models.py 30.9 KB
Newer Older
1
2
3
4
"""
Models used in iPPI-DB
"""

Hervé  MENAGER's avatar
Hervé MENAGER committed
5
from __future__ import unicode_literals
6
import operator
Hervé  MENAGER's avatar
Hervé MENAGER committed
7
8

from django.db import models
9
from django.conf import settings
10
from django.db.models import Max, Min, Count, F, Q, Case, When, Sum
11
from django.db.models.functions import Cast
12
from django.db.models import FloatField, IntegerField, BooleanField                                                                                                                                                                 
13

Hervé  MENAGER's avatar
Hervé MENAGER committed
14

15
from .utils import FingerPrinter, smi2inchi, smi2inchikey
16
from .ws import get_pubmed_info, get_google_patent_info, get_uniprot_info, get_taxonomy_info, get_go_info, get_pfam_info
17

Hervé  MENAGER's avatar
Hervé MENAGER committed
18

19
class AutoFillableModel(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
20

21
22
23
24
25
26
27
28
29
30
31
32
33
    """
    AutoFillableModel makes it possible to automatically fill model fields from
    external sources in the autofill() method
    The save method allows to either include autofill or not. in autofill kwarg is
    set to True, save() will first call autofill(), otherwise it won't
    """

    class Meta:
        abstract = True

    def save(self, *args, **kwargs):
        if kwargs.get('autofill') is True:
            self.autofill()
34
35
        if 'autofill' in kwargs:
            del kwargs['autofill']
Hervé  MENAGER's avatar
Hervé MENAGER committed
36
        super(AutoFillableModel, self).save(*args, **kwargs)
37
38
39


class Bibliography(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
40

Hervé  MENAGER's avatar
Hervé MENAGER committed
41
42
43
44
    """
    Bibliography data table
    """
    SOURCES = (
45
46
47
        ('PM', 'PubMed ID'),
        ('PT', 'Patent'),
        ('DO', 'DOI ID')
Hervé  MENAGER's avatar
Hervé MENAGER committed
48
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
49
50
    source = models.CharField(
        'Bibliographic type', max_length=2, choices=SOURCES, default='PM')
Hervé  MENAGER's avatar
Hervé MENAGER committed
51
52
    id_source = models.CharField('Bibliographic ID', max_length=25)
    title = models.CharField('Title', max_length=300)
53
    journal_name = models.CharField('Journal name', max_length=50, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
54
55
    authors_list = models.CharField('Authors list', max_length=500)
    biblio_year = models.PositiveSmallIntegerField('Year')
56
    cytotox = models.BooleanField('Cytotoxicity data', default=False)
Rachel TORCHET's avatar
Rachel TORCHET committed
57
58
59
60
    in_silico = models.BooleanField('in silico study', default=False)
    in_vitro = models.BooleanField('in vitro study', default=False)
    in_vivo = models.BooleanField('in vivo study', default=False)
    in_cellulo = models.BooleanField('in cellulo study', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
61
62
    pharmacokinetic = models.BooleanField(
        'pharmacokinetic study', default=False)
Rachel TORCHET's avatar
Rachel TORCHET committed
63
    xray = models.BooleanField('X-Ray data', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
64

65
    def autofill(self):
66
67
68
        if self.source == 'PM':
            info = get_pubmed_info(self.id_source)
        else:
69
            info = get_google_patent_info(self.id_source)
70
71
72
73
        self.title = info['title']
        self.journal_name = info['journal_name']
        self.authors_list = info['authors_list']
        self.biblio_year = info['biblio_year']
Hervé  MENAGER's avatar
Hervé MENAGER committed
74

Hervé  MENAGER's avatar
Hervé MENAGER committed
75
76
77
    class Meta:
        verbose_name_plural = "bibliographies"

78
79
    def __str__(self):
        return '{}, {}'.format(self.source, self.id_source)
80

Hervé  MENAGER's avatar
Hervé MENAGER committed
81

82
class Taxonomy(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
83
84
    taxonomy_id = models.DecimalField(
        'NCBI TaxID', unique=True, max_digits=9, decimal_places=0)
Hervé  MENAGER's avatar
Hervé MENAGER committed
85
    name = models.CharField('Organism name', max_length=200)
86

87
    def autofill(self):
88
89
90
        info = get_taxonomy_info(self.taxonomy_id)
        self.name = info['scientific_name']

91
92
93
    def __str__(self):
        return self.name

Hervé  MENAGER's avatar
Hervé MENAGER committed
94
95
    class Meta:
        verbose_name_plural = "taxonomies"
Hervé  MENAGER's avatar
Hervé MENAGER committed
96

Hervé  MENAGER's avatar
Hervé MENAGER committed
97

98
class MolecularFunction(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
99
    go_id = models.CharField('Gene Ontology ID', unique=True, max_length=10)
Hervé  MENAGER's avatar
Hervé MENAGER committed
100
    # GO term id format: 'GO:0000000'
Hervé  MENAGER's avatar
Hervé MENAGER committed
101
102
    description = models.CharField('description', max_length=500)

103
    def autofill(self):
104
105
106
        info = get_go_info(self.go_id)
        self.description = info['label']

107
108
109
    def __str__(self):
        return self.description

Hervé  MENAGER's avatar
Hervé MENAGER committed
110

111
class Protein(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
112
    uniprot_id = models.CharField('Uniprot ID', unique=True, max_length=10)
Hervé  MENAGER's avatar
Hervé MENAGER committed
113
114
    recommended_name_long = models.CharField(
        'Uniprot Recommended Name (long)', max_length=75)
Hervé  MENAGER's avatar
Hervé MENAGER committed
115
116
117
    short_name = models.CharField('Short name', max_length=50)
    gene_name = models.CharField('Gene name', unique=True, max_length=30)
    entry_name = models.CharField('Entry name', max_length=30)
118
    organism = models.ForeignKey('Taxonomy', models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
119
120
    molecular_functions = models.ManyToManyField(MolecularFunction)

121
    def autofill(self):
122
        info = get_uniprot_info(self.uniprot_id)
123
        self.recommended_name_long = info['recommended_name']
124
125
        self.gene_name = info['gene']
        self.entry_name = info['entry_name']
126
        self.short_name = info['short_name']
127
128
129
130
131
        try:
            taxonomy = Taxonomy.objects.get(taxonomy_id=info['organism'])
        except Taxonomy.DoesNotExist:
            taxonomy = Taxonomy()
            taxonomy.taxonomy_id = info['organism']
132
            taxonomy.save(autofill=True)
133
        self.organism = taxonomy
134
        super(Protein, self).save()
135
136
137
138
139
140
        for go_id in info['molecular_functions']:
            try:
                mol_function = MolecularFunction.objects.get(go_id=go_id)
            except MolecularFunction.DoesNotExist:
                mol_function = MolecularFunction()
                mol_function.go_id = go_id
141
                mol_function.save(autofill=True)
142
            self.molecular_functions.add(mol_function)
143

144
145
146
    def __str__(self):
        return '{} ({})'.format(self.uniprot_id, self.recommended_name_long)

Hervé  MENAGER's avatar
Hervé MENAGER committed
147

148
class Domain(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
149
150
    pfam_acc = models.CharField('Pfam Accession', max_length=10, unique=True)
    pfam_id = models.CharField('Pfam Family Identifier', max_length=20)
Hervé  MENAGER's avatar
Hervé MENAGER committed
151
    pfam_description = models.CharField('Pfam Description', max_length=100)
Hervé  MENAGER's avatar
Hervé MENAGER committed
152
    domain_family = models.CharField('Domain family', max_length=25)
Hervé  MENAGER's avatar
Hervé MENAGER committed
153
154
    # TODO: what is this field? check database
    # contents
155

156
    def autofill(self):
157
158
159
        info = get_pfam_info(self.pfam_acc)
        self.pfam_id = info['id']
        self.pfam_description = info['description']
Hervé  MENAGER's avatar
Hervé MENAGER committed
160

161
162
163
164
    @property
    def name(self):
        return self.pfam_id

165
166
167
    def __str__(self):
        return '{} ({}-{})'.format(self.pfam_acc, self.pfam_id, self.pfam_description)

Hervé  MENAGER's avatar
Hervé MENAGER committed
168

169
class ProteinDomainComplex(models.Model):
170
171
    protein = models.ForeignKey('Protein', models.CASCADE)
    domain = models.ForeignKey('Domain', models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
172
173
174
    ppc_copy_nb = models.IntegerField(
        'Number of copies of the protein in the complex')

Hervé  MENAGER's avatar
Hervé MENAGER committed
175
176
    class Meta:
        verbose_name_plural = "complexes"
177

178
179
180
    def __str__(self):
        return '{}-{}'.format(self.protein_id, self.domain_id)

181
182
    def name(self):
        return self.protein.short_name
Hervé  MENAGER's avatar
Hervé MENAGER committed
183

184

185
class ProteinDomainBoundComplex(ProteinDomainComplex):
Hervé  MENAGER's avatar
Hervé MENAGER committed
186
187
188
    ppp_copy_nb_per_p = models.IntegerField(
        'Number of copies of the protein in the pocket')

189
190
    class Meta:
        verbose_name_plural = "bound complexes"
Hervé  MENAGER's avatar
Hervé MENAGER committed
191
192


193
class ProteinDomainPartnerComplex(ProteinDomainComplex):
Hervé  MENAGER's avatar
Hervé MENAGER committed
194

195
196
    class Meta:
        verbose_name_plural = "partner complexes"
Hervé  MENAGER's avatar
Hervé MENAGER committed
197

Hervé  MENAGER's avatar
Hervé MENAGER committed
198

199
200
201
class Symmetry(models.Model):
    code = models.CharField('Symmetry code', max_length=2)
    description = models.CharField('Description', max_length=300)
Hervé  MENAGER's avatar
Hervé MENAGER committed
202

203
204
205
    class Meta:
        verbose_name_plural = "symmetries"

206
207
208
    def __str__(self):
        return '{} ({})'.format(self.code, self.description)

209
210

class Disease(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
211
    name = models.CharField('Disease', max_length=30, unique=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
212
    # is there any database/nomenclature for diseases?
213
214
215
216

    def __str__(self):
        return self.name

Hervé  MENAGER's avatar
Hervé MENAGER committed
217

Hervé  MENAGER's avatar
Hervé MENAGER committed
218
219
220
class PpiFamily(models.Model):
    name = models.CharField('Name', max_length=30, unique=True)

221
222
223
    class Meta:
        verbose_name_plural = "PPI Families"

Hervé  MENAGER's avatar
Hervé MENAGER committed
224
225
    def __str__(self):
        return self.name
Hervé  MENAGER's avatar
Hervé MENAGER committed
226

Hervé  MENAGER's avatar
Hervé MENAGER committed
227

228
class Ppi(AutoFillableModel):
229
    pdb_id = models.CharField('PDB ID', max_length=4, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
230
231
    pockets_nb = models.IntegerField(
        'Total number of pockets in the complex', default=1)
232
    symmetry = models.ForeignKey(Symmetry, models.CASCADE)
233
    diseases = models.ManyToManyField(Disease)
234
    family = models.ForeignKey(PpiFamily, models.CASCADE, null=True, blank=True)
235
    name = models.TextField('PPI name', null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
236

237
    def __str__(self):
238
        return 'PPI #{} on {}'.format(self.id, self.name)
239

240
241
242
    def autofill(self):
        # name is denormalized and stored in the database to reduce SQL queries in query mode
        self.name = self.compute_name_from_protein_names()
243
244
245
246
247

    def get_ppi_bound_complexes(self):
        """
        return bound ppi complexes belonging to this ppi
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
248
        # this is the less efficient query ever seen, FIXME
249
250
        return PpiComplex.objects.filter(ppi=self, complex__in=ProteinDomainBoundComplex.objects.all())

251
    def compute_name_from_protein_names(self):
Hervé  MENAGER's avatar
Hervé MENAGER committed
252
        all_protein_names = set(
253
            [ppi_complex.complex.protein.short_name for ppi_complex in self.ppicomplex_set.all()])
Hervé  MENAGER's avatar
Hervé MENAGER committed
254
255
        bound_protein_names = set(
            [ppi_complex.complex.protein.short_name for ppi_complex in self.get_ppi_bound_complexes()])
256
257
258
259
        partner_protein_names = all_protein_names - bound_protein_names
        bound_str = ','.join(bound_protein_names)
        partner_str = ','.join(partner_protein_names)
        name = bound_str
Hervé  MENAGER's avatar
Hervé MENAGER committed
260
        if partner_str != '':
261
262
            name += ' / ' + partner_str
        return name
263

Hervé  MENAGER's avatar
Hervé MENAGER committed
264

Hervé  MENAGER's avatar
Hervé MENAGER committed
265
class PpiComplex(models.Model):
266
267
    ppi = models.ForeignKey(Ppi, models.CASCADE)
    complex = models.ForeignKey(ProteinDomainComplex, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
268
269
    cc_nb = models.IntegerField(
        'Number of copies of the complex in the PPI', default=1)
Hervé  MENAGER's avatar
Hervé MENAGER committed
270
271
272
273

    class Meta:
        verbose_name_plural = "Ppi complexes"

274
275
276
    def __str__(self):
        return 'PPI {}, Complex {} ({})'.format(self.ppi, self.complex, self.cc_nb)

Hervé  MENAGER's avatar
Hervé MENAGER committed
277

278
279
280
281
class CompoundManager(models.Manager):

    def get_queryset(self):
        qs = super().get_queryset()
282
        # with number of publications
283
        qs = qs.annotate(pubs=Count('refcompoundbiblio', distinct=True))
284
        # with best activity
285
        qs = qs.annotate(best_activity=Max('compoundactivityresult__activity')) 
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        # with LE
        qs = qs.annotate(le=Cast(1.37 * Max('compoundactivityresult__activity') / F('nb_atom_non_h'), FloatField()))
        # with LLE
        qs = qs.annotate(lle=Cast(Max('compoundactivityresult__activity') - F('a_log_p'), FloatField()))
        # Lipinsky MW (<=500)
        qs = qs.annotate(lipinsky_mw=Case(When(molecular_weight__lte=500, then=True), default=False, output_field=BooleanField()))
        # Lipinsky hba (<=10)
        qs = qs.annotate(lipinsky_hba=Case(When(nb_acceptor_h__lte=10, then=True), default=False, output_field=BooleanField()))
        # Lipinsky hbd (<5)
        qs = qs.annotate(lipinsky_hbd=Case(When(nb_donor_h__lte=5, then=True), default=False, output_field=BooleanField()))
        # Lipinsky a_log_p (<5)
        qs = qs.annotate(lipinsky_a_log_p=Case(When(a_log_p__lte=5, then=True), default=False, output_field=BooleanField()))
        # Lipinsky global
        qs = qs.annotate(lipinsky_score=Cast(F('lipinsky_mw'), IntegerField())+Cast(F('lipinsky_hba'), IntegerField())+ \
            Cast(F('lipinsky_hbd'), IntegerField()) + Cast(F('lipinsky_a_log_p'), IntegerField()))
        qs = qs.annotate(lipinsky=Case(When(lipinsky_score__gte=3, then=True), default=False, output_field=BooleanField()))
        # Veber hba_hbd (<=12)
        qs = qs.annotate(hba_hbd=F('nb_acceptor_h')+F('nb_donor_h'))
        qs = qs.annotate(veber_hba_hbd=Case(When(hba_hbd__lte=12, then=True), default=False, output_field=BooleanField()))
        # Veber TPSA (<=140)
        qs = qs.annotate(veber_tpsa=Case(When(tpsa__lte=140, then=True), default=False, output_field=BooleanField()))
        # Veber Rotatable Bonds (<=10)
        qs = qs.annotate(veber_rb=Case(When(nb_rotatable_bonds__lte=10, then=True), default=False, output_field=BooleanField()))
        # Veber global (Rotatable bonds and (hba_hbd or tpsa))
310
311
        #qs = qs.annotate(veber=F('veber_rb').bitand(F('veber_hba_hbd').bitor(F('veber_tpsa'))))
        qs = qs.annotate(veber=Case(When(Q(Q(nb_rotatable_bonds__lte=10) & (Q(hba_hbd__lte=12) | Q(tpsa__lte=140))), then=True), default=False, output_field=BooleanField()))
312
313
314
315
316
        # Pfizer AlogP (<=3)
        qs = qs.annotate(pfizer_a_log_p=Case(When(a_log_p__lte=3, then=True), default=False, output_field=BooleanField()))
        # Pfizer TPSA (>=75)
        qs = qs.annotate(pfizer_tpsa=Case(When(tpsa__gte=75, then=True), default=False, output_field=BooleanField()))
        # Pfizer global (AlogP and TPSA)
317
318
        #qs = qs.annotate(pfizer=F('pfizer_a_log_p').bitand(F('pfizer_tpsa')))
        qs = qs.annotate(pfizer=Case(When(Q(Q(a_log_p__lte=3) & Q(tpsa__gte=75)), then=True), default=False, output_field=BooleanField()))
319
320
        # PDB ligand available
        qs = qs.annotate(pdb_ligand_av=Case(When(compoundaction__ppi__pdb_id__isnull=False, then=True), default=False, output_field=BooleanField()))
321
322
323
324
325
326
        # inhibition role
        qs = qs.annotate(inhibition_role=Case(When(compoundactivityresult__modulation_type='I', then=True), default=False, output_field=BooleanField()))
        # binding role
        qs = qs.annotate(binding_role=Case(When(compoundactivityresult__modulation_type='B', then=True), default=False, output_field=BooleanField()))
        # stabilisation role
        qs = qs.annotate(stabilisation_role=Case(When(compoundactivityresult__modulation_type='S', then=True), default=False, output_field=BooleanField()))
327
328
        return qs

329
class Compound(AutoFillableModel):
330
    objects = CompoundManager() 
331
332
    canonical_smile = models.TextField(
        'Canonical Smile', unique=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
333
334
335
336
337
    is_macrocycle = models.BooleanField('Contains one or more macrocycles')
    aromatic_ratio = models.DecimalField(
        'Aromatic ratio', max_digits=3, decimal_places=2)
    balaban_index = models.DecimalField(
        'Balaban index', max_digits=3, decimal_places=2)
338
    fsp3 = models.DecimalField('Fsp3', max_digits=3, decimal_places=2)
Hervé  MENAGER's avatar
Hervé MENAGER committed
339
340
341
342
343
344
345
346
347
348
    gc_molar_refractivity = models.DecimalField(
        'GC Molar Refractivity', max_digits=5, decimal_places=2)
    log_d = models.DecimalField(
        'LogD (Partition coefficient octanol-1/water, with pKa information)', max_digits=4, decimal_places=2)
    a_log_p = models.DecimalField(
        'ALogP (Partition coefficient octanol-1/water)', max_digits=4, decimal_places=2)
    mean_atom_vol_vdw = models.DecimalField(
        'Mean atom volume computed with VdW radii', max_digits=4, decimal_places=2)
    molecular_weight = models.DecimalField(
        'Molecular weight', max_digits=6, decimal_places=2)
349
350
351
352
    nb_acceptor_h = models.IntegerField('Number of hydrogen bond acceptors')
    nb_aliphatic_amines = models.IntegerField('Number of aliphatics amines')
    nb_aromatic_bonds = models.IntegerField('Number of aromatic bonds')
    nb_aromatic_ether = models.IntegerField('Number of aromatic ethers')
Hervé  MENAGER's avatar
Hervé MENAGER committed
353
354
355
356
    nb_aromatic_sssr = models.IntegerField(
        'Number of aromatic Smallest Set of System Rings (SSSR)')
    nb_atom = models.IntegerField('Number of atoms')
    nb_atom_non_h = models.IntegerField('Number of non hydrogen atoms')
357
358
    nb_benzene_like_rings = models.IntegerField('Number of benzene-like rings')
    nb_bonds = models.IntegerField('Number of bonds')
Hervé  MENAGER's avatar
Hervé MENAGER committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    nb_bonds_non_h = models.IntegerField(
        'Number of bonds not involving a hydrogen')
    nb_br = models.IntegerField('Number of Bromine atoms')
    nb_c = models.IntegerField('Number of Carbon atoms')
    nb_chiral_centers = models.IntegerField('Number of chiral centers')
    nb_circuits = models.IntegerField('Number of circuits')
    nb_cl = models.IntegerField('Number of Chlorine atoms')
    nb_csp2 = models.IntegerField('Number of sp2-hybridized carbon atoms')
    nb_csp3 = models.IntegerField('Number of sp3-hybridized carbon atoms')
    nb_donor_h = models.IntegerField('Number of hydrogen bond donors')
    nb_double_bonds = models.IntegerField('Number of double bonds')
    nb_f = models.IntegerField('Number of fluorine atoms')
    nb_i = models.IntegerField('Number of iodine atoms')
    nb_multiple_bonds = models.IntegerField('Number of multiple bonds')
373
    nb_n = models.IntegerField('Number of nitrogen atoms')
Hervé  MENAGER's avatar
Hervé MENAGER committed
374
375
376
    nb_o = models.IntegerField('Number of oxygen atoms')
    nb_rings = models.IntegerField('Number of rings')
    nb_rotatable_bonds = models.IntegerField('Number of rotatable bonds')
377
378
    inchi = models.TextField('InChi')
    inchikey = models.TextField('InChiKey')
Hervé  MENAGER's avatar
Hervé MENAGER committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    randic_index = models.DecimalField(
        'Randic index', max_digits=4, decimal_places=2)
    rdf070m = models.DecimalField(
        'RDF070m, radial distribution function weighted by the atomic masses at 7Å', max_digits=5, decimal_places=2)
    rotatable_bond_fraction = models.DecimalField(
        'Fraction of rotatable bonds', max_digits=3, decimal_places=2)
    sum_atom_polar = models.DecimalField(
        'Sum of atomic polarizabilities', max_digits=5, decimal_places=2)
    sum_atom_vol_vdw = models.DecimalField(
        'Sum of atom volumes computed with VdW radii', max_digits=6, decimal_places=2)
    tpsa = models.DecimalField(
        'Topological Polar Surface Area (TPSA)', max_digits=5, decimal_places=2)
    ui = models.DecimalField(
        'Unsaturation index', max_digits=4, decimal_places=2)
    wiener_index = models.IntegerField('Wiener index')
    common_name = models.CharField(
        'Common name', unique=True, max_length=20, blank=True, null=True)
    pubchem_id = models.CharField(
        'Pubchem ID', max_length=10, blank=True, null=True)
    chemspider_id = models.CharField(
        'Chemspider ID', unique=True, max_length=10, blank=True, null=True)
    chembl_id = models.CharField(
        'Chembl ID', max_length=30, blank=True, null=True)
    iupac_name = models.CharField(
        'IUPAC name', max_length=255, blank=True, null=True)
404

405
406
407
    class Meta:
       ordering = ['id']

408
409
410
    def compute_drugbank_compound_similarity(self):
        """ compute Tanimoto similarity to existing DrugBank compounds """
        self.save()
411
        # fingerprints to compute drugbank similarities are in settings module, default FP2
412
        fingerprinter = FingerPrinter(getattr(settings, "DRUGBANK_FINGERPRINTS", "FP2"))
413
414
415
416
417
418
419
420
421
        #1. compute tanimoto for SMILES query vs all compounds
        smiles_dict = {c.id:c.canonical_smiles for c in DrugBankCompound.objects.all()}
        tanimoto_dict = fingerprinter.tanimoto_smiles(self.canonical_smile, smiles_dict)
        tanimoto_dict = dict(sorted(tanimoto_dict.items(), key=operator.itemgetter(1), reverse=True)[:15])
        dbcts = []
        for id_, tanimoto in tanimoto_dict.items():
            dbcts.append(DrugbankCompoundTanimoto(compound=self, drugbank_compound=DrugBankCompound.objects.get(id=id_), tanimoto=tanimoto))
        DrugbankCompoundTanimoto.objects.bulk_create(dbcts)

Hervé  MENAGER's avatar
Hervé MENAGER committed
422
423
424
    @property
    def biblio_refs(self):
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
425
        return all RefCompoundBiblio related to this compound
Hervé  MENAGER's avatar
Hervé MENAGER committed
426
427
        """
        return RefCompoundBiblio.objects.filter(compound=self)
428

429
430
431
432
433
434
435
436
437
438
439
440
441
    @property
    def pfam_ids(self):
        """
        return all PFAM ids for the domain of the proteins of the bound
        complexes in the PPIs this compound has an action on
        """
        pfam_ids = set()
        for ca in self.compoundaction_set.all():
            ca.get_complexes()
            for bound_complex in ca.ppi.get_ppi_bound_complexes():
                pfam_ids.add(bound_complex.complex.domain.pfam_id)
        return pfam_ids

442
    @property
Hervé  MENAGER's avatar
Hervé MENAGER committed
443
    def compound_action_ligand_ids(self):
444
445
446
        """
        return all PDB codes of the corresponding compound actions
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
447
        ligand_ids = set()
448
        for ca in self.compoundaction_set.all():
Hervé  MENAGER's avatar
Hervé MENAGER committed
449
450
            ligand_ids.add(ca.ligand_id)
        return ligand_ids
451

452
453
    @property
    def best_pXC50_activity(self):
454
        return self.compoundactivityresult_set.aggregate(Max('activity'))['activity__max']
455
456
457
458
459
460

    @property
    def best_pXC50_compound_activity_result(self):
        best_pXC50_activity = self.best_pXC50_activity
        if best_pXC50_activity is None:
            return None
461
        return self.compoundactivityresult_set.filter(activity=best_pXC50_activity)[0]
462

463
    @property
464
    def best_pXC50_activity_ppi_name(self):
465
        """
466
        Name of the PPI corresponding to the best PXC50 activity
467
        """
468
469
470
        best_activity_car = self.best_pXC50_compound_activity_result
        if best_activity_car is None:
            return None
471
472
473
        ppi_name = best_activity_car.test_activity_description.ppi.name
        return ppi_name

474
475
476
477
478
479
480
481
482
483
484
    @property
    def best_pXC50_activity_ppi_family(self):
        """
        Family of the PPI corresponding to the best PXC50 activity
        """
        best_activity_car = self.best_pXC50_compound_activity_result
        if best_activity_car is None:
            return None
        ppi_family = best_activity_car.test_activity_description.ppi.family.name
        return ppi_family

485
486
487
488
489
490
491
492
493
494
495
496
497
498
    @property
    def bioch_tests_count(self):
        """
        return the number of associated biochemical tests
        """
        return self.compoundactivityresult_set.all().filter(test_activity_description__test_type='BIOCH').count()

    @property
    def cell_tests_count(self):
        """
        return the number of associated cell tests
        """
        return self.compoundactivityresult_set.all().filter(test_activity_description__test_type='CELL').count()

499
500
501
502
503
504
    @property
    def families(self):
        """
        return the all PPI families for PPIs involved in the compound activity of the compound
        """
        return list(set([ca.ppi.family for ca in self.compoundaction_set.all()]))
505
506
507
508
509
    
    @property
    def sorted_similar_drugbank_compounds(self):
        return self.drugbankcompoundtanimoto_set.order_by('-tanimoto')
        
510
511
512
    def autofill(self):
        # compute InChi and InChiKey
        self.inchi = smi2inchi(self.canonical_smile)
513
        self.inchikey = smi2inchikey(self.canonical_smile)
514
        self.compute_drugbank_compound_similarity()
515

516
517
518
    def __str__(self):
        return 'Compound #{}'.format(self.id)

519
520
521
class CompoundTanimoto(models.Model):
    canonical_smiles = models.TextField(
        'Canonical Smile')
522
    fingerprint = models.TextField('Fingerprint')
523
524
525
526
527
528
    compound = models.ForeignKey(Compound, models.CASCADE)
    tanimoto = models.DecimalField(
        'Tanimoto value', max_digits=5, decimal_places=4)

    class Meta:
        unique_together = (
529
            ('canonical_smiles', 'fingerprint', 'compound'))
530

531
def create_tanimoto(smiles_query, fingerprint):
532
    if CompoundTanimoto.objects.filter(canonical_smiles=smiles_query, fingerprint=fingerprint).count()==0:
533
        smiles_dict = {c.id:c.canonical_smile for c in Compound.objects.all()}
534
        fingerprinter = FingerPrinter(fingerprint)
535
536
537
538
539
        #1. compute tanimoto for SMILES query vs all compounds
        tanimoto_dict = fingerprinter.tanimoto_smiles(smiles_query, smiles_dict)
        #2. insert results in a table with three fields: SMILES query, compound id, tanimoto index
        cts = []
        for id_, smiles in smiles_dict.items():
540
            cts.append(CompoundTanimoto(canonical_smiles=smiles_query, fingerprint=fingerprint, compound=Compound.objects.get(id=id_), tanimoto=tanimoto_dict[id_]))
541
        CompoundTanimoto.objects.bulk_create(cts)
542

543
class PcaBiplotData(models.Model):
544
545
    pca_biplot_data = models.TextField(
        'PCA biplot JSON data', blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
546

547

548
class LeLleBiplotData(models.Model):
549
550
    le_lle_biplot_data = models.TextField(
        'LE-LLE biplot JSON data', blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
551

552

553
554
class CellLine(models.Model):
    name = models.CharField('Name', max_length=50, unique=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
555

556
557
558
    def __str__(self):
        return self.name

Hervé  MENAGER's avatar
Hervé MENAGER committed
559

560
561
562
563
564
565
566
567
568
569
class TestActivityDescription(models.Model):
    TEST_TYPES = (
        ('BIOCH', 'Biochemical assay'),
        ('CELL', 'Cellular assay')
    )
    TEST_MODULATION_TYPES = (
        ('B', 'Binding'),
        ('I', 'Inhibition'),
        ('S', 'Stabilization')
    )
570
571
572
573
    PROTEIN_BOUND_CONSTRUCTS = (
        ('F', 'Full length'),
        ('U', 'Unspecified')
    )
574
    biblio = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
575
576
    protein_domain_bound_complex = models.ForeignKey(
        ProteinDomainBoundComplex, models.CASCADE)
577
    ppi = models.ForeignKey(Ppi, models.CASCADE, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
578
    test_name = models.CharField('Test name', max_length=100)
579
    is_primary = models.BooleanField('Is primary')
Hervé  MENAGER's avatar
Hervé MENAGER committed
580
581
    protein_bound_construct = models.CharField(
        'Protein bound construct', max_length=5, choices=PROTEIN_BOUND_CONSTRUCTS, blank=True, null=True)
582
    test_type = models.CharField('Test type', max_length=5, choices=TEST_TYPES)
Hervé  MENAGER's avatar
Hervé MENAGER committed
583
584
585
586
    test_modulation_type = models.CharField(
        'Test modulation type', max_length=1, choices=TEST_MODULATION_TYPES)
    nb_active_compounds = models.IntegerField(
        'Total number of active compounds')
Hervé  MENAGER's avatar
Hervé MENAGER committed
587
588
    cell_line = models.ForeignKey(
        CellLine, models.CASCADE, blank=True, null=True)
589

Hervé  MENAGER's avatar
Hervé MENAGER committed
590
    def get_complexes(self):
591
592
593
594
        """
        get the complexes tested for this PPI
        depends on the modulation type
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
595
        if self.test_modulation_type == 'I':
596
            return self.ppi.ppicomplex_set.all()
597
598
        else:
            return self.ppi.get_ppi_bound_complexes()
599

600
601
602
    @property
    def protein_domain_partner_complex(self):
        for ppic in self.ppi.ppicomplex_set.all():
Hervé  MENAGER's avatar
Hervé MENAGER committed
603
            if hasattr(ppic.complex, 'proteindomainpartnercomplex'):
604
605
606
                return ppic.complex.proteindomainpartnercomplex
        return None

Hervé  MENAGER's avatar
Hervé MENAGER committed
607

608
class CompoundActivityResult(models.Model):
609
610
611
612
613
    MODULATION_TYPES = (
        ('B', 'Binding'),
        ('I', 'Inhibition'),
        ('S', 'Stabilization')
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
614
    ACTIVITY_TYPES = (
Hervé  MENAGER's avatar
Hervé MENAGER committed
615
616
617
618
        ('pIC50', 'pIC50 (half maximal inhibitory concentration, -log10)'),
        ('pEC50', 'pEC50 (half maximal effective concentration, -log10)'),
        ('pKd', 'pKd (dissociation constant, -log10)'),
        ('pKi', 'pKi (inhibition constant, -log10)'),
Hervé  MENAGER's avatar
Hervé MENAGER committed
619
    )
620
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
621
622
    test_activity_description = models.ForeignKey(
        TestActivityDescription, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
623
624
625
626
    activity_type = models.CharField(
        'Activity type', max_length=5, choices=ACTIVITY_TYPES)
    activity = models.DecimalField(
        'Activity', max_digits=12, decimal_places=10)
627
    inhibition_percentage = models.DecimalField(
628
        'Inhibition percentage', max_digits=3, decimal_places=0, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
629
630
    modulation_type = models.CharField(
        'Modulation type', max_length=1, choices=MODULATION_TYPES)
Hervé  MENAGER's avatar
Hervé MENAGER committed
631
632

    class Meta:
Hervé  MENAGER's avatar
Hervé MENAGER committed
633
634
635
        unique_together = (
            ('compound', 'test_activity_description', 'activity_type'),)

636
637
    def __str__(self):
        return 'Compound activity result for {} test {} on {}'.format(self.activity_type, self.test_activity_description.id, self.compound.id)
Hervé  MENAGER's avatar
Hervé MENAGER committed
638

639
640
641
    def is_best(self):
        return self.compound.best_pXC50_compound_activity_result.id == self.id

Hervé  MENAGER's avatar
Hervé MENAGER committed
642

643
class TestCytotoxDescription(models.Model):
644
    biblio = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
645
    test_name = models.CharField('Cytotoxicity test name', max_length=100)
646
    cell_line = models.ForeignKey(CellLine, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
647
648
649
    compound_concentration = models.DecimalField(
        'Compound concentration in μM', max_digits=7, decimal_places=3, blank=True, null=True)

Hervé  MENAGER's avatar
Hervé MENAGER committed
650

651
class CompoundCytotoxicityResult(models.Model):
652
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
653
654
    test_cytotoxicity_description = models.ForeignKey(
        TestCytotoxDescription, models.CASCADE)
655
    toxicity = models.BooleanField('Toxicity', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
656
657

    class Meta:
658
        unique_together = (('compound', 'test_cytotoxicity_description'),)
659

660
661
662
    def __str__(self):
        return 'Compound cytotoxicity result for test {} on {}'.format(self.test_cytotoxicity_description.id, self.compound.id)

Hervé  MENAGER's avatar
Hervé MENAGER committed
663

664
class TestPKDescription(models.Model):
665
666
667
668
669
670
    ADMINISTRATION_MODES = (
        ('IV', ''),
        ('PO', ''),
        ('IP', ''),
        ('SL', 'SL')
    )
671
    biblio = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
672
    test_name = models.CharField('Pharmacokinetic test name', max_length=100)
673
    organism = models.ForeignKey(Taxonomy, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
674
675
    administration_mode = models.CharField(
        'Administration mode', max_length=2, choices=ADMINISTRATION_MODES, blank=True, null=True)
676
677
    concentration = models.DecimalField(
        'Concentration in mg/l', max_digits=7, decimal_places=3, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
678
    dose = models.DecimalField(
679
        'Dose in mg/kg', max_digits=9, decimal_places=4, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
680
681
682
    dose_interval = models.IntegerField(
        'Dose interval, in hours', blank=True, null=True)

683
684

class CompoundPKResult(models.Model):
685
686
    compound = models.ForeignKey(Compound, models.CASCADE)
    test_pk_description = models.ForeignKey(TestPKDescription, models.CASCADE)
687
    tolerated = models.NullBooleanField('Tolerated', null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
688
689
690
691
    auc = models.IntegerField(
        'Area under curve (ng.mL-1.hr)', blank=True, null=True)
    clearance = models.DecimalField(
        'Clearance (mL/hr)', max_digits=7, decimal_places=3, blank=True, null=True)
692
    c_max = models.DecimalField(
Hervé  MENAGER's avatar
Hervé MENAGER committed
693
694
695
696
697
698
699
        'Maximal concentration (ng/mL)', max_digits=7, decimal_places=3, blank=True, null=True)
    oral_bioavailability = models.IntegerField(
        'Oral Bioavailability (%F)', blank=True, null=True)
    t_demi = models.IntegerField('t½', blank=True, null=True)
    t_max = models.IntegerField('tmax', blank=True, null=True)
    voldistribution = models.DecimalField(
        'Volume distribution (Vd)', max_digits=5, decimal_places=2, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
700
701

    class Meta:
702
        unique_together = (('compound', 'test_pk_description'),)
Hervé  MENAGER's avatar
Hervé MENAGER committed
703

704
705
706
    def __str__(self):
        return 'Compound PK result for test {} on {}'.format(self.test_pk_description.id, self.compound.id)

Hervé  MENAGER's avatar
Hervé MENAGER committed
707

708
class CompoundAction(models.Model):
709
710
    ACTIVATION_MODES = (
        ('O', 'Orthosteric'),
711
712
        ('A', 'Allosteric'),
        ('U', 'Unspecified')
713
    )
714
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
715
716
    activation_mode = models.CharField(
        'Activation mode', max_length=1, choices=ACTIVATION_MODES)
717
    ppi = models.ForeignKey(Ppi, models.CASCADE)
718
    ligand_id = models.CharField('PDB Ligand ID', max_length=3, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
719
720
    nb_copy_compounds = models.IntegerField(
        'Number of copies for the compound')
Hervé  MENAGER's avatar
Hervé MENAGER committed
721
722

    class Meta:
723
        unique_together = (('ppi', 'compound', 'activation_mode', 'ligand_id'),)
Hervé  MENAGER's avatar
Hervé MENAGER committed
724
725

    def get_complexes(self):
726
727
728
729
        """
        get the complexes involved in the compound action
        which are always the bound complexes
        """
730
        return self.ppi.get_ppi_bound_complexes()
Hervé  MENAGER's avatar
Hervé MENAGER committed
731

732
733
    def __str__(self):
        return 'Action of {} on {}'.format(self.compound, self.ppi)
Hervé  MENAGER's avatar
Hervé MENAGER committed
734

735
class RefCompoundBiblio(models.Model):
736
737
    compound = models.ForeignKey(Compound, models.CASCADE)
    bibliography = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
738
739
    compound_name = models.CharField(
        'Compound name in the publication', max_length=50)
Hervé  MENAGER's avatar
Hervé MENAGER committed
740
741

    class Meta:
742
        unique_together = (('compound', 'bibliography'),)
743

744
class DrugBankCompound(models.Model):
745
746
747
748
749
    id = models.TextField(
        'Drugbank ID', unique=True, primary_key=True)
    common_name = models.TextField('Common name')
    canonical_smiles = models.TextField(
        'Canonical SMILES')
750
751
752
753
754

class DrugbankCompoundTanimoto(models.Model):
    compound = models.ForeignKey(Compound, models.CASCADE)
    drugbank_compound = models.ForeignKey(DrugBankCompound, models.CASCADE)
    tanimoto = models.DecimalField(
755
        'Tanimoto value', max_digits=5, decimal_places=4)