... | ... | @@ -7,13 +7,9 @@ François Laurent, Bertrand Néron, Vincent Guillemot, Étienne Kornobis |
|
|
## Objectifs
|
|
|
|
|
|
- Savoir importer des données dans un environnement Python
|
|
|
|
|
|
- Savoir appliquer des méthodes univariées : t-test, régression linéaire, ANOVA, test du Chi-deux d’indépendance ou de comparaison des proportions, tests non paramétriques
|
|
|
|
|
|
- Savoir appliquer des méthodes multivariées : ACP, classification ascendante hiérarchique, distances
|
|
|
|
|
|
- Savoir visualiser des données et des résultats d’analyse
|
|
|
|
|
|
- Savoir réaliser un rapport d’analyse statistique avec Jupyter
|
|
|
|
|
|
## Objectifs supplémentaires
|
... | ... | @@ -27,7 +23,6 @@ Connaître les concepts clefs du Machine Learning : apprentissage, test, biais |
|
|
- Comprendre la notion de classe et d’objet en Python, et savoir utiliser des objets
|
|
|
- Avoir des connaissances de base en statistique
|
|
|
- Être familier avec les environnements virtuels
|
|
|
|
|
|
|
|
|
# Course Objectives for "Scientific Python"
|
|
|
|
... | ... | @@ -37,30 +32,20 @@ François Laurent, Bertrand Néron, Vincent Guillemot, Étienne Kornobis |
|
|
|
|
|
## Objectives:
|
|
|
|
|
|
Know how to import data into a Python environment.
|
|
|
|
|
|
Understand and apply univariate methods: t-test, linear regression, ANOVA, Chi-square test of independence or comparison of proportions, non-parametric tests.
|
|
|
|
|
|
Understand and apply multivariate methods: PCA (Principal Component Analysis), hierarchical clustering, distances.
|
|
|
|
|
|
Know how to visualize data and analysis results.
|
|
|
|
|
|
Know how to create a statistical analysis report using Jupyter.
|
|
|
- Know how to import data into a Python environment.
|
|
|
- Understand and apply univariate methods: t-test, linear regression, ANOVA, Chi-square test of independence or comparison of proportions, non-parametric tests.
|
|
|
- Understand and apply multivariate methods: PCA (Principal Component Analysis), hierarchical clustering, distances.
|
|
|
- Know how to visualize data and analysis results.
|
|
|
- Know how to create a statistical analysis report using Jupyter.
|
|
|
|
|
|
## Additional Objectives:
|
|
|
|
|
|
Understand key concepts of Machine Learning: learning, testing, bias, classification, cross-validation, scoring. Know how to build a Machine Learning pipeline with scikit-learn.
|
|
|
- Understand key concepts of Machine Learning: learning, testing, bias, classification, cross-validation, scoring. Know how to build a Machine Learning pipeline with scikit-learn.
|
|
|
|
|
|
## Prerequisites:
|
|
|
|
|
|
Proficiency in manipulating file paths.
|
|
|
|
|
|
Ability to create loops and nested loops.
|
|
|
|
|
|
Understanding the concept of class and object in Python, and ability to use objects.
|
|
|
|
|
|
Basic knowledge of statistics.
|
|
|
|
|
|
Familiarity with virtual environments.
|
|
|
|
|
|
|
|
|
\ No newline at end of file |
|
|
- Proficiency in manipulating file paths.
|
|
|
- Ability to create loops and nested loops.
|
|
|
- Understanding the concept of class and object in Python, and ability to use objects.
|
|
|
- Basic knowledge of statistics.
|
|
|
- Familiarity with virtual environments. |