diff --git a/RunExample.m b/RunExample.m index d375dc9c7695ca60801af1ab597f44edec66e13d..f3c58976cd2c8ac7eb09d7b1041669329e205173 100755 --- a/RunExample.m +++ b/RunExample.m @@ -148,9 +148,13 @@ for i = 1 : n_objects [ area, uncorr_area ] = area3d( o ); [ perim, uncorr_perim ] = perimeter3d( o ); + [ f, E ] = fit_ellipse( o ); + objects( i ).id = i; objects( i ).area = area; objects( i ).perimeter = perim; + objects( i ).euler_angles = E; + objects( i ).ellipse_fit = f; uncorr = struct(); uncorr.area = uncorr_area; @@ -185,11 +189,12 @@ for i = 1 : n_objects o = objects( i ); P = o.boundary; - err = o.perimeter / o.uncorr.perimeter - 1; +% err = o.perimeter / o.uncorr.perimeter - 1; + err = abs( o.euler_angles( 2 ) ); patch( P(:,1), P(:,2), P(:,3), err, ... 'LineWidth', 2 ); - text( o.center(1), o.center(2), o.center(3) + 0.5, num2str( i ), ... + text( o.center(1), o.center(2), o.center(3) + 0.5, num2str( o.id ), ... 'HorizontalAlignment', 'center', ... 'VerticalAlignment', 'middle' ) diff --git a/src/fit_ellipse.m b/src/fit_ellipse.m new file mode 100644 index 0000000000000000000000000000000000000000..07704433a2d3016c27de70a5c9d9c69c82ae30b0 --- /dev/null +++ b/src/fit_ellipse.m @@ -0,0 +1,156 @@ +function [ f, E ] = fit_ellipse( o ) +%FIT_ELLIPSE Fit a 2D ellipse to the 3D points. +% The fit requires the Euler angles of the plane fitted through the +% opints, so that we can project them on this plane. We then make a 2D +% ellipse fit on the projected points. This turns to be much more robust +% than a 3D fit, and also closely match our configuration. + +% Greatly inspired from +% https://stackoverflow.com/questions/29051168/data-fitting-an-ellipse-in-3d-space + + p = double( centered_points( o ) ); + + % Fit a plane to these points. + [ ~, ~, v ] = svd( p ); + E = to_euler( v ); + + % Rotate the points into the principal axes frame. + p = p * v; + + % Direct ellipse fit. +% A = direct_ellipse_fit( p( :, 1:2 ) ); + A = taubin_ellipse_fit( p( :, 1:2 ) ); + f = quadratic_to_cartesian( A ); + + %% Subfunctions + + function E = to_euler( R ) + if R( 1, 3 ) == 1 || R( 1, 3 ) == -1 + E3 = 0; + dlta = atan2(R(1,2),R(1,3)); + if R(1,3) == -1 + E2 = pi/2; + E1 = E3 + dlta; + else + E2 = -pi/2; + E1 = -E3 + dlta; + end + else + E2 = - asin( R( 1, 3 ) ); + E1 = atan2( R( 2, 3 ) / cos( E2 ), R( 3, 3 ) / cos( E2 ) ); + E3 = atan2( R( 1, 2 ) / cos( E2 ), R( 1, 1 ) / cos( E2 ) ); + end + E = [ E1, E2, E3 ]; + + end + + function f = quadratic_to_cartesian( A ) + % Equations taken from Wolfram website. + + a = A(1); + b = A(2); + c = A(3); + d = A(4); + f = A(5); + g = A(6); + + x0 = ( c * d - b * f ) / ( b^2 - a * c ); + y0 = ( a * f - b * d ) / ( b^2 - a * c ); + + l1 = sqrt( 2*(a*f^2+c*d^2+g*b^2-2*b*d*f-a*c*g) / ((b^2-a*c)*(sqrt((a-c)^2+4*b^2)-(a+c)))); + l2 = sqrt( 2*(a*f^2+c*d^2+g*b^2-2*b*d*f-a*c*g) / ((b^2-a*c)*(-sqrt((a-c)^2+4*b^2)-(a+c)))); + + if b == 0 && a < c + phi = 0; + elseif b == 0 && a > c + phi = 0.5*pi; + elseif b ~= 0 && a < c + phi = 0.5* acot((a-c)/(2*b)); + else + phi = 0.5*pi + 0.5* acot((a-c)/(2*b)); + end + + f = [ x0 y0 l1 l2 phi ]; + + end + + function A = direct_ellipse_fit(XY) %#ok<DEFNU> + % Direct ellipse fit, proposed in article + % A. W. Fitzgibbon, M. Pilu, R. B. Fisher + % "Direct Least Squares Fitting of Ellipses" + % IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) + % + % Adapted from https://fr.mathworks.com/matlabcentral/fileexchange/22684-ellipse-fit-direct-method + + centroid = mean(XY); % the centroid of the data set + D1 = [(XY(:,1)-centroid(1)).^2, (XY(:,1)-centroid(1)).*(XY(:,2)-centroid(2)),... + (XY(:,2)-centroid(2)).^2]; + D2 = [XY(:,1)-centroid(1), XY(:,2)-centroid(2), ones(size(XY,1),1)]; + S1 = D1'*D1; + S2 = D1'*D2; + S3 = D2'*D2; + T = -inv(S3)*S2'; + M = S1 + S2*T; + M = [M(3,:)./2; -M(2,:); M(1,:)./2]; + [evec,eval] = eig(M); %#ok<ASGLU> + cond = 4*evec(1,:).*evec(3,:)-evec(2,:).^2; + A1 = evec(:,find(cond>0)); %#ok<FNDSB> + A = [A1; T*A1]; + A4 = A(4)-2*A(1)*centroid(1)-A(2)*centroid(2); + A5 = A(5)-2*A(3)*centroid(2)-A(2)*centroid(1); + A6 = A(6)+A(1)*centroid(1)^2+A(3)*centroid(2)^2+... + A(2)*centroid(1)*centroid(2)-A(4)*centroid(1)-A(5)*centroid(2); + A(4) = A4; A(5) = A5; A(6) = A6; + A = A/norm(A); + end + + function A = taubin_ellipse_fit(XY) + % Ellipse fit by Taubin's Method published in + % G. Taubin, "Estimation Of Planar Curves, Surfaces And Nonplanar + % Space Curves Defined By Implicit Equations, With + % Applications To Edge And Range Image Segmentation", + % IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991) + % + % Input: XY(n,2) is the array of coordinates of n points x(i)=XY(i,1), y(i)=XY(i,2) + % + % Output: A = [a b c d e f]' is the vector of algebraic + % parameters of the fitting ellipse: + % ax^2 + bxy + cy^2 +dx + ey + f = 0 + % the vector A is normed, so that ||A||=1 + % + % Among fast non-iterative ellipse fitting methods, + % this is perhaps the most accurate and robust + % + % Note: this method fits a quadratic curve (conic) to a set of points; + % if points are better approximated by a hyperbola, this fit will + % return a hyperbola. To fit ellipses only, use "Direct Ellipse Fit". + + centroid = mean(XY); % the centroid of the data set + Z = [(XY(:,1)-centroid(1)).^2, (XY(:,1)-centroid(1)).*(XY(:,2)-centroid(2)),... + (XY(:,2)-centroid(2)).^2, XY(:,1)-centroid(1), XY(:,2)-centroid(2), ones(size(XY,1),1)]; + M = Z'*Z/size(XY,1); + P = [M(1,1)-M(1,6)^2, M(1,2)-M(1,6)*M(2,6), M(1,3)-M(1,6)*M(3,6), M(1,4), M(1,5); + M(1,2)-M(1,6)*M(2,6), M(2,2)-M(2,6)^2, M(2,3)-M(2,6)*M(3,6), M(2,4), M(2,5); + M(1,3)-M(1,6)*M(3,6), M(2,3)-M(2,6)*M(3,6), M(3,3)-M(3,6)^2, M(3,4), M(3,5); + M(1,4), M(2,4), M(3,4), M(4,4), M(4,5); + M(1,5), M(2,5), M(3,5), M(4,5), M(5,5)]; + Q = [4*M(1,6), 2*M(2,6), 0, 0, 0; + 2*M(2,6), M(1,6)+M(3,6), 2*M(2,6), 0, 0; + 0, 2*M(2,6), 4*M(3,6), 0, 0; + 0, 0, 0, 1, 0; + 0, 0, 0, 0, 1]; + [V,D] = eig(P,Q); + [Dsort,ID] = sort(diag(D)); %#ok<ASGLU> + A = V(:,ID(1)); + A = [A; -A(1:3)'*M(1:3,6)]; + A4 = A(4)-2*A(1)*centroid(1)-A(2)*centroid(2); + A5 = A(5)-2*A(3)*centroid(2)-A(2)*centroid(1); + A6 = A(6)+A(1)*centroid(1)^2+A(3)*centroid(2)^2+... + A(2)*centroid(1)*centroid(2)-A(4)*centroid(1)-A(5)*centroid(2); + A(4) = A4; A(5) = A5; A(6) = A6; + A = A/norm(A); + end % Taubin + + +end +