@@ -7,13 +7,9 @@ François Laurent, Bertrand Néron, Vincent Guillemot, Étienne Kornobis
## Objectifs
- Savoir importer des données dans un environnement Python
- Savoir appliquer des méthodes univariées : t-test, régression linéaire, ANOVA, test du Chi-deux d’indépendance ou de comparaison des proportions, tests non paramétriques
- Savoir visualiser des données et des résultats d’analyse
- Savoir réaliser un rapport d’analyse statistique avec Jupyter
## Objectifs supplémentaires
...
...
@@ -28,7 +24,6 @@ Connaître les concepts clefs du Machine Learning : apprentissage, test, biais
- Avoir des connaissances de base en statistique
- Être familier avec les environnements virtuels
# Course Objectives for "Scientific Python"
Wednesday, September 20, 2023
...
...
@@ -37,30 +32,20 @@ François Laurent, Bertrand Néron, Vincent Guillemot, Étienne Kornobis
## Objectives:
Know how to import data into a Python environment.
Understand and apply univariate methods: t-test, linear regression, ANOVA, Chi-square test of independence or comparison of proportions, non-parametric tests.
Know how to create a statistical analysis report using Jupyter.
- Know how to import data into a Python environment.
- Understand and apply univariate methods: t-test, linear regression, ANOVA, Chi-square test of independence or comparison of proportions, non-parametric tests.
- Know how to visualize data and analysis results.
- Know how to create a statistical analysis report using Jupyter.
## Additional Objectives:
Understand key concepts of Machine Learning: learning, testing, bias, classification, cross-validation, scoring. Know how to build a Machine Learning pipeline with scikit-learn.
- Understand key concepts of Machine Learning: learning, testing, bias, classification, cross-validation, scoring. Know how to build a Machine Learning pipeline with scikit-learn.
## Prerequisites:
Proficiency in manipulating file paths.
Ability to create loops and nested loops.
Understanding the concept of class and object in Python, and ability to use objects.
Basic knowledge of statistics.
Familiarity with virtual environments.
\ No newline at end of file
- Proficiency in manipulating file paths.
- Ability to create loops and nested loops.
- Understanding the concept of class and object in Python, and ability to use objects.