo9xFX1W+eup+OT8dt/idoLZf28kQaO26LN061CnMvRMgXoouY0U2t/iJYpYhC5FEqIV3/6S3rPR66mc6+/QUREP3nMof/ygctpe2eHHn/yGXrP311FjZdfpdffeIs+cukNdKr8IBF5/cXX7ryHuts7dO8PfkL/7e+nepts6hjkEOJgGCLpmXXfQQhxM+AehNAbdTgQ4h5ZPvzWnMGew5WqnQ/djtvqbf7XL/nSHWPn3+7SZz83+HtM7PFarbXo6rkO2/bCdCGR500CsyAoxEX7E3DnnEq1TYdWO3Rwsaull7EJm/zaALd56vhkPp9h0hbiPmn3W19e46/lcX+HaELQ9nvKcGHRwmo+J3B8IMSBLrhzT9TJa7e+vwfW+GSX1u9uQ4gLQORSKCFORHT7+r30vo9O01/8r2n68CXX02M/f7r3Z3d++z760w8eoHe9/zI6fOQE7e3tERHRS2e36B8mFukd772EPvjJWXKe/vfef6NjkEOIg1GEK+4OLmY/XiDEzcCte+PDr6wzXTaZgCohfnyj3ROjC6udTKp3HbdFR094FcSjNljN+uHXcb0K9OMbZlY6R0U0sZC2SL31q7yIMrV67+gJ/nPJ+nVFJY+bBGZBUiGuE1M2+bUBToiXpu05ruMgEuKmVRtzx1XSFRV5mxAUbdpr+/saBoQ40AV3bEW9z+MKun788G7m78lEELkUToinHR2DHEIcRKFc8eRR1pXhPhDiwFZUCHGutdHskt7zOlepPKoSKm8Pv1kgamuV5rnarTfZnsomyMRhrzm8CgDjq3gEhbjjtgbGhAmrQ7gqt6l5e6tI3XqT1jf2WyulObHDTQCqbtM2UEmo6ZwXFOL+CoLb1zuxrrG6SHtFhSmyXxbRJFyeWzBBiANdcBOkUYr2RBNVN92KccuByAVCXDI6BjmEOLARCHFgKyqEeFo9PGXgertGrfhGNWxyOPFbmk63lUnNadLYZJeV4lnLxFGfzcmytwogL4JFJ5Xq/qqTqfmOlVXL4R7i4Uk4EyZ00mgDUq60aGG1Q0eOZf89hd/P1HwntfNRtdaiW25v0/U3efJVx/fHXV91TK75QtxfQTA22fXOwwWqNrYd0Uq4PH9nEOJAF9Va//W8NB2tLR6EeDwQuUCIS0bHIIcQBzYCIQ5sRYUQT6uHpwzh1ko+EJFiqjVv6bvsxIXjtmh5rU1Tcx1aXlPTAmZ6/oIQD0jxpVvNqE4E6cOJHFN7xg8jLMR9TJqE487ffhuQmuOdWxdWO7R5mj+uufZAWUnxUZslyxAW0zpWLIrEySENldm+EO+ND8EqnTxXG+eB8PF5cNG+82gcIMSBTpK2P+Suu4//HF6BA5ELhLhkdAxyCHFgIxDiwFZUCPE0e3gmhRMhaVcq54ks5I4MT7ldT4pfEDNfuSv5+EprIgCoQ7Tiw/RxGkYkxHUQtWpbtMkvt6l5uD2ISNgeOZbNZJWqzZJFP1fHOSRrIe5X3HPV4eOTXfrCV9W9lprT7PW3L82YvSLIZKo1T9qdLOd/01wIcWADbt2brPL3wDpdxaaaIhC5QIhLRscghxAHNgIhDmxFVohXay06cqxDK2vtvodTv4fn1Fz6fVujEqyEirp0sYiI5I7JD8rn3+7SG81tqjnNxK/TrTdpdqm/4hiCJX38zY6DcjTudyYao6O+r5rTpFOb5rSoyUqIx63a5qrcRCt/wp93VsJW9D641yNbsZ7lCiTue9Bx3hqoEOeY6NIXblfzXbv15sC+IGl8lyDfQIgDG3nptSaEuABELhDiktExyCHEgY1AiANbkRHiXCW4CT1wg7j1/GyIpQqR4DD5c/OFuMzP4KqOSzO4/0gbTsaGK4vLlRatrLWF1cvcBpRTc8PFeniDVxM2/MtCiKdVtR11b4ipucG/t3Rrp+970DnZFnezZMf1VoxUzogncrOsEA9XEuqaxPOF+MAKgokujfkwx3ZaiNrfmHbPAcwCQhzYCIS4GEQuEOKS0THIIcSBjUCIA1uREeIiQZL1ewLxyFLuJCUNIS4av6g4TJewyB6f7NLl0544W1jt0OFbB78HbjKm5niTNwcXuyN705u6eVwWQjytqm3uPDE1N/gzak6/FP/swuD3m8XkxLAJvmqtRac22/Rv32/1VSGLNuB064ObdaoSwabgC/HG1v4KgqvnOgOtU1SdP7kJeAhxMAoIcSAivHotq9WsHBDiYhC5QIhLRscghxAHNgIhDmwFQhzYKHfSEOKitgdZvzefSrXdk3NT88P7PpsMVzF8MfO5B5Hdc0Akz7Ie11m1TOG+A25ywHFbvYmKU5uDfx5cTTI1N7oXuVsXXydGiQdfUqse930rZJiNIkWV9G7dmyQ4vmFOSx6VBIV48DM4csxrjXZotaP8cwhfp0rTZk/cguyBEAciuHvArO8RfCDExSBygRCXjI5BDiEObES1EPeX8BbhoQvoRUaIc60QsuoVC+SwTe6kIcTd+mD1simbNHIVzqUZs/u6i+Ba04yF/jft84ioKrqIFeL+5xGU4txDP9ejmavkduvNWJI6ycSprk1+w211VIzFvMAJcd249f5VIrZOEgK1lCv7Kz2uub5LT/8WXgEMwp3vp+bNON9DiItB5AIhLhkdgxxCHNiISiHO9UG1UYrklZrTpM3TLWsfzGSE+OmftPqE1thEl758V/wHZrfepPUNryrRpCWLwFzSEOKNLXMnAjiJbIKwd+tNWglU1EatpjpZ9iTWwcX+ftL+eUNFG4TwhN3BxewnFLIS4j7DNqEVjTnZ44Lr/Tysf7nOFk4D75kZi7KrFfKCCUIcgFFwq4Omr8/+3A/Mg2vndnDRDAcFIS4GkQuEuGR0DHIIcWAjqoQ4V7FlQpUb8Ag/TMfdpCwONadJU/OdXqVoWmIsjZYpY6FKz7g/J7wMWtS3FQCftIS4qYikoK4N9ERwS4zjyuuwIB2b7G+hsryW3qRYteb1Os56IsFHJMRHTazWHO+zX1jt0OZpNe9FlRD3v/NDqx06uDi6Tyu38iit1xEmfJyFJ2fQkmMfCHFgAzrPH8BuuGueKc/XEOJiELlAiEtGxyCHEAc2okqIi/qgYglv9oiW5KsQL6KJkTRu8LPuIc5VD4Y/x+DyV5t7KetgVA/gvJB3Ie64rYHqpam57CeKuGN1din+PVvwQbQ07Yn+mtNUJh919aMeBSfEw5MM4YlV7lqjos8pdy4uTeuvrBRNBqn67sITsiu3dej4RptOlrFaKQiEOLABlRN7IH8c39hfvWaKDG9sQYgPA5ELhLhkdAxyCHFgIyorxLkbuzSWkwM5RCJXxXej8ndl3UNcJD/898ZNCtnWS3l9o0WfmdqXh6rETtQewHkg70K8seWJ0GC/XBMqVbljNekSY7fe1CIp+jZNzLgCLCzERROrwXNE+PUnmXiMCjdRofszymKT33KlZVzbJNOAEAc2wE0mzx3O/l6hUm3TypoHzjNgFBDiYhC5QIhLRscghxAHNqKyh3hYGJpQJQjkN21z681eJe/6xvBKNNFKgayFuL/BVVCMxZW93OaBQSEkqvbJunVEVA7fMlhFr6olTJEqo4ogxE0h2M6DmwQzqaoqjGjTxKwmF8JCXHTMBs/topU4qt5D1ImKmtOk2aX9Scq0V6RAUpsFhDiwheBk8lfu7NJ/nMv2XoEr/LDlHhZkA4S4GEQuEOKS0THIIcSBjagU4o2t/T6oWMJrFuGl7lErJblK3lFtB8IVc2n1NpUR4j6O26L1jRatrLXpyLH4LU3Klf6KnqBgs1nyiiYyVL1+mz+ruECI64HbJ8FfYnxotZNYhutqg2TaMREW4qLVP8HXx8mUqbnsV35MzQ2Kekie/AIhDlRTrbVo83Qr1cm+19/q0lutbO8VuHNlklZjoDhAiItB5AIhLhkdgxxCHNiIaiEOzKVSbcfetE3UJmSYpHHrnoD32yekJZDSEOKcdEoinLj/hlv+asou8FE+lzHme1Yl5EzpAdzYGr1JoCwQ4nq+QxWrM3S2QdLdj3oUXA/xcEuU5bXBzzf4d6482KHpG9VVZif9Dv0Jkyw+1yxw3FZvo9M879fgAyEOVOHW91eb+Oe1tCbXTBDi3LmyNG3HfSzIBghxMYhcIMQlo2OQQ4gDG4EQB3EQVS2q2JBzFGkIce69pLnxa3D565Fj9rQMqlR5IX7N9equcSb0AB61SWAaxBXiwVYfC6ujx5BqoW8Do/r7J4Vru6Kyaju8uiZLacsJ8cbWfnuQYdcAt+6NSxMqs0WTJVF6fZ8se63CkqwmMgXHbRVmvwYfCHGgivA9gy/F0/jZJghxbh+IIk0egvhAiItB5AIhLhkdgxxCHNgIhDiIA1shmVILlLiEhXi5st/6JIqgEm38mqYQt5lDqx0am+zS2ITH1depr9jWtVkhR5RNAtMgjhDnJqBWmCpcn/DDeVE3MRZ9l7ITd1m0MTGlH7VIiEfFpMpsrrf5qOOcmwxRKcUd12vBkPb3LhrDtgr+KECIp4u/j0zwmmTLZH/aqNwnwQQh7ritvonZQxEm5UGxgRAXg8gFQlwyOgY5hDiwEQhxEJdg9WVpOpvq8MZWvxBP2vokXIFZZInIEaX6My9E2SQwDeIIcW58jk/y9xmins55Fl3DiLtPgi8gK2fEcsfmNkiyyApxmcrstAm28Tq0OnoCVTR5qkrmV6rtviru2aX0JiO5ilbVkzpZwwlx1Rur5hlucqioVcNshXhKLUVMEOI+jptuf3SQT/zJsn/64jatbxR3okwEIhcIccnoGOQQ4sBGIMTNoeY0aWq+03tAM32Tr6wfoINCPGmld83pl45cD1xQDKJsEpgGcYS4qPqM+7sioZ9080gbCLaw4B7Wo07oVGv9bSSm5vmf19iytw2SLLJCvLGVrDK7saWuWjoqIpmvajVReNIlzYk5k/Zr0AUnxE1o32Mr3Gcnui7lHW6SNK0CApOEOACjcOv7z7DBydysX5dJIHKBEJeMjkEOIQ5sBELcDNx6c6CvZ1rLLk3BcVt09ES7t5GX7AP4KCEep3Kz5jRzLQRANKJsEjiMKEvJ4whxTl6JKmrLFb4lRV4rxMPfVWkm+fmSEzyYHOsnDSEetzK7sTU4rtOslpYdIyomm3TI9+A56vJr8l0d3tgaFOImte+xEW7lUpE3WnTr3uRs2q2tIMSBTYj2bsFE4z6IXCDEJaNjkEOIAxuBEDcDkczS1b7DrTepcqZNm6dbSmQDJ/xlN/IKCnGu8jCLpfjAfmTaxERZSh53U81KtU2HVj2JOOp8YNImjCpxXP58mfSYl51QyyvBCvwnfiUvxJOgslo6DuFNQVVeX9Ic2xy9/SFSrmg1lbAQN6l9j41w4gut5tIHQhzIEG4Lpfo8L1qlmPfrSxwQuUCIS0bHIIcQBzYCIW4GonYNOtodOG6rb5lbaSZaVWm15i1jj1KVqWIzuqAQ51qfoOIb6CbKUvK4QjwuRej7LqrwvGquQwurHdo8He+9c9K16BXi3OTO717YNeJ7HlYt7dabtBJYPXD0RLrXAmRVRMEAACAASURBVB2ricLCMc2WJqIqvjytRgvDtUxJ2r4HeJwsR5+oBcmAEAcycPejKlcDiSYa83xtiQsiFwhxyegY5BDiwEYgxM3ArQ/evOjq6xluPTA+6fXQHfZaF0IPk6Pkm2oh7r8mv+oNlV7mU6m2aWXNIy9LKqMsJVctxG0huColyQMTJ7HHJpJVe4YnJEvTxZZjok0kjx7f0f5a4lbycpvc2Xg9qNa8ia2T5XSFPjbV9EjSvgcAnUCIg6SIJpNVXwuDE66laVSHh0HkAiEuGR2DHEIc2AiEuDk4bqu3WdvyWlubkIm7QRJXYVaa2Zf31VqLTm32v34VG3mNapmCqiVz4cZQHjZ/jLKUPI4QrzmetPH77mf9/tIivPlSkk2Eaw4vxYPEOb84rhoBaSOiSq+bbtUvZ8LH1NTc8I1Mudc9bII3K8ITy+uarleoEAfADiDEQVKyEuKNrSa99FqTfv0MvAIHIhcIccnoGOQQ4sBGIMQBWyE+JxYInHz2K8zCPysoA4NV4qVp+Y1WRm2qid3Nh+PWm3Rq0+sRfPREW6sQ4SZhTJRWHMFxvLDaGfjcRi0ljyrEOSlpY6UrB1elWppJdrzWnCbdsMyfk4pc5S0Ld4ze94D+CvHGVrxqaW6SxMR+8NxqEh3VdG598Hfn5bwiAkIc2AiEOJCBu8bouCd66bUm7e3pcW+2gcgFQlwyOgY5hDiwEQhxwFVaDpPVovYnd3+Pr0gI3oC59WZqN2SjhPiwPrNgcGIjWOWvmsuuGfy+LrvG/Osnt/lt3ImXqEJc1NogD9XLokm1pO+Nq3oNT+pxvaWz/hxMJryJ5LFvdjLZVDMu3PXJtNUnok1hdV2z3Pr+XgMyrUIc19tHxPR2IzYJ8eCqoLh7IYB8ASEOZMiqLRSEuBhELhDiktExyCHEgY1AiIPGlvdge7LcpuMboyuFuQoz/7/lHvJV9YcOCnFuA7i89KVWgWg5pa42M1dfN/i7r74ueYVwuEWPKkQiN051fVQhLvpdeah65lalhHuty/zMqbnOwOfETTCgrdJo/E0kz55rKRfiJ8veipUjxwZXXsT9Ob4EME2GN7bEPdpt2sg1PDk4u2TuZJ0vxIP3KLNL5p1L87wqCMQHQhzYCIS4GEQuEOKS0THIIcSBjUCIgyRwFWai3qSqHjqDQryx5VUG+hIkLzI8uPFgmrIhayE+Ntm/AeLYhLcZatyfE5acql8/J3LjVjZHFeLc8fSZq/Mx0eO4rYFVKWm0ixi2AoX73vLQVilc+b6ypqYHumohzq1YyXNfa+5cYnqldRCuNY2pE0yd7V363g8HJ8RMO/7TuL6A/AAhDmwEQlwMIhcIccnoGOQQ4sBGIMSzg9t80nbCleNHjqlbAh4W4nnDcVsDGw+mNVY4Iamzqt4fJ2MXGJ+M3+eX26hVdQU1N5EQt6ozzqaafSsfJvY/qzxIcbfejLwqJQ24sZKHtkpc5buKqlKVQly0iaepgjUN3Lp3fNs4iSuaUDX1eOps79LqbfKre1STxgqkvFCptqk0c2HFz3ynr/AijVUkNgAhDmwEQlwMIhcIccnoGOQQ4sBGIMSzIfzgo2MzLVnKlVbvQWSYdEyjN2kU8i7E2c1OU9x4slJt90lxnfKpWusX8qXp+NWRohY9qo+laq1Fh1Y7dOjCZqRxq/fiCPHGVpOunO30RLjPwQXca8SFa6tkYjuNuHDHgIoNalUKcZFgVTmhCuTgvi9T23t0tnfpy18ffL2myeYoeyEUAa7HfmmmS4u3xF9F4ve5r5xRs3JGJRDiwEYgxMUgcoEQl4yOQQ4hDmxEtxCv1rybU5MeQnQjai1i8mfCyaSsK9vzLsSDG9oFSfv3VGvptmMJU3OaNLu0//rXL4h3x/UmTpJWCHMbXJowLkcRV4hz7/HSq3CvkYQ8tlXiVnrEXW0RBZVC3K3z7yMv31EeCd/HTM11jBWOne1devRng9dTE3u2j9oLoQiIJruDbdaiTORXa61elbk/UWjyfXYYCHGzCG54e2rTvHOHKUCIi0HkAiEuGR2DHEIciHDrTVoIVASvG7QMWJcQd+v9Uqw0Y0dVtAq4Je7jk+b2DzV1AzBdQtxxvdY2ur8ftkLcwmqxcBudNKu4dbboSYu4QvySKwc/v8uuwb0G8ODkkYrKd9U9xMOrRvLcLiVrHLeVitip1rxJzZNls6tv/U01ZVf36GLYXghFQFQ0Ms4I8WHXfK6oIOv71jhAiJsDNryNDoS4GEQuEOKS0THIIcSBCK4voCkyWJcQ5yqMSzPFPF5sqxDnlq+OT2bfL1SHEA9XIS9ofM81Z7Bq0raKSVFv4DQfSv0WPbZ8NnGF+FXXdQY2IL3qOvPFf9qUK62+nrJFFkZhTpbbPdGnqg2MaiHuU3OasUSl3xLB1All03Dc/qpZ3de1LPCFeNavA0SDWzFy9XUduvyaeKtIuHuP4OoZvw3gypr+gocoQIibg6iQydRJtSyBEBeDyAVCXDI6BjmEOOAQVddmLRN9dAlx0WZBRZQabn2wstX0SgOu0ibr/ruqhbjo2NX5vh23pXXjQRWvn/sMbajkliXYKia4IiauEPcrgIMbkGZ97OmG6zFdmsHDqE50CfE4hCcsZ5cwJkYhakeR53sxX4iHWx5ktfoLjKbmeKvkDi56E+iO2xpYRTLqvplrw+RPxnPHgWnjAELcHPAMGx0IcTGIXCDEJaNjkEOIAxGqKyRl0CXEudn10nSxjxddm09GpVJt08qaR7jqpub0S3ETBL5qIS7a6M2UY9cWuNYvpox5lXCTSNVaK7YQb2zpqQA2GW6FUVHGkSmYJsTdenOg0rmIk0Vxsa1lmwz+6oGf/myHHv2FoA0HJlO0I9pXJM5/H+W7qlT7v/PS9L7ANLlQyQdC3Byw4W10IMTFIHKBEJeMjkEOIZ4dsjdXqjFZCOnsIR4WRKa0jQH8zd4997cH+ozGXc6uEtVCXFTdDOESD7fuCU1f6Jpy7lOJaDLl6Il2IiFedERVrTaOpUq1beXG0qYJcdExZprUMo2wJPRFoSnX9TTfZ3DC5DKm3cb45P6qG1zb9cFNFqtqeeZv3h3uc2/DuQNC3CyCE/NF3fA2ChDiYhC5QIhLRscghxDPDp03V0k5esJb+ndotWPUa9MlxBtbnhjz2z/gRsIsuGPo4iv6/3nFsMpoHT3Ew5WpBxftEwc1p4ll4Sl/nqM2pBPJuuMbEOJJcNzWwPL3YC9YG+A2ljbpXmAUpglxUUsrbMY5muAEU2nazomlUYTPF2PMhoxhIY7VX+rRsa9IFLjNvk07dxRdiAcntUy5XhZ9w9soQIiLQeQCIS4ZHYMcQjwbRDdXRehRmwY6hTgwF+4YGmceIGtO/01qlpvb6RDijS1Pbh7faFO50rJOhocr/7PYPM1ftl450zbm83PcVk9qr29Ef13c9UbUPoh74K458XuIg/3P3u8pe+RYx5ixFBW2bZhFG0ubJsQbW4Pnt6k5+8ZFVuRd7AyIb06Ih/4dKsTVY8q+IjWn/xpt4mRIkYU4N05KM13rVlYVEQhxMYhcIMQlo2OQQ4hngyk3V7YCIQ4aW3xbH477fsQst85ocztdQtxWTGj5Uq21+patT813Mn+g4XoPR50oEPXf5ca/W/f+vr8pmC+fshbibr1JlTN2tu2wGdGmXLZ8ByYK8cbW/oRluCUCKDbchorXXL9/DB6Y6a8Ot3H1l61w58KsJmcc19xCh9ff6tLpH3v3J0eOFaPdXGPLm6y4cpZ/BkGrTfOBEBeDyAVCXDI6BjmEeHaYdHNlGxDioLHlSbLgcXTtjZ2+h8XxSW9ptaiXbxZLGWWFeLXWopW1Ni2sdmjzdP5usof1sdb1GrhWPFlXYsn0o05DasYR4sHXOrskf11z602amt9/D6YsQy4Ctm8sbaoQB9EwcaWOSgY2VLxQXRqsjLd59ZfNFHFfkSTc9c/J7lNsZ2quI2xxBCFuPhDiYhC5QIhLRscghxDPDtxcJSepEM+7TCwqjrtfNRrsn12a7tK/fb9Fl8/wQjCLY05GiHOy2LT+kbKI2knprBDnfn/WvZ9lhDi3+ezUXLzVSFGFeLkyOEZnl+Q+OxPadvg97Ys2ac31Qbfp4R5C3F7CG0xOzRejtYy/oeL3Tu/QC2fzdX0H+Ye7T8m6oEA1/n3r2GR3oKURWmLZAYS4GEQuEOKS0THI8yLEy5WWEf2BgR6SCPEiyETg4VdT+ZWlJt2kyghxUaVv1p932mS9KSi3bP3QzdmeK8KVg/6ET9Qq7+BnOjUX/xoZVYiL2hjJXJNF417XmAgL+aK1NgtuLG1LqxQfCHF74c7DRTr2Otu79OrruEcF9iBqeXcog31gsnrfYz4TXbpqLvt2eyAaEOJiELlAiEtGxyDPgxDnRGdW/YGBHsJC3K03aX3Dq/w+eoJfWlsUmQj2CZ4bgjep18xnd36AEI/+3fnLwnX/7gH5POGNnawnWoNV4qXp+G1DZDakiyrEb7k9/Z7TnGTX1bZDtGIBLVvsAELcTooq1oJAiAMbmVsaPG6LUHyENqh2AyEuBpELhLhkdAzyPAhxk/oDi/CXW6MtSjqEhXhw13XR0toiyUTgIepHPZbhDbqMEA9XTudVEAQnuI4c019h49abfRMofl/6G5fN+KyjPGTVnCbNBh5M1yXHe1QhfuTo4Hn2kivlzrNZtu0Q3V8U4QE/D0CI2wsqxCHEgX089ZsuzR3e7h2zeW+X4oM2qHYDIS4GkQuEuGR0DPI8C3FTLkbh/q0LORRYugkKca6VwPjkYM9hTiZm3RcYqGdgIiQgOLOo3hgmxEe1fnLr/dWyBxejV9669SZVzrRp87T5G3GFvzPdK36+9yBfFXzgWnvOF9zGoDKTxFGF+KHVjneMXcCfgJK9Hqtu23GyzE/AoELcbiDE7SW8H0GcFlF5AEIc2Mjrb3XprdZ2bzPYrF8PAFGAEBeDyAVCXDI6BnkehDhXPWaK6DRhg7g8EhTi3CZuXAUfJxOxnE0dQcE07HMOTmjNLqX/nbj1Js0u7lf6jgXGSBbtOERCPE7rJ7fejCUGHLdFU/Odvp9r6tgXVfXrrMh13NZAz/nxyS7dYEiFeNLPUKa6MqoQ5yYeTV+JE27JUprpF2/hHuJFqXjLAxDiduNvMHmyzLfCyzMQ4iANKlWvEELXZJIvxLN+3wDEAUJcDCIXCHHJ6BjkeRDijS1PPC+veUuVjhwzZ0dnE+ROHgkKcVGvSZHwiysTQXw4KcZ9H1x1/9R8+tJRNGliUoW4ytZPXA/m2SUzz/uic+bRE3rPmZ+7uT0gxU1ZdTQK0USszGcYVYi79cHqdJMngEWfVfgaXam2M+tpr+tzOHKsQwurHTq1ae73FRcIcWAraQvxSrXdW4FWmsEql7zj1vvbpun6ziHEQRKyXsUKIS4GkQuEuGR0DPK8CHFTQYW4GsI9xMuV/VUCpelsKn/jUK21aGXNq6DePG32a42LW+fHPFdVyYlaVaI63Gc+q16kcYV4GhKW68VqatWuW+df76gHubR7Zvv9IK873KEblu3rB5n2Bk9Rhbj/2fntTUxdieCjopreNrj7FN0TUKqAEAe2kqYQd9z9dmxBUBySX7jClNKM+vs+CHE1VGstOrVp/j1VEkxYxQohLgaRC4S4ZHQMcghx9YRvSkxp52IDwRnj4I17WIj72CCtOAGTpxUDoop9bvPHcCsC1Q9p5Yq3/DrLcSIS4ipbP3ETD1Nz5gq/aq3/s4hyfKTdM9t20t7gKY4Qt4mkEzB5QjQxacpKOxkgxIGtpCnEo7YWVEnak9ZgONykuKqCkyAQ4ukTvkbn6ZmRe3/jk2pWCw8DQlwMIhcIccnoGOQQ4nqo1lq5Xm6tAm7G2Jc6IiFuA6Kb1KxfV5pcfs3g+zv2rcEbOK4ykRPneWLYppp+66eDi91UWz/VnEHpZ4Pwi/rghipf9eRViDe2Bidg8lIdHRXRNSkP1aMQ4vFIo9+wPxm3sNqhoyeK1/s7LdIU4lE3n1dJeJXe+KT5qzlthis4KU2jQtw2TGr5qAquoEX3czGEuBhELhDiktExyCHEgakMmzGGEDcXt970Nq4M9V8WbURXrbV6VaxFeHgeJsRV4ritXhuLPIiuICp6ZoN+8izEfWpOM/fnH45bvjp4rb30ynxckyDEoxHuNywjK8Pi88C1Hao9la9rjg7SFOLc3g6laX2rQEQrB8cu3Ceq2FC96HDfuY4JiDwL8XKlRQurHVpZ07fSVOX+QqZgwipWCHExiFwgxCWjY5BDiANTGTZjbLMQ5/r65amNTvDBZ+wCRaj8jkpWQjzvpN0zG/RjixCvOc3eyqLSDCoQozBw7Ex45+08TJxBiEeDky6fmYp/XyKqRB6bwLEYl7Q31XTcFi2veW20ltf0ToyL9pYZC/x/3S0SikAW+3mYIsTdepM2T7dS26SRO0fqkOIny/r2WsoKE1axQoiLQeQCIS4ZHYMcQhyYyrAZY5uFePi9HVzM141NY4ufzMBGsh4Q4mpIu2c26McGIe7Wm+zGcbJjweQWEI7rPfBXziR/Xf71aCwkqEx6n0mBEI+GaOXakaPxJKVI3ozlaEzpIm0hrptyZX8jz6n5Dt24zIyxiXTP1SB7TBDiNaf/XiCNTRq585quQp/wqps8tgPMehUrhLgYRC4Q4pLRMcghxIGpDJsxtl2IN7Y8yZKHCjzRdxeU4mhdsQ+EOLARG4T4PffzMk52A6rww+jUfHr9/WWo1lp9D/1T8x1yXK8abiUw6bqyNlyWcz34RS2ubANCPBrcyrXgqryoCFtjQHjGxmYhzo2Dy6e79KWveRPWV80OynC/6tVxW3TkWIcWVju0vmHWBCQYjQlCnOtXL3tNy1KIN7a8CabjG/patRQNCHExiFwgxCWjY5BDiAOTCS73C8rjPAjxIuDLmaxfh0lAiAPTqTlNOrXZ/+ClQ4hXay1aWfMqsTdPxztGKtU2XTbFCz0ZIS5qAWFC+wduJc7yWpuVm6MmJfO6lwOEeDTcepMuvXKwzUlcId7Y8sTNp68OtN8JiE8d46rm9PdDX5ecEMsKm4W4qO+xf94UbajOrfJZQLs9qzBBiKcxuReGk+wo9skPEOJiELlAiEtGxyCHEAc2AiEObEUkxCvVdu9BsDSTrw1zgD2EWx74MkK1EOeqlOM8bPqricZCVYelable2KIWELJV52nAva6Di92BlVX+OSXr15sFEOI8lWqbVtY8/GvNV+5q09hEOnt/uPUmXTPfPwZ1tU3jxJUJE1hxsVmIi86bwfsabhJOJNJRFRufmtOkdY29w31MEOIqKsQdt9X3c5dHrLwCdgEhLgaRC4S4ZHQMcghxYCMQ4sBWOCHuuC2293FeW+qISHsTJBAPUbuDk+W2ciHO7RkRp6KrV9UaqG498I8daRkg+kxM2PeBE9/La222ctzff8NUVE0IQogPwsnKk2VP7oT3N5G5Brn1/WX+Ncf75/UNbwXIkWMdJdc30fFq46beNgtxtz54fpqaG91qCkI8HY4c678G6Ow5bYIQr9ZafeOvNJ3eNRsrX/MJhLgYRC6FE+Ivnd2iT0wu0R/9xSX0N5+aJefpf+/92e3r99Kf/PUBetf7L6Mbb76LdnZ2iYjo+for9LHSAr3jvZfQBz7xWfqZ85vef6NjkEOIAxuBEAe2wglxUTVVkTYiVbEJEogHV6XtP0yrFuKiTf2iSjORHE7jtZUr+w/XpWlzqk3D7Vz8h36R8Mz69YrgJGZpJp0JQQjxQdgJk3lvI+JTm20687ia/U3Cx3hpJv0WKm6dXzlhY098kRA/Wd6fVDD5GllzvAmWQxdea5TvmmtRJbvKp2iI2nzpGismCPHG1v4mjSfL2WzSOAy33j9psbBqxr4kRQZCXAwil8IJ8X+YWKSvfeu71N3eoW/dc5pmFr5CREQP156i93zkaqq//Cq9+VaTPn5gkb75nQoREX38wALddte/Und7h37wUI3+7MNXUnd7h4ggxAEQASEObIUT4uUKLyJNEW864CqEZ5dwbdKJcEO8C21IDt8yWmAlfajjKgMPLkb//jk5nPZDsIlVio7rVeD6Fb7+vz9ZbvfaEZgsw0XffVrnPwjxQbjJo0uuUDuBIppsU9F6iLuWmHjsjoIT4uH3ltbEkQjH9SZJKmf0nUOC54PSNNrHyXx+WUyKmiLETYbb50NnFT8YBEJcDCKXQgnxFxqv0P/3t1fQ7u7ewJ/dePNddPv6vb1/fuDME3TRFYdp69x5euf7LqXtnZ3en/3txfP005/9moggxAEQASEObIUT4m59sGqvNJ28eq5cadHCaodW1uzZkZ57gBufxLVJN+EHNb+ncLCSifvvak6TpuY7PUmTRGaG2zXErWgTyWFgNlH6DSelKEI8jrgMt1MQkaZo1SnE3bp3HvMnhGy5BoYJC3HRhKWqjf3CE/WzS3o2RfUxufrdZEQFFkWrEDcZbpUO7nezBUJcDCKXQgnxykOP0yevPExz/3SM3vN3V9FFVxwm97kGERGNXX0Tff/Bx3p/93fPv0Tv/tAV9PiTz9IHPznb93OmbvwyffveHxIRhDgAIiDEgS34m5ctrHaoUm0LN9V03FZvefHyWvIlnlzliQ1CgKvqi1MhDNKjWmvR9Td1Bjao9AlLEbfeZHvgjxp3juv1i6+c2RfYbl1Nu4Y8EawAnF2yv7VQ0n7DUSiCEI8rLt16f/uSq+f6J71UXDcct8VWpqP6V0xYiA9raZX27xad001fbQI8wvdTReshbjrcpp+ladzvZgmEuBhELoUS4nd/9yH6P/77xfTIE7+ivb09+sbJ++lvPuXJ7o9efogefPjnvb/bePlV+uO//DSdeeyX9JFLb+j7OQcP30F3fvs+IiJ6u72tnO72LnW3d7X8LgDSotXZod3dvcxfh0qaIAI7RvNIbWfgpvf+B3ao1VH3O7kH5lu+2s38sxjFM7/bpgOBB/ADM136xVPJf96pe7d7P+v6z2/TM78zf7yYxC1f7QqFePjvcuN8fLJLp+4Vf+aP1HbowLX7f3f6+i5t/T7792063Gc9fb35x/coXnzZG3OHb9mmW77apRdfTufntjo79OtndunWr3bp87d06YfV/J0HDjDi8vi3R7/PF1/22PzBNnv8pn3O/MVT/a912PkhDs/8bpu+W9mmXzyVr+92d3eP2t3R3/UDCsb0L57iz+mHb8nXZ+yR9X2sGh6pbdOpe7sXjgt9dLZ3aXsHXmEYZeace/Lebuavq8g029u0t6fHvdkGIpdCCfHKQ4/Th8bnev+8u7tHf/ieMTr3+hs0PvVPtFl5pPdnT7sv0Ls/dAU98ctn6a8+fm3fz5m47tZehfi5NzrKaXV26O32tpbfBfJP45UOff9Bj8Yr6n7P6291aHt3L/P3q5LXwEjOvWk21y0NPlAeuLZL59/uSv3cxn90aOkL+z/zzn/2/r37Ar8Mc/Fmud+nC/eFDt1zX5fuua9L7gvJf879Pxr8HOYO2/EZmML9P+rQOCPE/bEW5LFf8OPun+8R/3yu+vC2O/EdjeK2O/lJisd+kf1rM5HHn4w3LlXz0KNdWvpCl75wm/f/ZX+e6NiLe84PX6u44zwtfvlsej/rzn/u5PYcsr27R280twc+u2vm1X9Pjf+If063lazvY/PG2y2vaCnrZyjTeegR7zy9eLN3z5v16yk8b3Zob0+Pe7MNRC6FEuJPuy/Qe/7uqt4/7+zs0n/+8zF64823aeGWb9CXvnZ37882K4/Q2FU30bnX36B3vPcSarX3B9tfffxaevzJZ4gILVOAXdSc/iWWpRl1S7nz1DIli02LQHRklu2L+gRyLVPiEFzu3qsIvNCLlVuKqaJPq8lwn8/4pNrNx/LI0RNtGp/wKsU/fVWXjp4Q3yuEx92wTS1FvXAPCfqT551qrdVrq7R5evgY5VoiYWyLWRCcC7J4LVyv9DRaUHCtSJL0lS5XvB78NrTYamx595zcd5uXNizcpprB9666n3d4vKbVxgjkmygtUyrVdu95sTSTn2MW2AtapohB5FIoIU5E9DefmqWNzQdpb2+P7vr2ffThS64nIqLHn3yG3vN3V1Hj5Vfp9Tfeoo9cegOdKj9IRF5/8bU776Hu9g7d+4Of0H/7+6neJps6BjmEOEgLrgfw7JKasZUXIZ71pkVATBqbBHLy6ou3b0sJcbfOSwBfJtacfjm5vFa8Bw3uXDQ+Wcxjq+Y06dRmcsnl1r2fcf7tLr3RFD/kunVvsz6/B/6oyVBO4unsc2oKlergWB02gfXAw4OTCUWdSIiCSUKcmyCdmpf/7sL3EUURl6LNWPMyATxMiOui5nh7FpQrrUKMKSDPKCHuuC12hRgmdUGWQIiLQeRSOCH+zG9fpL+9eJ7e9f7L6KOXH+ptqklEdOe376M//eABetf7L6PDR07Q3t4eERG9dHaL/mFikd7x3kvog5+cJefpf+/9NzoGOYQ4SAvuwUTVg2dehDgnhbBpUfYk3SSQ+znBauVDqx06/ya/qWYcolTXOm5xH2C5zcd0Tgwc3/CqfY8c62S64WFw88XxyS6tSHwGo4R4GLfepMqZNm2ebrEPupzEy+MD8ahjkFvNUJrhr5u989KFqv2xiS5N/KM9Ez1ZVAUe++bg55vVZr3c9T6tjdSKKC5FFeJJJq9NxAQhDkBcRgnx8LU/bxNZwE4gxMUgcimcEE87OgY5hDhIC64qU9WDZx6EOCftUO1nBlzVpswNu1tv9mTf9o68EOcqz7HktJ9qrUWHVr2K5aMn2tokUfg8qLJ11DDSlkVxhLjjtnqrK/zPgJtMctxWLiWe47boxN0tmvzs6BUmorZK3N8VVcQmrf7XOXHDtckpzaivCjx7rkVfvGN/A7ODi9kcj40tbwVF+DMo4qoIlZ9pnlZEQYgDGxklxEX31ygGAlkCIS4GkQuEXraVVgAAIABJREFUuGR0DHIIcZAWNae/Aqo0nfxBfRR5EOKi1hdJen+CdBFNVqRRwSIrxP1+w1NzHbr2Rk/45kGGu/UmrQRk8sqaPomdFqLe2Fkc02lXYcUR4tzkaBqtIWygUm3T5dNdGosorrnJLdGkaLjiX2YyTPfEjUjmq5YgZ8+1aGd3r29SMiu4FUO2neNMpFrzJtbycB0MUhQh7tabtHm6RZun8zUxWlRGCXG3PjgRXJq2Z6UTyCcQ4mIQuUCIS0bHIIcQB2niuC06WW7TyXJb6cNnHoR4YwubFpkMt0ngPfd3aGG1QytryR++ZYR43H7DNsGJQduqJ0UTKVlULWZZIc5t7Cqqes4bpWmvpUnUyQi33i+nw5I0KIvu+9HgMTJs81IRWUzciCZoVLe38IV41uMi/J3jOg9GUQQhXnP629N95hoPf5Iub5McRSDKpprhPUeynqwEAEJcDCIXCHHJ6BjkEOLARvIixBtbant/1hzvpnNhtUPrORGnugjfsB/91qCMSlLdKCPEuX7DOkSj43pCrnJGXdV2nNYRJsO9j6Vb9v/dgsaq0HA7AZkWVrIV4mn1Sjad8cl4QtyHq2AOy6LSTJeOBc5DpelkwiiLiRu3PthDW8cEsIlCHIAoFEGIsxtgh86fkKV2EUWIA2AaEOJiELlAiEtGxyCHEAdJqDlNml3av2HVLVvzJMRVwe3kLrOpXtHhROfsUvxzp4wQz6LyNrgR3vik1/pCxQMq996m5uyqEG9seefG4Fi5binbvsF+OwHZStw4QjzcPmt8sjiVfv77HgtJnSSV3Jws8s85cdqb1Jwmndps97Vs4c5nqqu1HbdFy2ttrVWBEOLAVtIS4uVKq7eyTVUbw6Rw9zNpFB6A7IAQBzYCIS4GkQuEuGR0DHIIcZAETl6pfpgOAiE+Gq4FBaptksN9lkmqXmWEeJx+w2kRFpuqKkm5HsM2t4PxhWVe2ofEEeKNLa8i+GS5Tcc38rsc2q03aT2wMaXjtnptjfwe4hdf4a0QSNKfmzv24o6dcN/xhQvni/DETV73rkhLiPuTCpUz+fycdIJ2MdFIQ4hz+w6YNDnJrXoLTybqfLYA8kCIm4lbb9LCav6v+UmBEBeDyAVCXDI6BjmEOIiLqP+oajEXBEJ8NOxS1El1G53mnXD7iaSVvjJCPNxv+OCi+gkOncf6ybJXPXpotaOsKizcRki1nOEe+G1sHxJXiBeB8HdbmvGOR8f1qvJPluXGF7s5aYxVE6I+8sFjS+VGmiaQhhAPT9YlWRkELkzCzHd6xwpE53DSEOLcpJrOe/UoY+LywGu8eLLb1zIFmy3aB4S4mXD3ojYXnaQNhLgYRC4Q4pLRMcghxEFc3Dr/kK1z4zgI8dFwm5jZ2ILCFNx6/w1lePO7qMgI8eBr0VV1q6tCXAdcG6EFxXKAOw5H9ZLO+nPiMEGIV6ptWlnzKrKzrnIU9eFO8wEz3HqmNB1vQlPHazQdWSEuKgBAG4d4uPXmwLkXE/T9LcnCm0imIcS5sWvSfWDNadJl015V+NhElz59TZcO3ay3rRJIFwhx8xA9t5s0OZY1EOJiELlAiEtGxyCHEAdJ4CrXuAebmuMtKU+7Cg1CPBrBFhtTc8mW7YN+HFdu89M0hHgU3Lr3/QfbOST5OX4LiKCUs/UhVdRGSPVxUanuV76LZGSwenJ8skunNs0SblkLcW5iIUspqUs2+61nTpbjy6EoFeKi35nlWEsTWSEu+p517gOQB0SfY5GX7YsmW/zjPA0hzlWFmvSZc88SqiepgVogxM0EQnw4EOJiELlAiEtGxyCHEAdJOXpiX/JwMjzcYiLNB0gI8XhAhJuDLiEe7l1dmkm+9DitFhBZw7W9MaFKUVQ9mXUVdJCshTi76ep8dg9zbp1fPWHSd9bYGpwEOrjI3++59SatBOTUQsIVMKYhK8TPPMFPoi2v2SUSwhOkur9brFYYhNs3IzhhlYYQd+v9587lNbOu4dz7H5/EM6nNQIibCVcQkvW9b1a49SZtnm7R5ulWbwISQlwMIhcIccnoGOQQ4kAFosq0tC6+EOLAVnQIcZF8KPoy/3C1u1/xnvXrsqF6MokQr1Q9Abey1pYWxWlsMKniewu+LlPlXrXmTWgN69nMPSzbXKkZbEVx4NrkExXVWmtgk7+xiS594XZ7Phu33r/6xJ9M0i1GByZpLV5tlAbcqpfxyf3e6mkIcR/ZlW2q4CrYRZN2QA1pjwsIcXM5vrFfyCZzT+bWm1Q50+4TyrbguK2+62FpxnMTEOJiELlAiEtGxyCHEAcq4Ha2T1MYQIgDW9EhxEUP2qYKO50Ez02mtBFKo3pSVXsqn7hCnKt+lJmQSWtTWxWYMIZkmZrjV09k/bqSMKoVRZKfNeYzYd/kIjcRGBSvunDr3nHs94fOw3Ej+3mEj7upuf2JijSFuKnI7pMAkhOcBJ1dSm9yCkI833BC2bSVccNgNyuf70CIDwGRC4S4ZHQMcghxoAKR4EnrogkhDmxFhxB33BZdfMXg8ffAT/Cg6SOSMVlV0YUr5eJUT6psT+UTV4hzgnV2Kfm9Rlqb2gIerlJT5eqJcIuWlRRbOYhaUUxf36XN0/HPgeGfd3AxefupLBjVmgNkh+O2aHmN30SyCELc/wyS7pMAPCrVNp3ajP75cUVLMtfnIBDi+YYTyqUZezySaPIfQlwMIhcIccnoGOQQ4kAVYUmzvJbejT2EOBBRc7yxt7DaofUNs/plNrY0tkyZ6HpMev87NgEBMoxypdVrsTA1r79y3O/xG7d6UjT5mPbrjyvEudeUhmB1601IEwVwVcRRVigkXTrNVfyn1SJItELGr+5O8ntqTnNk2xlTSbNiHuijKEIcJMetN2l2Kf7KD24CdHwynYk+CHE133PWr8FHNHayfl1RYSvE51AhPgxELhDiktExyCHEgUoq1TYd35DvHxsGQhxwOG5rYHNC0/rg6m6ZMhZTcBWRB34yKIxKM3YII9XtqXziCnGTW5wAnkp1v79olMmzcG/qOEunuTGb1iapXCuK8Yn+c2HWn7VuypX9fvelaf3tUkB8IMTBKLi9H6JU66qUmjYIccdt9TZVNEk2h6k5+9fY0owZ5222QtyAvXjifKbhPWkq1TaE+BAQuUCIS0bHIIcQBzYCIQ44uIcD2WpZx22lWnGuq2UKtwkhenMO4tabNHlw8LPyb5Kzfn2jEPUHTvu7fsrt0vznt3s/f32EcEeLk/zDTXpEXTrNnZ/S3EzPb0VRmt7v/21jNVva2DDJBzwgxO3BcVt0arNNlTN6VyWKxPao6z+3siytFTqmC/Fqrb9wxtTiB7feHCjwMeG+lHu+yPo1Jflsw22aIMTFIHKBEJeMjkEOIQ5sBEIccHCCRkYORqk4D1bozi6Nlu86hHhjyxOl4YpAW6pidFKptgdkmc91Cx1aWWsbP5EQrthJsz2Vz9zS4OcTpVrJcTHW8orMsntuZYOKlk4n7h78PWmKdwBUASFuB5Vqu+8+cWpe3+QvWyEesVq3Wmv1VgSluaLMdCHO9ZBWcc8ki6gdXloTFzL4Qvn4Rn76/kOIi0HkAiEuGR2DHEIc2EjRhDiEUjS4almZpXyidhS+IOV61Y7amCgsxP3KIlWS2hf0tlTF6OZk+YIQn+j/HsdC/2x6BYyq9lT+GOKOAxMfIm2jWmvRylqbFlY7dGrTrs9Tdun0yfJ+ixZVx9fZcy364h37KxsOLuK8B+wAQtwOuNUuutqDce2hsm6rYboQ5+5lpubMa+cmEuJofagGCHExiFwgxCWjY5BDiAMbKYoQT9o/ruY0e8s3s34PuglK7Kk5uc0RRS1YfCEuqpAcJlyCQpyrLFIla2ypitGNv+Gc31bBF+GfCn1WhwzrRZ/FZ5TVQ79udElqbqLBps/UhqXTZ8+1aGd3L/FmrJiMBlkBIW4+omujzvsFt+4VZxzfiL4Zt0pMF+I23QuHnzFK05jQVQWEuBhELhDiktExyCHEgY0EhXheH1hF/eO49g1BgbO81n8DNapi2a03c9lGI40HA1HFuf85cRWS45PDWwYEhbjOG3NbqmKy4Atf6exXiE8MVof7laVZv85sP6No5yLbUdlbNUyS84dpBGWMiQ/qvhCP+98FJ0OjtMICIG0gxO0gywpxEzFdiFdr/RO5pWlzz+9u3bsWHVrt0PKaGRMeeQVCXAwiFwhxyegY5BDiwEaee7lFR27fXwa9kMMN20Sb5YWXywUFjqgXsqg3a81pDrTRwA1XP8GK89J0vwTk5NkooR0U4tx3pUq82lQVk9V37B8/nBA3oW9jlry81aW7/qXba3GRJxnu1pu0vuFNKF7FHCfjk2qOySQrTEA8kgjxJK2wAEgbCHE7CJ8vil7Fa7oQb2x5lf3+pop5e3YEyYAQF4PIBUJcMjoGOYQ4sJFj3xwUCXmryIjaP66vypARecM+G65CMbxpJPAQTRTE3ZgoKMS5yqKgpC5XWrSwms7GjqZXxbj1Jq0ExuPKmr4HFbfe/12MTXbp0qv6v5MiPzS59SZVftyl0z/O54N+UExzkyGqJDUnXou+EiFtkgjxLCcqinyeAf1AiNuD43qrZMqVfK20TIINQhyAMBDiYhC5QIhLRscghxAHNnKNxiq+LDm4ONiuI/xQ3idzBBXiy2u85Ob+bh4/R5MY6CE+zX+/3Iaesv15Ta6K4fq165zkctwWLa95S1OPHOv0eg7LfE7VWovWDenrmZS8ryIJ9/HmzqEqJXVw3B9czNdnawJnz7XoV0/v9lqKbZ4eLbWzaGVz5Nj+ddyGFW+mv748ACEObARCHNgIhLgYRC4Q4pLRMcghxIGNzC4OPqyWpvM3jt2696A8rH/cyXJ7qNAZm+jSF27nxSJXCYcKRbUEhXhja19ShyuLOCGT540duZYuKidngr3zVVR+hqWarStYODmYp/YRopU4nKQeJgFrTrMnXdcjrBQJk8fKexN4+PHB8Tuq/VGSVlgycJOBpq7UqjlNml2K/lmC5ECIAxuBEAc2AiEuBpELhLhkdAxyCPFk5KHyz2bu/u7gA2SUdhV5JfhAPTbRpU9dEOP+8n9RD3GujUaeegObSFiIiyiaEA+vhhifVLfpJ1f1nOa4F/X/t/F6UYRVJJczrYu++8D+JpGVars3XkozXSpX+sdKuMp8fNJr+ZP1+wJNWhC0Pxn138VthSUDd+4z9RjjXqvo/sIGTK50hxAHNgIhDmwEQlwMIhcIccnoGOQQ4vEJV8yhQkY/r/y+RT/92W7vgdXmB7K08Fs8hFttHFwcvtQ72EZDdZWiyQ+fsgT7fQ9rbRJViHPV+3k+14RXOqic5FJd9cy1u7F10o77rKKuIglW4Zt87F93uNO3/8KlV++3LnLcVt/kiU/wXBlsdyH6OyAbkgpxnYh6lmf9usI4Lr+awsaJ2vAkl2w7MhVAiAMbgRAHNgIhLgaRC4S4ZHQMcgjxeHCbYNla+Wczr/y+Rd2deBtlFYma0+xt8JP1a2ls9QvCqflO7o6XOP2+owpxx231VeOpXLJvCpVqW8skF7eZaZoCKk8V4jWnmWgViS29x4PV3cF2U/7kk+iaH5zcEPWcNvH9Fo0Tdyef0NEFd74wcfLMrfMrRky4NsVZtSkS+6ZNYNksxE2eAC0S1Vqr18rr1KaesQQhDmwEQlwMIhcIccnoGOQQ4vEQVf6ZIh6Lgm4hjpv75HAP+1Pz9lWUDYMTrKKK46hC3Ed2Y0cwiEzVc9LfYWsP8caWd/77t/u7dO/3tyNLI661ggniLIyoh7j/fYkmN4ITNpw0V9XuB8Tj7LkWffGO7b7j3DTx2djSNxkoC9fvPOs2a3FXbXKrkcLHtAmYLMTdepPWN9q9VXH+RAR6zJsDd23T8X2YKsTR6hQMA0JcDCIXCHHJ6BjkEOLxQIW4GegS4nmvbI5LeOO4KKJW1E4g64foNOHen0iIjRLilWobN+2KSVr1HJdKtU3HN9q5GOvn3+7SG83oD7ncMZFmFX6acBNa/goPtz644WtperANVVAUTs3hWmEKZ8+1aGd3r9dSLOvXkweOb+zL+6zPbUnuyUX/jWmFLSYLca7NT83hJ0JN+1yLgmjlkuoCCxOFeJ4KFIAaIMTFIHKBEJeMjkEOIR6f8I0gLqz60SHEucrA0szom8ksqnmDyyLXFS215nrpLkToHcpVlOVtEol78BBV4gwT4uFzi4nL5vOCW29q650vi+O26NRmmypn+sdDuBpP1bHf2IovxG2pEPc/x6D0Dh93bt2b2Du02qHlteHjxfSxVDR8IZ716wBqSLJqk5vkmprrGLcSy1Qhzm0iPD7ZpS99jS9+sLHHfB4Q7U2g+hplmhDPUws7oA4IcTGIXCDEJaNjkEOIJyNPlX+qCVcVp/EzdQhxkcgVfec1p0lT8/s3oCrlVBBdyyJFD56jbiq5h6e8PSC59f6Hj+U1cfW8SIiLlnGfuBstU4pMuJpxdml/Ui4sdVRW440S4uExWq21BqrwTX8ANf31gfhAiOebpKs2HbfVm+Q6cqxj5ESWqUJc1GbqC7fzAtbUidC8w91T6tg/wTQhjlanIAoQ4mIQuUCIS0bHIIcQByrhZOhKCjfHOoS46CaKE+JuvTlQPT0+Kd5YMU10LYuMO0EQHgfLa94y66MnorVakaFSbdOpTTVtR4a99ij9vkVCXDTexifM3ZAQqIdr53H0RFtYpadKPoiEuFtv0kJgMig4Gee4LWuq8IEYHSuQVAEhnn/y2g7BVCHe2OInYyvVNns/isKh7Ajetx9c1HMfaZoQR6tTEAUIcTGIXCDEJaNjkEOIA5WIJKqsHNEhxB23NSCjRJXNozZmU4muZZFsCxmml26WuPX+FhLjk+ltlOXWvZUOwYmdJO89boX42IX/jdKepijUHG9Dr3ALkbwhOq8cWvUqGnWec0RCnDv/qGz1Y9L5Jk+IpHdWG7OlBYR4Mcjjqk2ThfiwNlMm9ZgHTe37J5gmxBtb+Z00A+kBIS4GkQuEuGR0DHIIcaASUfWy7My8rk01o1Y2i6o1dfSA1rkssm+TUQM3jhNJ5TQeBrjNQZOIoWE9xLm+y0F0fY7+cvI4m6fqIlxJn/eJAlGFeGOLP7+qOiZFQlwk7NP+/cHJ1dkl+feJzWv3GSa9RdfwrF9zVOIIcZPOcwCYLMR9sPIHhDFRiDe28jlpBtIDQlwMIhcIccnoGOQQ4kAl3FK1qTl5WaJLiMchXClZmk63SnuYwNG9LNLUhyBOWo9PprNklxOTpZn4585hQtz/nq+e6/Qqw1VPcoTh2v/MLplxjRBNPKW1CsBEwufQ4OZvbn2/Gm95Te2DXpZCnGsnlHRMqlxFYivD2m5ltTFbWkQR4uHNaW2qgAf5xQYhDkAYU4U4MJtK1VuhtrDaoc3T+u8vIMTFIHKBEJeMjkEOIQ5U87nAA/WlV3bpew/K/0wThbhb98S0L6fSlNLhymGRwLFFUqhCZYU41zMziaQeJcQbW/yGhLqqWuL0zteNqIWIjpUYWVJzvO+lXMlug1WREOfaYqW9d4JIyib5LFSeI8LYUnE8THpz5wNdk3NpEEWIcytz0jqnFKW9U9HQ0VcfQhzYCIQ4iAvXklP3fT2EuBhELhDiktExyCHEgUqCFzm/4nVqPp8V4mnjuC06tdmmW27XJ3Bsx61HnzyICyeGjn2r3fdQHEWARRHi/vefxYaEIiGuY4PYURSxQtwURELcHzN+z1gV40QkbJP8LJWrSHzCFcemb0Q5qu1WFhuzpcUoIe7W1a1yKFp7p6Kgq68+hDiwkVFC3JaJYqAP7h4vyQpcGSDExSBygRCXjI5BDiEOVGJ7D/Gs4GbLVQicvN6YliteZWPa4uZkeV/83XN/e6C1SBThEVWIZwX3sJ92+x8ZwhXJNlWrmopbb9LmaW8CTvQ9DxPiqklTQOmoEOdWk5QrZhw/IqJIb1POAXGIUiGuQoibNHnn1r0q9YXVDh051rHyezSJYS2G0vw9EOLARkRC3K03aSEgPpNuTA/yB3fPlLToISkQ4mIQuUCIS0bHIIcQ148pNwCVanuoAEkDUTWe7O/MuxAPtssYm+CFuMxnWK60ejJ3at68zTFtQFRJPeqzNF2I++MjKMNNqA4P4rcQMe112Yhbb9LUfP95mpO3WQrxxpYnxf3JKJmltCpXkTS2xCJ0ec2OsZo3WRpFiHNtf2QnnE1q7zSwv8mMOROcNqKrrz6EOLARkRBPa2N6kB8ct0VHjnXoqtnBsaH7nglCXAwiFwhxyegY5BDi+jBFQnKbig2rXnPr3o1MkuoiTg6kcZHLsxDnlnCHpbjMQzVbATyTfnVT3uEkShSRYoMQ97F5ogTCJxrcQyq3VDVrIZ42lWpbySoSx+VF6JFjaJeRBVGEeGOrv+1PGquvTKkQN0nM54VRLYbSAkIc2IhIiHPnoTRaaAI7cevNnhMZm9xvq+qv0NL9TAohLgaRC4S4ZHQMcghxPZgkITmRN6xXV7iaLu7rrjneEtNDqx06eiKdJXKmCPFKtU3rCqRKsELcZ2G1m4rAMblHtE1wbW1K06OPDZuEeHjcLKx2aCXlDWPTJjjxWJrBuB7FjcvRqh3zJsRVwrVUMPmYiYqNk6ZRhbgKwtfaLNo7iYQ4KjPl0NFXH0Ic2IhIiHPPNWh5V1y4icWxyS5994FsznkQ4mIQuUCIS0bHILdFiMtUKZuASEKmuZFXVETLPbnXInqYynoTu6yFOFdln+ZnEpatU3PpjXmTxqLtBD/Lqbloqz5sFOK2CD6uOhftAYYzff3guWB8Mv8V4ipx6/sVx8trbev3ewjKv9klM499EVkK8cZW9u2d3DovojBRmA4qry0Q4sBGREKce/bQ/Szp1ptUOaO+XSgYjehZNKv9ViDExSBygRCXjI5BbosQl61SzhqTJCRbIT7Nj4FgL+EgX/+XYgtxHRuzOW6LTpbbVK60yK2ndyPnuK2BB2RUach/V1H/rm1C3KYWEKbdYNvADcsdGg+1ZBqbQIW4Cbj1Jq0EJqMWMlhGzB1Ts0v2XC+yFuImUHP6pTjapUQja2EGIQ5sRCTEG1v9G9PrnpSLul8K0APXVqw0nV0BC4S4GEQuWoT4cy+eFf7Zmcd+qeMlKIuOQW6DEOdaE5hQpRwHkySkWx/c0Vl0U+C4LbqcqS6avjHbMZO1EBdtFqpqgiPtG7lgG5sjx/RLliJjmxC3aZNA0UQVqiF5/JVXYxck+NiEt2SVmyCFENcPN3mteyJK1waCqkgqxKu1Fq2seW2i1nMikG2q7M8SU9puQYgDGxkmxLMkbrvQtKk5TTq12abKGRzTPuXKvhspTWd7rw4hLgaRixYh/n/+94vpjhNl2t7Z6f2718+/RZ9dup3e8d5LdLwEZdExyG0Q4qIqZduqXFT00h72u9Y3xEu13br3uR7fGF1t/KVjgQrCif0NHrO8cGUtxHVUiAfJ+kYOpIdtQryxNTiBZmplDdceYGoOEz5has7+BJsvwEd9txDi+uGOu/FJved9rl2S7tcgQxIhzrWKM6HndtHPYzWn2TdJoeLzMKntFoQ4sBFThXiWk7vhZ8bZJbtWuavGhAl2CHExiFy0CPHHn3yGPjQ+Rx8an6NfPfscfe+BR+lPP3iADhy8hRovv6rjJSiLjkFugxDnqqttqlDSTbh6WbaizF8yPTY5WproImsh7tYH2/ioXLEQp+87MBsbhXjN6ZdzJsghEY7boiPHOlj9MITw9XRssku3H+/QybJ4glS1EK/WWko2KLaZ8DXGr6LS+RpMlcNRSSLERZMAWZ1L3HqTFgL3ACtragsqTMRx96u2fRZW018tIWq7pXpFalj2N7YgxIEaVJ87TBXi3MpeHddTt86vsrRplXsRgBAXg8hFWw/x3d09+sbJ++l/+7NP0jvfdyn98MzPdP1qpdExyG0Q4o0tr21KcFmNidWJJiBqbyBTzW1an6/GVvZC3KdSbdNxRuKkXckUp+97Uor2gJ0VNgpxH0xC2o9oo+RRE6cqhXhYQJrYnz4LuJVIWayMq9ZavdVttq3MSyLETWsTw4kcmyYl0kAkqtOeQBOtSFW5IpK7x15Za0OIp4xbb9Lm6VZhN1QMrgwbn+wqawVlqhCP0y40TUT3XIcUTOiB5ECIi0Hkok2I//jRJ+kvPzZDn55ZoQ9+cpb+YWKRfvO7uq5fryw6BrktQtyniDcxcRA9NMg+xJrU56uxZY4Q5+AebmQrmVTeyIWrz4r2oK2buEIcExUgTUSTpqOOe1VCXCSgUCnuUanub0KGQoD4JBHi3ERElhtPc8fH1HyxZIqufVu4ey3VbbdE763xCoR4qt9raB+erJ9j0iDqyiq33hxYYaHqMzBViPufQ7nSGroaLm3u/h5/j4MKcbOAEBeDyEWLED8weyv9P39dont/8BMiIupu79CX77qH3vm+S2nltn/R8RKURccgt02Ig+GoqBAPYsqEhMlCnKvmTkPwxOn7HgeuGs62KkCbiCrEMVGRLW69SbWnWr1NkPI0MRE+5qOs+IkrxCtVb4XMwmqHNk+Lf7ZoEhfyF6RB0k01g9fxg4vZTtBwLQOzFPRZUKnyq+RU9RHX2XZL2KLnuR0I8ZRg22VYvg9PnJVVSVeGJcFkIa6bXsvRicHzd57uKfMAhLgYRC5ahPj0526jc6+/MfDvf/v8S/Sx0oKOl6AsOgY5hHj+CN/4La/l74baZCGuq5IpLbCULxlJJyWiCvG8TlREFaVZ4da9dkfhB5g8bYLk1r0HtUOrHVpei9a3O44Q5+SVaOyiQhyoJKkQ9zGhCICbNCpidWHwc5ia6+TmHMGdA6fmOmiZkiKmtUGShbvGDrtuioqlVNxT2iDEHdcrdtg83VJ6XxeczBy7wFXXwbmYCIS4GEQu2lqmEBFt7+xQPbSJ5t7ens6XkHp0DHII8XxSrXmVxHlYEsiK2uWFAAAgAElEQVRhshDnblSn5swVzBDi8ZDtwxhViJv2vdScZq9aOunPiCNKs6JXGTox+PknrdI3fRIgCnGEuEg+iP4+eogDVYiEuG2TW+VKq9c6J6/3dVGxVWIOg1uRACGeHlltqKiKJO0xk6wMS4LpQrxa69+gtzSjbgKe+45Mfh4sMhDiYhC5aBHib7z5Nv3j4u30v//5p+gP3n0RERG99vs3aOzqm2jr3HkdL0FZdAxyCHFgIyYL8caWXZVMXIuXoj9wDyPcXzTu52WjEA9XsCWtlj64OPieSjPyD2XlSqsnnGXHbmmal+FJP38bJgGiEEeIc9/zMCHuf07cBsUAyBAW4kEZUpopVmuemtOk9Q25SU2gluC1EEI83c81iw0VVRG3QryxlWxlWBJMF+LcPbyqldTYENkeIMTFIHLRIsRnP3+ULp1eoZ8/5faE+NvNNl27+FW6Yu6IjpegLDoGOYQ4sBHThbiPLZVM/k0yqs+Gk0YfxqhC3JSJCrfOy/kkS/a5B5GgGE/ygMptgCfTTqAnc1OqEOeqpUf1Lq05XtuWhdUOrW/E61/u1pu0edpbDpzm+SeOEOfGLladDMeWa4VtBIW447bYjeVMbWeWJmExs5LDVnp5A0I8XbLYUFElpq6sMl2I66zaduv994DLa/najyZPQIiLQeSiRYj/1/852esh7gtxIqLzb75N//f7L9PxEpRFxyCHEAc2YosQB/lC1IcxjiiNKsQbW2ZMVIgmAZIITk6UjoX+Oe6DKifZZ5eSX9N8wR7uIT41l2xzNdEkQJwxFlVehYVfaSa9SZQ4Qtyt9z+sl6a79N0HIHY4gsfE7BJ6p6dNUIiLqiqzWrGhS8qp3mwdqAFCHIzCX1ll0qSe6UJcZ4W4j1u3r01X0YAQF4PIRYsQf8d7L6Fmq0NE/UL896+/SX/0F5foeAnKomOQQ4gDG4EQB1nBVfzGkVhxhLgJuPX+jYFkqrDDonRsYlCIx5VTbLW5RG/QmtOkz0x5r+1TE126+Mouff2fk1f1xK2W5v5+1ImCcMVYlGr0qMQR4o0tb2LB30Qqjcr9PMJtpiczmQM8jm94qytW1tr08OPtnhAXTe4NO+eo2HxNdh+KJJ+HSRMBIBoQ4sBGTBfi1Vqr7562NI2JaAAhPgxELlqE+KXTK3TTl75J3e52T4i/dHaLDhy8hT5z7c06XoKy6BjkEOLARiDEgY/uygvZPoy2CfHG1qC4O7iYrId48DP87gO8pIkjTd16k66+bvBnyCwd5qSyjKQMTwIcWh1eac79/vHJaG0d4m5mGYe4Qjztyv08Ivq+8rCcPyu44+d3L+z2/jzc3740LT6Xqdp8jTs2VPYzjlMhnocNgPMChDiwEdOFeGPLm+g8WW5TuZLeRCfwUNW2TzUQ4mIQuWgR4i++9B/0d5deT3/4njH6g3dfRP/XX32G/uDdF9Hff+ZGarz8qo6XoCw6BjmEOLARCHHg1r0+y/7D/cII0WgKNgrxxtb+A0Ray+zd+qAYGianOI6euFCFHGhvMvGPcuOAE0dpSOWoEzdcW4eo/S3ZCnGJavkgcYV42pX7tjKsH7xo8sOG85iJiPY7OHp8p+/vHDnW6U1oDntgV7G0XiSnVS/ZD/cQ535fXjYA1omKFQQ+JglxnJNAVGwQ4kANKtv2qQZCXAwiFy1C3M+Tv/4dlSsP03dPP0LO0/+u81cri45BDiEObARCHHCtJRYs2LjPViGugqCcOnKsE7uaJFjtGWzPIfOaOEl51XV6JWWwxcHUXCdyVarjDi4F1tVD3K17x6TfqmL1tkGZaMqmXzLEGaPcJo7BcxTXwkO1GM0zItn8xTuSyRnuZ8luvua48hszy3w+w/oNq1xhkkdUrSDwMUGIV6rt3ntMuvE1KBYQ4sVFZds+1UCIi0HkokyIv/ra65F46ZXXVL2EoXn0iV/TH7z7Ivrt8y/1/t3t6/fSn/z1AXrX+y+jG2++i3Z2domI6Pn6K/Sx0gK9472X0Ac+8Vn6mfOb3n+jY5BDiAMbgRAHcTcrNAUI8fRQIXBqTqhn+oTH1Lz+FQhJlpu6da/FzclyustVRwnxcCuKy6e7dP1N+9/P8lryPuwmUK60+sRQlIkGUe/moJCs1lq0vOa1YFJRjRueqLBpCXMSuOvCQw/vpPaz0piw4KSBCT1sw8cwdz7N+/gxYXz4ZC3EuQm98PkLgDBhIV6ptml9I357QWAfNk+qQoiLQeSiTIj/wbsviozudDpd+tD4HP2/fzPRE+IP156i93zkaqq//Cq9+VaTPn5gkb75nQoREX38wALddte/Und7h37wUI3+7MNXUnd7h4ggxAEQASEOuBsvG1oyQIinR5wl/jWnSesbbaqcGS0Y3HqTPn314KafR08Ut3p3mBAftlmhyh7/jtuiI8e8fsdHjqmbsODeX2lmdK9v0QapOoXSQM/sCK/bZmpO/3s+9s1Ob1PNJN+7is3XZPehUMWwDYCDfza7ZIbAzxoVKwiCZC3EuevrsGssAI2tfiEenvzLwyoxIEZl2z7VQIiLQeSiTIg/Xz/b49/uP0NjV91EP3ioRs/89kX61bPPUbnyMH2stEAPnHlC1UsQ5ktfu5uOHLubPnDRwZ4Qv/Hmu+j29Xt7f+eBM0/QRVccpq1z5+md77uUtnd2en/2txfP009/9msighAHQIRtQvz4xn6FHqpr0iFJv1MTKlUgxNMfB4dWvbYrouXcJ8v9Y2V2aXgLFJHgPWRBS55RJJWhSYW4qvfh1psD1YuqNu0UVXqPqhLnzlFx++TLkMX3Ygr+OD97rpVYiPs/pyibr4k2AA6fP1UeazaR9wrxIp8/QHJ8IR7ejN2k1TBADY7b6jsvptm2TzUQ4mIQuWjpIf6BT3yWXnn19wP//t9feJk+8InP6ngJfb/zg5+cpU6n2yfEx66+ib7/4GO9v/e751+id3/oCnr8yWfpg5+c7fsZUzd+mb597w+JCEJcBrfuVQNCQuYTm4Q4N2OO8ZgOUWSo6HvIqlIFQlwvop69J8vDb9L72qbkoEJctsJzmBB3XL5a8tSIz1iGKO1ITPhdX/+XZP3g00CF0FK5iaAKZIV4EQmv6hAtg8/zSoMoqFpB4JO1EG9sMStMNE7oATvxhbjouok+9PlGVds+1UCIi0HkokWIv/N9l9L5N98e+Pdb587TH/3FJTpeQi+fuvLz9MgTvyIi6hPiH738ED348M97f6/x8qv0x3/5aTrz2C/pI5fe0PczDh6+g+789n36XnROc+SO7YGL8PP1vaxfFlKwvN0k9obw2PrO6P8YSS3VR3bZ7wHnhGh59TWiH/xol848uktvW3Zv9PSze4mOwfCYmbm+a91798ON/xtu2k7t5z/97F6v1/r4pPe/YxNduue76s5z93x3h/1en/hF+sf0202iA6Fq9Os/P/zze/rZPTpw7f7fP/3Qbuqva1S41z0+2aWnn032GQ0cEzfYe0xEzavZbEWUOK++RvSlO7bpn764TcfWd1L5frj76fHJ/H/3UfLqa0Tf/+EuVR+x79oYJW83iY6t79BNt3rjybbjAckuuO9GEATRJMTHrr6JLp5aph8/+iT99vmXyH2uQQ/9/+y9+3ccxZ33///sfvfJ+fJkN5s8m7BJeAghF3Jhk01CEiJxH0sYBslBQuJiScaRBHiNIIBNANskwTaXICUExhDIcAkMkEBzCXQuhBljw2AMxtMzo8vn+aHpUXdP1Ux3V3d1Vff7fc7rHJBtqTVT05dXfepTT71AP9p4NZ25cYuMQyAiont+83sav3pH5//dQnyw+BNaKj3V+bNXzX/Qid+4kJ578TU69YxNnu8zdNk2VIgLwqsIRO+y7KBLhXjFYFdOZqH1QhyvTdCezqKoVKmiW4V4qdz0tKYoTraUrPrgVa1FrRB3/m0W2iXEUeEZtGWKu+d6kkvrmX29R5KrWnX6lW8O0K+c1c4lqer1fjz8hEXnbLR//tkb27R7f/Rj0HHVRNQKcR17ZifVRoj1WVP9fc8CKlSIAxAW9BAHOoIKcT6IWKQI8bfr79HwZf9D//K5H3U20vzn/zyTzty4hQ4eljeVvWF8G33qqwX69NeG6NNfG6J/+dyP6FNfLdAjjz9PU9fdQdffenfn7y6VnqKBi7bSkaMf0Aknn01Ws9X5s1PP2ETPvvBnIoIQjwpPQsbZ2w+kiy5CvFbvXnKKJYPdgjrpfqRJ9jIM25dcNyHOkmCqnEvNaoPmXA9cU/NsUenvgTs2na9l36y2TYPD4V6DXkJ81/4mnVeUv7R+sbTesqAwok4rKpV67zrXH2eiIuqmmrr21Y8ixHXtmZ1kG6FyxaLZBbtFWdRxnKdzbhxAiAMdcQvxWt2+R96V8t49APQDQpwPIhYpQtzJ8soKHXr7CP2jdpgaVqv/P0g47grxZ1/4M33+vy6i2lvv0NEPPqRvnXMF7Vt8lIjsCveF2+6l9vIK3f/QE3TSt4udTTZlDPIsCvFanb3ZTd4lZJbQSYhXDK8Uz3tlFW/CKkjFrgh+KRj0fagYtnSdmm/Rjj1Nz0O9f7IjiCjQTYirIsFYEs9dxemW4rz3cdf+pjYb/MQJS2aGndTgCXHnPRhwGGrT1DVy+wvzRJtZbdDSAYt275fby1IVIR73ceSlQlzXntlRN39NGrPaoCnXazqnyISq6kCIAx3xC3EAdABCnA8iFmlC/JXX36BfH3iK7v71Y12kFbcQJyK67a4H6D9O20Cf+NL5tGX7Hlpbs3toHTxUp+8PTdMJJ59Np505Tsarf+v8GxmDPKtC3C8hsSt6ttBJiDuo/jAtizRlUdhKFcO0upagO8KVVUUYRJroJsTTrhB3S57ipHdTQtbqi8HheK9nWfncilZ48oS4KhMmfsxqg4qTXrEpc1Jchc3o4j7X+lfaFCd6t44J8v2m5ls0Nd9KTNpGEeK8FRWGKff9i+P9TrKNUFBYEwyqT6SoAIQ40BEIcaAjEOJ8ELFIEeKzN/6C/vk/z6TPnX4RfeE7I13oHBmDPKtC3CHtBwGQDDoKcWCTVoV4FHotQd++k11F2G95um5CvFRueqR4cUJeD3FWq5vi5Lps5VVyxvGzK0aDxmcgcBx0E+Ks1QOFUXn3OmbVPn84PcfTuBcxq+wJrV89GP1Y4uqrzzq3JnENiCLEeRMJhVH1e4n72wilXR1eq7PPETq0oEmbvAlxtNTJBhDiQEcgxPkgYpEixD/z9WF67a9vyvhR0iNjkGddiINsAiGuL7MLTc/Ge4PDbbrkcjXPQSyp5kjvvFSI1+rpbS7Jq9R0pFSp3P3nca00iNp2y6zam8VOzbdobiE7fTN5Qpw1KaHCiizeZIkqfcZlUTFcY3nIbmmjwnvE+nwlIUmjbqpZrlh0brFFA0PejWKTWB0Tdh+KIKgkF1WdNIubuCe98iLE0VInW0CIAx2BEOeDiEWKED/1jE0yfkwqkTHIIcSBjkCI64lZXX84dnoODw6pu/M8bwm6Ixv8bRGCVDjqKMTTgleF7xYPpbJdhbt5vhVbSwzeKoYgEoclYrMgxXlC3Kx6f2dVKumZFeIjwe51sraybO9i9yRk2uOS9fkqTsR/HYgqxGUdY5R9KHSDtRpAhcr1uKgY3vZMu2N6D/MixFnXzJHL7VZK23eKtWUC8oEQBzoCIc4HEYsUIX719XfSb3/3jIwfJT0yBjmEONARCHG5VAy76nXpgJgoEhGNaeFu21GcaHVJpLB9ySHExcaLjP7l7okbN/0mbgyT3WpBFUksAk+Iu1+ztI/Rfzx+2dhvwmSxtL5nQGE0O9KuV+unNI7HMC065yI5nxMRIc7aoyDO8w9vlVEWJtD8LJaszsRl1lZpsNoSxXHuyIsQZ30G3BN4aK+jF2kJccO0WxliIgVEAUKcDyIWKUJ8bMst9PFTzqWvnjlG547O03mbrvGgc2QMcghxoCMQ4vLwP7SPz4htDseSDDI3u4tKXDfXEOLhqBgNoc0gg1KuWLR7f5NKj9s/Y/M13bKqn6ji9R5WdQVEGPoJcRUxq/aE1d7FZt+qb9bkS2E0/Q0J4yBqe6ekcNpmOe1bBofbdG5RTGCUK+sbdLordEWEeLlieWRnYSReWa3aRAWINkaSOufnWogP4TOhK2kIcdYm2sVJSHEQHAhxPohYpAjxn9zwc5r/6S+56BwZgxxCHOgIhHg89Hu451XKRtn8bLFkC8ffPOqV4lmong0DhHh/zKrd8kJWH25/a5a5hSYVJ1odaee09gkyccPqjZyFSmMdhXgYeHJSh8m6XpQrdtW7XzCl2ZrDff7vtM4ajn4fypKSznVFRIjX6nbV4WLJSmT/BNUmKkB4eKve4rivyYsQZ557IcS1JQ0hztqAPSv3XkAOEOJ8ELFIEeJZjoxBDiEOdOTwexY9/fxqpyJs3xJuesLgvnns1RqAV/0UpsWJWW3Q+Ey3UBd96E9iIzIZQIj3x99TNMlKXZbQYPVbDjruPZsYpiwe4yTrQpwnJ3V+oDbM9RYwjmQaGG7TfQ+me/5hbZYr0pubt4FqrS4uxJPGf+xZOV/kia7r1Ug816u8CPFafb2lzvh0q0uGu/dtAeqThhDnTWhHKd4B+QRCnA8ilsSE+O79D9Ght490/rsXOkfGIIcQBzry64e7b37CPki6+2LHcbMtu6o1KsyNIjnCMY4KcZ5oivqaswS7ThIBQrw3Dz/BnoRJ6j1mPUjxhHiYZfBZq/LMuhA3q929gAeG7BZRqp7L+8Gb0Ez7fGmY3a1IRCYeeELcrKovxGv18PtQALUwq/Z1ZPN8i2ZjvPfLkxB3s1haPz+w9m0BapOGEGft3xLXxBTIBxDifBCxJCbEvz5wGb346l87/90LnSNjkEOIAx0ZZ/ShLowGH8d+SRtHrzmZVa0i8CopeELCvxRxbDqczObJiqhLYHVfZg4hzsasNmhuodlVHeaQVGsd3pL3ya3d4zbPD+ZZF+K1uv1QPT693l7EmRjRdVO3fkI8rs2So2BW7WtLHKuFWNe0sWk9KsQB4JFXIe6AqnA9SWtTTfdEiugkK9CbcsWiuYVmZ0+RIOcSCHE+iFjQMkUwMgY5hDjQkUsYfXqdJdL94FU9i1TN/ebR+L9nUkTZyKti2CI6zA3mrv32zcjI5WzB6dygmNUGLR2wArc/8fd7FhXssoEQ7/2+Ov26g07YxPmzHWYX7J+VRNWfruRBiNfq/Ak8XSbc/Pg3MXbaD8S9WXLa7Niz/vuMTa+/XxDiQFfyLsSBnqQlxB10vVaDeGAVucwt9D+PQojzQcQCIS4YGYMcQhzoyM47u6VF0HYGcfTF9nPJpHiLBVmY1Qadd7H3OIsT8Z4D3D1inY0J3T/PabnC6y/e63ujQjybuFso+KW4jD6QFcMW4LpMrMgmL0Kc1d866GSrirjbOWzf2SLDtGLdLFk1/FIfQjzflCv2ZHvp8fTHdsVodKoWd+zpX7UIIQ50JG0hrhNmFSsh4oZXNNXvGRFCnA8iFghxwcgY5BDiclBR1jmVufuWxJcsy+bvb1n0Pzcve2R2mJsKf69YERlgmFYqVa1RKVesTiuAgY82Wbsgxl57PNkyeXWL9i56K2151er93kt/1aNOIkeWEDer9o2h09Ne9c+4/z0dHG7TRZepN6GUV/IixFkTpkm161HpdxSdFFYVCPH84hcjQaoEk4JVtTjV5/MGIQ50BEK8P50Wga5zAcR4PPCKGvqt8oQQ54OIBUJcMDIGOYR4slSMBhUnW8o9WBumRYVR1zLqUTXlLY/D71nUXrEfcqPcRIj2xXbjCGC/FB+9Uk25ELaHeJSxFVS2iPQX12EjsnLFoqn5VqePXa0ejxA3q/0n2bpaJYyq3RKBVfmv00RH1smLEK/V7c/t7IJdVa1i2ytRslwh7gdCPJ/w9oZI6j7X6cfPq0R3t/QJWrUIIQ50BEK8P6zzQb8JMhAM//P94LC9OW+/fwchzgcRC4S4YGQMcgjxZCkyel0vltKv1GTNoIbZlDJt3EI8KoZphe6LzcN9c+NUX6vaeiFKD/GwsKp9WeOe1/5EZXEbFFYV5txCU0iI+6tKeH1/S2X266q68CqVbQm5eb6V2Hky7LL1tDFMexXP0gEr1WNNQohjuXB6+M+9IpPCKgMhnk949zlJTHAF6cfPq1rsdd8FIQ50BEK8Pyw3MDiszzO46rjP/2PT/avDa3UI8V4gYoEQF4yMQQ4hnhy8CpXZFJdtOvAqc9M+rqCICvEkJJN7Az5VZXitbgsof8uYsel43/uK4ZXivJURZrVbnqswYeQcm7vlSNhKdN4D8PvHogvxoFUlrAqJpGSATkRZtp4mpXKzayVPWq1v4hTiZrVBU65r0NyC+hMTWSTKZslxImNCBEI8n8iqEOetiPNPPrMmqftVLUKIAx2BEO8P6xm8MKLPM7guhLlfhhDng4gFQlwwMgY5hHhy8G6UVdhokSXrgiwpUgURIe5/MElTMgUdR05F6/ad8fSZM0yLtu9sdVoCJCUlgn7fUrlJexfV6nPNajkS5vh4k05vvR1diLMq71kTWYZpMfvkq/T6pgFv2bqqbXdY72FaE6pxCnHW9UeVdmIgfvwT0DL7p4YR4nk/P2YNfw/xJM6dvH78rPv8sFWLEOJARyDE+8OaIMt7wUraQIjzQcQCIS4YGYMcQjxZWA/+KsgXw7Q8S7YKI/r2EA+LSpKpH2a14akQHRxuU3FSvc1XyhWrZ/9M3eA95Ia5YWVVaY9Nt4VapoRZ2VEqNztjvTCiTuV9mvB2n1d1RQfrWNPa+DBOIc76vYqT+kzIguCwJqCvv7X7c5jUSo0gQrxiNGh8JluTM6Vys2v/Ch2I+/64YtgiOqlzfNAKcTdB798gxIGOQIgHQ0aLQBAcCHE+iFggxAUjY5BDiCePu5VGkjLcqcLatxSs4tes2tJOtcrcIIgIcZUkUz94PbZVmrzwS8Y5RScXwsDrwR22gsNdkexUhIkI8ShVJapNnoQh7vNSlGXrMsaaI672LXnfS1afySxUiLMmJeNu2wTUgPVeX3BJsJUucRBEiLNW3uhcrcc6z6ku+f3toXQSREn144cQBzoCIQ50BEKcDyIWCHHByBjkEOLZgNVrVoVK9KTIS4U4b2MoVR4WeX06VTm+qLD6rItUErsfjkWEeK1uV6/PLjS1ryrp1T+4YjSoOLkug+OscHR/pooTrdDnyb2LfIEdFtaEl1vEuav8nePNQg9x1nlNpUk+EByz2qClA/ZkPGtssq4PFzDOrWkJcbOq1yR5EHTbI8Ywra6VcCLX2zRIoh8/hDjQEQhxoCMQ4nwQsUCIC0bGIIcQzwYqVRLKQLSHuCqSqR+s5biFEXV6QSe9eaMjW3bvT3Z1BYuKsf65irPliKgQ151+Gyqy2gQlIUyjVPCxBHavpfH9YFWmFka91+PKSxZt2daiTVe26MrZVmqSKE4hXqvb5w5nuTBkuJ6wRKb/vWRNLE5e3X2/klRFdpAKcdY1TOf7J54QN6tq9kmPa0VW1oAQBzoCIQ50BEKcDyIWCHHByBjkEOLZgPUwkXYrgCQREeK1uv1QuHexSYslS/mWEv5e0CrJoyQrxM2qt0o4rcrzuMdH3oU4S9a4l/Pz+rf7l/yXyk3pfetZE48iva9Z389fyanKPhRxC3EdkSkTK0ajs5nyjj3JbXwsAmts+id0eBPQpXJTykqXIEKctdmuTtXJflgrMDZd2epMXhRG1VrFFceeHVkEQhzoCIQ40BEIcT6IWCDEBSNjkEOIy8WROHELDVSIB3/9ddxoqlZXtxe0XybENe5YksIvW3Qk70KcOXnnkspB5IhfxG3fKWfyj1XtWhiJPiZZY9z9u/A2bJP1+7rJsxB3tySTIRNZE41JbTopQq9KZPffS3MCOogQr9Xt1R/OXi86y3AH97nl8q0tGmC8TypVi/tXyxRG4unDrTMQ4kBHwgjxLLf2BHoBIc4HEQuEuGBkDHIIcXn4b/jj3OSoXLG0aQMSBbNqP+BNzbdobqFJz78SXojruNGUrNdWdKxUDLsqLU6RwJMtusuKvAtxllT29+v1v/fuNkG85fUyHqz8G8iKymmz2qCrt3vFlVsC8VZgpDHZmVchzpuUSPL6ypooSWtlQC9YnweRCaIkCCrEs4pZ5W/OLdLuKYnjdDag374zW/evUYEQBzoSRIjLnmQGoB8Q4nwQsUCIC0bGIIcQlwPvgSTOB1zDtGixZGnRBiQsLDn6lzdWhb/H4HC+x7670nZ8Ri3hwlr2rZpsiULehXiQDRV7yRHeRrNxL69nbfppVr2fmdkFsVYWFWO9X/rARw+G/gkfVp/xNB4e8yrEedfuJNs5sESzipOBhml5Vqep0NLLMO0NPpcO2PdBeRfitTp/rw9IKLWBEM8+/mIfle7Bo9JPiPM20c3C7w70BUKcDyIWCHHByBjkEOJy4Ekc1R5wVYRXJbln30rff2tWbbkwNd+ioU3d32NwOL/LclljcnxGnXOBWe2WgVl4gM+7EK/VxTZU5LVUiethyr/p59R8K7FzBKsHs78necXwfg54Ijbpnup5FeK8FQlJnotYP1PVPUHMqn28exebqVf1+l+3wmibXvlrM/dC3Kx2t9UrTiR3XgPxACGefbpWw42q1cooCv2EOG+CLu97BoB0gRDng4gFQlwwMgY5hLgcZFSIZxWeALtlV38h7hZJrB6a/lYNqpLEBmtB+7+mTRTZsliyEunVHwcQ4uL4K2jj7Kl93c3dn4vrbk7mPMFqHzM4zL4e9/pcyuipnlchzpqYkyET3ROWxYmWkucy1WB9nuZuaOVeiNfq68UBzqob1a7zcf+uukvFWh1CPOtkdTPZfkKcN8msUgsnkD8gxPkgYoEQF4yMQQ4hLg+/gHRuegzT6sjOuYX0q6xUhLVp6NPP926ZwrvZdMtwHR4KWcsL49hgLYstZMxqg8Zn1EfvpNkAACAASURBVL7JhhCPB6dvfdyi8JyNwSW1KKwK8bFp+2cFndSR1VO9nxA3zOy16nJwlrWnIROz+pomAetzMD7dhhDPCWbVLhxw3yfp/PmBEM82vGcU3fc2CtJDHJvoAtWAEOeDiAVCXDAyBjmEuFxK5aZH4pjVRpfsLE7qfROfBBXDK8X33N3s2lSzXLE8LQN63Wzq9Pom0W6nYjToqp90C/EoN+IqiTDeSgyVJpkgxNXmLNYE2lAy18iK4a1qLYy06eEnrFCTOrJ6qvOEeMXwTkLNpbDhJwC1OnviHBXi+YG1GW0aGxDHBYR4tjGr7FUtae/DIEoQIe6fZFbpHh3kEwhxPohYIMQFI2OQQ4inC0/g6X5DlBSOeD38nuUR4v4WCnMfbXbHutnUrW876yFP5PfwVJwP2a1kziuG74nrF2EqVLXosBkdhLjaXDjWPX4Ko8ldI81qo7MZsmFa3GsCb9Ip6Z7qDjwhztr0U/cl33mkXLFoat7eb2O37/1TuQWVm1K56bnmFyda6CGeI1gTIkmt7pEBhHj2cRf7FEaysU9OECEOgGpAiPNBxAIhLhgZgxxCPF141X1ZuClKErcQ5226uViytL/ZLJWbdF6RIegElhfGVXEelwhzixjR6v2wMjENIMTVZu9iszNRNDBkTxrJbLvDa2XU6/OZZE91B54QZx1rkL0ZDNOifUtN2rek14qdLMKaVHEmlVVvQeXHMK3OBJNZbdChIxaEeE5g3ZMURvR9voEQzw9ZugZCiAMdgRDng4gFQlwwMgY5hLgYopv3GGb3g2hhRK0WDyriFuI8CXrtTetSRsebTXcl98DQ+u914aViG6zxhHiYVQmscRtUhLlhTWaItFxgbYAnS+AEFXwQ4upTKjdpdsFezit7tU7USZ2keqo7xCnEyxXvvgiFUWwwnSasXvaDw2268x71W1D1A0I8P7D2U1B9AqcXEOJARyDEAYs4i5+SAEKcDyIWCHHByBjkEOLRcVfljc9Ef6B3L/MtjKBdShCCVIifV9TrwZ01Lvy/00DEKmw3rGrAoBXn7jHOes3D9uvktTgJ8r71WsZfKjdp76K8Jf5hBB+EOOgFa1JHhZUtPCHOaunUb7UJq7WBzr1+dYe3KmHuRvVbUPUDQjxfuCczVThvigAhHi+92kKB+IAQB354q9DSPi43EOJ8ELFAiAtGxiDPgxCvGPbO81Mfbd4Rx6wkq8p2fCbbr6NMSuUm7d7f5Fb3+HuIj/sE0oBCIikqvN7AcfTnXSxZnUmY4kT/ivNSuekRvnsXm5FEmB9eZWKv42Et40+7f3kYwQchDoLgTOqoMqnHE+K1un0+2TzfotmFZqBzAOszr3NrA91ZLHVfa8am21q0oOoHhDjQFQjx+GDdT6d935hVIMSBH96znkr3EhDifBCxQIgLRsYgz7oQ92wgGKO45lVUqXRy1xX/hfPsjd2C1C/E9y427Z6/w20adLUXkVXJllQ/XH+lqEjvcBZBvhfrM+S8tnsXm6FEmB9WFXxxone7BZ6kSVMchhF8QYQ42kcA1eglxMPC6vWLCvF0cU9wjk3b19w0W1DFBYQ4H7Nqv+9O1axOlf95AEI8PnhCLu3jyiIQ4sAPz5moUvBRq0OI9wIRC4S4YGQM8qwL8bg2EPTDO7mn/fvqDkuQDg636bxLvCLYL8TNaqNT8ex+qJd1zEn1wzWr9hje/NHqhjRuHnjvSRyV6rW69zPqiJhef5/XZiXNh/kwgq+XEHfL/sIo2iepilnVc1+CKJTKtjDbcl2b7vpVPA+55YrlOV8XRtBDXBVY41p2C6o4gRDnw7qPVek9dhcaqCROZAEhHh8oYpIHhDjww1uFlvZxuYEQ54OIBUJcMDIGedaFOKutQxzyDMvvkoE3gTHge8/8QrxWtx+etu9s0WbJG3ZkvR9ukq1boqBihXgYwccT4sze7qPyf688ioegmNUGTbkerKfm42nBpSqi17leQsswLVos2WT5NQTpAiHOhrcx9vad4TbGTgpsvMsW4u6q/rkFPSep0oD1bKGakMsKEOKARdjiJ9lAiPNBxAIhLhgZgzzrQlxkA8Eg3zsrm/eoAq8aecBXucQS4mnBOt5+bT90I87WLXEs0/ZX+6iwjD+o4OMJcd5kkKwq8YrRoOLk+uuKCb5uWKsT4hZIKj0kiKyEgtCSg2HamwvH3a4rK0CIs+FtRq7KZD7aKrGFuOpV/SrjLpDaPJ/Oiss8ACEOdARCnA8iFghxwcgY5FkX4rV6+A0EQbrM39h9w7953iudVBLiWa8Qr9Xjbd3C6uUYRYo7PcxV/zw7LSem5lu0b6kZWojLagXDGsf9JvrMar4qyv1tmRzRG8f39gvk3SmtwHAjsswcQit5/BPIaawoUR0IcT6sc74qbbpY552gk3FZwS/EeZMYmLwOh0oThxWjQbv3N2npQHZWSkGIAx2BEOeDiAVCXDAyBnkehLhDVm428sDDT1o0Nt2iy7a0aNf+7so3lYS4v11GcQKVJzzMKvuBTpVl2nHDau9y99IKU4in2Qef96Dtn4hyH+uca2JjfCYfIo4lkOJYDWJWG8yNa9OWU6xJGt6Y8AOhlTysCZosTDr4JxFFvheEOJ+K4Z24SqsNGgtMqHULcV77Ohn3T7IKD8oVqyOI0379k8bfV7k4mY0WbBDiQEcgxPkgYoEQF4yMQZ4nIQ6yg0pCvFZHP9wgmNUG3XU/uwraLdnMqt2aIgs9MlkP9Rs2tbmbarr74LMmgpJ8b8I8aLP2ZpgKKEqTOn4ZQp41wRFHu540RUc/3O/1zLXBWyWxqsvzJrSShjVmdO+Ly2qbJiJqIcT1pGI0cr/xLqtliuyqfv+m8Um2p/PfV4zP6H0u6wdrQjML1f4Q4kBHIMT5IGKBEBeMjEEOIQ50RDUhDnpjmOvtIAaGuh8C3K05uvqVa9wGgPXwOjjMF+JpwmplwxMQLNHvPJjv3t+k0uNyHurSqFQvle3WQZvnW7GJCF6FvkoVm2/V2/RBI/hDLoRW8mSxXRdrIkWkLRGEuL6Y1UauCw1YQlxmVb/7vs1NEm3ceNdAFfaHSQLeJHjQFVgqAyEO4kTWfSOEOB9ELBDigpExyCHEgY5AiOuFezPCAZ8Udz/Q8R4SVBKDvXA2uHP6QbIqqXfsYrdMYbFr/3rrABntM5w+8bN9KvN5vaVlVzerVqkuwgWMarHHn1Nn3L9/PJwQr9UhtJKkYmSzXRdvsi3q94MQB7rCEuIy4W1yn8T9mO73flFAhTgAfNwrMgujybcQhBDng4gFQlwwMgY5hDjQEQhxveAJVL+8ifoA5shnRx6nUYnK6gdZecnyVF5vnm/R+8fYm2r6YcnepG4IDdOifUtN2rfUDCTUWO/TAON9S/p9iFuepUXFaNgTRa7JogHFZEAUIQ7ix/+QeO9vW7RYsqhUltdiKUlY570ok2uGaU/CQIgDXUlbiMuU1HmrEK/Vu+8Zx6aDtyRTGQhxIArr3JP0amEIcT6IWCDEBSNjkEOIAx2BENcLd4V45+ZmpPu8w9pYMsgSXZZwly3FWcftFjnOg87ySjAhzno4TGI5bcXwbuhYGA22JLpcsWX/5vkW/WSBPeHR68E5jl7xvImWtMd7WHjiQaVqMVlCXFY/eB1J4yFRNs55wX3O40miitHo2oCvYjSoOLn+73fe2YIQB1qSthCv1Rkt7EaSk7b+TZyz0D6kH4Zp0d7FZuobaMcJhDgQhbWh++Cwt71m3ECI80HEAiEuGBmDHEIc6AiEuF6YVW+/28IIv9q5Yqz/3cJI/xsgXmWRTJlomMH7QaomxFm9wzddGe6awKvsD9N2pTAafhIjrg34DNOiuYVmR87LFoy8iSCVHpJlCHF3dfD4DHqO++E9JEYdJ26hrGJlYq9jYm3A57/OODz25ErqvwsAYVFBiJvV9VZq23cm35KpYtirYJLoUw7kACEORGFtYB+kOEoECHE+iFggxAUjY5BDiAMdgRDXD7NqC8zFkhXooSqooOFV18roYe2mX4W4Q1Ahzqp+TmKpMuu1c9gd4uf5VwH4f3dnw81yxYp1Kba7Uj1K9YhZ9VaUOnI+TkFYKq+38+G9pv6JINWWiictxFmyd3wmv/cmrMkAnhCP8pDof+B0hHLav3cQeBOQO37Ofn22boOcAfqhghAHICwQ4kAUVpHI2HSy94MQ4nwQsUCIC0bGIIcQBzqSByHubNC4bykbvWGThFUVKLu6tlRudm1wx3rfggpxs+qV4klVvLMqxN2bnoZ5HSuGLe38Ms//M7Zcx251kkaLEF51e1xC2t8ntJ/4V/WznrQQD7rPQNYplZudFkaFUe8KmbgeEs2qeL/eNKv3eRNq197MOa/sQoU40A8IcaAjWRPi5YrVKWjYsQfPY7IwTIu272zR5vkW7dqf/OsOIc4HEQuEuGBkDHIIcaAjWRfifomWtT6xcVMxvL0u09qM0N0PknfzFlSIOyR9E1gxfJJtyLtBpqikZgnhgeE2bRwTm8RwKs5Lj8d/fHGOIZboLYzyr7kVo9Fp37J9J79/smySFuKsiZnB4eD3JlnoPW6Ylqefv4NbPsfxkMgTykFaMpUr3mMMs4okzteJJ/RZ4+iv/1hN/b0FICwQ4kBHsiTEWS0Zp3LQ2z6PQIjzQcQCIS4YGYMcQhzoSNaFOKv9xuxCth6MyhWra0O0PBBWiMvArDboZ79o0oBPhschhnltHnbvt0L1infjl15zAp8Nw7SYn7e45Kp/U7JeopclRFVpG5K0EGdJ2qCTMe7xoHLv8X7SPunJGfdxRKkQN6sNprBPo9e9v+WLW+bvXbRbKM0uNOm5ly3uppqo/AMqAyEOdCRLQtzfCjDu+0OgDhDifBCxQIgLRsYghxAHOpJlIc6TFUlsqJg0POnN2xAt7eOVgYpC3KFro8sR8Rt/nuSLKi15LU5ENttxt7vpteFrFPxjfXCY398+zh7RcSNjU80o/eBZr68qkwgOZtWu+ncfn/9zZVYbdO9vk23f48b/uRyb7n8OVmW/BgdnA75en9dDR9hCnPW7iEysARA3EOJAR7IkxHkr11SYdDertrB3NoNX4Zh0BkKcDyIWCHHByBjkEOJAR7IsxGv14Bs0qgxPerOWICYlfVQkCSEeV5sNs2pL2c0ffZ+4qmD8DxUibVh40jitNjlBXlP3Z2HzPP/94f1uaVTg+pEhxKPA6z2e9nG5YUl7Z9m1X5afe7H37xVGkpssdLd4CvL3eefuXp89w7Ro35K9F0av80lSD/M8IY7KP6A6EOJAR7IkxFkFGMUJNZ7F/KsP0VpTDAhxPohYIMQFI2OQQ4gDHcm6EA+6QaOq9OrxyqsyTGNDxTSIW4ir3GbDTbliMTfcjPJ9VK3YieM18v9eSQpR3nhi/TwI8ejw2uYsHbDop7d7H7gHhtt00Xgr9kmppF7vXqtI/P3GC6Pdqx0qRoOKk8ltHswT4ipX/gFQq8sX4qruXwH0IktCvFb3FiqMTatxjeDdB6taGKIDEOJ8ELFAiAtGxiDPohDfu9js9IXct6TexcGpkk37OHQm60K8VrfF1GLJ6rlBo6r0WlrfS5anfdwyiFuIq9xmIyn81Z26rZ7oxWJpvad5caIl7VphVhs05ZKdcwve846qQpx1rlHtoZAn7QeH23TORvbX0z7mXuMk6CoS1kSAf7LO2UfAjdMuxzDtllv7lqJfA3lCnNXKaWxa3dcd5A+ZQlyXiXWgPlkT4iqS98KiJIAQ54OIBUJcMDIGedaEuH+jJdUejt1Lp4uT8mRH1siDENeZftK714ZoWSdOIW6Y3RWmSQjxOMRU3FSMRiwV58CGJW3dD1eqCvFaPVrvcZmwll07m9cODHV/dgsj2bgn400CuN831p/PLjS7hHVxMlq1PE+I1+pqVv4BPfBvyJrEz5ApxPM4sQ6SAUI8ecwqu7UmPq/RgRDng4gFQlwwMgZ51oQ4q9qoOKmGbGNVJKlybLoRRYjjRkEu/aS3syFa3t6XOIR4xWjQ+MxHry1HqMUlrv0yD30KswlLhrivTyoLcR0oVyy6crZFA0M+Cc74/Ko0iS8Cqy3JrGvjSt7E6Y49zdj20eglxEHymNUG7Vtq0u79vXvI6wRrImdoUyv2vR5UEOIq7F8B9AJCXA4VY915FEbaShYD6ASEOB9ELBDigpExyLMmxFkPUapUW/GWTaMqKTxhhPhiaX0paGFU7ZuGrMnhvErvXsQhxP2tCAaG2nTuRR9JzJjbbLDOqW6pBbIB6312T2LJEOKl8nq7s90ZkcJuzCp74uGmO1pKV7hHpWJ4x1VhpPt+Z+a67p7kjz/HlnNRVhJBiKcHqw1HFsY3r//8wHC8rd9kCnEV9q8A2QBCXC74jMYDhDgfRCwQ4oKRMcizJsTdLUlEqoqSwN/31gEXs/AEFeK8CjTVKpXSkvZZF1AqIirEeVItqbYzMn8WSA9WhaC7OjBpIc4SMnOSJ15kTE77V4qNTWf7HsCs2r/zYql7s1bntRj4aFLvnIva9PCT9rkRFeL6wxLHhVH9nzd4xS0Dw/H23Za9qWZa+1eAbAEhDnTAMC3at2S3gjRMC0K8B4hYcifED/z+WTr1jE30r188l87YMEV/eeNg589u3n0//Z+vbqBPfOl8uvKa22llZZWIiN6oHqbvFabohJPPpq/84FJ63ni9829kDPKsCXGz6r0Jn11Qq+dtHJWWO/asS8y8Vt4GFeKsnvKDw/EtSY/jgSEtac/qa4sNWZInjgpxmZIaFeL5YbFk0eZ5u1rZf21JWojzqi5lXL8rRsNTyZr0edAwLdq72Mx9O4Je55ZS2ds2pTjRijQW8ijEF0v2ng9p3x/yxLEq9+Qir2+XDB9aH6dx/RzZQtxB9/cHpAuEOFCdcsW7eqkw2qbKSxDiPBCx5EqIH3r7CP3bqefR88brtLq6Rtfdso/O3LiFiIierLxEn//WxVR96x069mGDztgwTXfeUyIiojM2TNGNt99H7eUVeuixCn329I3UXl4hIgjxLFIx7ErxzfOtSEsrWdIg7YeeNAgqxFnSN45lu+4HItGKbp60j3PpLYtNV7IfVtN+b7NOHEKctRImqfMAS0yptsICJE/SQpwnz5Iea2a10dXWwV8dHwXD7K6IzhIVo0FzC/bk/Pad4WV1kJUuhmlXlpfK0Qsb8ibE/e200lwhyVoVqUoLQ1HcK2oGhtY3yY1zMi0tIQ6ACBDiQHX818nB4TbN3tCEEOeAiCV3QvzBR5/p/P/Lr/2dPnv6RiIiuvKa2+nm3fd3/uzhx5+jH164hepH3qePn3IOLa+sdP7sm2dN0tPPv0JEEOLAC+8BMulqTRUf7IMKcbPavdFq1EozB2avRYGNBlnVRnFI+16MTfs2dstQ9ZbqxCHEnXHDq+aNmzjElJvKSxZdvrVFI5e36MrZ/K500YmkhTjrPDg2nfy9Cet8LiISPRveDtttX7J2TmX1ho7SKiKutii9yJMQ591LpNX6wn//VRjJ1iaNZtU7kRf3ilQIcaAjEOJAdVjXycJIG0KcAyKWXAlxf3bcuUQjV91IREQDF2/1yPK/vnGQTvzGhfTsC6/RaWeOe/5d8cob6K77HyEiCHHghddaI6lWCawH+7RfA4cwm2qaVbuidvN8i3bsEX9gYfXaFRHYSUj7XjgV6QMSxxJYJy4hriulcpM59iDF5VKu2G0Vlg4Ee91lbKrpXvmweV7OSgRWK7PB4ehttViVRzv2NJXrx7tr/3rrtbCSkncNDPsZjqstSi/yJMTjvjeJA7Nqv8+LJQsri0ICIQ50BEIcqA4qxMOBiCW3Qvz3f3iBTv7vS+jwO+8REdF3L9hMjz75x86f1956h/71i+fS48+8SN865wrPvx3bcgvddtcDRET03rFW4litFWo0l6X8LCDOZTPdJ/EHfyfvZ/3i3vRfg/eOtej9421aXl1L5Wff9wC7srryp+jf8+DbLbrtFy2avqZNt/3C/v+kjv8X97JbE0zMtBP9uUlw9MO2dqyuEX3QWI71e770epuu/WmbZq5t0423temtd9L/PXkUJ9ifn2t/mv6x5YVf3uf77G/pP2as1go126upH3sSzFzrfT02jLbpr29G+16sse2sxilsatOzL6T/+97+C4bM/kP08RPlezj89c02PfSo/W+TOG99cHyZ1tYo9ddcBg89yn5fXno9/WMD4VlZXaNjEe8V3nqnTQ89Zn9W8f73Ju372KzRaK5Qs72S+nEAwMN4rdXVQ9x4vUVra3Lcm24gYsmlEL//oSfo1DM20RvVQ52vDRZ/Qkulpzr//6r5DzrxGxfScy++Rqeescnz74cu29apEP/QWk6c9vIqtZZXpfwsIM6rf2nTxJblzkl876/aifycNw4uMx+stlybzM8LS6O5TKura6n87LePLNMG33LxiS3pvyZBWXyw+70dGG7Tjze36dW/qPH+ZpnV1TVqNOP7fm8cXKYNm7zv5+TV6f+efg78vk17719mVoerdG7JOrxz++KDvf9dK+P3CosPLtOWa9t00+32axT1+/QS4oPDbdqwqU1vH0n3dxX9/P3R6P4eG0bT/71YHG8u0+paOvcKaXDdTd73Jal7xDzyxsFlqWN8ZXWNrNZK6H/39pFlmrx6OdT5HYC4aLZXqJ3hewWgJm8fWaabbrfPfdtu6v88+/YR+7nkwO/te5fjlj15nvbvoSKIWHInxA/8/lk67cxxeufdo56vT113B11/692d/18qPUUDF22lI0c/oBNOPpus5vrsy6lnbKJnX/gzEaFlCkgX1kNz0v3KgxKmZUoSuNuw7NqvX49Y/+asjqSM0gcWhCNqyxRnE7vxmbZnE7u42hckiWfDxCF2//o0l/Xniag9s2W0TImKSu1ImJ/HIXU+m7y9SK6cbdG+pSbt3h+svctiyeq0OylOtJR6D9zkqWWKQ7li0d5F9dr06Epa7QOjtkzhbdSOljVABkc/RMsUIB9/G5Swe3sdfLeBlikcELHkSogf/eBD+uzpG+nNg293/dmzL/yZPv9fF1HtrXfo6Acf0rfOuYL2LT5KRHZ/8YXb7qX28grd/9ATdNK3i51NNmUMcghxwMPdz1WFB3k3aQvxLDA+1aKBoe5e4mkfV9YJKsQN0+oIqsefa3I3sWN9TlX6rHZt9PaREHdL8Vv2qDHRlgaypRVvL4q9i73fAxWFuFv8FEbV2bDP2fB29KpWlwwX/Ww6E2NT8y3PxFgYPBNUH3HBqPdrWZmgyqMQB/HC6jcbdY+BMEQV4v6CB9XuCUC2gRAHsuEVeoQ5T0OI80HEkishfvevH6N/OvGH9LGTBj28d/QYERHddtcD9B+nbaBPfOl82rJ9D62trRER0cFDdfr+0DSdcPLZdNqZ42S8+rfO95QxyCHEQS+cB/vZhaZSN9MQ4sEoV6zOxmn+DUVZUkR3IV4qN0NtFJgGQYR4uWJ5BPg5F7PbjJQrFvNGMMlNWcPCqpgdGG7Twq1NKpX1W13RD8MMtnmceyKjMNqWKsb9kxRBNtNVTYiXyt3jKmxFUNKY1YZn08igr3WvscWbGAt7XO7z/4+v6r4WFEb1vhY4QIgDEWRvZu8m7grxrF1rgZpAiAPZ8IT4jhDFNhDifBCx5EqIJxEZgxxCHOgIhHh/Kkb30vgp10Mc6wYiyGx6L8meJtt3toRFkQyCCHHeZAWv4iuu9gUVo0G79zdp31J872tXhfhHZG05v1lt0JTrfZua509K8GSuzOOtGLY4CTrRqZoQ16FVUK1uC7XtO1uxtNdK6nfmnW+y8BmFEAeisD4bMtoHRhXiZrW7qj0rKz6A+kCIA9mwig/C3htBiPNBxAIhLhgZgxxCHOgIhHh/eK003JKjXLFodsHuhR7kgYkl0WX10+wFS/6r+hAYRIh3/S6MtguFkXgrvvxVZcXJ+KrM/ZMVvIkXd5sY0Upf2RM3/t9xcJjfl5v1d1WUuW6iCHGz2kisYlsXIS7jdxZtFcO6VhRGsnFfCCEOomJW7fZEaZ1nogpxB6eXvEqrZkD2gRAHaVAxGlScaHXuX8I+/0GI80HEAiEuGBmDPO9CPAsVUHkEQrw/SUg3Xm/KtKvEeVXIMvp8hiWIEGe9zuMzrUQ3sWO9fmGWG/aj30ZvFaPhaQdRGI0+VtOYuGG9fryq7yCTVaoRRoj7RdL4TPytTOJuR5ImZrXhmQhy9wmfW1gXWqxxHcfEmL+itDCiTj92USDEQVTc52ln34uhH7ekTbqJCnEA0gBCHOgIhDgfRCwQ4oKRMcjzKsRLZe8mdf02FANqASHeH1ZbhuKEmDDiLa1PuwIpaxXiFcMr+wojycpSXv89mYKRNbaitr1JY+LGqUxxMzbNPn7DtLpkrowl+CKEEeIs4T+VwFjq145E1fZObvwTQQPDbTrvEt9527VaI672SCxK5SYtloL1wNcFCHEQFdZmmoPD8p6XIMSBjkCIg34YphV7e0ZRIMT5IGKBEBeMjEGeRyHO2pgq60uts0ZWhHjQDfii4l5iPzYtLlVZldg86ScbVjsBkSrjpAgixGt1u2qzVJa38SSr/57MCnuWeIgqH9KYuGFtZNZrQsYtc3WYkA0jxNMWSbW6uu2d/PgnbwYY7ZEGh7NTsS0bCHEQFd51xFm5kfSKHghxoCNBhHi5YgvRpQOWMkIUyMH/HKnKZugQ4nwQsUCIC0bGIM+jEGdVzsqWP0AM3YV4mA34ouC+2Yz72OOW7HGye79lL2323WylfVxuggpx2fhvUsem5bbCYVV1R61QT2viplRu0uyCTdYEZhghzhNJMo+X1zJKhQcvN/6VBQOMY+43uQL4QIhnH3eLoe0747uXYj0r+O8tkjyfQIgDHeknxP0ryMZn0m+7COTBKr7h7bcjEwhxPohYIMQFI2OQ51GI89oDQIjrQxxCPIkKhYrRCPS9wmzAFxZVbjbNqv17yqqm3skALAAAIABJREFU4r2uqq3+UFWI1+p21fJiyUpF5sbdJkbliRsdCSPEWSJJ9vV19Co9hHhXhTjjmAsj6h23LkCIZxuz2uha8RnnhtDOxuPj0y3m6o0kz2sQ4kBHeglxw2Q/f+uwSg6IY1bZq0FV2P8FQpwPIhYIccHIGOR5FOK1eveS7jg2pgLBKFcsuvH2Jt3zQHQRLSrE/e0NRB+gKkaDipPrAqaf3GbNkMdRQanSzSarbULSUlKHzQpVFuJBSao3s9MmZrGEZbSqEUaIO2NkdqFJm+db0qubS+UmU15dulm9ex3DtDxV4oWRNu29v+npE67ShJ5uQIhnG1arqsHh+FsMpbGyFEIc6EgvIc4rSFOhQhjIARXi+oGIBUJcMDIGeV6FuFm1Kwg3fyR0UH0lh50/9z5UXDASTUSLCHHeDPWOPdEfPFgb6vWS0CxZLLrhZa2uzs1mWqswdNisUHchrktvZhAfexebtOW6Nm25rk37ltR/r53VAe5q64GhNt33oJqfO0wEJQeEeLZh7R2ShBA3q2yRk+RkO4R4/JjVhlIFElnA36IRFeKgF6Vy03MuLU7E2zI0KhDifBCxQIgLRsYgz6sQB/LhieiZ68LLWhEhzpO1UZds8W7wen0/VlVTHDeEMm42zWqD9i01afd+fhsU3mssMukQ5jVQebNCvxDftb9J4zN2H3kd+k7r0psZxAPrXKV6ezGeJEOldf5whLhZbeAclUFY9zxJtRiqGOvFD4WR5Pv6Q4jHi7s91fiMWisHdcV/Pzg+0+7bQ9y/x4sK7TKAXNztGVWQ4bU6hHgvELFAiAtGxiCHEAey+NWDbEm6YVP48ecW4hWjQbv3N2nfUvALK6vSJ6o85Yn+fpXJSW3Al+TNpln1toYZHGY/FJpVdtU8hJRXiLNavKguxVmbXyZdKQfSg7WaRbWNav2wqjnx0J1P/nbQou23LEOEZRh3xWGWWgxBiHsxTKuzeercQriVvaxJ0vEZda5jQfcfUomKwX72+dVvewtx573cu9jMzGcV6A+EOB9ELBDigpExyCHEgSwM06JBRl/XiaujC3G//A3aC9z/78amxXrIs8Rmmg/dFaORyM0m6/fkyTHZ1VS64Bbica5UkIX/s+N8ftI+rjjAw1k3rImtwoj677d/pYhusgHEw847u8evSiIMAB4Q4uuIbp66eT6dlW3uFYCsdmPliuX5vXYrvvrKDa+v/i/v6y/EAVANCHE+iFggxAUjY5BDiINeGKYVuvq6F+Mz3pvSgaE2Pf5s+O/jCHGRzTmcJVtxSLDFkkUDQ+3ORm4XjqvREy1ueA8VqLgLTj8hroNcdldbjU3r//4vltYfSgujmLxxw5oEU2EDJBUple3qxfEZvcRGlpniXLPSPi4QL1mczIQQX4c1Ec9bociCt7ItyWNmVaW7V6KyJL8OqwQdeBXiDz0KIQ70A0KcDyIWCHHByBjkEOKAh/8GtDAaTzXF7XtbNHpli7Zc14os0g6/Z9Ff3lhVpsK2l5g3q7ZUmppv0dS83st5mRXiGlSLqoRbiLMmGFTvzxwHhmnFVpnl7mkf5Xvy+u7rLvnjwqx6ZcLsAqqtWbCq5WTsmQB6AyGebdyTmX7hqDsQ4uuw9rIII8RZ+9okfX5mPRe4V6fw9trRacLZL/1nF5p9e4gDoCIQ4nwQsUCIC0bGIIcQV59yxepUnW3fKa/yWKT6Oml6VYjLlhC8KglHzLMqU3SV4ma1u6cwqmnD4RbiZtUrxbMu0MyqV1CNz4hNslWM7gqrsNVVvAftPExMhOH94236oIGHXB681TNpH5fKOCvQok5mBeHJZ/XbFBZ4xwhvbGR9MhNCvPd7HXbz1IrR6LTRknHfyhqbxYmW53iycO/hb9EIIQ50BEKcDyIWCHHByBjkEOJqw7phmpJQAc170BjapMbDhiPE3ZspDQ6L9wKPCk/MR91wU3VK5SYtluKr8s0TbiGeN7bv7JaGIp8F1mRT2A0feX0wMdHjRVUhrsrkIk+Io5qe/765J7MKo8lMFB86YtHLr67S7EJTmggD4vgnT6fmu4tBeG003EJxsWRPuiwd0O99hxD34r7fL4yo31qEdb/jL3rwXzfCSn4VgRAHOgIhzgcRC4S4YGQMcghxtWG1qJBVAcOSvM6Da9oP+Y4Qr9XXe4GneXPME/O8iQXdhTiITp6FOGuDRpEqWv9qBff3c0RIEMnm/z7FiWzuASCCakJctb7vrH6xMtt3GaZFcwt2a665heQqruOC9dlN4vU6dMSildW11H9fEA7WZKd/hSJvMtNpm+L/HnOa3XdBiOuNv92YUyTj/zt7F+3Juu07W8qft4MAIa4PZrWhRJGbCkCI80HEAiEuGBmDHEJcbVgVBoPDclpulMpNOq+4/jMHhto04HvgSAu3EFcFnphnPfinLW9EwA2UGHkW4qzPgkgPepY0ufgyu71Ur6qsWt3+vDq9xysvWbRjj/1QynpoBekLcfeGlbfsYV8X05YJ7gnszYyK1qRgbc6mwsR1L1jvn8jkGA8IcT3hFWP4/x5vMpPXn1n1qmI3EOJARyDE9cB9v5LUCi2dgBDng4gFQlwwMgY5hLg8oizdZFXAuHvQJc0vf9WkgaE2DQ7xl6RGQbSaTUUh3ut3dS+L1K0/oBt3FSRuoKKRZyHOOp+JTK4ZpuWpOi+MtOmmO/rL0jh6j+eNNIW4f9wMDHW/v7qfW0XgtY4IO/Eqc7KT1WImiZVTEOJ6wlpNNDbd/axiVu37Ev9kJmvFhm7nCAhxoCMQ4urDuhdXfRI9aSDE+SBigRAXjIxBDiEuB5Glm4slq9OOY2xabg9vw7SYrVNEKvHiqGaTKcSdTU2nJFeP9tpMKg1wAxUPeRTipXKzMxlYrlg0u9Ck2YVmLBLarHp72vPaTLknb1iV5cVJNTYMVpU0hXiXPOUIcZ1X3ojA2xg2zGSTezVacbKV+H1GxfC2ZStOJPMzIcT1hDWmw1wveBsW6jSJDyEOdARCXH3SXH2uKhDifBCxQIgLRsYghxBPHl6fQ10qEivGerVOHBvZxFHNJkuIs5bdJt2HMshmUkm+17yfFfQGyt2KQgWhb1btYx+fsV/LtNu95E2I+8fN+Eyy1xueHHSPRd7+CGm/ViqjkhAfYEjxPPd9Z01ch9mcjfWZkTFB5ExmlcrJTTRDiOtLqdwUmjz1X3v8PchVB0Ic6AiEuPrwVtCk/XyUJhDifBCxQIgLRsYgz6sQL1fs9iX7lpKv+M3C0s04iaOaTZYQZ1WSDg4nWxUdZDOpuKkYDSpOrj88snouB7mBUrEVBatvdZo3faoJcXdv5t0xn5N4VXpJV/L6Bar/57E+Y6zl+GCdNIU465pxxWwLfd9duDd2DjtxzWpf4p9E0hUI8XxTMewiDB1FD4Q40BEIcfVhTaLL3AQ8LcoVi3uvCCHOBxELhLhgZAzyPApx/8N1cTLZyjKeFNLxBj0ORKvZanV5QlymKHAu1Kyfx9pMKk5Y/Tr9EjHIDZRqrSh4G2ulORmlkhBnrV6Jc/KFtxqk3+sfx4RluWLR3kX2KgVW73HW+di9umBuoZnbc3atnv6mmu4JOZkbVuaBNCZ+ZQEhDnQFQhzoCIS4HhimRdt3tmjzfEtoLx8dKJWbnmIt1u8LIc4HEQuEuGBkDPK8CXGecExakOm+dDNuRKrZanV5Qpwl9OKuJPVfqFntHJKsXuVN2LA2OPPfQLmFyWLJonMv6v4+g8PptSrhCXFWBbwsVBLivAmfpMdWrwpxWROW7t7jvO/vX11QGE2/atasNlLp85i2EAfJwfqcpnmOjBMIcaArEOJARyDEgUoYptW1cnlwuLvdJ4Q4H0QsEOKCkTHI8ybEeYJMxlIhnZduqobMTTX9lYlxCjHWhXqAsWFckm1HDFNcGjvicIDxfdy/z8NPWvSzXzbp8q0tunyrvVFpknLPrLKr39PcOEYHIR6ngPa32uk3GajKBIaKqwvcr2VhVG47IgjxbFMxGp3JzixtTgohDnQFQhyIksa9LoQ4UAnePm7+e3kIcT6IWCDEBSNjkOdNiJtV9oZqWV8ulDVkCvEk4Um3a3/aEtpMKiysJfNBJ27cVfRdm90NeSX5ORezpXmSN+0VY13YF0aS71/dD5WEOKs38/h0i3bvb9LSgfiOsWLYP6vfmEpzwjLosaRVOcu6qRetWO+1ia4fCHGgIxDiIE4qRoPmFpqdNlpJrhiCEAdRcd/bFUbl3vdCiAOV4N3L+70PhDgfRCwQ4oKRMcjzJsRr9e42GGPT2eiVmSeyLsTTqELdu2hvULd9Z7j2Jv4K4IHhNg1usCvD/fKbJcMHh9t05Wx+WgipJMT9799F4973aHwmvnPjYsnuC156vPfYZk1YpvF54E2eprW6gLepbZTjKVe8K1OCSH4IcaAjEOIgLsxq96bhSe5BBCEOosBrVSer3RuEOFAN/2rYwkj3sw2EOB9ELBDigpExyPMoxGt1u03EYslKtXUCCMau/XY1ztR8i/Yt2Q8HWRHitXqwC7XKsCpXB4bbtHGsux0Hqx2M8/dlt4BIC9WEuAPvIcrZmFJkk0t/L+5ebVPSmLDkVUpXjPWWO2mvLohLiLOkzuBw/98NQhzoCIQ4iAvWiqrB4eTuWyDEQRR49wqy7l8gxIFqmNX1oq8de9jPMRDifBCxQIgLRsYgz6sQ150wS911hnVjt3exmSkh7r9Qp71pXxT8m8bu2t/salUyPtPiSnHnaypsWpg0qgpx3mqFn2z3TdiMBm+nU6uzN6YdHO79PWRNWFaMBhUn13+/OcZGsqrAqliP0kqG9z736+2uihA3qw3asWd9klTlSe1yxYq9/RAIB4Q4iAvZohFCHESBN3Ej61oJIQ50BEKcDyIWCHHByBjkEOJ6oZPAiQNWy4LxmTYdfs+io8fWsEGpQvTrE10xGnTBJXY1uFuKDwx723SoLLjiQFUhzttc9dyLur82G+K8w5MIKuzbwNpwVYXj6vUe7dhjT57tXYxWrc9bCdCvLY0MIV4qN2lqvkXjM21uFQ9rvwMVzxn+ScLxGdxnpQGEOIgL1jWyMJLcJD6EOIgCazP5sWl515+sCnFnpeTu/XoWLoHeQIjzQcQCIS4YGYMcQlwvWAInjf66smCJm+JEi+ZuWH8dipPhel6Hwel7jAq/eDCrDbp4ot212aZbkKsot+IkTiFeMRqeG/O9i+tCcXeE84K/ssjfzidKZTJvh/e0J7N4EwBpbOApG79UDiJ1khbirHHin/DlvWf9qttl06v9UNrHljcgxEGclMrNTqFGcSLZFSoQ4iAqzkqqzfMt2rU/2uR5VLIoxP37rhRGs/+skjcgxPkgYoEQF4yMQQ4hrg95FDj+KrvB4TZdvrX7a8XJ+F8DvwwMUo1vmBbNLdjL+ecW+NXSecYwLc9rO5CTsewQhxCvGA0an/GOTdYy2SCbJbK+997FZudmnzUJF6ZCvFZnt9ThjQ1ZFThmlS0tVZOrSeHeRDfIa520EGdVfg8Oe/vH80Rz2PEoQpCHYJU2S847EOJAVyDEgY5kUYizikOw6itbQIjzQcQCIS4YGYMcQjw6QZZ3x03aMkA2ZtUrSnbsadIVs+yq1TgFGq+qtZcMMavedjZOFUEeer1Hxd8CovKS2OaNqmFWG12TInEIcf8mlYPDbRq+tPtrg8Pi5/ZyxfK0LipOtCK36ujVUsdfgdPv8xYHO/Z0f84xicUmaSHOW43gH2ussS9jM173hFNhtHffYJ64T3NT1rwCIQ50BUIc6EgWhTjreh7H/TVQBwhxPohYIMQFI2OQQ4hHI8jy7iSAwOFXEsb5M6L0PeZJdCyTD4Z/88WwmzfW6raIclfo+ydJZLbAcX9W3csrRYU4r7L5vGJyN+zOJpelcnITFWlV4CyWrE6ldN7OpWFIWoizNl9lrRjxrzCRUXXNqvjutwGw/xqS5YlrlYEQB7oCIQ50JItCnPXcqcuKVrR2CQaEOB9ELBDigpExyCHEo8GrZpPxs/MucFjVd1FaQ/SCt+S91+vNEjqyhE0WYG2gGkYimdVGV4VxcXK9mtlfWZpkawzWWHBWC8RRIc4aZ6NXdp+Tov6O7omF7TujVYTH8TuJnFMNs0G3/sJuv4IHAnFkbKrplsib5+WMu7DHFabi299+CMgHQhzoCoQ40JEsCvGK4X1GKYyoX4y2WFpfddlvVRuAEO8FIhYIccHIGOQQ4tEIurwbRMOsNmjfEl9mPf+KRbfsWqHN863ELvJB+x47GKbFlLrYjTwYrM9TmAoMVg/twWG7nQJvsiKpG1pW7/vBYbtKPA4hzhJ05YrlqUqfXYhWzW2Y3a1LZFRqx1mBc/2tLU9v+sFhsZUa5YqV+3O7DCGuKrxzC0S3+kCIA12BEAc6kkUhXqvbz6WlcjPRlZJxwWvbhudRPhDifBCxQIgLRsYghxCPBusBWZflU6pjVr0bBrIqwA+/Z1F7JfmH3Iphz7IHFaflitXZhLAwIqe3bVZgbd4YpsK5VxVn1ArPqNx4O/vnVYx4KsRrdXtczi40Y18pwnutkpZ/FcM7BqJW4PBaF0WpNi+Vm57Jgd0xrvaQ2b4nDvIsxM1q9wqWsens3zdVjIbyD/79yLsQN6t2+67xmTZNzbcwiaMREOJAR7IqxHUiStvPvAMhzgcRC4S4YGQMcgjx6Ki6vFt3eNV47pltWUIcyEN080bDZLQpGWl3+l/LrBC//tYWDQ55f9ZAzEI8zOvqbP4bpP0J70ZaxuROHBU423e2aGCo+/jDvt+sSvm4XgeZ7XviIs9CvFZfF4vOBsD9xmfFaGhbjeXf4DbulmQyybsQZ628gRTXgzwLcWfCGGNVPyDE04f3zIMiLT4Q4nwQsUCIC0bGIIcQB6qwa79dxXTROL/dhPN3ZQtxs9pQvl9cFhDdvLFUbnakenHCWw0XtgWOCNt3rrfsGBhqdwRtXC1TgsJaNjnVZyULcwPBEX3aQe3a3+xqlzI43KbzLwl3nePtIyA6bmRPzsRF3oV4UCqGd4XTXMTWRWnB2oshydU0SZNnIc6aJNZlAg7kU4izVohivOoFhHj6mNXuVbd5WNVWrkRfeQkhzgcRC4S4YGQMcghxoALu3se86s60KsTdFVbFSX03MnUqHDdd2aYrZ/O5dDpsC5yosNp2FCfshzqZQtz9uQojXxdLlmdiQacxb5gWXXCJ9zxy9oXhK2OSEuK6LmWFEA+Gv/pftwpr3rjXVUrlWYjz+siG2awapEcehThvhWic9yCGaUuz3fub2q7iURkIcTVwr2rbsUevifko+IuexmfCFfJAiPNBxAIhLhgZgxxCHPTDMC2aW7Crt+cWmonIMf/Nr1+K+6vTZAlx1s15cVJPMbD5GiydlsnexfVq9bHp9Qe6uIR4xWjQ7v1N2rfEv9Httbln2q9PkhimvcHo+FSLrr2pFfmh1795chyV8rwe56pPOkCIB4P13uq0vwhPoia5oiZJ8izEa3X2BE1Wl81nbSVfHoV40nuY+K+/hVH1r726ASEOZMO7bwlTaAIhzgcRC4S4YGQMcgjx9HCqFHoJrbQxqw0qTra6biDjrKowq+wL2fhUixZLFvNnyRLifiHWT16pugkZ7zW+dEofUZMV4hDi/rYbvM9kr0p1EIy9i+sVNnGd92S274kLCPFg6C7Ea/XuvtPOXgxpH1cU8i7EDdPy3MfocK6Jgns1VGE0G5O+eRTivJZicZ1/WJu3Y8VEvECI60Op3OzsMaRzFXkcKzohxPkgYoEQF4yMQQ4hng5BhVba8KoZ417ezxLPvS5ksoQ4r8LWf9NQMbwTB3OK3WA//CT7ZmHDj/USNUliVhtSHqLjEOLuzUf7PdTxKtVBushq3xMXeRbiziqp4mSr7yopVoWjjnIuiYmgNDh0xKIPPlyjfUtokZBVWBK1MKr/c00ehXit3j0hF+fzBus+GEUC8QIhrges53vVnl2DwtsvI8zeJxDifBCxQIgLRsYgz4MQrxiNTsuP7TtbSsyAhhFaacKr1oi7ysiseqW4v+eqYVqp9BBnLcNi9YNlVZ2o1BPYrDaYvdmvmMWDQK3ulViF0WSXlIsKcV61v25VqEAv0hbiZrXRkZoyBTNvlVSv+4jFkkWzC03avjOfezWoxHMvW7RhU/SHZKA+WW0NllchXqvbxQl7F+Nv0YgK8eSBENcD/8QTr+BLF/wtTsN+riHE+SBigRAXjIxBnnUhbpgWFUZ9rThm0v19dRJaZpUt72VVWRmm5dlxfmrentCQualmxbAfuDbPt5gP0ryZ6V7vp1vuyHotr7+15ZHiA8OoFq7V2VUSzooNZzLNqQx1JmZE3rOkKsR13fQO6EGaQpx1HZclNWWtkgLJMHdDtwDLQvUwWIe3ebTuqwHyLMSTomJ475+KE9H3GAFsIMT1gNcSVOfPQ8WwxXiUyVAIcT6IWCDEBSNjkGdJiC+W7J7cpcfXbyCT3qAlKmkLLadvWHGy/+7TFWO9qqIwIndDJtYM9vadLalCvB+8CQ7e+5mm3Fks2f1Et+9sZUaGO+I66r/nnSMefqL7fTrrQnsiwT05E/bnxSHES+Wm5xwyNq1vVQfQgzSFOOs6IEtqylolBZJhivPQn/ZxgfgwTKvrnjoLVb8Q4slgVu17qFJZ357JKgMhrgesexsVC/NkASHOBxELhLhgZAzyrAjxsWm2jFRViIcVWlH6G/OWmLM2n5hS9CLIeu8Ko22lhHitzq5Q4knaNOVOljCrXtkxPhOtsoF3jrjtF+yvu6vso0xixSHEa3VbAiyWrNTPZSqzd3F9w6DdEJhCpCnEeZVMMmQGS7bpXkWVJxZu7R476BmcPQzToh177L73WVm9ASEOdARCXB927V93EZsjFvlkBQhxPohYIMQFI2OQZ0GI+/tGuYUkS/4WRtSopnSEVr+Ka7dsLYwGk/msvqdORRuv36KKD/isfn9j0+oJ8Vrd2ze2V8VymnKHNw51rBZnjeMoEzustkDOQ3U/IR5lIiMuIQ56w3r/WP3/QTDSFOKsz3phJPp9S9h+5OWK1bkWFSdaUldJATH+dtCi0cu94waTiEAHIMSBjkCIAx2BEOeDiAVCXDAyBnkWhDivwtN5aF0srVd4jU3r1TeZtaSp34ZevV4Ts8rfSEPF14UltUrlppJCPCgsuXPBJfI/g2bV7o/trrBWcQzwYE2WDA5Hex3NasNTXWZW7YmC8y/xff+h9ZYpzvkk7M/SRYhHWZWiEv5VQyLjA8QrxMNW7ptV7/sp0rrLrDY8+1JgoiTbHDpi0QcfrlGp3KTFktj+DwDIBEIc6AiEONARCHE+iFggxAUjY5BnQYjzenzqJPd48Kq5+4kqXhVyuWIxNwmLIvZkUSo3aXbBxvm9dRbiZrVBl1zulaznFeVXrbHavKS94WwYWGNctGrU/x5c+9MWDQ6tv0+DQ96fx5Nyzn4GSwe631MdhLh7Qq0wKnffgLiAEA+Os6fE+Eybu6dEXEJcpHK/XLGEpSZv5QdEaTY5dMSilVU97xVAvoEQBzoCIQ50BEKcDyIWCHHByBjkWRDitXq3OM7Khle8Su9+sp/10O+Whf6+YbrJAJ2FeK3eoB9v/qja2FVxLFtG8yZN0n5tgsKa2InaO5QngLsmDT56v66cbXEnMPznIv/7qroQZ72uhVH5wrBcsScV9i1F2/iKde4M2/O9YjS0OzfG8X7PMTaki0uIpz1REXWSGegJhLi+7NrfpPEZ+xq6bykb9/RhgBAHOgIhDnQEQpwPIhYIccHIGORZEeK1ui0vFkt69kPmwdrQa5YhK/yY1W7huVjKzgP/I080aeu25Z4VjSrDEjKyZbTuQrxWt6Xp9p0tml1oRq5i7iWAWXsQFCfYG88YpkU33s6ewHJ/9lQX4ipsROyfiBifidZj3/19ZheCnycqhretxlSGNxsKuqdBVoQ4KsTzBYS4nrCuQ1nZLDMookJc97ZnQE8gxIGOQIjzQcQCIS4YGYM8S0I8qxim5elvHObfxrHEXDWCVjSqDKuPe5CJjjhhyd6srKwIQz8BHGQPAmdMDgyxZZ/7dYUQ703FYE8YyZQhLEkcpc90uWIpL9JlC/E4Kvfj/p2zMFlsmBZdNtOiwmiLJmb0W/WVFBDieuIvBHEmRtM+LpmICHH3ZHBhFCtggDwgxIGOQIjzQcQCIS4YGYMcQhykRcWwN3Ucn7GFSFBxxNsUVHXx5P/d3ZtCFkbS6XlfMRqdCussSKFavXf/bhZxCGDnvRxgfJ/BYW8PbtWFuFntlhGb5+UJS9ZETVghLVoZx/r5YWTMYsmiwuj6vw2ycWRasPbgYL3fcW6qGbVyP+5xlpXJYrPaoLM3et/DszfqdU1MCghxPWGdg4sTcifO0iaqEGed0wujeM4DcoAQBzoCIc4HEQuEuGBkDHIIcdAL0T6+PAzTK4zCCCdeRaNuYsOs2pXFpbJ+LV/876UzsTG30Ey1ZZG/HUOQytM4BLD73/qluP8YVBfizmviXpUic3waJluIB60Qd7fEKIxGq/5l/fygY4J1bpNZYR8F/54SSW6qCeLn5l3sa+LNu/IlEFlAiOsJq9d/2FU6uu8BEVWI84pGVL4GgewAIQ50BEKcDyIWCHHByBjkEOJ8wlaaZg1/lUmcG+uJVOUGrWgEyWNWG1ScbCU2TsLAGheDw8Eq70UFsH+SZmC4TeMzLebP1kGIp43/vQz6+ea1Wwk7Hlnnp6AygTcOdW9HBCEeP3G11JnZxhbiM9twXYQQ1xOz6pXiYfaKqRje+xLdWuo5RBXiXZuBK1o0Uq5YNDXfouJkK9QqUaA2EOJARyDE+SBigRAXjIxBDiHOJkqlaVqUyk2amm/FvsEkq4djXK+DaJuKPXc3acOot6Ix7xMYacDq5x6mmjdOeGNKxrFUDO/npTjB7+ELIR4Mw7RbWoSpaotzDJTKTZpdaNIjohLaAAAWvklEQVT2na1Qx8Br+aL7hnAQ4vERd0udh5+0aNC/f8FQmx5+EucZCPH84W5Hp/P5N6oQN0yr6/5d9h41/WBNXk+hsCUTQIgDHYEQ54OIBUJcMDIGOYR4N7wKPxWXGya1wSSvbUFcldgsaVQYCd7z9PB7FrVX1h9y/ctr87b5UlqoVA3Lk/P3PZhM2x8/QVvgJCHE06q0Mkwr1RY5fnjj8bZfpLtpY3FC/+o3CPF4SKqlzjU3tNal+FCbpuZxDazVIcTzBm+VkI6rCEU21TRMy7PqLe3fxQ+rJc7gcDp76YB4gRAHOgIhzgcRC4R4gLxRPUzfK0zRCSefTV/5waX0vPF6589kDPI8CfGg8ibNStOw8Pppx/G9k6wQr9U/qpL76GeMTYe7EXYLcV5FZlY2iVQZVv/tweH0lub6H7L8vTTTaufiJm4hzhIASU8ImdUGTbnOPeMzajzImtUGDf/Y+1oMDNnvu0whbVbtXuab51uxrtpJEwjxeEhyErFi2N9fhc+iKkCI5wuzyhbi23faYnh8xr5eqbzRsYOIEFedtIV4UvsjAQhxoCcQ4nwQsUCIB8gZG6boxtvvo/byCj30WIU+e/pGai+vEBGEeJy4xVhxkt3b14EnWFV8yOQJ8Thu8Erlpkd2jk3LlUq9cAtx9yZ6PMEQV69W0E3FWF+iXJxoUakc7gHOrDZo31KTdu9vxrIKwy2FeA/Gab5eUYW4UwU+PtP2VIGLth+KAqtHqSqrMq69udUR4QND65ucqrjCRycgxOMhqy11VAVCPH+wrk833N79NdX3dciyEGet6CtOyLk38z8zqFAokSUgxIGOQIjzQcQCId4n9SPv08dPOYeWV1Y6X/vmWZP09POvEBGEeFywhGlxsveNl796QdUbZ9bvFufS0Ch9fGXgFuI88VmuWLbUdy1P37FHzfcxr7A25YxLDKm6dDqKEO9VBc7bQCvJz2ySK1NE4U0QqDihqRMQ4vGRxZY6qgIhnk8WS1ZnDwj3pL1fhKZ9nL3IshCv1e3nF6foZvN870KlOFGxUCJLQIgDHYEQ54OIBUK8T5594TU67cxxz9eKV95Ad93/CBER1d9vJU6jtULHmytSflZaTF/TffMzONymP73a+9/96dUWPfBIq+/fS5uf37N+oz99TZvePJT+MSXNe8datLK6/hlxvwaDw2264Wdteu3vLSps6n7fH32ynfrxA5uf/ZwtVuMaw6xevT+/J93feWWV6L1j4f6Nf3w7PP18i55+vvvPLplMdozzzqlpj6f6+y1681D3+z5/Y/rHpTvHmyvUaGX7XkEWbx5q0T2/sa/XP/t5KxfX7LQ4cqxFq2ty7qeBulwy2X29Koyqcc3isbyyRkc/VPsYdeNPr7LvpaavwescFx9aK2ThXgFoxrsftKS5N91AxAIh3iePP/MifeucKzxfG9tyC9121wMpHVE2s3P3CvMG6DgmvTKVN6prVH5qld6orhER0auvrTHf93t/vdLnOyGysnXbMvM9evW1tVi+/3N/WqMNLjl6+dXLWn7uf76ffQ5zXqfyU6ud33PrtuXOZyCpsD5bKn2u3nnXfs22blumBx9ZTftwEARBkBTDuob+fL861yxEXjYwCiVUun9BEARBshMI8T557sXX6NQzNnm+NnTZtk6FeLO9mjgrq2u0vLIm5Welxet/774R3r13OfXjAtFpLa/S2lrvz8iLL7Ml4v5FvPeq8OtS93u0YbQd68+oHVql3z2+Qi++vJL679ts2+O2tRzu37DG8ujlbTryfnq/x4svr9AtdyzTtpuX6Q/PqvHaguRYXlmjldVs3yuA7BHkXgFknyPvr9LuvesT8LfcsZzq9TMIq2tr1A55rwD684dnVzxSfHKL+mNBJ3CvAHSk1V6V5t50AxELhHifHDn6AZ1w8tlkNdeXI5x6xiZ69oU/ExF6iMdJxbB77c4uNGmxpFY/bBAedw/xXvh7tRZG1NkYFNg9xP3vUdY/n1E31VwsWan02wSgVkcPcaAn6CEOdCXrPcTTRNX9kbIAeogDHUEPcT6IWCDEA2Tg4q20cNu91F5eofsfeoJO+naxs8mmjEGeFyEOskVQIV6r2xv3bJ5v0Y49Tewkryjliv1wkof3J6oQByBNIMSBjkCIA12BEAc6AiEOdARCnA8iFgjxADl4qE7fH5qmE04+m047c5yMV//W+TMZgxxCHOhIGCEOgEpAiAMdgRAHOgIhDnQFQhzoCIQ40BEIcT6IWCDEBSNjkEOIAx2BEAe6AiEOdARCHOgIhDjQFQhxoCMQ4kBHIMT5IGKBEBeMjEEOIQ50BEIc6AqEONARCHGgIxDiQFcgxIGOQIgDHYEQ54OIBUJcMDIGOYQ40BEIcaArEOJARyDEgY5AiANdgRAHOgIhDnQEQpwPIhYIccHIGOQQ4kBHIMSBrkCIAx2BEAc6AiEOdAVCHOgIhDjQEQhxPohYIMQFI2OQQ4gDHYEQB7oCIQ50BEIc6AiEONAVCHGgIxDiQEcgxPkgYoEQF4yMQQ4hDnQEQhzoCoQ40BEIcaAjEOJAVyDEgY5AiAMdgRDng4gFQlwwMgY5hDjQEQhxoCsQ4kBHIMSBjkCIA12BEAc6AiEOdARCnA8iFghxwcgY5BDiQEcgxIGuQIgDHYEQBzoCIQ50BUIc6AiEONARCHE+iFggxAUjY5BDiAMdgRAHugIhDnQEQhzoCIQ40BUIcaAjEOJARyDE+SBigRAXjIxBDiEOdARCHOgKhDjQEQhxoCMQ4kBXIMSBjkCIAx2BEOeDiAVCXDAyBjmEONARCHGgKxDiQEcgxIGOQIgDXYEQBzoCIQ50BEKcDyIWCHHByBjkEOJARyDEga5AiAMdgRAHOgIhDnQFQhzoCIQ40BEIcT6IWCDEBSNjkEOIAx2BEAe6AiEOdARCHOgIhDjQFQhxoCMQ4kBHIMT5IGKBEBeMjEEOIQ50BEIc6AqEONARCHGgIxDiQFcgxIGOQIgDHYEQ54OIBUJcMDIGOYQ40BEIcaArEOJARyDEgY5AiANdgRAHOgIhDnQEQpwPIhYIcQRBEARBEARBEARBEARBECQXgRBHEARBEARBEARBEARBEARBchEIcQRBEARBEARBEARBEARBECQXgRBHEARBEARBEARBEARBEARBchEIcQVz/0NP0MdPOYceeORpz9d/8/Af6Mvf/zF94Tsj9MMLt9Df3zyU0hEiSHduuP1e+szXh+mTX76AilfeQMcbFhERvVE9TN8rTNEJJ59NX/nBpfS88XrKR4og6znw+2fp1DM20b9+8Vw6Y8MU/eWNg50/441pBEk75t+qdMaGafrXL55LX/zeKB0oP9f1d/7w3Cv0Tyf+0DOmESTt9Dqv3n7XA/Tprw3Rv3/pfLr6+jtpbW0txSNFkPX0ule45qa76AvfGaEvfGeENk3fRA2rleKRIsh63n3vA9owdh194kvn04nfuJBu3n1/588ee+pPdMp3R+h/f+FsGrh4K73z7tEUjxRB1rO6ukY/Wfg5/cdpG+iTX7mARjf/lI43mkREdOzDBl1y1Q30yS9fQJ/5+jDdcPu9KR8tonsgxBXLz375G9owdh19+9wrPEL88Dvv0Se+dD79o3aYiIh27XuQfjA8k9ZhIognv/3dM/Sl7/+YDr/zHh1vWDRw8VZauM2+QJ2xYYpuvP0+ai+v0EOPVeizp2+k9vJKykeMIESH3j5C/3bqefS88Tqtrq7RdbfsozM3biGi3mMaQdLOV88cozv2/pZWV9fosadeoI+fco5HwrRabfrG4AR9+mtDEOKIMul1Xn3y2ZfolO+O0ltvv0tHjn5A3ytM0Quv/DXlI0aQ3vcKDzzyNH3zrElqWC1aWVmljZPb6fpb7075iBHEzshVN9IV87dRu71M/6gdpk99tUCVP/2Z3j92nD755Qvo8WdepPbyCv1k4ed00eXXp324CEJERHfd/wh9+9wr6L2jx+jD4xb9YHimI76nrruDLr5igaxmi2pvvUOf+fowPfPHV1M+YkTnQIgrlldef4PW1tZo4KKtHiH+zB9fpa/8cKzz/6/99U36j9M2pHGICNKVF1/9Kz334mud/7/trgdodOqnVD/yPn38lHNoeWVdgH/zrEl6+vlX0jhMBPHk0NtH6MFHn+n8/8uv/Z0+e/pGIuKPaQRJO8srK3TX/Y94zqv/dup59Eb1cOf/r7/1btq+8276yg/HIMQRZdLrvLpp+ib65a8eSenIEISfXvcKC7fdS5uvvaPzZ7v3P0QXXb4g/RgRhJWHHqtQ/cj7nf8/Z2SO7v71Y/Sbh/9AZ18y2/n6B8eO0///f8+iVqudxmEiiCd/fMmkV15/o/P/t+xZpB9P30xERAfKz1H1rXc6f1a49Drat/io9GNEshMIcUXjF+LHPmzQZ74+3Dk5/PSOX9HIVTemdXgI0jPnjs7TXfc/Qs++8Bqddua458+KV95Ad93/SDoHhiA9suPOJe551RnTCKJaXnj5L/TZ0zfS6qrdXuJv/3iLTjtznFqtNoQ4onTc59WvD1xGN+++n74xOEEn//cltPCze9I9OAThxH2v8MwfX6Wv/OBSOvr+h9RuL9N5m67BvQKiXFZX1+jZF16jE79xIb158G366R2/oultuzx/5zNfH0Y7VkS5VN96h7551iT95uE/dP3ZsQ8bdOI3LiTz77UUjgzJSiDEFY1fiBMR3ffbMv2vzw3QJ79yAX329I30RhUXLUS9LPzsHhq4aCutrq7R48+8SN865wrPn49tuYVuu+uBlI4OQdj5/R9eoJP/+xI6/M57XX/mHtMIolLePPg2ffF7o/TEM0bnaz/aeDU99dzLREQQ4oiy8Z9XP/+ti2nosm3UsFr0zrtH6dQzNtFDj1VSPkoE8YZ1rzA5eyt97KRB+vgp59L3h6ZRZYsolQ+OHad/+dyP6ISTz6a7f/0YERFde/Nemr3xF56/d9K3i/Tya39P4xARhJlvnXMF/dOJP6Srrrm96xnMarbo3NE5TJ4jwoEQVzR+If7K62/QSd8udpaIPPDIH+iU747SyspqWoeIIJ6sra3R9LZddM7IXGfji+defI1OPWOT5+8NXbYN1TOIUrn/oSfo1DM2dU0yssY0gqiSV81/0Be+M0KPPP5852v3/Ob3NH71js7/Q4gjqoV3Xv36wGWezWFvvP0+TysKBEk7rHuFO+8p0VnFWTresGh5ZYWmt+32nIMRRIWsra3RX944SKedOU4PPPI03bTrV3TF3M88f+ffv3Q+KsQR5VI/8j5dctUNnvuB948dpzM2TNH/7Nyf4pEhWQmEuKLxC/Hb7nqALrnqBs/f+djnB+jg4XdlHxqCMLP1+jvp4isWPBtmHjn6AZ1w8tlkNdc3ezv1jE307At/TuMQEaQrB37/LJ125ji98+7Rrj9jjWkEUSH/qB2mL3xnhJ594TXP1zeMb6NPfbVAn/7aEH36a0P0L5/7EX3qqwWPNEeQNMM7rw5dtq1TvUhEdMPt99KW7XtkHx6CMMO7Vyhcep2n9/1zL75GJ//3JZKPDkG6s7a2Rnvv/x0db1idry387B66Yu5n9NvfPUM/GJ7pfP3t+nt0wslnU7u9nMahIognjz31J08xx9PPv9IpsGu22vS9whTt2vdgWoeHZCwQ4orGL8TLT79In//WxXTk6AdERPTEMwZ98isXeDbVQpC08vTzr9BpZ44zx+PAxVtp4bZ7qb28Qvc/9ASd9O0ixi2iRI5+8CF99vSN9ObBt7v+rNeYRpC088MLt9CvDzzV9++hQhxRKb3Oqw8++gx9feAyOvr+h/TOu0fplO+OYiIHUSK97hWuvXkvbRjf1pngue6WfbRh7DrZh4ggzPz3+VfRdbfso5WVVTpy9AP6r3MupzvvKdGHxy36j9M20OPPvEjt9jJddc3t2DgeUSbX3HQXnVWcpWMfNqjdXqbJ2VvposuvJ6KPJnXmb0v5CJEsBUJcsXzzrEn62EmD9M//eSb9r88N0MdOGqQHHrE3Ebh59/10yndH6AvfGaHTz76cnvnjqykfLYLY+fH0zfT/ffZM+thJgx2+edYkEREdPFSn7w9N0wknn02nnTlOxqt/S/dgEeSj3P3rx+ifTvyhZ9x+7KRBeu/osZ5jGkHSzJsH32aOW1a/ZQhxRKX0O69ec9Nd9KmvFujEb1xI1996d4pHiiDr6XWvcLzRpEtnbqb/++0ifeE7I3Tu6DxW7yLK5O9vHqKBi7fSv3/pfPrM14dpetvuTrvVJ599iU757ij97y+cTeeOztN7R4+lfLQIYsdqtmj86h30f766gT75lQvogkuv7ezb8Pn/uqjjyBywmgwRCYQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiAIgiAIgiAIgiC5CIQ4giAIgiAIgiAIgiAIgiAIkotAiCMIgiAIgiCIhFjNFn3hOyN0x97fdr524+330Ze//2Nqt5dTPDIEQRAEQRAEyU8gxBEEQRAEQRBEUp567mX6xJfOp/qR9+ng4Xfp46ecS8+9+Frah4UgCIIgCIIguQmEOIIgCIIgCIJIzOTsrTS25Ra66PIFmt62K+3DQRAEQRAEQZBcBUIcQRAEQRAEQSTmg2PH6cRvXEifPX0jHW9YaR8OgiAIgiAIguQqEOIIgiAIgiAIIjH/qB2mf//S+fRvp55Hbx58O+3DQRAEQRAEQZBcBUIcQRAEQRAEQSRm4KKt9D8799NPbvh/7dgrTkMBFEXRaYFDYcBh8CgwCBgFE8FVNjhCDcExj6ZJDV9zcQyhT+y15FFH78e5untY+g4AAKQI4gAAcCCr9WZOL+/n++d3Pj6/5uTidlbrzdK3AAAgQxAHAIAD2O72c3R2PS+v7//b0/PbHJ/fzHa3X/AZAAB0COIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJAjiAAAAAAAkCOIAAAAAACQI4gAAAAAAJPwB5g4q8O1fvTQAAAAASUVORK5CYII=", + "text/html": [ + "<div> <div id=\"74762f19-ee49-423b-ae1f-8d69b36caedd\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"74762f19-ee49-423b-ae1f-8d69b36caedd\")) { Plotly.newPlot( \"74762f19-ee49-423b-ae1f-8d69b36caedd\", [{\"hovertemplate\":\"x=%{x}<br>index=%{y}<extra></extra>\",\"legendgroup\":\"\",\"marker\":{\"color\":\"#636efa\",\"symbol\":\"circle\"},\"mode\":\"markers\",\"name\":\"\",\"orientation\":\"h\",\"showlegend\":false,\"type\":\"scatter\",\"x\":[20.13,21.33,22.18,18.68,29.01,27.51,22.59,21.6,22.26,23.04,20.06,19.31,24.97,18.82,28.66,27.45,19.57,21.15,23.03,21.55,19.84,23.41,25.21,25.21,28.19,21.9,20.01,23.23,22.86,27.28,21.71,21.93,23.91,22.49,20.57,24.23,20.95,24.6,21.79,19.22,19.38,23.06,21.5,18.59,19.46,21.82,20.56,21.78,19.95,24.38,18.67,21.71,26.02,24.74,20.43,19.1,31.24,27.41,22.22,19.59,20.9,29.0,20.9,20.32,31.83,19.88,24.87,28.73,22.34,25.43,23.5,26.75,23.25,19.92,21.95,23.04,23.05,22.49,31.14,21.63,21.55,21.95,21.36,18.92,24.75,22.83,20.45,22.22,20.3,22.28,20.01,30.63,24.3,19.26,24.89,24.41,23.16,22.53,19.95,21.32,22.72,21.29,23.87,22.47,27.71,29.66,21.27,21.29,23.66,21.16,21.22,20.6,22.85,23.25,31.91,18.72,22.43,20.98,21.19,21.61,20.65,22.71,20.32,25.39,19.05,19.83,21.09,23.14,24.38,31.23,23.04,25.21,24.43,27.47,19.59,27.28,25.72,19.22,22.75,22.98,20.51,27.39,19.57,24.85,23.18,20.43,29.31,29.41,20.04,28.8,26.02,21.1,22.06,28.98,29.96,24.0,19.81,19.81,22.58,20.43,20.2,21.22,24.52,20.83,27.4,20.57,30.11,27.7,21.56,31.58,24.53,18.73,25.01,25.06,24.15,22.83,23.05,27.66,22.46,21.1,23.38,21.54,20.86,23.51,22.13,25.14,24.44,25.39,22.18,27.68,22.72,31.83,20.95,28.19,22.26,24.91,23.87,25.34,19.57,22.76,22.77,24.87,20.93,25.53,20.38,26.7,19.26,24.65,31.96,20.95,20.61,25.73,24.3,20.14,27.11,27.75,22.22,22.53,27.73,19.07,25.81,18.62,23.93,24.96,28.34,25.74,25.64,22.26,25.01,21.22,31.05,24.93,21.3,26.09,24.46,22.95,23.58,25.51,20.66,30.61,25.05,22.72,23.45,22.47,25.35,23.18,24.3,25.9,22.78,25.97,22.44,21.53,25.14,21.91,22.14,31.69,22.64,23.56,22.98,21.26,21.38,28.4,28.71,25.79,22.59,29.4,21.97,23.56,25.18,21.29,22.46,24.16,28.08,23.3,27.28,23.99,22.1,20.42,26.83,19.92,19.91,18.67,21.07,21.48,28.98,18.92,21.9,31.55,20.07,24.24,21.33,20.68,25.46,25.39,21.13,20.06,20.93,24.09,23.59,19.13,27.43,21.56,20.7,23.22,23.73,20.13,23.22,25.96,29.41,20.95,23.53,19.97,30.12,19.06,20.17,24.74,22.95,25.07,26.77,21.41,23.63,22.76,25.55,23.3,22.86,19.33,23.53,27.23,21.15,26.72,26.12,25.65,20.69,25.71,20.19,21.77,24.24,23.62,23.12,22.2,27.77,21.96,19.03,19.47,22.32,30.86,27.47,27.88,20.93,21.33,21.21,20.43,25.35,31.86,22.83,20.2,20.44,24.69,21.48,20.02,20.93,21.25,22.86,25.28,23.18,25.94,23.24,21.06,30.36,24.67,25.71,28.73,27.77,26.47,23.4,28.69,25.3,21.29,23.24,26.19,25.72,22.89,24.53,21.79,27.13,21.87,24.09,22.98,21.3,25.28,26.17,22.53,26.7,24.89,25.5,18.64,23.83,21.63,20.51,24.11,23.09,24.44,26.95,30.05,25.28,24.75,23.24,24.11,28.4,27.75,24.91,21.5,31.48,26.88,22.98,26.19,25.97,26.44,23.22,24.16,25.0,23.76,23.59,22.79,26.77,22.99,26.06,22.54,23.45,21.84,30.48,22.75,23.22,23.24,24.15,22.14,29.58,30.79,20.97,28.98,20.47,29.72,24.28,27.96,26.58,19.36,27.33,23.87,30.81,26.17,27.63,20.71,19.6,25.09,30.46,18.5,25.47,20.39,22.54,23.03,23.91,19.59,19.06,19.46,31.61,20.93,23.91,26.76,30.09,20.66,21.87,24.88,26.37,27.73,19.77,20.7,31.64,26.12,24.6,22.49,24.38,22.94,25.39,21.82,21.56,25.47,24.09,22.13,19.77,20.44,23.63,20.79,23.71,22.1,21.09,20.31,30.44,28.47,28.54,27.4,29.68,21.25,24.16,21.9,27.55,18.9,24.65,24.74,23.14,24.84,26.98,23.42,26.02,26.49,24.0,22.14,22.83,20.83,24.65,20.02,20.96,20.79,26.17,20.83,24.69,20.68,22.06,25.0,23.19,22.37,23.23,21.88,29.24,21.79,24.02,30.48,23.18,30.97,25.55,21.56,23.19,29.6,26.02,25.72,23.73,22.32,29.76,31.4,24.16,25.99,31.95,26.77,25.4,19.75,22.32,23.56,26.21,24.39,27.94,28.68,23.12,27.15,26.21,24.81,31.19,25.28,28.22,19.65,22.53,20.86,23.45,25.09,21.82,28.72,28.68,22.2,22.83,24.87,25.35,24.89,24.15,23.4,25.68,23.8,25.14,21.77,20.59,25.01,30.12,19.71,26.42,22.22,27.39,26.02,23.05,24.25,21.97,25.15,26.67,22.3,24.11,28.39,23.98,23.99,26.86,28.08,30.86,22.83,27.15,25.76,29.66,26.81,22.09,23.95,24.3,27.45,24.48,28.73,25.25,25.18,24.74,28.57,30.4,26.88,24.5,27.1,30.64,28.66,26.87,27.08,25.39,19.94,21.21,28.62,30.99,20.56,23.01,31.64,25.39,28.25,29.68,21.21,21.33,22.36,24.65,22.1,19.04,22.86,23.79,21.63,20.06,23.24,24.14,23.24,18.59,24.74,20.17,21.61,27.29,22.2,24.14,24.38,30.02,30.73,23.23,23.66,21.63,22.86,23.83,30.75,25.47,21.56,19.11,27.99,21.51,29.17,28.08,28.04,23.95,26.44,29.55,24.91,22.31,27.33,19.57,20.32,31.16,23.24,29.47,21.6,24.16,21.09,29.33,29.27,22.67,24.16,25.72,23.5,26.29,28.04,27.53,28.51,25.1,23.3,22.94,23.83,21.71,24.14,26.98,24.77,23.3,22.06,21.64,25.0,26.5,21.5,25.97,31.67,27.33,21.79,23.92,26.36,24.96,21.15,25.18,32.0,28.08,27.06,22.06,28.99,24.28,26.75,24.15,23.73,27.33,26.21,29.76,22.22,25.3,25.05,21.63,26.6,23.03,30.4,23.04,25.61,23.35,22.49,26.07,26.17,21.77,21.46,22.4,25.1,20.28,22.2,29.98,26.86,26.47,24.67,27.17,25.3,31.57,27.21,25.34,26.72,25.59,22.2,25.25,24.22,26.36,28.4,23.51,26.56,28.08,27.33,26.67,25.45,28.05,27.08,27.68,28.08,22.65,22.27,26.49,24.02,31.97,29.33,24.03,23.73,31.8,26.06,27.35,24.53,22.79,28.51,19.59,28.72,21.14,23.14,25.05,26.17,24.5,28.25,26.12,22.86,25.95,22.57,26.39,18.51,24.69,24.75,23.53,20.07,22.77,27.39],\"xaxis\":\"x\",\"y\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815],\"yaxis\":\"y\"}], {\"legend\":{\"tracegroupgap\":0},\"margin\":{\"t\":60},\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"xaxis\":{\"anchor\":\"y\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"x\"}},\"yaxis\":{\"anchor\":\"x\",\"domain\":[0.0,1.0],\"title\":{\"text\":\"index\"}}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('74762f19-ee49-423b-ae1f-8d69b36caedd');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "px.scatter(mi_df.Age, mi_df.BMI)" + ] + }, + { + "cell_type": "markdown", + "id": "equal-water", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "### Much more features\n", + "\n", + "- Virtual environment support: venv and conda environment\n", + "- Presentations (Reveal.js and Rise)\n", + "- ..." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:dev]", + "language": "python", + "name": "conda-env-dev-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}