models.py 28.9 KB
Newer Older
1
2
3
4
"""
Models used in iPPI-DB
"""

Hervé  MENAGER's avatar
Hervé MENAGER committed
5
from __future__ import unicode_literals
6
import operator
Hervé  MENAGER's avatar
Hervé MENAGER committed
7
8

from django.db import models
9
from django.conf import settings
10
11
12
13
from django.db.models import Max, Min, Count, F, Q
from django.db.models.functions import Cast
from django.db.models import FloatField                                                                                                                                                                 

Hervé  MENAGER's avatar
Hervé MENAGER committed
14

15
from .utils import FingerPrinter, smi2inchi, smi2inchikey
16
from .ws import get_pubmed_info, get_google_patent_info, get_uniprot_info, get_taxonomy_info, get_go_info, get_pfam_info
17

Hervé  MENAGER's avatar
Hervé MENAGER committed
18

19
class AutoFillableModel(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
20

21
22
23
24
25
26
27
28
29
30
31
32
33
    """
    AutoFillableModel makes it possible to automatically fill model fields from
    external sources in the autofill() method
    The save method allows to either include autofill or not. in autofill kwarg is
    set to True, save() will first call autofill(), otherwise it won't
    """

    class Meta:
        abstract = True

    def save(self, *args, **kwargs):
        if kwargs.get('autofill') is True:
            self.autofill()
34
35
        if 'autofill' in kwargs:
            del kwargs['autofill']
Hervé  MENAGER's avatar
Hervé MENAGER committed
36
        super(AutoFillableModel, self).save(*args, **kwargs)
37
38
39


class Bibliography(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
40

Hervé  MENAGER's avatar
Hervé MENAGER committed
41
42
43
44
    """
    Bibliography data table
    """
    SOURCES = (
45
46
47
        ('PM', 'PubMed ID'),
        ('PT', 'Patent'),
        ('DO', 'DOI ID')
Hervé  MENAGER's avatar
Hervé MENAGER committed
48
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
49
50
    source = models.CharField(
        'Bibliographic type', max_length=2, choices=SOURCES, default='PM')
Hervé  MENAGER's avatar
Hervé MENAGER committed
51
52
    id_source = models.CharField('Bibliographic ID', max_length=25)
    title = models.CharField('Title', max_length=300)
53
    journal_name = models.CharField('Journal name', max_length=50, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
54
55
    authors_list = models.CharField('Authors list', max_length=500)
    biblio_year = models.PositiveSmallIntegerField('Year')
56
    cytotox = models.BooleanField('Cytotoxicity data', default=False)
Rachel TORCHET's avatar
Rachel TORCHET committed
57
58
59
60
    in_silico = models.BooleanField('in silico study', default=False)
    in_vitro = models.BooleanField('in vitro study', default=False)
    in_vivo = models.BooleanField('in vivo study', default=False)
    in_cellulo = models.BooleanField('in cellulo study', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
61
62
    pharmacokinetic = models.BooleanField(
        'pharmacokinetic study', default=False)
Rachel TORCHET's avatar
Rachel TORCHET committed
63
    xray = models.BooleanField('X-Ray data', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
64

65
    def autofill(self):
66
67
68
        if self.source == 'PM':
            info = get_pubmed_info(self.id_source)
        else:
69
            info = get_google_patent_info(self.id_source)
70
71
72
73
        self.title = info['title']
        self.journal_name = info['journal_name']
        self.authors_list = info['authors_list']
        self.biblio_year = info['biblio_year']
Hervé  MENAGER's avatar
Hervé MENAGER committed
74

Hervé  MENAGER's avatar
Hervé MENAGER committed
75
76
77
    class Meta:
        verbose_name_plural = "bibliographies"

78
79
    def __str__(self):
        return '{}, {}'.format(self.source, self.id_source)
80

Hervé  MENAGER's avatar
Hervé MENAGER committed
81

82
class Taxonomy(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
83
84
    taxonomy_id = models.DecimalField(
        'NCBI TaxID', unique=True, max_digits=9, decimal_places=0)
Hervé  MENAGER's avatar
Hervé MENAGER committed
85
    name = models.CharField('Organism name', max_length=200)
86

87
    def autofill(self):
88
89
90
        info = get_taxonomy_info(self.taxonomy_id)
        self.name = info['scientific_name']

91
92
93
    def __str__(self):
        return self.name

Hervé  MENAGER's avatar
Hervé MENAGER committed
94
95
    class Meta:
        verbose_name_plural = "taxonomies"
Hervé  MENAGER's avatar
Hervé MENAGER committed
96

Hervé  MENAGER's avatar
Hervé MENAGER committed
97

98
class MolecularFunction(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
99
    go_id = models.CharField('Gene Ontology ID', unique=True, max_length=10)
Hervé  MENAGER's avatar
Hervé MENAGER committed
100
    # GO term id format: 'GO:0000000'
Hervé  MENAGER's avatar
Hervé MENAGER committed
101
102
    description = models.CharField('description', max_length=500)

103
    def autofill(self):
104
105
106
        info = get_go_info(self.go_id)
        self.description = info['label']

107
108
109
    def __str__(self):
        return self.description

Hervé  MENAGER's avatar
Hervé MENAGER committed
110

111
class Protein(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
112
    uniprot_id = models.CharField('Uniprot ID', unique=True, max_length=10)
Hervé  MENAGER's avatar
Hervé MENAGER committed
113
114
    recommended_name_long = models.CharField(
        'Uniprot Recommended Name (long)', max_length=75)
Hervé  MENAGER's avatar
Hervé MENAGER committed
115
116
117
    short_name = models.CharField('Short name', max_length=50)
    gene_name = models.CharField('Gene name', unique=True, max_length=30)
    entry_name = models.CharField('Entry name', max_length=30)
118
    organism = models.ForeignKey('Taxonomy', models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
119
120
    molecular_functions = models.ManyToManyField(MolecularFunction)

121
    def autofill(self):
122
        info = get_uniprot_info(self.uniprot_id)
123
        self.recommended_name_long = info['recommended_name']
124
125
        self.gene_name = info['gene']
        self.entry_name = info['entry_name']
126
        self.short_name = info['short_name']
127
128
129
130
131
        try:
            taxonomy = Taxonomy.objects.get(taxonomy_id=info['organism'])
        except Taxonomy.DoesNotExist:
            taxonomy = Taxonomy()
            taxonomy.taxonomy_id = info['organism']
132
            taxonomy.save(autofill=True)
133
        self.organism = taxonomy
134
        super(Protein, self).save()
135
136
137
138
139
140
        for go_id in info['molecular_functions']:
            try:
                mol_function = MolecularFunction.objects.get(go_id=go_id)
            except MolecularFunction.DoesNotExist:
                mol_function = MolecularFunction()
                mol_function.go_id = go_id
141
                mol_function.save(autofill=True)
142
            self.molecular_functions.add(mol_function)
143

144
145
146
    def __str__(self):
        return '{} ({})'.format(self.uniprot_id, self.recommended_name_long)

Hervé  MENAGER's avatar
Hervé MENAGER committed
147

148
class Domain(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
149
150
    pfam_acc = models.CharField('Pfam Accession', max_length=10, unique=True)
    pfam_id = models.CharField('Pfam Family Identifier', max_length=20)
Hervé  MENAGER's avatar
Hervé MENAGER committed
151
    pfam_description = models.CharField('Pfam Description', max_length=100)
Hervé  MENAGER's avatar
Hervé MENAGER committed
152
    domain_family = models.CharField('Domain family', max_length=25)
Hervé  MENAGER's avatar
Hervé MENAGER committed
153
154
    # TODO: what is this field? check database
    # contents
155

156
    def autofill(self):
157
158
159
        info = get_pfam_info(self.pfam_acc)
        self.pfam_id = info['id']
        self.pfam_description = info['description']
Hervé  MENAGER's avatar
Hervé MENAGER committed
160

161
162
163
    def __str__(self):
        return '{} ({}-{})'.format(self.pfam_acc, self.pfam_id, self.pfam_description)

Hervé  MENAGER's avatar
Hervé MENAGER committed
164

165
class ProteinDomainComplex(models.Model):
166
167
    protein = models.ForeignKey('Protein', models.CASCADE)
    domain = models.ForeignKey('Domain', models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
168
169
170
    ppc_copy_nb = models.IntegerField(
        'Number of copies of the protein in the complex')

Hervé  MENAGER's avatar
Hervé MENAGER committed
171
172
    class Meta:
        verbose_name_plural = "complexes"
173

174
175
176
    def __str__(self):
        return '{}-{}'.format(self.protein_id, self.domain_id)

177
178
    def name(self):
        return self.protein.short_name
Hervé  MENAGER's avatar
Hervé MENAGER committed
179

180

181
class ProteinDomainBoundComplex(ProteinDomainComplex):
Hervé  MENAGER's avatar
Hervé MENAGER committed
182
183
184
    ppp_copy_nb_per_p = models.IntegerField(
        'Number of copies of the protein in the pocket')

185
186
    class Meta:
        verbose_name_plural = "bound complexes"
Hervé  MENAGER's avatar
Hervé MENAGER committed
187
188


189
class ProteinDomainPartnerComplex(ProteinDomainComplex):
Hervé  MENAGER's avatar
Hervé MENAGER committed
190

191
192
    class Meta:
        verbose_name_plural = "partner complexes"
Hervé  MENAGER's avatar
Hervé MENAGER committed
193

Hervé  MENAGER's avatar
Hervé MENAGER committed
194

195
196
197
class Symmetry(models.Model):
    code = models.CharField('Symmetry code', max_length=2)
    description = models.CharField('Description', max_length=300)
Hervé  MENAGER's avatar
Hervé MENAGER committed
198

199
200
201
    class Meta:
        verbose_name_plural = "symmetries"

202
203
204
    def __str__(self):
        return '{} ({})'.format(self.code, self.description)

205
206

class Disease(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
207
    name = models.CharField('Disease', max_length=30, unique=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
208
    # is there any database/nomenclature for diseases?
209
210
211
212

    def __str__(self):
        return self.name

Hervé  MENAGER's avatar
Hervé MENAGER committed
213

Hervé  MENAGER's avatar
Hervé MENAGER committed
214
215
216
class PpiFamily(models.Model):
    name = models.CharField('Name', max_length=30, unique=True)

217
218
219
    class Meta:
        verbose_name_plural = "PPI Families"

Hervé  MENAGER's avatar
Hervé MENAGER committed
220
221
    def __str__(self):
        return self.name
Hervé  MENAGER's avatar
Hervé MENAGER committed
222

Hervé  MENAGER's avatar
Hervé MENAGER committed
223

224
class Ppi(AutoFillableModel):
225
    pdb_id = models.CharField('PDB ID', max_length=4, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
226
227
    pockets_nb = models.IntegerField(
        'Total number of pockets in the complex', default=1)
228
    symmetry = models.ForeignKey(Symmetry, models.CASCADE)
229
    diseases = models.ManyToManyField(Disease)
230
    family = models.ForeignKey(PpiFamily, models.CASCADE, null=True, blank=True)
231
    name = models.TextField('PPI name', null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
232

233
    def __str__(self):
234
        return 'PPI #{} on {}'.format(self.id, self.name)
235

236
237
238
    def autofill(self):
        # name is denormalized and stored in the database to reduce SQL queries in query mode
        self.name = self.compute_name_from_protein_names()
239
240
241
242
243

    def get_ppi_bound_complexes(self):
        """
        return bound ppi complexes belonging to this ppi
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
244
        # this is the less efficient query ever seen, FIXME
245
246
        return PpiComplex.objects.filter(ppi=self, complex__in=ProteinDomainBoundComplex.objects.all())

247
    def compute_name_from_protein_names(self):
Hervé  MENAGER's avatar
Hervé MENAGER committed
248
        all_protein_names = set(
249
            [ppi_complex.complex.protein.short_name for ppi_complex in self.ppicomplex_set.all()])
Hervé  MENAGER's avatar
Hervé MENAGER committed
250
251
        bound_protein_names = set(
            [ppi_complex.complex.protein.short_name for ppi_complex in self.get_ppi_bound_complexes()])
252
253
254
255
        partner_protein_names = all_protein_names - bound_protein_names
        bound_str = ','.join(bound_protein_names)
        partner_str = ','.join(partner_protein_names)
        name = bound_str
Hervé  MENAGER's avatar
Hervé MENAGER committed
256
        if partner_str != '':
257
258
            name += ' / ' + partner_str
        return name
259

Hervé  MENAGER's avatar
Hervé MENAGER committed
260

Hervé  MENAGER's avatar
Hervé MENAGER committed
261
class PpiComplex(models.Model):
262
263
    ppi = models.ForeignKey(Ppi, models.CASCADE)
    complex = models.ForeignKey(ProteinDomainComplex, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
264
265
    cc_nb = models.IntegerField(
        'Number of copies of the complex in the PPI', default=1)
Hervé  MENAGER's avatar
Hervé MENAGER committed
266
267
268
269

    class Meta:
        verbose_name_plural = "Ppi complexes"

270
271
272
    def __str__(self):
        return 'PPI {}, Complex {} ({})'.format(self.ppi, self.complex, self.cc_nb)

Hervé  MENAGER's avatar
Hervé MENAGER committed
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
class CompoundManager(models.Manager):

    def get_queryset(self):
        qs = super().get_queryset()
        #  with number of publications
        qs = qs.annotate(pubs=Count('refcompoundbiblio', distinct=True))
        #  with best activity
        qs = qs.annotate(best_activity=Max('compoundactivityresult__activity')) 
        #  with LE
        qs = qs.annotate(le=Cast(1.37 * Max('compoundactivityresult__activity') / F('nb_atom_non_h'),FloatField()))
        #  with LLE
        qs = qs.annotate(lle=Cast(Max('compoundactivityresult__activity') - F('a_log_p'),FloatField()))
        return qs

288
class Compound(AutoFillableModel):
289
    objects = CompoundManager() 
290
291
    canonical_smile = models.TextField(
        'Canonical Smile', unique=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
292
293
294
295
296
    is_macrocycle = models.BooleanField('Contains one or more macrocycles')
    aromatic_ratio = models.DecimalField(
        'Aromatic ratio', max_digits=3, decimal_places=2)
    balaban_index = models.DecimalField(
        'Balaban index', max_digits=3, decimal_places=2)
297
    fsp3 = models.DecimalField('Fsp3', max_digits=3, decimal_places=2)
Hervé  MENAGER's avatar
Hervé MENAGER committed
298
299
300
301
302
303
304
305
306
307
    gc_molar_refractivity = models.DecimalField(
        'GC Molar Refractivity', max_digits=5, decimal_places=2)
    log_d = models.DecimalField(
        'LogD (Partition coefficient octanol-1/water, with pKa information)', max_digits=4, decimal_places=2)
    a_log_p = models.DecimalField(
        'ALogP (Partition coefficient octanol-1/water)', max_digits=4, decimal_places=2)
    mean_atom_vol_vdw = models.DecimalField(
        'Mean atom volume computed with VdW radii', max_digits=4, decimal_places=2)
    molecular_weight = models.DecimalField(
        'Molecular weight', max_digits=6, decimal_places=2)
308
309
310
311
    nb_acceptor_h = models.IntegerField('Number of hydrogen bond acceptors')
    nb_aliphatic_amines = models.IntegerField('Number of aliphatics amines')
    nb_aromatic_bonds = models.IntegerField('Number of aromatic bonds')
    nb_aromatic_ether = models.IntegerField('Number of aromatic ethers')
Hervé  MENAGER's avatar
Hervé MENAGER committed
312
313
314
315
    nb_aromatic_sssr = models.IntegerField(
        'Number of aromatic Smallest Set of System Rings (SSSR)')
    nb_atom = models.IntegerField('Number of atoms')
    nb_atom_non_h = models.IntegerField('Number of non hydrogen atoms')
316
317
    nb_benzene_like_rings = models.IntegerField('Number of benzene-like rings')
    nb_bonds = models.IntegerField('Number of bonds')
Hervé  MENAGER's avatar
Hervé MENAGER committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    nb_bonds_non_h = models.IntegerField(
        'Number of bonds not involving a hydrogen')
    nb_br = models.IntegerField('Number of Bromine atoms')
    nb_c = models.IntegerField('Number of Carbon atoms')
    nb_chiral_centers = models.IntegerField('Number of chiral centers')
    nb_circuits = models.IntegerField('Number of circuits')
    nb_cl = models.IntegerField('Number of Chlorine atoms')
    nb_csp2 = models.IntegerField('Number of sp2-hybridized carbon atoms')
    nb_csp3 = models.IntegerField('Number of sp3-hybridized carbon atoms')
    nb_donor_h = models.IntegerField('Number of hydrogen bond donors')
    nb_double_bonds = models.IntegerField('Number of double bonds')
    nb_f = models.IntegerField('Number of fluorine atoms')
    nb_i = models.IntegerField('Number of iodine atoms')
    nb_multiple_bonds = models.IntegerField('Number of multiple bonds')
332
    nb_n = models.IntegerField('Number of nitrogen atoms')
Hervé  MENAGER's avatar
Hervé MENAGER committed
333
334
335
    nb_o = models.IntegerField('Number of oxygen atoms')
    nb_rings = models.IntegerField('Number of rings')
    nb_rotatable_bonds = models.IntegerField('Number of rotatable bonds')
336
337
    inchi = models.TextField('InChi')
    inchikey = models.TextField('InChiKey')
Hervé  MENAGER's avatar
Hervé MENAGER committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    randic_index = models.DecimalField(
        'Randic index', max_digits=4, decimal_places=2)
    rdf070m = models.DecimalField(
        'RDF070m, radial distribution function weighted by the atomic masses at 7Å', max_digits=5, decimal_places=2)
    rotatable_bond_fraction = models.DecimalField(
        'Fraction of rotatable bonds', max_digits=3, decimal_places=2)
    sum_atom_polar = models.DecimalField(
        'Sum of atomic polarizabilities', max_digits=5, decimal_places=2)
    sum_atom_vol_vdw = models.DecimalField(
        'Sum of atom volumes computed with VdW radii', max_digits=6, decimal_places=2)
    tpsa = models.DecimalField(
        'Topological Polar Surface Area (TPSA)', max_digits=5, decimal_places=2)
    ui = models.DecimalField(
        'Unsaturation index', max_digits=4, decimal_places=2)
    wiener_index = models.IntegerField('Wiener index')
    common_name = models.CharField(
        'Common name', unique=True, max_length=20, blank=True, null=True)
    pubchem_id = models.CharField(
        'Pubchem ID', max_length=10, blank=True, null=True)
    chemspider_id = models.CharField(
        'Chemspider ID', unique=True, max_length=10, blank=True, null=True)
    chembl_id = models.CharField(
        'Chembl ID', max_length=30, blank=True, null=True)
    iupac_name = models.CharField(
        'IUPAC name', max_length=255, blank=True, null=True)
363

364
365
366
    class Meta:
       ordering = ['id']

367
368
369
    def compute_drugbank_compound_similarity(self):
        """ compute Tanimoto similarity to existing DrugBank compounds """
        self.save()
370
        # fingerprints to compute drugbank similarities are in settings module, default FP2
371
        fingerprinter = FingerPrinter(getattr(settings, "DRUGBANK_FINGERPRINTS", "FP2"))
372
373
374
375
376
377
378
379
380
        #1. compute tanimoto for SMILES query vs all compounds
        smiles_dict = {c.id:c.canonical_smiles for c in DrugBankCompound.objects.all()}
        tanimoto_dict = fingerprinter.tanimoto_smiles(self.canonical_smile, smiles_dict)
        tanimoto_dict = dict(sorted(tanimoto_dict.items(), key=operator.itemgetter(1), reverse=True)[:15])
        dbcts = []
        for id_, tanimoto in tanimoto_dict.items():
            dbcts.append(DrugbankCompoundTanimoto(compound=self, drugbank_compound=DrugBankCompound.objects.get(id=id_), tanimoto=tanimoto))
        DrugbankCompoundTanimoto.objects.bulk_create(dbcts)

Hervé  MENAGER's avatar
Hervé MENAGER committed
381
382
383
    @property
    def biblio_refs(self):
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
384
        return all RefCompoundBiblio related to this compound
Hervé  MENAGER's avatar
Hervé MENAGER committed
385
386
        """
        return RefCompoundBiblio.objects.filter(compound=self)
387

388
389
390
391
392
393
394
395
396
397
398
399
400
    @property
    def pfam_ids(self):
        """
        return all PFAM ids for the domain of the proteins of the bound
        complexes in the PPIs this compound has an action on
        """
        pfam_ids = set()
        for ca in self.compoundaction_set.all():
            ca.get_complexes()
            for bound_complex in ca.ppi.get_ppi_bound_complexes():
                pfam_ids.add(bound_complex.complex.domain.pfam_id)
        return pfam_ids

401
    @property
Hervé  MENAGER's avatar
Hervé MENAGER committed
402
    def compound_action_ligand_ids(self):
403
404
405
        """
        return all PDB codes of the corresponding compound actions
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
406
        ligand_ids = set()
407
        for ca in self.compoundaction_set.all():
Hervé  MENAGER's avatar
Hervé MENAGER committed
408
409
            ligand_ids.add(ca.ligand_id)
        return ligand_ids
410

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    @property
    def hba_hbd(self):
        return self.nb_acceptor_h + self.nb_donor_h

    @property
    def lipinsky_mw(self):
        return self.molecular_weight <= 500

    @property
    def lipinsky_hba(self):
        return self.nb_acceptor_h <= 10

    @property
    def lipinsky_hbd(self):
        return self.nb_donor_h <= 5

    @property
    def lipinsky_a_log_p(self):
        return self.a_log_p <= 5

    @property
    def lipinsky_global(self):
        return int(self.lipinsky_mw) + int(self.lipinsky_hba) + \
            int(self.lipinsky_hbd) + int(self.lipinsky_a_log_p) >= 3

    @property
    def veber_hba_hbd(self):
        return self.nb_acceptor_h + self.nb_donor_h <= 12

    @property
    def veber_tpsa(self):
        return self.tpsa <= 140

    @property
    def veber_rb(self):
        return self.nb_rotatable_bonds <= 10

    @property
    def veber_global(self):
        return self.veber_rb and (self.veber_hba_hbd or self.veber_tpsa)

    @property
    def pfizer_a_log_p(self):
        return self.a_log_p <= 3

    @property
    def pfizer_tpsa(self):
        return self.tpsa >= 75

    @property
    def pfizer_global(self):
        return self.pfizer_a_log_p and self.pfizer_tpsa

464
465
    @property
    def best_pXC50_activity(self):
466
        return self.compoundactivityresult_set.aggregate(Max('activity'))['activity__max']
467
468
469
470
471
472

    @property
    def best_pXC50_compound_activity_result(self):
        best_pXC50_activity = self.best_pXC50_activity
        if best_pXC50_activity is None:
            return None
473
        return self.compoundactivityresult_set.filter(activity=best_pXC50_activity)[0]
474

475
    @property
476
    def best_pXC50_activity_ppi_name(self):
477
        """
478
        Name of the PPI corresponding to the best PXC50 activity
479
        """
480
481
482
        best_activity_car = self.best_pXC50_compound_activity_result
        if best_activity_car is None:
            return None
483
484
485
        ppi_name = best_activity_car.test_activity_description.ppi.name
        return ppi_name

486
487
488
489
490
491
492
493
494
495
496
    @property
    def best_pXC50_activity_ppi_family(self):
        """
        Family of the PPI corresponding to the best PXC50 activity
        """
        best_activity_car = self.best_pXC50_compound_activity_result
        if best_activity_car is None:
            return None
        ppi_family = best_activity_car.test_activity_description.ppi.family.name
        return ppi_family

497
498
499
500
501
502
503
504
505
506
507
508
509
510
    @property
    def bioch_tests_count(self):
        """
        return the number of associated biochemical tests
        """
        return self.compoundactivityresult_set.all().filter(test_activity_description__test_type='BIOCH').count()

    @property
    def cell_tests_count(self):
        """
        return the number of associated cell tests
        """
        return self.compoundactivityresult_set.all().filter(test_activity_description__test_type='CELL').count()

511
512
513
514
515
516
    @property
    def families(self):
        """
        return the all PPI families for PPIs involved in the compound activity of the compound
        """
        return list(set([ca.ppi.family for ca in self.compoundaction_set.all()]))
517
518
519
520
521
    
    @property
    def sorted_similar_drugbank_compounds(self):
        return self.drugbankcompoundtanimoto_set.order_by('-tanimoto')
        
522
523
524
    def autofill(self):
        # compute InChi and InChiKey
        self.inchi = smi2inchi(self.canonical_smile)
525
        self.inchikey = smi2inchikey(self.canonical_smile)
526
        self.compute_drugbank_compound_similarity()
527

528
529
530
    def __str__(self):
        return 'Compound #{}'.format(self.id)

531
532
533
class CompoundTanimoto(models.Model):
    canonical_smiles = models.TextField(
        'Canonical Smile')
534
    fingerprint = models.TextField('Fingerprint')
535
536
537
538
539
540
    compound = models.ForeignKey(Compound, models.CASCADE)
    tanimoto = models.DecimalField(
        'Tanimoto value', max_digits=5, decimal_places=4)

    class Meta:
        unique_together = (
541
            ('canonical_smiles', 'fingerprint', 'compound'))
542

543
def create_tanimoto(smiles_query, fingerprint):
544
    if CompoundTanimoto.objects.filter(canonical_smiles=smiles_query, fingerprint=fingerprint).count()==0:
545
        smiles_dict = {c.id:c.canonical_smile for c in Compound.objects.all()}
546
        fingerprinter = FingerPrinter(fingerprint)
547
548
549
550
551
        #1. compute tanimoto for SMILES query vs all compounds
        tanimoto_dict = fingerprinter.tanimoto_smiles(smiles_query, smiles_dict)
        #2. insert results in a table with three fields: SMILES query, compound id, tanimoto index
        cts = []
        for id_, smiles in smiles_dict.items():
552
            cts.append(CompoundTanimoto(canonical_smiles=smiles_query, fingerprint=fingerprint, compound=Compound.objects.get(id=id_), tanimoto=tanimoto_dict[id_]))
553
        CompoundTanimoto.objects.bulk_create(cts)
554

555
class PcaBiplotData(models.Model):
556
557
    pca_biplot_data = models.TextField(
        'PCA biplot JSON data', blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
558

559

560
class LeLleBiplotData(models.Model):
561
562
    le_lle_biplot_data = models.TextField(
        'LE-LLE biplot JSON data', blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
563

564

565
566
class CellLine(models.Model):
    name = models.CharField('Name', max_length=50, unique=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
567

568
569
570
    def __str__(self):
        return self.name

Hervé  MENAGER's avatar
Hervé MENAGER committed
571

572
573
574
575
576
577
578
579
580
581
class TestActivityDescription(models.Model):
    TEST_TYPES = (
        ('BIOCH', 'Biochemical assay'),
        ('CELL', 'Cellular assay')
    )
    TEST_MODULATION_TYPES = (
        ('B', 'Binding'),
        ('I', 'Inhibition'),
        ('S', 'Stabilization')
    )
582
583
584
585
    PROTEIN_BOUND_CONSTRUCTS = (
        ('F', 'Full length'),
        ('U', 'Unspecified')
    )
586
    biblio = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
587
588
    protein_domain_bound_complex = models.ForeignKey(
        ProteinDomainBoundComplex, models.CASCADE)
589
    ppi = models.ForeignKey(Ppi, models.CASCADE, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
590
    test_name = models.CharField('Test name', max_length=100)
591
    is_primary = models.BooleanField('Is primary')
Hervé  MENAGER's avatar
Hervé MENAGER committed
592
593
    protein_bound_construct = models.CharField(
        'Protein bound construct', max_length=5, choices=PROTEIN_BOUND_CONSTRUCTS, blank=True, null=True)
594
    test_type = models.CharField('Test type', max_length=5, choices=TEST_TYPES)
Hervé  MENAGER's avatar
Hervé MENAGER committed
595
596
597
598
    test_modulation_type = models.CharField(
        'Test modulation type', max_length=1, choices=TEST_MODULATION_TYPES)
    nb_active_compounds = models.IntegerField(
        'Total number of active compounds')
Hervé  MENAGER's avatar
Hervé MENAGER committed
599
600
    cell_line = models.ForeignKey(
        CellLine, models.CASCADE, blank=True, null=True)
601

Hervé  MENAGER's avatar
Hervé MENAGER committed
602
    def get_complexes(self):
603
604
605
606
        """
        get the complexes tested for this PPI
        depends on the modulation type
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
607
        if self.test_modulation_type == 'I':
608
            return self.ppi.ppicomplex_set.all()
609
610
        else:
            return self.ppi.get_ppi_bound_complexes()
611

612
613
614
    @property
    def protein_domain_partner_complex(self):
        for ppic in self.ppi.ppicomplex_set.all():
Hervé  MENAGER's avatar
Hervé MENAGER committed
615
            if hasattr(ppic.complex, 'proteindomainpartnercomplex'):
616
617
618
                return ppic.complex.proteindomainpartnercomplex
        return None

Hervé  MENAGER's avatar
Hervé MENAGER committed
619

620
class CompoundActivityResult(models.Model):
621
622
623
624
625
    MODULATION_TYPES = (
        ('B', 'Binding'),
        ('I', 'Inhibition'),
        ('S', 'Stabilization')
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
626
    ACTIVITY_TYPES = (
Hervé  MENAGER's avatar
Hervé MENAGER committed
627
628
629
630
        ('pIC50', 'pIC50 (half maximal inhibitory concentration, -log10)'),
        ('pEC50', 'pEC50 (half maximal effective concentration, -log10)'),
        ('pKd', 'pKd (dissociation constant, -log10)'),
        ('pKi', 'pKi (inhibition constant, -log10)'),
Hervé  MENAGER's avatar
Hervé MENAGER committed
631
    )
632
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
633
634
    test_activity_description = models.ForeignKey(
        TestActivityDescription, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
635
636
637
638
    activity_type = models.CharField(
        'Activity type', max_length=5, choices=ACTIVITY_TYPES)
    activity = models.DecimalField(
        'Activity', max_digits=12, decimal_places=10)
639
    inhibition_percentage = models.DecimalField(
640
        'Inhibition percentage', max_digits=3, decimal_places=0, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
641
642
    modulation_type = models.CharField(
        'Modulation type', max_length=1, choices=MODULATION_TYPES)
Hervé  MENAGER's avatar
Hervé MENAGER committed
643
644

    class Meta:
Hervé  MENAGER's avatar
Hervé MENAGER committed
645
646
647
        unique_together = (
            ('compound', 'test_activity_description', 'activity_type'),)

648
649
    def __str__(self):
        return 'Compound activity result for {} test {} on {}'.format(self.activity_type, self.test_activity_description.id, self.compound.id)
Hervé  MENAGER's avatar
Hervé MENAGER committed
650

651
652
653
    def is_best(self):
        return self.compound.best_pXC50_compound_activity_result.id == self.id

Hervé  MENAGER's avatar
Hervé MENAGER committed
654

655
class TestCytotoxDescription(models.Model):
656
    biblio = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
657
    test_name = models.CharField('Cytotoxicity test name', max_length=100)
658
    cell_line = models.ForeignKey(CellLine, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
659
660
661
    compound_concentration = models.DecimalField(
        'Compound concentration in μM', max_digits=7, decimal_places=3, blank=True, null=True)

Hervé  MENAGER's avatar
Hervé MENAGER committed
662

663
class CompoundCytotoxicityResult(models.Model):
664
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
665
666
    test_cytotoxicity_description = models.ForeignKey(
        TestCytotoxDescription, models.CASCADE)
667
    toxicity = models.BooleanField('Toxicity', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
668
669

    class Meta:
670
        unique_together = (('compound', 'test_cytotoxicity_description'),)
671

672
673
674
    def __str__(self):
        return 'Compound cytotoxicity result for test {} on {}'.format(self.test_cytotoxicity_description.id, self.compound.id)

Hervé  MENAGER's avatar
Hervé MENAGER committed
675

676
class TestPKDescription(models.Model):
677
678
679
680
681
682
    ADMINISTRATION_MODES = (
        ('IV', ''),
        ('PO', ''),
        ('IP', ''),
        ('SL', 'SL')
    )
683
    biblio = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
684
    test_name = models.CharField('Pharmacokinetic test name', max_length=100)
685
    organism = models.ForeignKey(Taxonomy, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
686
687
    administration_mode = models.CharField(
        'Administration mode', max_length=2, choices=ADMINISTRATION_MODES, blank=True, null=True)
688
689
    concentration = models.DecimalField(
        'Concentration in mg/l', max_digits=7, decimal_places=3, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
690
    dose = models.DecimalField(
691
        'Dose in mg/kg', max_digits=9, decimal_places=4, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
692
693
694
    dose_interval = models.IntegerField(
        'Dose interval, in hours', blank=True, null=True)

695
696

class CompoundPKResult(models.Model):
697
698
    compound = models.ForeignKey(Compound, models.CASCADE)
    test_pk_description = models.ForeignKey(TestPKDescription, models.CASCADE)
699
    tolerated = models.NullBooleanField('Tolerated', null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
700
701
702
703
    auc = models.IntegerField(
        'Area under curve (ng.mL-1.hr)', blank=True, null=True)
    clearance = models.DecimalField(
        'Clearance (mL/hr)', max_digits=7, decimal_places=3, blank=True, null=True)
704
    c_max = models.DecimalField(
Hervé  MENAGER's avatar
Hervé MENAGER committed
705
706
707
708
709
710
711
        'Maximal concentration (ng/mL)', max_digits=7, decimal_places=3, blank=True, null=True)
    oral_bioavailability = models.IntegerField(
        'Oral Bioavailability (%F)', blank=True, null=True)
    t_demi = models.IntegerField('t½', blank=True, null=True)
    t_max = models.IntegerField('tmax', blank=True, null=True)
    voldistribution = models.DecimalField(
        'Volume distribution (Vd)', max_digits=5, decimal_places=2, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
712
713

    class Meta:
714
        unique_together = (('compound', 'test_pk_description'),)
Hervé  MENAGER's avatar
Hervé MENAGER committed
715

716
717
718
    def __str__(self):
        return 'Compound PK result for test {} on {}'.format(self.test_pk_description.id, self.compound.id)

Hervé  MENAGER's avatar
Hervé MENAGER committed
719

720
class CompoundAction(models.Model):
721
722
    ACTIVATION_MODES = (
        ('O', 'Orthosteric'),
723
724
        ('A', 'Allosteric'),
        ('U', 'Unspecified')
725
    )
726
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
727
728
    activation_mode = models.CharField(
        'Activation mode', max_length=1, choices=ACTIVATION_MODES)
729
    ppi = models.ForeignKey(Ppi, models.CASCADE)
730
    ligand_id = models.CharField('PDB Ligand ID', max_length=3, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
731
732
    nb_copy_compounds = models.IntegerField(
        'Number of copies for the compound')
Hervé  MENAGER's avatar
Hervé MENAGER committed
733
734

    class Meta:
735
        unique_together = (('ppi', 'compound', 'activation_mode', 'ligand_id'),)
Hervé  MENAGER's avatar
Hervé MENAGER committed
736
737

    def get_complexes(self):
738
739
740
741
        """
        get the complexes involved in the compound action
        which are always the bound complexes
        """
742
        return self.ppi.get_ppi_bound_complexes()
Hervé  MENAGER's avatar
Hervé MENAGER committed
743

744
745
    def __str__(self):
        return 'Action of {} on {}'.format(self.compound, self.ppi)
Hervé  MENAGER's avatar
Hervé MENAGER committed
746

747
class RefCompoundBiblio(models.Model):
748
749
    compound = models.ForeignKey(Compound, models.CASCADE)
    bibliography = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
750
751
    compound_name = models.CharField(
        'Compound name in the publication', max_length=50)
Hervé  MENAGER's avatar
Hervé MENAGER committed
752
753

    class Meta:
754
        unique_together = (('compound', 'bibliography'),)
755

756
class DrugBankCompound(models.Model):
757
758
759
760
761
    id = models.TextField(
        'Drugbank ID', unique=True, primary_key=True)
    common_name = models.TextField('Common name')
    canonical_smiles = models.TextField(
        'Canonical SMILES')
762
763
764
765
766

class DrugbankCompoundTanimoto(models.Model):
    compound = models.ForeignKey(Compound, models.CASCADE)
    drugbank_compound = models.ForeignKey(DrugBankCompound, models.CASCADE)
    tanimoto = models.DecimalField(
767
        'Tanimoto value', max_digits=5, decimal_places=4)