From cf01a03839ed33af1d5f285425fca5ac1885ad72 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Bertrand=20N=C3=A9ron?= <bneron@pasteur.fr> Date: Thu, 17 Oct 2024 14:22:01 +0200 Subject: [PATCH] fix path and pandas_cours --- notebooks/Courses/pandas_cours.ipynb | 710 +++++++++++++-------------- 1 file changed, 353 insertions(+), 357 deletions(-) diff --git a/notebooks/Courses/pandas_cours.ipynb b/notebooks/Courses/pandas_cours.ipynb index f9078e2..7fc46ff 100644 --- a/notebooks/Courses/pandas_cours.ipynb +++ b/notebooks/Courses/pandas_cours.ipynb @@ -3,12 +3,14 @@ { "cell_type": "markdown", "id": "horizontal-listening", - "metadata": {}, + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, "source": [ "# <center><b>Course</b></center>\n", "\n", "<div style=\"text-align:center\">\n", - " <img src=\"images/pandas_logo.svg\" width=\"600px\">\n", + " <img src=\"../images/pandas_logo.svg\" width=\"600px\">\n", " <div>\n", " Bertrand Néron, François Laurent, Etienne Kornobis\n", " <br />\n", @@ -351,7 +353,7 @@ { "data": { "text/plain": [ - "2" + "np.int64(2)" ] }, "execution_count": 11, @@ -372,7 +374,7 @@ { "data": { "text/plain": [ - "2" + "np.int64(2)" ] }, "execution_count": 12, @@ -448,7 +450,7 @@ { "data": { "text/plain": [ - "2" + "np.int64(2)" ] }, "execution_count": 15, @@ -480,7 +482,7 @@ { "data": { "text/plain": [ - "1" + "np.int64(1)" ] }, "execution_count": 16, @@ -618,7 +620,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "id": "least-cruise", "metadata": {}, "outputs": [ @@ -631,7 +633,7 @@ "dtype: int64" ] }, - "execution_count": 20, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -650,7 +652,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "id": "better-blame", "metadata": {}, "outputs": [ @@ -663,7 +665,7 @@ "dtype: int64" ] }, - "execution_count": 21, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -694,7 +696,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "id": "regulated-ready", "metadata": {}, "outputs": [ @@ -747,7 +749,7 @@ "b 4 5 6" ] }, - "execution_count": 22, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -762,7 +764,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "id": "stable-discharge", "metadata": {}, "outputs": [ @@ -772,7 +774,7 @@ "Index(['a', 'b'], dtype='object')" ] }, - "execution_count": 23, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -783,7 +785,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "id": "configured-coral", "metadata": {}, "outputs": [ @@ -793,7 +795,7 @@ "Index(['A', 'B', 'C'], dtype='object')" ] }, - "execution_count": 24, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -812,7 +814,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "id": "facial-curve", "metadata": {}, "outputs": [ @@ -879,7 +881,7 @@ "3 9 10 11" ] }, - "execution_count": 25, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -899,7 +901,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "id": "suspected-nirvana", "metadata": {}, "outputs": [ @@ -955,7 +957,7 @@ "2 3 6" ] }, - "execution_count": 26, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -990,7 +992,7 @@ }, "outputs": [], "source": [ - "titanic = pd.read_csv(\"data/titanic.csv\")" + "titanic = pd.read_csv(\"../data/titanic.csv\")" ] }, { @@ -1005,7 +1007,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 29, "id": "bridal-development", "metadata": {}, "outputs": [ @@ -1022,7 +1024,7 @@ } ], "source": [ - "! head -5 data/bar_data.tsv" + "! head -5 ../data/bar_data.tsv" ] }, { @@ -1035,7 +1037,7 @@ }, { "cell_type": "code", - "execution_count": 194, + "execution_count": 30, "id": "listed-framework", "metadata": {}, "outputs": [ @@ -1115,13 +1117,13 @@ "4 9.080359 5.629192 18.443504 4.268572" ] }, - "execution_count": 194, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "bar = pd.read_csv(\"data/bar_data.tsv\", sep=\"\\t\", comment=\"#\")\n", + "bar = pd.read_csv(\"../data/bar_data.tsv\", sep=\"\\t\", comment=\"#\")\n", "bar.head()" ] }, @@ -1135,7 +1137,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 31, "id": "allied-artist", "metadata": {}, "outputs": [ @@ -1152,12 +1154,12 @@ } ], "source": [ - "! head -5 data/data_for_plt.csv" + "! head -5 ../data/data_for_plt.csv" ] }, { "cell_type": "code", - "execution_count": 196, + "execution_count": 32, "id": "limiting-tokyo", "metadata": {}, "outputs": [ @@ -1225,13 +1227,13 @@ "2 2 2.11 383.40 437.458982 15.040385" ] }, - "execution_count": 196, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data = pd.read_csv(\"data/data_for_plt.csv\", sep=\"\\t\")\n", + "data = pd.read_csv(\"../data/data_for_plt.csv\", sep=\"\\t\")\n", "data.head(3)" ] }, @@ -1246,7 +1248,7 @@ }, { "cell_type": "code", - "execution_count": 197, + "execution_count": 33, "id": "crucial-flight", "metadata": {}, "outputs": [ @@ -1326,13 +1328,13 @@ "4 -1.37 361.37 448.864769 5.732690" ] }, - "execution_count": 197, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data = pd.read_csv(\"data/data_for_plt.csv\", sep=\"\\t\", index_col=0)\n", + "data = pd.read_csv(\"../data/data_for_plt.csv\", sep=\"\\t\", index_col=0)\n", "data.head()" ] }, @@ -1348,7 +1350,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 34, "id": "oriented-bleeding", "metadata": {}, "outputs": [ @@ -1436,13 +1438,13 @@ "4 -1.37 361.37 448.864769 5.732690" ] }, - "execution_count": 30, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data = pd.read_csv(\"data/no_header.tsv\", sep=\"\\t\", index_col=0, header=None)\n", + "data = pd.read_csv(\"../data/no_header.tsv\", sep=\"\\t\", index_col=0, header=None)\n", "data.head()" ] }, @@ -1456,7 +1458,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 35, "id": "competent-negative", "metadata": {}, "outputs": [ @@ -1468,7 +1470,7 @@ " [3, 6]])" ] }, - "execution_count": 31, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -1479,7 +1481,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 36, "id": "fantastic-monday", "metadata": {}, "outputs": [ @@ -1489,7 +1491,7 @@ "[[1, 4], [2, 5], [3, 6]]" ] }, - "execution_count": 32, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -1510,12 +1512,12 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 38, "id": "simple-luxury", "metadata": {}, "outputs": [], "source": [ - "titanic = pd.read_csv(\"data/titanic.csv\")" + "titanic = pd.read_csv(\"../data/titanic.csv\")" ] }, { @@ -1528,7 +1530,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 39, "id": "wound-asbestos", "metadata": {}, "outputs": [ @@ -1557,7 +1559,7 @@ }, { "cell_type": "code", - "execution_count": 203, + "execution_count": 40, "id": "worthy-bridge", "metadata": {}, "outputs": [ @@ -1699,7 +1701,7 @@ "4 0 373450 8.0500 NaN S " ] }, - "execution_count": 203, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -1710,7 +1712,7 @@ }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 41, "id": "absent-authorization", "metadata": {}, "outputs": [ @@ -1798,7 +1800,7 @@ "1 0 PC 17599 71.2833 C85 C " ] }, - "execution_count": 204, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -1817,7 +1819,7 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 42, "id": "aboriginal-smith", "metadata": {}, "outputs": [ @@ -1901,7 +1903,7 @@ "890 0 370376 7.75 NaN Q " ] }, - "execution_count": 205, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -1920,7 +1922,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 43, "id": "sunset-ballot", "metadata": {}, "outputs": [ @@ -2061,7 +2063,7 @@ "max 6.000000 512.329200 " ] }, - "execution_count": 39, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -2073,7 +2075,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 44, "id": "whole-township", "metadata": {}, "outputs": [ @@ -2100,34 +2102,29 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 45, "id": "furnished-dealing", "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_6604/502188208.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", - " titanic.median()\n" + "ename": "TypeError", + "evalue": "Cannot convert [['Braund, Mr. Owen Harris'\n 'Cumings, Mrs. John Bradley (Florence Briggs Thayer)'\n 'Heikkinen, Miss. Laina' ... 'Johnston, Miss. Catherine Helen \"Carrie\"'\n 'Behr, Mr. Karl Howell' 'Dooley, Mr. Patrick']\n ['male' 'female' 'female' ... 'female' 'male' 'male']\n ['A/5 21171' 'PC 17599' 'STON/O2. 3101282' ... 'W./C. 6607' '111369'\n '370376']\n [nan 'C85' nan ... nan 'C148' nan]\n ['S' 'C' 'S' ... 'S' 'C' 'Q']] to numeric", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[45], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtitanic\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmedian\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/frame.py:11706\u001b[0m, in \u001b[0;36mDataFrame.median\u001b[0;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[1;32m 11698\u001b[0m \u001b[38;5;129m@doc\u001b[39m(make_doc(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmedian\u001b[39m\u001b[38;5;124m\"\u001b[39m, ndim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m))\n\u001b[1;32m 11699\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmedian\u001b[39m(\n\u001b[1;32m 11700\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 11704\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 11705\u001b[0m ):\n\u001b[0;32m> 11706\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmedian\u001b[49m\u001b[43m(\u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 11707\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(result, Series):\n\u001b[1;32m 11708\u001b[0m result \u001b[38;5;241m=\u001b[39m result\u001b[38;5;241m.\u001b[39m__finalize__(\u001b[38;5;28mself\u001b[39m, method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmedian\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/generic.py:12431\u001b[0m, in \u001b[0;36mNDFrame.median\u001b[0;34m(self, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[1;32m 12424\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmedian\u001b[39m(\n\u001b[1;32m 12425\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 12426\u001b[0m axis: Axis \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 12429\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 12430\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Series \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mfloat\u001b[39m:\n\u001b[0;32m> 12431\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_stat_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 12432\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmedian\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnanops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnanmedian\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 12433\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/generic.py:12377\u001b[0m, in \u001b[0;36mNDFrame._stat_function\u001b[0;34m(self, name, func, axis, skipna, numeric_only, **kwargs)\u001b[0m\n\u001b[1;32m 12373\u001b[0m nv\u001b[38;5;241m.\u001b[39mvalidate_func(name, (), kwargs)\n\u001b[1;32m 12375\u001b[0m validate_bool_kwarg(skipna, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mskipna\u001b[39m\u001b[38;5;124m\"\u001b[39m, none_allowed\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m> 12377\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_reduce\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 12378\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnumeric_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnumeric_only\u001b[49m\n\u001b[1;32m 12379\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/frame.py:11562\u001b[0m, in \u001b[0;36mDataFrame._reduce\u001b[0;34m(self, op, name, axis, skipna, numeric_only, filter_type, **kwds)\u001b[0m\n\u001b[1;32m 11558\u001b[0m df \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39mT\n\u001b[1;32m 11560\u001b[0m \u001b[38;5;66;03m# After possibly _get_data and transposing, we are now in the\u001b[39;00m\n\u001b[1;32m 11561\u001b[0m \u001b[38;5;66;03m# simple case where we can use BlockManager.reduce\u001b[39;00m\n\u001b[0;32m> 11562\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mdf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreduce\u001b[49m\u001b[43m(\u001b[49m\u001b[43mblk_func\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 11563\u001b[0m out \u001b[38;5;241m=\u001b[39m df\u001b[38;5;241m.\u001b[39m_constructor_from_mgr(res, axes\u001b[38;5;241m=\u001b[39mres\u001b[38;5;241m.\u001b[39maxes)\u001b[38;5;241m.\u001b[39miloc[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 11564\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m out_dtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m out\u001b[38;5;241m.\u001b[39mdtype \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mboolean\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/internals/managers.py:1500\u001b[0m, in \u001b[0;36mBlockManager.reduce\u001b[0;34m(self, func)\u001b[0m\n\u001b[1;32m 1498\u001b[0m res_blocks: \u001b[38;5;28mlist\u001b[39m[Block] \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m blk \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mblocks:\n\u001b[0;32m-> 1500\u001b[0m nbs \u001b[38;5;241m=\u001b[39m \u001b[43mblk\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreduce\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1501\u001b[0m res_blocks\u001b[38;5;241m.\u001b[39mextend(nbs)\n\u001b[1;32m 1503\u001b[0m index \u001b[38;5;241m=\u001b[39m Index([\u001b[38;5;28;01mNone\u001b[39;00m]) \u001b[38;5;66;03m# placeholder\u001b[39;00m\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/internals/blocks.py:404\u001b[0m, in \u001b[0;36mBlock.reduce\u001b[0;34m(self, func)\u001b[0m\n\u001b[1;32m 398\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[1;32m 399\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mreduce\u001b[39m(\u001b[38;5;28mself\u001b[39m, func) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mlist\u001b[39m[Block]:\n\u001b[1;32m 400\u001b[0m \u001b[38;5;66;03m# We will apply the function and reshape the result into a single-row\u001b[39;00m\n\u001b[1;32m 401\u001b[0m \u001b[38;5;66;03m# Block with the same mgr_locs; squeezing will be done at a higher level\u001b[39;00m\n\u001b[1;32m 402\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m\n\u001b[0;32m--> 404\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 406\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvalues\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 407\u001b[0m res_values \u001b[38;5;241m=\u001b[39m result\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/frame.py:11481\u001b[0m, in \u001b[0;36mDataFrame._reduce.<locals>.blk_func\u001b[0;34m(values, axis)\u001b[0m\n\u001b[1;32m 11479\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m np\u001b[38;5;241m.\u001b[39marray([result])\n\u001b[1;32m 11480\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m> 11481\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mop\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/nanops.py:147\u001b[0m, in \u001b[0;36mbottleneck_switch.__call__.<locals>.f\u001b[0;34m(values, axis, skipna, **kwds)\u001b[0m\n\u001b[1;32m 145\u001b[0m result \u001b[38;5;241m=\u001b[39m alt(values, axis\u001b[38;5;241m=\u001b[39maxis, skipna\u001b[38;5;241m=\u001b[39mskipna, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[1;32m 146\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 147\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43malt\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskipna\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipna\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", + "File \u001b[0;32m~/Projects/Cours/scientific_python/sci_py312/lib/python3.11/site-packages/pandas/core/nanops.py:787\u001b[0m, in \u001b[0;36mnanmedian\u001b[0;34m(values, axis, skipna, mask)\u001b[0m\n\u001b[1;32m 785\u001b[0m inferred \u001b[38;5;241m=\u001b[39m lib\u001b[38;5;241m.\u001b[39minfer_dtype(values)\n\u001b[1;32m 786\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inferred \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstring\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmixed\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[0;32m--> 787\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot convert \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvalues\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m to numeric\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 788\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 789\u001b[0m values \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf8\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[0;31mTypeError\u001b[0m: Cannot convert [['Braund, Mr. Owen Harris'\n 'Cumings, Mrs. John Bradley (Florence Briggs Thayer)'\n 'Heikkinen, Miss. Laina' ... 'Johnston, Miss. Catherine Helen \"Carrie\"'\n 'Behr, Mr. Karl Howell' 'Dooley, Mr. Patrick']\n ['male' 'female' 'female' ... 'female' 'male' 'male']\n ['A/5 21171' 'PC 17599' 'STON/O2. 3101282' ... 'W./C. 6607' '111369'\n '370376']\n [nan 'C85' nan ... nan 'C148' nan]\n ['S' 'C' 'S' ... 'S' 'C' 'Q']] to numeric" ] - }, - { - "data": { - "text/plain": [ - "PassengerId 446.0000\n", - "Survived 0.0000\n", - "Pclass 3.0000\n", - "Age 28.0000\n", - "SibSp 0.0000\n", - "Parch 0.0000\n", - "Fare 14.4542\n", - "dtype: float64" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -2144,7 +2141,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 46, "id": "2a6e3ac6-90fe-4d2a-94c4-0b2a0030a892", "metadata": {}, "outputs": [ @@ -2161,7 +2158,7 @@ "dtype: float64" ] }, - "execution_count": 54, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -2180,7 +2177,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 47, "id": "further-circular", "metadata": {}, "outputs": [ @@ -2197,7 +2194,7 @@ "dtype: float64" ] }, - "execution_count": 55, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -2216,19 +2213,20 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 48, "id": "comprehensive-division", "metadata": {}, "outputs": [ { "data": { "text/plain": [ + "Sex\n", "male 577\n", "female 314\n", - "Name: Sex, dtype: int64" + "Name: count, dtype: int64" ] }, - "execution_count": 57, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -2247,17 +2245,17 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 49, "id": "universal-boutique", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "80.0" + "np.float64(80.0)" ] }, - "execution_count": 58, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -2268,17 +2266,17 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 50, "id": "several-principle", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.42" + "np.float64(0.42)" ] }, - "execution_count": 59, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -2305,7 +2303,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 51, "id": "received-editing", "metadata": {}, "outputs": [ @@ -2372,7 +2370,7 @@ "3 9 10 11" ] }, - "execution_count": 82, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -2385,7 +2383,7 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 52, "id": "classified-pittsburgh", "metadata": {}, "outputs": [ @@ -2395,7 +2393,7 @@ "Index(['A', 'B', 'Z'], dtype='object')" ] }, - "execution_count": 83, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -2409,7 +2407,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 53, "id": "exceptional-roberts", "metadata": {}, "outputs": [ @@ -2476,7 +2474,7 @@ "3 9 10 11" ] }, - "execution_count": 84, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -2496,7 +2494,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 54, "id": "surprised-burns", "metadata": {}, "outputs": [ @@ -2563,7 +2561,7 @@ "3 9 10 11" ] }, - "execution_count": 85, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -2582,7 +2580,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 55, "id": "breathing-yeast", "metadata": {}, "outputs": [ @@ -2649,7 +2647,7 @@ "e 9 10 11" ] }, - "execution_count": 86, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -2661,7 +2659,7 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 56, "id": "central-columbus", "metadata": {}, "outputs": [ @@ -2728,7 +2726,7 @@ "d 9 10 11" ] }, - "execution_count": 87, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -2747,7 +2745,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 57, "id": "outer-access", "metadata": {}, "outputs": [ @@ -2819,7 +2817,7 @@ "e 9 10 11 12" ] }, - "execution_count": 88, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -2839,7 +2837,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 58, "id": "respective-twins", "metadata": {}, "outputs": [ @@ -2931,7 +2929,7 @@ "e 9 10 11 12 9 10 11 12" ] }, - "execution_count": 89, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -2952,7 +2950,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 59, "id": "blank-ceiling", "metadata": {}, "outputs": [ @@ -3026,7 +3024,7 @@ "12 9 10 11" ] }, - "execution_count": 90, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -3045,7 +3043,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 60, "id": "checked-prototype", "metadata": {}, "outputs": [ @@ -3117,7 +3115,7 @@ "e 9 10 11 12" ] }, - "execution_count": 91, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -3136,7 +3134,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 61, "id": "alpine-coast", "metadata": {}, "outputs": [], @@ -3146,7 +3144,7 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 62, "id": "gothic-freight", "metadata": {}, "outputs": [ @@ -3220,7 +3218,7 @@ "12 9 10 11" ] }, - "execution_count": 93, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -3240,7 +3238,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 63, "id": "signal-disabled", "metadata": {}, "outputs": [ @@ -3312,7 +3310,7 @@ "3 12 9 10 11" ] }, - "execution_count": 94, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -3334,7 +3332,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 64, "id": "western-roots", "metadata": {}, "outputs": [], @@ -3352,7 +3350,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 65, "id": "sophisticated-speaking", "metadata": {}, "outputs": [ @@ -3433,7 +3431,7 @@ "1 42 43 44" ] }, - "execution_count": 97, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" } @@ -3452,7 +3450,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 66, "id": "associate-lodge", "metadata": {}, "outputs": [ @@ -3547,7 +3545,7 @@ "7 9 10 11" ] }, - "execution_count": 99, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -3576,7 +3574,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 67, "id": "dying-hepatitis", "metadata": {}, "outputs": [ @@ -3718,7 +3716,7 @@ "4 0 373450 8.0500 NaN S " ] }, - "execution_count": 116, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -3729,7 +3727,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 68, "id": "authentic-winter", "metadata": {}, "outputs": [ @@ -3779,7 +3777,7 @@ "2 female 26.0" ] }, - "execution_count": 117, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -3790,7 +3788,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 69, "id": "partial-trading", "metadata": {}, "outputs": [ @@ -3867,7 +3865,7 @@ "4 male 35.0 0 0 373450" ] }, - "execution_count": 118, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -3878,7 +3876,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 70, "id": "electrical-force", "metadata": {}, "outputs": [ @@ -3928,7 +3926,7 @@ "1 female 38.0" ] }, - "execution_count": 119, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -3939,7 +3937,7 @@ }, { "cell_type": "code", - "execution_count": 120, + "execution_count": 71, "id": "after-giving", "metadata": {}, "outputs": [ @@ -4007,7 +4005,7 @@ "2 female 26.0 0 0 STON/O2. 3101282" ] }, - "execution_count": 120, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -4034,7 +4032,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 72, "id": "homeless-debut", "metadata": { "tags": [] @@ -4051,7 +4049,7 @@ "Name: Sex, dtype: object" ] }, - "execution_count": 124, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -4070,7 +4068,7 @@ }, { "cell_type": "code", - "execution_count": 180, + "execution_count": 73, "id": "c0edb00d-037e-45b1-9003-d16bef62258e", "metadata": {}, "outputs": [ @@ -4085,7 +4083,7 @@ "Name: Sex, dtype: object" ] }, - "execution_count": 180, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } @@ -4104,7 +4102,7 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 74, "id": "operating-rehabilitation", "metadata": {}, "outputs": [ @@ -4184,7 +4182,7 @@ "4 male 35.0 3 0" ] }, - "execution_count": 125, + "execution_count": 74, "metadata": {}, "output_type": "execute_result" } @@ -4211,7 +4209,7 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 75, "id": "realistic-liberal", "metadata": {}, "outputs": [ @@ -4346,7 +4344,7 @@ "170 61.0 0 0 111240 33.5000 B19 S " ] }, - "execution_count": 131, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -4373,7 +4371,7 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 76, "id": "charming-debate", "metadata": {}, "outputs": [ @@ -4435,7 +4433,7 @@ "871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) 47.0" ] }, - "execution_count": 136, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -4457,7 +4455,7 @@ }, { "cell_type": "code", - "execution_count": 137, + "execution_count": 77, "id": "extensive-sense", "metadata": {}, "outputs": [ @@ -4498,118 +4496,118 @@ " </thead>\n", " <tbody>\n", " <tr>\n", - " <th>320</th>\n", - " <td>321</td>\n", + " <th>138</th>\n", + " <td>139</td>\n", " <td>0</td>\n", " <td>3</td>\n", - " <td>Dennis, Mr. Samuel</td>\n", + " <td>Osen, Mr. Olaf Elon</td>\n", " <td>male</td>\n", - " <td>22.0</td>\n", + " <td>16.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", - " <td>A/5 21172</td>\n", - " <td>7.2500</td>\n", + " <td>7534</td>\n", + " <td>9.2167</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", - " <th>59</th>\n", - " <td>60</td>\n", - " <td>0</td>\n", - " <td>3</td>\n", - " <td>Goodwin, Master. William Frederick</td>\n", - " <td>male</td>\n", - " <td>11.0</td>\n", - " <td>5</td>\n", + " <th>211</th>\n", + " <td>212</td>\n", + " <td>1</td>\n", " <td>2</td>\n", - " <td>CA 2144</td>\n", - " <td>46.9000</td>\n", + " <td>Cameron, Miss. Clear Annie</td>\n", + " <td>female</td>\n", + " <td>35.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>F.C.C. 13528</td>\n", + " <td>21.0000</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", - " <th>176</th>\n", - " <td>177</td>\n", - " <td>0</td>\n", - " <td>3</td>\n", - " <td>Lefebre, Master. Henry Forbes</td>\n", + " <th>547</th>\n", + " <td>548</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>Padro y Manent, Mr. Julian</td>\n", " <td>male</td>\n", " <td>NaN</td>\n", - " <td>3</td>\n", - " <td>1</td>\n", - " <td>4133</td>\n", - " <td>25.4667</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>SC/PARIS 2146</td>\n", + " <td>13.8625</td>\n", " <td>NaN</td>\n", - " <td>S</td>\n", + " <td>C</td>\n", " </tr>\n", " <tr>\n", - " <th>117</th>\n", - " <td>118</td>\n", + " <th>482</th>\n", + " <td>483</td>\n", " <td>0</td>\n", - " <td>2</td>\n", - " <td>Turpin, Mr. William John Robert</td>\n", + " <td>3</td>\n", + " <td>Rouse, Mr. Richard Henry</td>\n", " <td>male</td>\n", - " <td>29.0</td>\n", - " <td>1</td>\n", + " <td>50.0</td>\n", " <td>0</td>\n", - " <td>11668</td>\n", - " <td>21.0000</td>\n", + " <td>0</td>\n", + " <td>A/5 3594</td>\n", + " <td>8.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", - " <th>714</th>\n", - " <td>715</td>\n", + " <th>243</th>\n", + " <td>244</td>\n", " <td>0</td>\n", - " <td>2</td>\n", - " <td>Greenberg, Mr. Samuel</td>\n", + " <td>3</td>\n", + " <td>Maenpaa, Mr. Matti Alexanteri</td>\n", " <td>male</td>\n", - " <td>52.0</td>\n", + " <td>22.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", - " <td>250647</td>\n", - " <td>13.0000</td>\n", + " <td>STON/O 2. 3101275</td>\n", + " <td>7.1250</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", - " <th>61</th>\n", - " <td>62</td>\n", - " <td>1</td>\n", - " <td>1</td>\n", - " <td>Icard, Miss. Amelie</td>\n", - " <td>female</td>\n", - " <td>38.0</td>\n", + " <th>861</th>\n", + " <td>862</td>\n", " <td>0</td>\n", + " <td>2</td>\n", + " <td>Giles, Mr. Frederick Edward</td>\n", + " <td>male</td>\n", + " <td>21.0</td>\n", + " <td>1</td>\n", " <td>0</td>\n", - " <td>113572</td>\n", - " <td>80.0000</td>\n", - " <td>B28</td>\n", + " <td>28134</td>\n", + " <td>11.5000</td>\n", " <td>NaN</td>\n", + " <td>S</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ - " PassengerId Survived Pclass Name \\\n", - "320 321 0 3 Dennis, Mr. Samuel \n", - "59 60 0 3 Goodwin, Master. William Frederick \n", - "176 177 0 3 Lefebre, Master. Henry Forbes \n", - "117 118 0 2 Turpin, Mr. William John Robert \n", - "714 715 0 2 Greenberg, Mr. Samuel \n", - "61 62 1 1 Icard, Miss. Amelie \n", - "\n", - " Sex Age SibSp Parch Ticket Fare Cabin Embarked \n", - "320 male 22.0 0 0 A/5 21172 7.2500 NaN S \n", - "59 male 11.0 5 2 CA 2144 46.9000 NaN S \n", - "176 male NaN 3 1 4133 25.4667 NaN S \n", - "117 male 29.0 1 0 11668 21.0000 NaN S \n", - "714 male 52.0 0 0 250647 13.0000 NaN S \n", - "61 female 38.0 0 0 113572 80.0000 B28 NaN " + " PassengerId Survived Pclass Name Sex \\\n", + "138 139 0 3 Osen, Mr. Olaf Elon male \n", + "211 212 1 2 Cameron, Miss. Clear Annie female \n", + "547 548 1 2 Padro y Manent, Mr. Julian male \n", + "482 483 0 3 Rouse, Mr. Richard Henry male \n", + "243 244 0 3 Maenpaa, Mr. Matti Alexanteri male \n", + "861 862 0 2 Giles, Mr. Frederick Edward male \n", + "\n", + " Age SibSp Parch Ticket Fare Cabin Embarked \n", + "138 16.0 0 0 7534 9.2167 NaN S \n", + "211 35.0 0 0 F.C.C. 13528 21.0000 NaN S \n", + "547 NaN 0 0 SC/PARIS 2146 13.8625 NaN C \n", + "482 50.0 0 0 A/5 3594 8.0500 NaN S \n", + "243 22.0 0 0 STON/O 2. 3101275 7.1250 NaN S \n", + "861 21.0 1 0 28134 11.5000 NaN S " ] }, - "execution_count": 137, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -4630,7 +4628,7 @@ }, { "cell_type": "code", - "execution_count": 138, + "execution_count": 78, "id": "enormous-dublin", "metadata": {}, "outputs": [ @@ -4731,7 +4729,7 @@ "456 male 65.0 0 0 13509 26.550 E38 S " ] }, - "execution_count": 138, + "execution_count": 78, "metadata": {}, "output_type": "execute_result" } @@ -4755,7 +4753,7 @@ }, { "cell_type": "code", - "execution_count": 139, + "execution_count": 79, "id": "piano-chance", "metadata": {}, "outputs": [ @@ -4823,7 +4821,7 @@ "4 4 5" ] }, - "execution_count": 139, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -4835,7 +4833,7 @@ }, { "cell_type": "code", - "execution_count": 140, + "execution_count": 80, "id": "minute-printer", "metadata": {}, "outputs": [ @@ -4903,7 +4901,7 @@ "4 0 0" ] }, - "execution_count": 140, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -4914,7 +4912,7 @@ }, { "cell_type": "code", - "execution_count": 141, + "execution_count": 81, "id": "polar-offering", "metadata": {}, "outputs": [ @@ -4982,7 +4980,7 @@ "4 4 5" ] }, - "execution_count": 141, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -5005,7 +5003,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 82, "id": "designing-capacity", "metadata": {}, "outputs": [ @@ -5073,7 +5071,7 @@ "4 4 5" ] }, - "execution_count": 142, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -5084,7 +5082,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 83, "id": "breeding-radio", "metadata": {}, "outputs": [ @@ -5152,7 +5150,7 @@ "4 4 5" ] }, - "execution_count": 143, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } @@ -5175,7 +5173,7 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 84, "id": "systematic-hawaii", "metadata": {}, "outputs": [ @@ -5317,7 +5315,7 @@ "9 0 237736 30.0708 NaN C " ] }, - "execution_count": 145, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -5336,7 +5334,7 @@ }, { "cell_type": "code", - "execution_count": 147, + "execution_count": 85, "id": "foster-customs", "metadata": {}, "outputs": [ @@ -5478,7 +5476,7 @@ "9 0 237736 30.0708 NaN C " ] }, - "execution_count": 147, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -5497,7 +5495,7 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 86, "id": "eligible-breath", "metadata": {}, "outputs": [], @@ -5507,22 +5505,22 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 87, "id": "alpine-residence", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "24 Palsson, Miss. Torborg Danira\n", - "200 Vande Walle, Mr. Nestor Cyriel\n", - "630 Barkworth, Mr. Algernon Henry Wilson\n", - "80 Waelens, Mr. Achille\n", - "410 Sdycoff, Mr. Todor\n", + "359 Mockler, Miss. Helen Mary \"Ellie\"\n", + "64 Stewart, Mr. Albert A\n", + "864 Gill, Mr. John William\n", + "389 Lehmann, Miss. Bertha\n", + "181 Pernot, Mr. Rene\n", "Name: Name, dtype: object" ] }, - "execution_count": 152, + "execution_count": 87, "metadata": {}, "output_type": "execute_result" } @@ -5533,7 +5531,7 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 88, "id": "therapeutic-sudan", "metadata": {}, "outputs": [ @@ -5574,78 +5572,78 @@ " </thead>\n", " <tbody>\n", " <tr>\n", - " <th>24</th>\n", - " <td>25</td>\n", + " <th>64</th>\n", + " <td>65</td>\n", " <td>0</td>\n", - " <td>3</td>\n", - " <td>Palsson, Miss. Torborg Danira</td>\n", - " <td>female</td>\n", - " <td>8.0</td>\n", - " <td>3</td>\n", " <td>1</td>\n", - " <td>349909</td>\n", - " <td>21.0750</td>\n", - " <td>NaN</td>\n", - " <td>S</td>\n", - " </tr>\n", - " <tr>\n", - " <th>80</th>\n", - " <td>81</td>\n", - " <td>0</td>\n", - " <td>3</td>\n", - " <td>Waelens, Mr. Achille</td>\n", + " <td>Stewart, Mr. Albert A</td>\n", " <td>male</td>\n", - " <td>22.0</td>\n", + " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", - " <td>345767</td>\n", - " <td>9.0000</td>\n", + " <td>PC 17605</td>\n", + " <td>27.7208</td>\n", " <td>NaN</td>\n", - " <td>S</td>\n", + " <td>C</td>\n", " </tr>\n", " <tr>\n", - " <th>200</th>\n", - " <td>201</td>\n", + " <th>181</th>\n", + " <td>182</td>\n", " <td>0</td>\n", - " <td>3</td>\n", - " <td>Vande Walle, Mr. Nestor Cyriel</td>\n", + " <td>2</td>\n", + " <td>Pernot, Mr. Rene</td>\n", " <td>male</td>\n", - " <td>28.0</td>\n", + " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", - " <td>345770</td>\n", - " <td>9.5000</td>\n", + " <td>SC/PARIS 2131</td>\n", + " <td>15.0500</td>\n", " <td>NaN</td>\n", - " <td>S</td>\n", + " <td>C</td>\n", " </tr>\n", " <tr>\n", - " <th>410</th>\n", - " <td>411</td>\n", - " <td>0</td>\n", + " <th>359</th>\n", + " <td>360</td>\n", + " <td>1</td>\n", " <td>3</td>\n", - " <td>Sdycoff, Mr. Todor</td>\n", - " <td>male</td>\n", + " <td>Mockler, Miss. Helen Mary \"Ellie\"</td>\n", + " <td>female</td>\n", " <td>NaN</td>\n", " <td>0</td>\n", " <td>0</td>\n", - " <td>349222</td>\n", - " <td>7.8958</td>\n", + " <td>330980</td>\n", + " <td>7.8792</td>\n", " <td>NaN</td>\n", - " <td>S</td>\n", + " <td>Q</td>\n", " </tr>\n", " <tr>\n", - " <th>630</th>\n", - " <td>631</td>\n", + " <th>389</th>\n", + " <td>390</td>\n", " <td>1</td>\n", - " <td>1</td>\n", - " <td>Barkworth, Mr. Algernon Henry Wilson</td>\n", + " <td>2</td>\n", + " <td>Lehmann, Miss. Bertha</td>\n", + " <td>female</td>\n", + " <td>17.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>SC 1748</td>\n", + " <td>12.0000</td>\n", + " <td>NaN</td>\n", + " <td>C</td>\n", + " </tr>\n", + " <tr>\n", + " <th>864</th>\n", + " <td>865</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>Gill, Mr. John William</td>\n", " <td>male</td>\n", - " <td>80.0</td>\n", + " <td>24.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", - " <td>27042</td>\n", - " <td>30.0000</td>\n", - " <td>A23</td>\n", + " <td>233866</td>\n", + " <td>13.0000</td>\n", + " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " </tbody>\n", @@ -5653,22 +5651,22 @@ "</div>" ], "text/plain": [ - " PassengerId Survived Pclass Name \\\n", - "24 25 0 3 Palsson, Miss. Torborg Danira \n", - "80 81 0 3 Waelens, Mr. Achille \n", - "200 201 0 3 Vande Walle, Mr. Nestor Cyriel \n", - "410 411 0 3 Sdycoff, Mr. Todor \n", - "630 631 1 1 Barkworth, Mr. Algernon Henry Wilson \n", - "\n", - " Sex Age SibSp Parch Ticket Fare Cabin Embarked \n", - "24 female 8.0 3 1 349909 21.0750 NaN S \n", - "80 male 22.0 0 0 345767 9.0000 NaN S \n", - "200 male 28.0 0 0 345770 9.5000 NaN S \n", - "410 male NaN 0 0 349222 7.8958 NaN S \n", - "630 male 80.0 0 0 27042 30.0000 A23 S " + " PassengerId Survived Pclass Name Sex \\\n", + "64 65 0 1 Stewart, Mr. Albert A male \n", + "181 182 0 2 Pernot, Mr. Rene male \n", + "359 360 1 3 Mockler, Miss. Helen Mary \"Ellie\" female \n", + "389 390 1 2 Lehmann, Miss. Bertha female \n", + "864 865 0 2 Gill, Mr. John William male \n", + "\n", + " Age SibSp Parch Ticket Fare Cabin Embarked \n", + "64 NaN 0 0 PC 17605 27.7208 NaN C \n", + "181 NaN 0 0 SC/PARIS 2131 15.0500 NaN C \n", + "359 NaN 0 0 330980 7.8792 NaN Q \n", + "389 17.0 0 0 SC 1748 12.0000 NaN C \n", + "864 24.0 0 0 233866 13.0000 NaN S " ] }, - "execution_count": 153, + "execution_count": 88, "metadata": {}, "output_type": "execute_result" } @@ -5691,7 +5689,7 @@ }, { "cell_type": "code", - "execution_count": 154, + "execution_count": 89, "id": "extended-usage", "metadata": {}, "outputs": [ @@ -5765,7 +5763,7 @@ "4 Indomie pack 5.0" ] }, - "execution_count": 154, + "execution_count": 89, "metadata": {}, "output_type": "execute_result" } @@ -5789,7 +5787,7 @@ }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 90, "id": "administrative-partition", "metadata": {}, "outputs": [ @@ -5856,7 +5854,7 @@ "4 Indomie pack 5.0" ] }, - "execution_count": 155, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } @@ -5875,7 +5873,7 @@ }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 91, "id": "english-parallel", "metadata": {}, "outputs": [ @@ -5928,7 +5926,7 @@ "2 Indomie cup 3.5" ] }, - "execution_count": 156, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } @@ -5947,7 +5945,7 @@ }, { "cell_type": "code", - "execution_count": 157, + "execution_count": 92, "id": "corresponding-owner", "metadata": {}, "outputs": [ @@ -6007,7 +6005,7 @@ "4 Indomie pack 5.0" ] }, - "execution_count": 157, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -6026,7 +6024,7 @@ }, { "cell_type": "code", - "execution_count": 160, + "execution_count": 93, "id": "serial-omaha", "metadata": {}, "outputs": [ @@ -6090,7 +6088,7 @@ }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 94, "id": "exclusive-madison", "metadata": {}, "outputs": [ @@ -6185,7 +6183,7 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 95, "id": "institutional-promotion", "metadata": {}, "outputs": [], @@ -6198,7 +6196,7 @@ }, { "cell_type": "code", - "execution_count": 163, + "execution_count": 96, "id": "upset-joyce", "metadata": {}, "outputs": [ @@ -6254,7 +6252,7 @@ "2 3 HORSE" ] }, - "execution_count": 163, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -6265,7 +6263,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 97, "id": "hidden-attitude", "metadata": {}, "outputs": [ @@ -6321,7 +6319,7 @@ "2 1 45" ] }, - "execution_count": 164, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -6340,7 +6338,7 @@ }, { "cell_type": "code", - "execution_count": 165, + "execution_count": 98, "id": "separated-extreme", "metadata": {}, "outputs": [ @@ -6400,7 +6398,7 @@ "2 3 HORSE 33" ] }, - "execution_count": 165, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -6411,7 +6409,7 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 99, "id": "impressed-copper", "metadata": {}, "outputs": [ @@ -6467,7 +6465,7 @@ "2 1 45" ] }, - "execution_count": 168, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -6488,7 +6486,7 @@ }, { "cell_type": "code", - "execution_count": 167, + "execution_count": 100, "id": "identified-posting", "metadata": {}, "outputs": [ @@ -6552,7 +6550,7 @@ "2 3 HORSE 3 33" ] }, - "execution_count": 167, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } @@ -6571,7 +6569,7 @@ }, { "cell_type": "code", - "execution_count": 169, + "execution_count": 101, "id": "logical-alfred", "metadata": {}, "outputs": [ @@ -6633,7 +6631,7 @@ "3 42 MONKEY" ] }, - "execution_count": 169, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } @@ -6646,7 +6644,7 @@ }, { "cell_type": "code", - "execution_count": 170, + "execution_count": 102, "id": "progressive-blogger", "metadata": {}, "outputs": [ @@ -6708,7 +6706,7 @@ "3 35 100" ] }, - "execution_count": 170, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -6731,7 +6729,7 @@ }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 103, "id": "stock-attachment", "metadata": {}, "outputs": [ @@ -6803,7 +6801,7 @@ "3 42 MONKEY NaN NaN" ] }, - "execution_count": 171, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" } @@ -6822,7 +6820,7 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 104, "id": "equivalent-conservative", "metadata": {}, "outputs": [ @@ -6894,7 +6892,7 @@ "3 NaN NaN 35 100" ] }, - "execution_count": 172, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -6913,7 +6911,7 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 105, "id": "seasonal-publisher", "metadata": {}, "outputs": [ @@ -6977,7 +6975,7 @@ "2 3 HORSE 3 33" ] }, - "execution_count": 173, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -6996,7 +6994,7 @@ }, { "cell_type": "code", - "execution_count": 174, + "execution_count": 106, "id": "neural-christianity", "metadata": {}, "outputs": [ @@ -7037,31 +7035,31 @@ " </tr>\n", " <tr>\n", " <th>1</th>\n", - " <td>12.0</td>\n", - " <td>RAT</td>\n", - " <td>12.0</td>\n", - " <td>12.0</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", " <td>3.0</td>\n", " <td>HORSE</td>\n", " <td>3.0</td>\n", " <td>33.0</td>\n", " </tr>\n", " <tr>\n", + " <th>2</th>\n", + " <td>12.0</td>\n", + " <td>RAT</td>\n", + " <td>12.0</td>\n", + " <td>12.0</td>\n", + " </tr>\n", + " <tr>\n", " <th>3</th>\n", - " <td>42.0</td>\n", - " <td>MONKEY</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", + " <td>35.0</td>\n", + " <td>100.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", + " <td>42.0</td>\n", + " <td>MONKEY</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", - " <td>35.0</td>\n", - " <td>100.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", @@ -7070,13 +7068,13 @@ "text/plain": [ " gene_ID species ref effect\n", "0 1.0 HUMAN 1.0 45.0\n", - "1 12.0 RAT 12.0 12.0\n", - "2 3.0 HORSE 3.0 33.0\n", - "3 42.0 MONKEY NaN NaN\n", - "4 NaN NaN 35.0 100.0" + "1 3.0 HORSE 3.0 33.0\n", + "2 12.0 RAT 12.0 12.0\n", + "3 NaN NaN 35.0 100.0\n", + "4 42.0 MONKEY NaN NaN" ] }, - "execution_count": 174, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -7099,7 +7097,7 @@ }, { "cell_type": "code", - "execution_count": 181, + "execution_count": 107, "id": "appropriate-astrology", "metadata": {}, "outputs": [ @@ -7225,7 +7223,7 @@ "[88 rows x 3 columns]" ] }, - "execution_count": 181, + "execution_count": 107, "metadata": {}, "output_type": "execute_result" } @@ -7284,7 +7282,7 @@ }, { "cell_type": "code", - "execution_count": 185, + "execution_count": 108, "id": "corresponding-natural", "metadata": {}, "outputs": [ @@ -7337,7 +7335,7 @@ "1 4 42 6" ] }, - "execution_count": 185, + "execution_count": 108, "metadata": {}, "output_type": "execute_result" } @@ -7359,7 +7357,7 @@ }, { "cell_type": "code", - "execution_count": 186, + "execution_count": 109, "id": "stunning-retrieval", "metadata": {}, "outputs": [ @@ -7412,7 +7410,7 @@ "1 4 5 6" ] }, - "execution_count": 186, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } @@ -7436,30 +7434,28 @@ }, { "cell_type": "code", - "execution_count": 187, + "execution_count": 110, "id": "relevant-sentence", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "<AxesSubplot:>" + "<Axes: >" ] }, - "execution_count": 187, + "execution_count": 110, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAARC0lEQVR4nO3dX4xcZ33G8e+PlDbGC7HdJCvXQTWoVgrKNgFvQ2iqajemyCQI56KJggAZKZUvCjRUrqjTSq24qOqLBtELVNUCGqulWVJIGiuVgGjJFKWqCmsI2KmThhLLxEltSG3DuhHF4deLPYuHze78n53z2t+PtJo5Z8+ZeTI7fvLuO+ecjcxEklSeV4w6gCSpNxa4JBXKApekQlngklQoC1ySCvVzq/lkl19+eW7evLnr/c6ePcvatWsHH6hP5upOXXNBfbOZqzt1zQX9ZTt48OD3M/OKl30jM1fta+vWrdmLRx99tKf9hs1c3alrrsz6ZjNXd+qaK7O/bMBcLtOpTqFIUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhVvVUeq2ezXv+ueX3j+69ZZWSSBoWR+CSVCgLXJIKZYFLUqEscEkqVEcfYkbEUeCHwEvAucycjIgNwGeBzcBR4PbMPDWcmJKkpboZgU9n5nWZOVkt7wFmM3MLMFstS5JWST9TKDuA/dX9/cCtfaeRJHUsFv7YQ5uNIp4BTgEJ/E1m7ouI05m5rmmbU5m5fpl9dwG7AMbHx7fOzMx0HXJ+fp6xsbGu9xu2Oud65sxLLbeZ2HTZKqU5r66vF9Q3m7m6U9dc0F+26enpg02zHz/V6Yk8N2bmcxFxJfBIRDzZ6RNn5j5gH8Dk5GROTU11uutPNRoNetlv2Oqc657Hzrbc5uh7plYnTJO6vl5Q32zm6k5dc8FwsnU0hZKZz1W3J4EHgeuBExGxEaC6PTnQZJKkltoWeESsjYhXL94H3g4cBg4AO6vNdgIPDSukJOnlOplCGQcejIjF7f8hM78QEV8D7o+IO4FjwG3DiylJWqptgWfmd4Brl1n/ArBtGKEkSe15JqYkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlH8TUwO30t/j3D1xjqnVjSJd0ByBS1KhLHBJKpQFLkmFcg78IrXSPDXA0b23rGISSb1yBC5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKa6Goa62uoyJp9TgCl6RCWeCSVCgLXJIK5Ry4XsY5bqkMjsAlqVAWuCQVygKXpEJ1PAceEZcAc8DxzHxnRGwAPgtsBo4Ct2fmqWGElBb5tzyl87oZgd8FHGla3gPMZuYWYLZaliStko4KPCKuAm4BPtm0egewv7q/H7h1oMkkSS11OgL/OPAR4CdN68Yz83mA6vbKwUaTJLUSmdl6g4h3Ajdn5u9FxBTwh9Uc+OnMXNe03anMXL/M/ruAXQDj4+NbZ2Zmug45Pz/P2NhY1/sN26hzHTp+Ztn142vgxIurHKYD42vgyg2X9fUYK/03A0xs6v2xR/2zXIm5ulPXXNBftunp6YOZObl0fScF/hfA+4BzwKXAa4AHgF8HpjLz+YjYCDQy8+pWjzU5OZlzc3Ndh280GkxNTXW937CNOtdKH+jtnjjHPYfqd47W7olzfOg9O/p6jGF9iDnqn+VKzNWduuaC/rJFxLIF3nYKJTPvzsyrMnMzcAfw5cx8L3AA2FltthN4qKdkkqSe9DNM2wvcHxF3AseA2wYTSYs8pV1SK10VeGY2gEZ1/wVg2+AjSZI64ZmYklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVD1O11PF7R2x7Z7SVipc47AJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEL5NzFVK+3+Zqak8xyBS1KhLHBJKpQFLkmFssAlqVBtCzwiLo2Ir0bENyPiiYj4aLV+Q0Q8EhFPV7frhx9XkrSokxH4j4CbMvNa4Dpge0TcAOwBZjNzCzBbLUuSVknbAs8F89XiK6uvBHYA+6v1+4FbhxFQkrS8yMz2G0VcAhwEfgX4RGb+UUSczsx1TducysyXTaNExC5gF8D4+PjWmZmZrkPOz88zNjbW9X7DNuxch46f6Wm/8TVw4sUBhxmAYeea2HRZz/terO+xXpmre/1km56ePpiZk0vXd1TgP904Yh3wIPAh4LFOCrzZ5ORkzs3Ndfx8ixqNBlNTU13vN2zDztXrSS27J85xz6H6naM17FxH997S874X63usV+bqXj/ZImLZAu/qKJTMPA00gO3AiYjYWD34RuBkT8kkST3p5CiUK6qRNxGxBngb8CRwANhZbbYTeGhIGSVJy+jk99mNwP5qHvwVwP2Z+XBE/Btwf0TcCRwDbhtiTknSEm0LPDO/BbxpmfUvANuGEUqS1J5nYkpSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RC1e98a2lIWl2a4N7ta1cxiTQYjsAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCFXMtlFbXsQA4uveWVUoiSfXgCFySCmWBS1KhLHBJKlQxc+AXonbz+pLUiiNwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIK5XHgEnDo+Bne3+K4fK+1ozpqOwKPiNdGxKMRcSQinoiIu6r1GyLikYh4urpdP/y4kqRFnUyhnAN2Z+YbgBuAD0TEG4E9wGxmbgFmq2VJ0ippW+CZ+Xxmfr26/0PgCLAJ2AHsrzbbD9w6pIySpGVEZna+ccRm4CvANcCxzFzX9L1TmfmyaZSI2AXsAhgfH986MzPTdcj5+XmeOfNSy20mNl3W9eP2a35+nrGxsZ73P3T8zADTnDe+Bk68OJSH7suwc7V7D7R6vdtlG8X7C/p/jw2LubrXT7bp6emDmTm5dH3HBR4RY8C/AH+emQ9ExOlOCrzZ5ORkzs3NdZccaDQavP8LZ1tuM4oPmRqNBlNTUz3vP6yLWe2eOMc9h+r3+fSwc7V7D7R6vdtlG9WHmP2+x4bFXN3rJ1tELFvgHR1GGBGvBD4PfCYzH6hWn4iIjdX3NwIne0omSepJJ0ehBPAp4EhmfqzpWweAndX9ncBDg48nSVpJJ7/P3gi8DzgUEY9X6/4Y2AvcHxF3AseA24aSUJK0rLYFnpmPAbHCt7cNNo4kqVOeSi9JhbLAJalQ9TvWTOpRXf/GaLtcXmdFvXIELkmFssAlqVAWuCQVyjlwaQDqOv+uC5sjcEkqlAUuSYWywCWpUBfMHHirOUiPs1WdtXrv3rt97SomUWkcgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVKgL5jhwaZi81onqyBG4JBXKApekQlngklQo58ClGjt0/Azv9zo/WoEjcEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1Kh2hZ4RHw6Ik5GxOGmdRsi4pGIeLq6XT/cmJKkpToZgd8LbF+ybg8wm5lbgNlqWZK0itoWeGZ+BfifJat3APur+/uBWwcbS5LUTmRm+40iNgMPZ+Y11fLpzFzX9P1TmbnsNEpE7AJ2AYyPj2+dmZnpOuT8/DzPnHmp6/0WTWy6rOd9YeF6FMsZXwNXbuj9sVd63H6Nr4ETLw7loftS11xQ32ztcvX73u7V/Pw8Y2NjI3nuVuqaC/rLNj09fTAzJ5euH/rFrDJzH7APYHJyMqemprp+jEajwT2Pne05w9H3dP+czVa6mNDuiXPc3sN/T7vH7dfuiXPcc6h+1ymray6ob7Z2ufp9b/eq0WjQy7/lYatrLhhOtl6PQjkRERsBqtuTg4skSepErwV+ANhZ3d8JPDSYOJKkTrX9nTEi7gOmgMsj4lngz4C9wP0RcSdwDLhtmCElLa/d3+r0euEXtrYFnpnvXuFb2wacRZLUBc/ElKRCWeCSVKj6HTd1gWk3RylJvXIELkmFssAlqVAWuCQV6qKYA3ceWherft77rY4hP3T8TMtLQXj8+epwBC5JhbLAJalQFrgkFeqimAOX1L1W8+e7J1YxiFbkCFySCmWBS1KhLHBJKpRz4H3yGHNJo+IIXJIKZYFLUqEscEkqlHPgkgZuWNdg0c9yBC5JhbLAJalQFrgkFco5cEkXjIvtOuWOwCWpUBa4JBXKApekQjkHLqkoXqf8PEfgklQoC1ySCmWBS1KhnAOXdNFod42Wfo4Tb/fY925f2/Njr6SvEXhEbI+IpyLi2xGxZ1ChJEnt9VzgEXEJ8AngHcAbgXdHxBsHFUyS1Fo/I/DrgW9n5ncy8/+AGWDHYGJJktqJzOxtx4jfAbZn5u9Wy+8D3pKZH1yy3S5gV7V4NfBUD093OfD9noIOl7m6U9dcUN9s5upOXXNBf9l+OTOvWLqynw8xY5l1L/u/QWbuA/b18TxExFxmTvbzGMNgru7UNRfUN5u5ulPXXDCcbP1MoTwLvLZp+Srguf7iSJI61U+Bfw3YEhGvi4ifB+4ADgwmliSpnZ6nUDLzXER8EPgicAnw6cx8YmDJflZfUzBDZK7u1DUX1DebubpT11wwhGw9f4gpSRotT6WXpEJZ4JJUqFoXeJ1O1Y+IT0fEyYg43LRuQ0Q8EhFPV7frVznTayPi0Yg4EhFPRMRddchVZbg0Ir4aEd+ssn20LtmqHJdExDci4uG65IqIoxFxKCIej4i5GuVaFxGfi4gnq/faW2uS6+rqtVr8+kFEfLgm2f6get8fjoj7qn8PA89V2wKv4an69wLbl6zbA8xm5hZgtlpeTeeA3Zn5BuAG4APVazTqXAA/Am7KzGuB64DtEXFDTbIB3AUcaVquS67pzLyu6XjhOuT6K+ALmfmrwLUsvG4jz5WZT1Wv1XXAVuB/gQdHnS0iNgG/D0xm5jUsHORxx1ByZWYtv4C3Al9sWr4buHvEmTYDh5uWnwI2Vvc3Ak+NON9DwG/XMNergK8Db6lDNhbOWZgFbgIersvPEjgKXL5k3UhzAa8BnqE64KEuuZbJ+XbgX+uQDdgEfBfYwMKRfg9X+Qaeq7YjcM6/CIuerdbVyXhmPg9Q3V45qiARsRl4E/DvdclVTVM8DpwEHsnMumT7OPAR4CdN6+qQK4EvRcTB6hIUdcj1euB7wN9WU06fjIi1Nci11B3AfdX9kWbLzOPAXwLHgOeBM5n5pWHkqnOBd3SqviAixoDPAx/OzB+MOs+izHwpF369vQq4PiKuGXEkIuKdwMnMPDjqLMu4MTPfzMK04Qci4rdGHYiFEeSbgb/OzDcBZxnd9NKyqhMJ3wX846izAFRz2zuA1wG/BKyNiPcO47nqXOAlnKp/IiI2AlS3J1c7QES8koXy/kxmPlCXXM0y8zTQYOEzhFFnuxF4V0QcZeEKmjdFxN/XIBeZ+Vx1e5KFudzra5DrWeDZ6rcngM+xUOijztXsHcDXM/NEtTzqbG8DnsnM72Xmj4EHgN8YRq46F3gJp+ofAHZW93eyMAe9aiIigE8BRzLzY3XJVWW7IiLWVffXsPCmfnLU2TLz7sy8KjM3s/Ce+nJmvnfUuSJibUS8evE+C3Omh0edKzP/G/huRFxdrdoG/Meocy3xbs5Pn8Dosx0DboiIV1X/Rrex8MHv4HON8oOHDj4MuBn4T+C/gD8ZcZb7WJjP+jELo5I7gV9k4cOwp6vbDauc6TdZmFb6FvB49XXzqHNV2X4N+EaV7TDwp9X6kWdryjjF+Q8xR/2zfD3wzerricX3+6hzVRmuA+aqn+U/AevrkKvK9irgBeCypnUjzwZ8lIUBy2Hg74BfGEYuT6WXpELVeQpFktSCBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIK9f+G8SKnugrwJQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAj5UlEQVR4nO3df3BU5f328WuTbDZESCJBCJEE8GdUBG0wsGq/FQzkizz4g0yLQltEq6ONVkirgi0StBSwM6J2ArYWYTqaojiColVMg8ShAkIUNbaNqChUSFBsEiCy7JO9nz982GENwm6ye2/28H7N7OCec3Kfzydnc3J5du8clzHGCAAAwJKkeBcAAABOLoQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFalxLuAbwsEAtq9e7d69eoll8sV73IAAEAYjDHav3+/cnNzlZR0/Gsb3S587N69W3l5efEuAwAAdMKuXbs0YMCA427T7cJHr169JH1TfEZGRlTG9Pv9eu211zR27Fi53e6ojNmdOL0/yfk9Or0/iR6dwOn9SfTYFa2trcrLywv+Hj+ebhc+jrzVkpGREdXwkZ6eroyMDEe+mJzen+T8Hp3en0SPTuD0/iR6jIZwPjLBB04BAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGBVSrwLACI1aObLYW/76YLxMawEANAZXPkAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVkUUPioqKuRyuUIeBQUFwfWHDh1SWVmZsrOz1bNnT5WWlqqpqSnqRQMAgMQV8ZWPCy64QHv27Ak+NmzYEFw3Y8YMrVmzRitXrlRtba12796tiRMnRrVgAACQ2CK+t0tKSopycnI6LG9padHSpUtVVVWl0aNHS5KWLVum8847T5s2bdLIkSO7Xi0AAEh4EYeP7du3Kzc3V2lpafJ6vZo/f77y8/NVV1cnv9+v4uLi4LYFBQXKz8/Xxo0bvzN8+Hw++Xy+4PPW1lZJkt/vl9/vj7S8YzoyTrTG626c3p8U2qMn2UT8dd3dyXYMncrpPTq9P4keozFuOFzGmLDP5K+88ooOHDigc889V3v27NHcuXP1+eefq76+XmvWrNG0adNCgoQkFRUVadSoUVq4cOExx6yoqNDcuXM7LK+qqlJ6enrYjQAAgPhpa2vT5MmT1dLSooyMjONuG1H4+Lbm5mYNHDhQDz/8sHr06NGp8HGsKx95eXn68ssvT1h8uPx+v6qrqzVmzBi53e6ojNmdOL0/KbTHi+etC/vr6itKYlhV9Jxsx5AeE5PT+5PosStaW1vVp0+fsMJHxG+7HC0rK0vnnHOOPvroI40ZM0aHDx9Wc3OzsrKygts0NTUd8zMiR3g8Hnk8ng7L3W531A98LMbsTpzen/RNj752V0TbJ5KT5RjSY2Jzen8SPXZ2vHB16e98HDhwQB9//LH69++vwsJCud1u1dTUBNc3NDRo586d8nq9XdkNAABwkIiufPzqV7/ShAkTNHDgQO3evVtz5sxRcnKybrjhBmVmZurmm29WeXm5evfurYyMDN15553yer3MdAEAAEERhY///Oc/uuGGG7Rv3z6ddtppuvzyy7Vp0yaddtppkqRFixYpKSlJpaWl8vl8Kikp0eLFi2NSOAAASEwRhY8VK1Ycd31aWpoqKytVWVnZpaIAAIBzcW8XAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgVUR3tQXQOYNmvnzc9Z5ko4eKpCEVa9Uw7/9YqgoA4oMrHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwiqm2cLQTTXE92qcLxsewEgDAEVz5AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGBVSrwLABLRoJkvx7sEAEhYXPkAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFVMtQX+P6bPAoAdXPkAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFVMtQVOIpFMJ/50wfgYVgLgZMaVDwAAYFWXwseCBQvkcrk0ffr04LJDhw6prKxM2dnZ6tmzp0pLS9XU1NTVOgEAgEN0Onxs2bJFf/zjHzV06NCQ5TNmzNCaNWu0cuVK1dbWavfu3Zo4cWKXCwUAAM7QqfBx4MABTZkyRU888YROPfXU4PKWlhYtXbpUDz/8sEaPHq3CwkItW7ZMb775pjZt2hS1ogEAQOLqVPgoKyvT+PHjVVxcHLK8rq5Ofr8/ZHlBQYHy8/O1cePGrlUKAAAcIeLZLitWrNDbb7+tLVu2dFjX2Nio1NRUZWVlhSzv16+fGhsbjzmez+eTz+cLPm9tbZUk+f1++f3+SMs7piPjRGu87sbp/UmhPXqSTZyriT5Pkgn+G8vjGMn3Ltp1nGyvUydyen8SPUZj3HC4jDFhn4127dql4cOHq7q6OvhZjyuuuEIXXXSRHnnkEVVVVWnatGkhYUKSioqKNGrUKC1cuLDDmBUVFZo7d26H5VVVVUpPTw+7EQAAED9tbW2aPHmyWlpalJGRcdxtIwofq1ev1nXXXafk5OTgsvb2drlcLiUlJWnt2rUqLi7Wf//735CrHwMHDtT06dM1Y8aMDmMe68pHXl6evvzyyxMWHy6/36/q6mqNGTNGbrc7KmN2J4ne35CKtSfcxpNk9ODwgGZvTZIv4LJQlV1H91d3///GbD/hfK+PqK8oieq+E/11Gg6n9+j0/iR67IrW1lb16dMnrPAR0dsuV155pd5///2QZdOmTVNBQYHuvfde5eXlye12q6amRqWlpZKkhoYG7dy5U16v95hjejweeTyeDsvdbnfUD3wsxuxOErU/X3v4YcIXcEW0faLxBVwxPYaRfO9iVUeivk4j4fQend6fRI+dHS9cEYWPXr16aciQISHLTjnlFGVnZweX33zzzSovL1fv3r2VkZGhO++8U16vVyNHjoxkVwAAwKGi/ufVFy1apKSkJJWWlsrn86mkpESLFy+O9m4AAECC6nL4WL9+fcjztLQ0VVZWqrKysqtDAwAAB+LGcoiJSG5gBgA4uXBjOQAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBV3tQW6mUjuCPzpgvExrAQAYoMrHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMCqlHgXAKDzBs18Od4lAEDEuPIBAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsCqi8LFkyRINHTpUGRkZysjIkNfr1SuvvBJcf+jQIZWVlSk7O1s9e/ZUaWmpmpqaol40AABIXBGFjwEDBmjBggWqq6vT1q1bNXr0aF1zzTX64IMPJEkzZszQmjVrtHLlStXW1mr37t2aOHFiTAoHAACJKaI/rz5hwoSQ5/PmzdOSJUu0adMmDRgwQEuXLlVVVZVGjx4tSVq2bJnOO+88bdq0SSNHjoxe1QAAIGF1+t4u7e3tWrlypQ4ePCiv16u6ujr5/X4VFxcHtykoKFB+fr42btz4neHD5/PJ5/MFn7e2tkqS/H6//H5/Z8sLcWScaI3X3XTH/jzJJrrjJZmQf52mO/YX7ddTd3ydRpvTe3R6fxI9RmPccLiMMRGd7d5//315vV4dOnRIPXv2VFVVla666ipVVVVp2rRpIUFCkoqKijRq1CgtXLjwmONVVFRo7ty5HZZXVVUpPT09ktIAAECctLW1afLkyWppaVFGRsZxt434yse5556rbdu2qaWlRc8995ymTp2q2traThc7a9YslZeXB5+3trYqLy9PY8eOPWHx4fL7/aqurtaYMWPkdrujMmZ30h37G1KxNqrjeZKMHhwe0OytSfIFXFEduzvojv3VV5REdbzu+DqNNqf36PT+JHrsiiPvXIQj4vCRmpqqs846S5JUWFioLVu26NFHH9WkSZN0+PBhNTc3KysrK7h9U1OTcnJyvnM8j8cjj8fTYbnb7Y76gY/FmN1Jd+rP1x6bX6C+gCtmY3cH3am/WL2WutPrNFac3qPT+5PosbPjhavLf+cjEAjI5/OpsLBQbrdbNTU1wXUNDQ3auXOnvF5vV3cDAAAcIqIrH7NmzdK4ceOUn5+v/fv3q6qqSuvXr9fatWuVmZmpm2++WeXl5erdu7cyMjJ05513yuv1MtMFAAAERRQ+9u7dq5/+9Kfas2ePMjMzNXToUK1du1ZjxoyRJC1atEhJSUkqLS2Vz+dTSUmJFi9eHJPCAQBAYooofCxduvS469PS0lRZWanKysouFQUAAJyLe7sAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMCqlHgXACDxDZr58gm38SQbPVRkoRgA3R5XPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYlRLvAmwbNPPlsLf9dMH4GFYCAMDJiSsfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALDqpJtqi86LZJoyAADfhSsfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAq7ixHACrhlSsla/dFfb2ny4YH8NqAMQDVz4AAIBVhA8AAGBVROFj/vz5uuSSS9SrVy/17dtX1157rRoaGkK2OXTokMrKypSdna2ePXuqtLRUTU1NUS0aAAAkrojCR21trcrKyrRp0yZVV1fL7/dr7NixOnjwYHCbGTNmaM2aNVq5cqVqa2u1e/duTZw4MeqFAwCAxBTRB05fffXVkOfLly9X3759VVdXp//5n/9RS0uLli5dqqqqKo0ePVqStGzZMp133nnatGmTRo4cGb3KAQBAQurSbJeWlhZJUu/evSVJdXV18vv9Ki4uDm5TUFCg/Px8bdy48Zjhw+fzyefzBZ+3trZKkvx+v/x+f1fKCzoyjt/vlyfZRPx13d3R/cVSJN+7qO87yYT86zTdsb9IXk/hvDY622Oi/BxK9n4W48Xp/Un0GI1xw+EyxnTqbBcIBHT11VerublZGzZskCRVVVVp2rRpIWFCkoqKijRq1CgtXLiwwzgVFRWaO3duh+VVVVVKT0/vTGkAAMCytrY2TZ48WS0tLcrIyDjutp2+8lFWVqb6+vpg8OisWbNmqby8PPi8tbVVeXl5Gjt27AmLD5ff71d1dbXGjBmji+etC/vr6itKorL/WDu6P7fbHbP9DKlYG7OxT8STZPTg8IBmb02SLxD+34hIFN2xv0he/+G8NjrbY6L8HEr2fhbjxen9SfTYFUfeuQhHp8LHHXfcoZdeeklvvPGGBgwYEFyek5Ojw4cPq7m5WVlZWcHlTU1NysnJOeZYHo9HHo+nw3K32x31A+92uyP640aJ9sKLxffsaJF872JWQ8DVLeqIle7UXySvpUhqjrTHRPs5lGL/sxhvTu9PosfOjheuiGa7GGN0xx13aNWqVVq3bp0GDx4csr6wsFBut1s1NTXBZQ0NDdq5c6e8Xm8kuwIAAA4V0ZWPsrIyVVVV6YUXXlCvXr3U2NgoScrMzFSPHj2UmZmpm2++WeXl5erdu7cyMjJ05513yuv1MtMFAABIijB8LFmyRJJ0xRVXhCxftmyZbrzxRknSokWLlJSUpNLSUvl8PpWUlGjx4sVRKRYAACS+iMJHOBNj0tLSVFlZqcrKyk4XBQAAnIt7uwAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAqi7d1RaAcw2a+XK8S4ipSPr7dMH4GFYCnHy48gEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAq5hqC8AxnD49GHAKrnwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCqm2h4Hd70EIIV/LvAkGz1UFONiAAfgygcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCKu9oC6NYiubs0gMTAlQ8AAGAV4QMAAFhF+AAAAFYRPgAAgFWEDwAAYBWzXQAgyoZUrJWv3RXWtp8uGB/jaoDuhysfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsijh8vPHGG5owYYJyc3Plcrm0evXqkPXGGN1///3q37+/evTooeLiYm3fvj1a9QIAgAQXcfg4ePCghg0bpsrKymOuf+ihh/TYY4/p8ccf1+bNm3XKKaeopKREhw4d6nKxAAAg8aVE+gXjxo3TuHHjjrnOGKNHHnlEv/nNb3TNNddIkv7yl7+oX79+Wr16ta6//vquVQsAABJeVD/zsWPHDjU2Nqq4uDi4LDMzUyNGjNDGjRujuSsAAJCgIr7ycTyNjY2SpH79+oUs79evX3Ddt/l8Pvl8vuDz1tZWSZLf75ff749KXUfG8fv98iSbqIz5XfuIh6P7i6VYfe/C2neSCfnXaZzen0SP3yWe545I2TrXxBM9dn3ccLiMMZ0+E7hcLq1atUrXXnutJOnNN9/UZZddpt27d6t///7B7X70ox/J5XLpmWee6TBGRUWF5s6d22F5VVWV0tPTO1saAACwqK2tTZMnT1ZLS4syMjKOu21Ur3zk5ORIkpqamkLCR1NTky666KJjfs2sWbNUXl4efN7a2qq8vDyNHTv2hMWHy+/3q7q6WmPGjNHF89ZFZcxvq68oicm4kjSkYu1x13uSjB4cHtDsrUmqu/9/41ZHLB3doy/gilsdseL0/iR6/C6xPHdE29HnUrfbHe9yYoIeO+/IOxfhiGr4GDx4sHJyclRTUxMMG62trdq8ebNuv/32Y36Nx+ORx+PpsNztdkf9wLvdbvnaY3PSi+WLNNyafQFXt6gjlnwBV7eoI1ac3p9Ej9+WiL/gYnF+7m7osXPjhSvi8HHgwAF99NFHwec7duzQtm3b1Lt3b+Xn52v69On67W9/q7PPPluDBw/W7NmzlZubG3xrBgAAnNwiDh9bt27VqFGjgs+PvGUydepULV++XPfcc48OHjyoW2+9Vc3Nzbr88sv16quvKi0tLXpVAwCAhBVx+Ljiiit0vM+oulwuPfDAA3rggQe6VBgAAHCmqH7mAwAQmUEzXw57208XjI9hJYA93FgOAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYx1fYkF8k0PwAAooErHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKsIHAACwiqm2UcKUVQCxFsvzTCR3zB1SsVa+dlfUx8XJgysfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCKqbYAgLCm8XqSjR4qslAMHI8rHwAAwCrCBwAAsIrwAQAArCJ8AAAAqwgfAADAKma7OAw3uAMAdHdc+QAAAFYRPgAAgFWEDwAAYBXhAwAAWEX4AAAAVhE+AACAVUy1BQDETCyn/3+6YHzMxkZsceUDAABYRfgAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYx1RYAgG8ZUrFWvnZXWNsy5TdyXPkAAABWET4AAIBVhA8AAGAV4QMAAFhF+AAAAFYRPgAAgFVMtQUAOF64d9f1JBs9VBTjYsCVDwAAYBfhAwAAWEX4AAAAVhE+AACAVYQPAABgFeEDAABYxVRbAAC6INxpvFJs74CbSNOJufIBAACsiln4qKys1KBBg5SWlqYRI0borbfeitWuAABAAolJ+HjmmWdUXl6uOXPm6O2339awYcNUUlKivXv3xmJ3AAAggcQkfDz88MO65ZZbNG3aNJ1//vl6/PHHlZ6erieffDIWuwMAAAkk6h84PXz4sOrq6jRr1qzgsqSkJBUXF2vjxo0dtvf5fPL5fMHnLS0tkqSvvvpKfr8/KjX5/X61tbVp3759Svm/B6MyZneSEjBqawsoxZ+k9oAr3uXEhNN7dHp/Ej06QXfrb9++fWFvG+65P9Y9RlJzpCLtcd++fXK73VHb//79+yVJxpgTb2yi7PPPPzeSzJtvvhmy/O677zZFRUUdtp8zZ46RxIMHDx48ePBwwGPXrl0nzApxn2o7a9YslZeXB58HAgF99dVXys7OlssVndTZ2tqqvLw87dq1SxkZGVEZsztxen+S83t0en8SPTqB0/uT6LErjDHav3+/cnNzT7ht1MNHnz59lJycrKamppDlTU1NysnJ6bC9x+ORx+MJWZaVlRXtsiRJGRkZjn0xSc7vT3J+j07vT6JHJ3B6fxI9dlZmZmZY20X9A6epqakqLCxUTU1NcFkgEFBNTY28Xm+0dwcAABJMTN52KS8v19SpUzV8+HAVFRXpkUce0cGDBzVt2rRY7A4AACSQmISPSZMm6YsvvtD999+vxsZGXXTRRXr11VfVr1+/WOzuhDwej+bMmdPh7R2ncHp/kvN7dHp/Ej06gdP7k+jRFpcx4cyJAQAAiA7u7QIAAKwifAAAAKsIHwAAwCrCBwAAsMrx4aOyslKDBg1SWlqaRowYobfeeiveJXXaG2+8oQkTJig3N1cul0urV68OWW+M0f3336/+/furR48eKi4u1vbt2+NTbCfMnz9fl1xyiXr16qW+ffvq2muvVUNDQ8g2hw4dUllZmbKzs9WzZ0+VlpZ2+IN23dmSJUs0dOjQ4B/38Xq9euWVV4LrE72/b1uwYIFcLpemT58eXJboPVZUVMjlcoU8CgoKgusTvb8jPv/8c/34xz9Wdna2evTooQsvvFBbt24Nrk/0882gQYM6HEeXy6WysjJJiX8c29vbNXv2bA0ePFg9evTQmWeeqQcffDDkvitxPYZdv5tL97VixQqTmppqnnzySfPBBx+YW265xWRlZZmmpqZ4l9Ypf/vb38yvf/1r8/zzzxtJZtWqVSHrFyxYYDIzM83q1avNu+++a66++mozePBg8/XXX8en4AiVlJSYZcuWmfr6erNt2zZz1VVXmfz8fHPgwIHgNrfddpvJy8szNTU1ZuvWrWbkyJHm0ksvjWPVkXnxxRfNyy+/bD788EPT0NBg7rvvPuN2u019fb0xJvH7O9pbb71lBg0aZIYOHWruuuuu4PJE73HOnDnmggsuMHv27Ak+vvjii+D6RO/PGGO++uorM3DgQHPjjTeazZs3m08++cSsXbvWfPTRR8FtEv18s3fv3pBjWF1dbSSZ119/3RiT+Mdx3rx5Jjs727z00ktmx44dZuXKlaZnz57m0UcfDW4Tz2Po6PBRVFRkysrKgs/b29tNbm6umT9/fhyrio5vh49AIGBycnLM73//++Cy5uZm4/F4zF//+tc4VNh1e/fuNZJMbW2tMeabftxut1m5cmVwm3/9619Gktm4cWO8yuyyU0891fz5z392VH/79+83Z599tqmurjY/+MEPguHDCT3OmTPHDBs27JjrnNCfMcbce++95vLLL//O9U4839x1113mzDPPNIFAwBHHcfz48eamm24KWTZx4kQzZcoUY0z8j6Fj33Y5fPiw6urqVFxcHFyWlJSk4uJibdy4MY6VxcaOHTvU2NgY0m9mZqZGjBiRsP22tLRIknr37i1Jqqurk9/vD+mxoKBA+fn5Cdlje3u7VqxYoYMHD8rr9Tqqv7KyMo0fPz6kF8k5x3D79u3Kzc3VGWecoSlTpmjnzp2SnNPfiy++qOHDh+uHP/yh+vbtq4svvlhPPPFEcL3TzjeHDx/WU089pZtuukkul8sRx/HSSy9VTU2NPvzwQ0nSu+++qw0bNmjcuHGS4n8M435X21j58ssv1d7e3uGvqvbr10///ve/41RV7DQ2NkrSMfs9si6RBAIBTZ8+XZdddpmGDBki6ZseU1NTO9x4MNF6fP/99+X1enXo0CH17NlTq1at0vnnn69t27Y5or8VK1bo7bff1pYtWzqsc8IxHDFihJYvX65zzz1Xe/bs0dy5c/X9739f9fX1juhPkj755BMtWbJE5eXluu+++7Rlyxb94he/UGpqqqZOneq4883q1avV3NysG2+8UZIzXqczZ85Ua2urCgoKlJycrPb2ds2bN09TpkyRFP/fGY4NH0hsZWVlqq+v14YNG+JdStSde+652rZtm1paWvTcc89p6tSpqq2tjXdZUbFr1y7dddddqq6uVlpaWrzLiYkj/+coSUOHDtWIESM0cOBAPfvss+rRo0ccK4ueQCCg4cOH63e/+50k6eKLL1Z9fb0ef/xxTZ06Nc7VRd/SpUs1bty4sG4FnyieffZZPf3006qqqtIFF1ygbdu2afr06crNze0Wx9Cxb7v06dNHycnJHT6d3NTUpJycnDhVFTtHenJCv3fccYdeeuklvf766xowYEBweU5Ojg4fPqzm5uaQ7ROtx9TUVJ111lkqLCzU/PnzNWzYMD366KOO6K+urk579+7V9773PaWkpCglJUW1tbV67LHHlJKSon79+iV8j9+WlZWlc845Rx999JEjjqEk9e/fX+eff37IsvPOOy/49pKTzjefffaZ/v73v+tnP/tZcJkTjuPdd9+tmTNn6vrrr9eFF16on/zkJ5oxY4bmz58vKf7H0LHhIzU1VYWFhaqpqQkuCwQCqqmpkdfrjWNlsTF48GDl5OSE9Nva2qrNmzcnTL/GGN1xxx1atWqV1q1bp8GDB4esLywslNvtDumxoaFBO3fuTJgejyUQCMjn8zmivyuvvFLvv/++tm3bFnwMHz5cU6ZMCf53ovf4bQcOHNDHH3+s/v37O+IYStJll13WYZr7hx9+qIEDB0pyxvnmiGXLlqlv374aP358cJkTjmNbW5uSkkJ/xScnJysQCEjqBscw5h9pjaMVK1YYj8djli9fbv75z3+aW2+91WRlZZnGxsZ4l9Yp+/fvN++884555513jCTz8MMPm3feecd89tlnxphvpk1lZWWZF154wbz33nvmmmuuSaipb7fffrvJzMw069evD5kC19bWFtzmtttuM/n5+WbdunVm69atxuv1Gq/XG8eqIzNz5kxTW1trduzYYd577z0zc+ZM43K5zGuvvWaMSfz+juXo2S7GJH6Pv/zlL8369evNjh07zD/+8Q9TXFxs+vTpY/bu3WuMSfz+jPlmmnRKSoqZN2+e2b59u3n66adNenq6eeqpp4LbJPr5xphvZkDm5+ebe++9t8O6RD+OU6dONaeffnpwqu3zzz9v+vTpY+65557gNvE8ho4OH8YY84c//MHk5+eb1NRUU1RUZDZt2hTvkjrt9ddfN5I6PKZOnWqM+Wbq1OzZs02/fv2Mx+MxV155pWloaIhv0RE4Vm+SzLJly4LbfP311+bnP/+5OfXUU016erq57rrrzJ49e+JXdIRuuukmM3DgQJOammpOO+00c+WVVwaDhzGJ39+xfDt8JHqPkyZNMv379zepqanm9NNPN5MmTQr5+xeJ3t8Ra9asMUOGDDEej8cUFBSYP/3pTyHrE/18Y4wxa9euNZKOWXeiH8fW1lZz1113mfz8fJOWlmbOOOMM8+tf/9r4fL7gNvE8hi5jjvpzZwAAADHm2M98AACA7onwAQAArCJ8AAAAqwgfAADAKsIHAACwivABAACsInwAAACrCB8AAMAqwgcAALCK8AEAAKwifAAAAKsIHwAAwKr/Byfd0uSzUf6vAAAAAElFTkSuQmCC", "text/plain": [ - "<Figure size 432x288 with 1 Axes>" + "<Figure size 640x480 with 1 Axes>" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -7488,9 +7484,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:dev]", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "conda-env-dev-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -7502,7 +7498,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.10" } }, "nbformat": 4, -- GitLab