diff --git a/old_scripts/open_and_display_plymesh.m b/old_scripts/open_and_display_plymesh.m
deleted file mode 100644
index a97000c7c0eb7e95e56a3297c130a709513e0093..0000000000000000000000000000000000000000
--- a/old_scripts/open_and_display_plymesh.m
+++ /dev/null
@@ -1,86 +0,0 @@
-
-
-% open and parse the ply file produced by morphographX
-[FVOri.vertices,FVOri.faces] = read_ply('processedMesh_bin.ply');
-FV = FVOri;
-
-
-% Display the reduced mesh
-% Reduce the resolution of the faces (1% of the surface) => ~smoothing
-FV = reducepatch(FVOri,0.01);
-FV = FVOri;
-figure; 
-patchedMesh = patch(FV, 'FaceColor','none','LineWidth',1);
-axis equal;
-
-
-% Display mesh with z info encoded in colormap without transparency
-figure; 
-patchedMesh = patch(FV, 'FaceVertexCData',FV.vertices(:,3),'FaceColor','interp','LineStyle','none');
-axis equal;
-
-
-% Display mesh with z info encoded in colormap and transparency
-figure; 
-patchedMesh = patch(FV, 'FaceVertexCData',FV.vertices(:,3),'FaceColor','interp','LineStyle','none','FaceVertexAlphaData',0.3,...
-    'FaceAlpha','flat');
-axis equal;
-
-% % Display mesh with normal info encoded in colormap
-% figure; 
-% patchedMesh = patch(FV, 'FaceVertexCData',N,'FaceColor','interp','LineStyle','none','FaceNormal',N);
-% axis equal;
-
-% Display vertex normals only
-figure;
-[FV.vertNorm,FV.faceNorm] = compute_normal(FV.vertices,FV.faces);
-FV.vertNorm = FV.vertNorm';
-FV.faceNorm = FV.faceNorm';
-for face = 1:size(FV.faces,1)
-    FV.faceCentroid(face,:) = mean(FV.vertices(FV.faces(face,:),:));
-end
-quiver3(FV.vertices(:,1),FV.vertices(:,2),FV.vertices(:,3),FV.vertNorm(:,1),FV.vertNorm(:,2),FV.vertNorm(:,3));
-axis equal;
-hold on
-quiver3(FV.faceCentroid(:,1),FV.faceCentroid(:,2),FV.faceCentroid(:,3),FV.faceNorm(:,1),FV.faceNorm(:,2),FV.faceNorm(:,3));
-
-
-
-
-
-
-
-
-
-
-
-
-
-%% % % 
-% % % %% test normal from web
-% % % theta = gallery('uniformdata',[100,1],0)*2*pi;
-% % % phi = gallery('uniformdata',[100,1],1)*pi;
-% % % x = cos(theta).*sin(phi);
-% % % y = sin(theta).*sin(phi);
-% % % z = cos(phi);
-% % % DT = delaunayTriangulation(x,y,z);
-% % % [T,Xb] = freeBoundary(DT);
-% % % TR = triangulation(T,Xb);
-% % % 
-% % % figure
-% % % trisurf(T,Xb(:,1),Xb(:,2),Xb(:,3), ...
-% % %      'FaceColor', 'cyan', 'faceAlpha', 0.8);
-% % % axis equal;
-% % % hold on;
-% % % 
-% % % % Calculate the incenters and face normals. 
-% % % P = incenter(TR);
-% % % fn = faceNormal(TR);  
-% % % 
-% % % % Display the normal vectors on the surface. 
-% % % quiver3(P(:,1),P(:,2),P(:,3), ...
-% % %      fn(:,1),fn(:,2),fn(:,3),0.5, 'color','r');
-% % % hold off;
-
-
-