#!/usr/bin/env python import csv from collections import defaultdict import sys, getopt import os import math from shutil import copyfile import pandas as pd from scipy.stats import chi2 from Bio import SeqIO import os.path SOFTWARES = {'meme','dreme','centrimo','meme_tomtom'} ##TYPES_SEARCHES = {'All','Narrow','Const','Max'} def get_size_fasta(path_motif, exp_design_name): with open(path_motif + 'Fasta_Summary.txt', 'w') as fasta_summary: for data_name in os.listdir(path_motif+'fasta/'): if data_name.endswith('.fasta'): print(data_name) fasta_seq = SeqIO.to_dict(SeqIO.parse(path_motif+'fasta/'+data_name, "fasta")) print(data_name,len(fasta_seq)) fasta_summary.write(data_name.replace('.fasta','')+'\t'+str(len(fasta_seq))+'\n') def parse_all_logs(path_motif, exp_design_name): with open(path_motif + '../Motif_search.log', 'w') as general_log: header = 'Data_name\t' + '\t'.join(SOFTWARES) general_log.write(header+'\n') for data_name in os.listdir(path_motif): if not data_name.startswith('.') and not data_name.endswith('.log') and not data_name.endswith('.sh'): progress_filename = path_motif + data_name + '/progress_log.txt' line = data_name + '\t' for software in SOFTWARES: found = False with open(progress_filename,'r') as file: for row in file: status_soft = 'name: '+software+' status: 0' if status_soft in row: found = True if found: line += '1\t' else: line += '0\t' general_log.write(line.strip() + '\n') def parse_dreme(path_motif, exp_design_name): with open(path_motif + 'dreme.sh', 'w') as dreme_file: for data_name in os.listdir(path_motif): if exp_design_name in data_name: print(data_name) if not data_name.startswith('.') and not data_name.endswith('.log') and not data_name.endswith('.sh'): # print(data_name) dreme_xml = path_motif + data_name + '/dreme_out/dreme.xml' if os.path.exists(dreme_xml): dreme_list = list() with open(dreme_xml, 'r') as file: for row in file: dreme_list.append(row.strip()) if '<command_line>' in row: dreme_file.write(row) dreme_txt = path_motif + data_name + '/dreme_out/dreme.txt' dreme_txt_list = list() with open(dreme_txt, 'r') as file: for row in file: dreme_txt_list.append(row.strip()) dreme_txt_intro = '' write_intro = False for row in dreme_txt_list: if row.startswith('MOTIF '): break if 'MEME version' in row: write_intro = True if write_intro: dreme_txt_intro += row + '\n' #print(dreme_txt_intro) # parse dreme with open(path_motif + '../logs/Dreme_' + data_name + '.log', 'w') as general_log: header = 'ID\tMotif\tNb_sites\tPos_Occurence\tNeg_Occurence\tNb_Seq\t' \ 'Percent\tPos_Percent\tNeg_Percent\tEvalue' general_log.write(header + '\n') # search length fasta for line in dreme_list: if '<positives name=' in line: number_seq = float(line.split(' ')[2].replace('\"','').replace('count=','')) # search motifs for i in range(1, len(dreme_list)): line = dreme_list[i] if '<motifs>' in line: index_motifs = i break # get motifs info for k in range(index_motifs+1, len(dreme_list)): if '<motif' in dreme_list[k]: new_line = dreme_list[k].replace('\"','').split(' ') #print(new_line) id = new_line[1].replace('id=', '') #print(id,data_name) print(dreme_txt_intro) seq = new_line[2].replace('seq=', '') occ = float(new_line[4].replace('nsites=', '')) pos_occ = float(new_line[5].replace('p=', '')) neg_occ = float(new_line[6].replace('n=', '')) evalue = new_line[8].replace('evalue=', '') # save table line_to_write = [id, seq, str(occ), str(pos_occ),str(neg_occ), str(number_seq), str(occ/number_seq), str(pos_occ/number_seq), str(neg_occ/number_seq), str(evalue)] general_log.write('\t'.join(line_to_write) + '\n') # copy png file for imagefile in os.listdir(path_motif + data_name + '/dreme_out/'): if id in imagefile: if 'nc_' in imagefile: src = path_motif + data_name + '/dreme_out/' + imagefile dst = path_motif + '../motif_figure/'+seq + '_nc.png' copyfile(src, dst) else: src = path_motif + data_name + '/dreme_out/' + imagefile dst = path_motif + '../motif_figure/' + seq + '_rc.png' copyfile(src, dst) # save motif with open(path_motif + '../motif/' + seq + '.meme', 'w') as meme_file: meme_file.write(dreme_txt_intro+'\n') # find motif info dreme_txt_motif = '' write_motif = False for row in dreme_txt_list: if write_motif and row.startswith('MOTIF '): break if ('MOTIF '+seq+' DREME') in row: write_motif = True if write_motif: dreme_txt_motif += row + '\n' print(dreme_txt_motif) meme_file.write(dreme_txt_motif + '\n') def regroup_motifs(path_motif, exp_design_name): motif_set = set() dict_dataset = defaultdict(list) dict_evalue = defaultdict(list) for data_name in os.listdir(path_motif+'logs/'): if data_name.startswith('Dreme_') and data_name.endswith('.log'): type_data = data_name.replace('Dreme_','').replace('.log','') print(type_data,data_name) with open(path_motif+'logs/'+data_name,'r') as log_file: log_file.readline() for line in log_file: motif = line.split('\t')[1] evalue = line.strip().split('\t')[-1] motif_set.add(motif) dict_dataset[motif].append(type_data) dict_evalue[motif].append(evalue) with open(path_motif + 'Motif_'+exp_design_name+'.txt','w') as motif_log: motif_log.write("Motif\tData\tP-value\n") for motif in motif_set: motif_log.write(motif+'\t'+';'.join(dict_dataset[motif])+'\t'+';'.join(dict_evalue[motif])+'\n') def regroup_figures(path_motif, motif_list): ''' Create SVG file with all motifs included :param path_motif: :param motif_list: :return: ''' print('Create PNG file with all motifs') df_summary = pd.read_csv(path_motif + motif_list + '.txt', sep='\t') df_summary = df_summary.sort_values(by=['Motif'], ascending=[True]) svg_text = '<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<!-- Generator: Adobe Illustrator 15.0.0, SVG Export ' \ 'Plug-In . SVG Version: 6.00 Build 0) -->\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"' \ 'http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<svg version=\"1.1\" id=\"Calque_1\" ' \ 'xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" x=\"0px\" y=\"0px\"' \ ' width=\"1300px\" height=\"'+str(len(df_summary.index)*100)+'px\" viewBox=\"0 0 1300 '\ +str(len(df_summary.index)*100)+'\" xml:space=\"preserve\">\n' i=0 for index, row in df_summary.iterrows(): motif = row['Motif'] data = row['Data'] pvalue = row['P-value'] image_file = 'motif_figure/' + motif + '_nc.png' new_row = '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"'+image_file+'\" ' \ 'transform=\"matrix(0.5184 0 0 0.5184 10.00 '+ str(float(100*i))+')\">\n</image>\n' image_file = 'motif_figure/' + motif + '_rc.png' new_row += '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"' + image_file + '\" ' \ 'transform=\"matrix(0.5184 0 0 0.5184 170.00 '+ str(float(100*i))+')\">\n</image>\n' new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 340 '+ str(float(50+100*i))+')\" font-family=' \ '\"\'MyriadPro-Regular\'\" font-size=\"40\">'+data+'</text>\n' new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 800 '+ str(float(50+100*i))+')\" font-family=' \ '\"\'MyriadPro-Regular\'\" font-size=\"40\">'+pvalue+'</text>\n' svg_text += new_row i+=1 svg_text += '</svg>\n' with open(path_motif + motif_list + '.svg', 'w') as figure_file: figure_file.write(svg_text) print('Convert svg to png') os.system('convert '+path_motif + motif_list + '.svg '+path_motif + motif_list + '.png') os.system('convert '+path_motif + motif_list + '.svg '+path_motif + '../../All_Figures/Motif/' + motif_list + '.png') def run_fimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename): motif_list = list() with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file: for row in motif_file: motif_list.append(row.split('\t')[0].strip()) data_list = list() with open(path_motif + data_list_filename + '.txt', 'r') as data_file: for row in data_file: data_list.append(row.split('\t')[0].strip()) with open(path_motif + 'Fimo.sh', 'w') as motif_sh: for motif in motif_list: motif_file = path_script + 'motif/' + motif + '.meme' print(motif_file) for data_name in data_list: fasta_file = path_script + 'fasta/' + data_name + '.fasta' folder_fimo = path_script + 'fimo/' + motif + '_' + data_name fimo_sh = 'fimo --parse-genomic-coord --verbosity 1 --thresh 1e-2 --max-stored-scores 1000000 '\ '--oc ' + folder_fimo + ' ' + motif_file + ' ' + fasta_file print(fimo_sh) motif_sh.write(fimo_sh+'\n') def run_centrimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename): motif_list = list() with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file: for row in motif_file: motif_list.append(row.split('\t')[0].strip()) data_list = list() with open(path_motif + data_list_filename + '.txt', 'r') as data_file: for row in data_file: data_list.append(row.split('\t')[0].strip()) with open(path_motif + 'Centrimo.sh', 'w') as motif_sh: for motif in motif_list: motif_file = path_motif + 'motif/' + motif + '.meme' print(motif_file) for data_name in data_list: fasta_file = path_motif + 'fasta/' + data_name + '.fasta' folder_centrimo = path_motif + 'centrimo/' + motif + '_' + data_name centrimo_sh = 'centrimo -seqlen 100 -verbosity 1 -oc ' + folder_centrimo + ' -score 5.0 '\ '-ethresh 10.0 ' + fasta_file + ' '+motif_file print(centrimo_sh) motif_sh.write(centrimo_sh + '\n') def parse_fimo(path_motif, exp_design_name, motif_list_filename, data_list_filename): motif_list = list() with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file: for row in motif_file: motif_list.append(row.split('\t')[0].strip()) data_list = list() with open(path_motif + data_list_filename + '.txt', 'r') as data_file: for row in data_file: data_list.append(row.split('\t')[0].strip()) fasta_to_length = dict() with open(path_motif + 'Fasta_Summary.txt', 'r') as fasta_summary: for row in fasta_summary: fasta_to_length[row.split('\t')[0]] = int(row.strip().split('\t')[1]) with open(path_motif + 'Fimo_Summary_Max.txt', 'w') as fimo_summary_max, \ open(path_motif + 'Fimo_Summary_All.txt', 'w') as fimo_summary_all: headers = 'Data_Name\tSeq\tData\tTotal_Occurence\tNb_Peaks\tNb_Peaks_Fasta\tRatio\n' fimo_summary_max.write(headers) fimo_summary_all.write(headers) for seq in motif_list: for data_type in data_list: data_name = seq + '_'+ data_type print(data_name) if not os.path.exists(path_motif + 'fimo/' + data_name + '/fimo.txt'): print('Cannot find:' + path_motif + 'fimo/' + data_name + '/fimo.txt') print('Create void table to proceed motif algorithm') with open(path_motif + 'fimo_template.txt', 'r') as fimo_file, \ open(path_motif + 'fimo/' + data_name + '/fimo.txt', 'w') as fimo_table: fimo_table.write(fimo_file.readline()) fimo_table.write(fimo_file.readline()) with open(path_motif + 'fimo/' + data_name + '/fimo.txt','r') as fimo_file, \ open(path_motif + 'fimo/' + data_name + '/fimo_table.txt', 'w') as fimo_table: fimo_table.write('Peak\tOcc\tchi_fisher\tscore\n') fimo_file_csv = csv.DictReader(fimo_file, delimiter='\t') peak_to_value = defaultdict(list) peak_to_occurence = defaultdict(int) for row in fimo_file_csv: value = float(row['score']) if value > 0: peak_to_occurence[row['sequence name']] += 1 peak_to_value[row['sequence name']].append(str(row['score'])) total_occ = 0 for peak, occ in peak_to_occurence.items(): chi_fisher = 0 for pvalue in peak_to_value[peak]: #chi_fisher += -2 * math.log1p(float(pvalue)) chi_fisher += float(pvalue) #print chi_fisher fimo_table.write(peak+'\t'+str(occ)+'\t'+str(chi_fisher)+'\t'+';'.join(peak_to_value[peak])+'\n') total_occ += occ seq = data_name[0:data_name.index('_')] fasta_name = data_name[data_name.index('_')+1:len(data_name)] fasta_length = fasta_to_length[fasta_name] new_line = data_name + '\t' + seq + '\t' + fasta_name + '\t' + str(total_occ) + '\t' \ + str(len(peak_to_occurence)) + '\t' + str(fasta_length) + '\t' + \ str(total_occ) + '\n' if 'All_' in data_name: fimo_summary_all.write(new_line) else: fimo_summary_max.write(new_line) def create_motif_table(path_motif, exp_design_name, path_peaks, motif_list_filename, data_list_filename, type_search): set_seq = set() set_type_data = set() df_summary = pd.read_csv(path_motif + 'Fimo_Summary_' + type_search + '.txt', index_col=0, sep='\t') motif_list = list() with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file: for row in motif_file: motif_list.append(row.split('\t')[0].strip()) data_list = list() with open(path_motif + data_list_filename + '.txt', 'r') as data_file: for row in data_file: data_type = row.split('\t')[0].strip() data_list.append(data_type) set_peaks = set() df_peaks = pd.read_csv(path_peaks+ exp_design_name + '_Peaks.txt', index_col=0, sep='\t') for index in df_peaks.index: set_peaks.add(index) for seq in motif_list: print(seq) with open(path_motif + 'mutual_information/Fimo_Table_' + type_search + '_' + seq + '.txt', 'w') as fimo_table, \ open(path_motif + 'mutual_information/Fimo_Table_' + type_search + '_' + seq + '_Count.txt', 'w') as fimo_summary: header_type_data = list(data_list) #header_type_data[0] = 'All' fimo_summary.write('Pres_Abs\t' + '\t'.join(header_type_data)+'\n') fimo_table.write('Peak\t' + '\t'.join(header_type_data) + '\n') peak_to_occ = defaultdict(dict) data_to_count = dict() for type_data in data_list: print(type_data) data_name = seq + '_' + type_data df_motif = pd.read_csv(path_motif + 'fimo/' + data_name + '/fimo_table.txt', index_col=0, sep='\t') count_occ = 0 for peak in set_peaks: if peak in df_motif.index: peak_to_occ[peak][type_data] = df_motif['chi_fisher'][peak] count_occ += df_motif['chi_fisher'][peak] else: peak_to_occ[peak][type_data] = 0 data_to_count[type_data] = count_occ new_line = 'Present\t' for index in data_list: new_line += str(data_to_count[index]) + '\t' fimo_summary.write(new_line.strip() + '\n') for peak in peak_to_occ: new_line = peak + '\t' for index in data_list: new_line += str(peak_to_occ[peak][index]) + '\t' fimo_table.write(new_line.strip() + '\n') def create_occurence_table(path_motif, exp_design_name, motif_list_filename, data_list_filename, type_search): fasta_to_length = dict() with open(path_motif + 'Fasta_Summary.txt', 'r') as fasta_summary: for row in fasta_summary: fasta_to_length[row.split('\t')[0]] = int(row.strip().split('\t')[1]) motif_list = list() with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file: for row in motif_file: motif_list.append(row.split('\t')[0].strip()) data_list = list() with open(path_motif + data_list_filename + '.txt', 'r') as data_file: for row in data_file: data_type = row.split('\t')[0].strip() data_list.append(data_type) with open(path_motif + 'Fimo_Table_' + type_search + '.txt', 'w') as fimo_summary: header = 'Sequence\t' + '\t'.join(list(data_list)) fimo_summary.write(header + '\n') for seq in motif_list: print(seq) df_motif = pd.read_csv(path_motif + 'mutual_information/Fimo_Table_' + type_search + '_' + seq + '_Count.txt' , index_col=0, sep='\t') new_line = seq + '\t' print(df_motif.columns) for type_data in data_list: row_name = seq + '_' + type_search + '_' + exp_design_name + type_data length = fasta_to_length[type_data] print(length) if type_data == '': type_data = 'All' value = df_motif[type_data]['Present'] if length != 0 : new_line += str(float(value)/float(length)) + '\t' else: new_line += str(0) + '\t' fimo_summary.write(new_line.strip() + '\n') #exp_design_name = 'LivOld' exp_design_name = 'CecAm_MaxMaxValues' #path = '/Users/cbecavin/Documents/m6aAkker/' path = '/Volumes/m6aAkker/' path_motif = path + 'PeakDiffExpression/' + exp_design_name + '/Motif/' path_peaks = path + 'PeakDetection/Peaks/' if not os.path.isdir(path_motif + 'logs/'): os.mkdir(path_motif + 'logs/') if not os.path.isdir(path_motif + 'motif/'): os.mkdir(path_motif + 'motif/') if not os.path.isdir(path_motif + 'motif_figure/'): os.mkdir(path_motif + 'motif_figure/') if not os.path.isdir(path_motif + 'fimo/'): os.mkdir(path_motif + 'fimo/') #path_script = path + 'PeakDiffExpression/' + exp_design_name + '/Motif/' path_script = '/pasteur/projets/policy01/m6aAkker/' + 'PeakDiffExpression/' + exp_design_name + '/Motif/' # get size fasta #get_size_fasta(path_motif, exp_design_name) # first look at log to see which software crashed #parse_all_logs(path_motif+'/results/', exp_design_name) # Parse meme results and extract all motifs #parse_dreme(path_motif+'/results/', exp_design_name) # regroup all motifs #regroup_motifs(path_motif, exp_design_name) motif_list_filename = 'Motif_'+exp_design_name+'_Filter' # put all motifs figures together to filter the list #regroup_figures(path_motif, motif_list_filename) data_list_filename = 'list_data_' + exp_design_name #data_list_filename = 'list_data_All' # write sh file for running fimo run_fimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename) # write sh file for running centrimo #run_centrimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename) # parse fimo results #parse_fimo(path_motif, exp_design_name, motif_list_filename, data_list_filename) #motif_list_filename = 'list_motifs_All' #motif_list_filename = 'list_motifs_Max' #data_list_filename = 'list_data_All' #data_list_filename = 'list_data_Max' #type_search = 'All' #type_search = 'Max' # create a table for each motif of occurence in list #create_motif_table(path_motif, exp_design_name, path_peaks, motif_list_filename, data_list_filename, type_search) # create a table for occurence of each motif #create_occurence_table(path_motif, exp_design_name, motif_list_filename, data_list_filename, type_search)