models.py 36.3 KB
Newer Older
1
2
3
4
"""
Models used in iPPI-DB
"""

Hervé  MENAGER's avatar
Hervé MENAGER committed
5
from __future__ import unicode_literals
6

7
import operator
8
import re
Hervé  MENAGER's avatar
Hervé MENAGER committed
9

10
from django.conf import settings
11
12
13
14
from django.core.exceptions import ValidationError
from django.db import models
from django.db.models import FloatField, IntegerField, BooleanField
from django.db.models import Max, Count, F, Q, Case, When
15
from django.db.models.functions import Cast
16
from django.utils.translation import ugettext_lazy as _
Hervé  MENAGER's avatar
Hervé MENAGER committed
17

18
from .utils import FingerPrinter, smi2inchi, smi2inchikey
19
from .ws import get_pubmed_info, get_google_patent_info, get_uniprot_info, get_taxonomy_info, get_go_info, get_pfam_info
20

Hervé  MENAGER's avatar
Hervé MENAGER committed
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
class AutoFillableModel(models.Model):
    """
    AutoFillableModel makes it possible to automatically fill model fields from
    external sources in the autofill() method
    The save method allows to either include autofill or not. in autofill kwarg is
    set to True, save() will first call autofill(), otherwise it won't
    """

    class Meta:
        abstract = True

    def save(self, *args, **kwargs):
        if kwargs.get('autofill') is True:
            self.autofill()
36
37
        if 'autofill' in kwargs:
            del kwargs['autofill']
Hervé  MENAGER's avatar
Hervé MENAGER committed
38
        super(AutoFillableModel, self).save(*args, **kwargs)
39
40
41


class Bibliography(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
42
    """
Hervé  MENAGER's avatar
Hervé MENAGER committed
43
44
    Bibliography references
    (publications or patents)
Hervé  MENAGER's avatar
Hervé MENAGER committed
45
46
    """
    SOURCES = (
47
48
49
        ('PM', 'PubMed ID'),
        ('PT', 'Patent'),
        ('DO', 'DOI ID')
Hervé  MENAGER's avatar
Hervé MENAGER committed
50
    )
51
52
53
54
55
    id_source_validators = dict(
        PM=re.compile("^[0-9]+$"),
        PT=re.compile("^.*$"),
        DO=re.compile("^.*$"),
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
56
57
    source = models.CharField(
        'Bibliographic type', max_length=2, choices=SOURCES, default='PM')
Hervé  MENAGER's avatar
Hervé MENAGER committed
58
59
    id_source = models.CharField('Bibliographic ID', max_length=25)
    title = models.CharField('Title', max_length=300)
60
    journal_name = models.CharField('Journal name', max_length=50, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
61
62
    authors_list = models.CharField('Authors list', max_length=500)
    biblio_year = models.PositiveSmallIntegerField('Year')
63
    cytotox = models.BooleanField('Cytotoxicity data', default=False)
Rachel TORCHET's avatar
Rachel TORCHET committed
64
65
66
67
    in_silico = models.BooleanField('in silico study', default=False)
    in_vitro = models.BooleanField('in vitro study', default=False)
    in_vivo = models.BooleanField('in vivo study', default=False)
    in_cellulo = models.BooleanField('in cellulo study', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
68
69
    pharmacokinetic = models.BooleanField(
        'pharmacokinetic study', default=False)
Rachel TORCHET's avatar
Rachel TORCHET committed
70
    xray = models.BooleanField('X-Ray data', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
71

72
    def autofill(self):
Hervé  MENAGER's avatar
Hervé MENAGER committed
73
74
75
76
        """
        fetch information from external services
        (Pubmed or Google patents)
        """
77
78
79
        if self.source == 'PM':
            info = get_pubmed_info(self.id_source)
        else:
80
            info = get_google_patent_info(self.id_source)
81
82
83
84
        self.title = info['title']
        self.journal_name = info['journal_name']
        self.authors_list = info['authors_list']
        self.biblio_year = info['biblio_year']
Hervé  MENAGER's avatar
Hervé MENAGER committed
85

86
87
    def clean(self):
        super().clean()
88
89
90
91
92
93
94
95
96
97
98
99
100
        Bibliography.validate_source_id(self.id_source, self.source)

    def has_external_url(self):
        return self.source == 'PM'

    def get_external_url(self):
        if self.source == 'PM':
            return "https://www.ncbi.nlm.nih.gov/pubmed/" + str(self.id_source)

    @staticmethod
    def validate_source_id(id_source, source):
        id_source_validator = Bibliography.id_source_validators[source]
        if not id_source_validator.match(id_source):
101
102
103
104
105
            raise ValidationError(
                dict(
                    id_source=_("Must match pattern %s for this selected source" % id_source_validator.pattern)
                )
            )
106
        return True
107

Hervé  MENAGER's avatar
Hervé MENAGER committed
108
109
110
    class Meta:
        verbose_name_plural = "bibliographies"

111
112
    def __str__(self):
        return '{}, {}'.format(self.source, self.id_source)
113

Hervé  MENAGER's avatar
Hervé MENAGER committed
114

115
class Taxonomy(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
116
117
118
119
    """
    Taxonomy IDs (from NCBI Taxonomy) 
    and the corresponding human-readable name
    """
Hervé  MENAGER's avatar
Hervé MENAGER committed
120
121
    taxonomy_id = models.DecimalField(
        'NCBI TaxID', unique=True, max_digits=9, decimal_places=0)
Hervé  MENAGER's avatar
Hervé MENAGER committed
122
    name = models.CharField('Organism name', max_length=200)
123

124
    def autofill(self):
Hervé  MENAGER's avatar
Hervé MENAGER committed
125
126
127
128
        """
        fetch information from external services
        (NCBI Entrez)
        """
129
130
131
        info = get_taxonomy_info(self.taxonomy_id)
        self.name = info['scientific_name']

132
133
134
    def __str__(self):
        return self.name

Hervé  MENAGER's avatar
Hervé MENAGER committed
135
136
    class Meta:
        verbose_name_plural = "taxonomies"
Hervé  MENAGER's avatar
Hervé MENAGER committed
137

Hervé  MENAGER's avatar
Hervé MENAGER committed
138

139
class MolecularFunction(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
140
141
142
143
    """
    Molecular functions (from Gene Ontology) 
    and the corresponding human-readable description
    """
Hervé  MENAGER's avatar
Hervé MENAGER committed
144
    go_id = models.CharField('Gene Ontology ID', unique=True, max_length=10)
Hervé  MENAGER's avatar
Hervé MENAGER committed
145
    # GO term id format: 'GO:0000000'
Hervé  MENAGER's avatar
Hervé MENAGER committed
146
147
    description = models.CharField('description', max_length=500)

148
    def autofill(self):
Hervé  MENAGER's avatar
Hervé MENAGER committed
149
150
151
152
        """
        fetch information from external services
        (EBI OLS)
        """
153
154
155
        info = get_go_info(self.go_id)
        self.description = info['label']

156
157
158
159
    @property
    def name(self):
        return self.go_id + ' ' + self.description

160
161
162
    def __str__(self):
        return self.description

Hervé  MENAGER's avatar
Hervé MENAGER committed
163

164
class Protein(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
165
166
167
168
    """
    Protein information (from Uniprot) 
    and the corresponding human-readable name
    """
Hervé  MENAGER's avatar
Hervé MENAGER committed
169
    uniprot_id = models.CharField('Uniprot ID', unique=True, max_length=10)
Hervé  MENAGER's avatar
Hervé MENAGER committed
170
171
    recommended_name_long = models.CharField(
        'Uniprot Recommended Name (long)', max_length=75)
Hervé  MENAGER's avatar
Hervé MENAGER committed
172
173
174
    short_name = models.CharField('Short name', max_length=50)
    gene_name = models.CharField('Gene name', unique=True, max_length=30)
    entry_name = models.CharField('Entry name', max_length=30)
175
    organism = models.ForeignKey('Taxonomy', models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
176
177
    molecular_functions = models.ManyToManyField(MolecularFunction)

178
    def autofill(self):
Hervé  MENAGER's avatar
Hervé MENAGER committed
179
180
181
182
        """
        fetch information from external services
        (Uniprot) and create Taxonomy/Molecular Functions if needed
        """
183
        info = get_uniprot_info(self.uniprot_id)
184
        self.recommended_name_long = info['recommended_name']
185
186
        self.gene_name = info['gene']
        self.entry_name = info['entry_name']
187
        self.short_name = info['short_name']
188
189
190
191
192
        try:
            taxonomy = Taxonomy.objects.get(taxonomy_id=info['organism'])
        except Taxonomy.DoesNotExist:
            taxonomy = Taxonomy()
            taxonomy.taxonomy_id = info['organism']
193
            taxonomy.save(autofill=True)
194
        self.organism = taxonomy
195
        super(Protein, self).save()
196
197
198
199
200
201
        for go_id in info['molecular_functions']:
            try:
                mol_function = MolecularFunction.objects.get(go_id=go_id)
            except MolecularFunction.DoesNotExist:
                mol_function = MolecularFunction()
                mol_function.go_id = go_id
202
                mol_function.save(autofill=True)
203
            self.molecular_functions.add(mol_function)
204

205
206
207
    def __str__(self):
        return '{} ({})'.format(self.uniprot_id, self.recommended_name_long)

Hervé  MENAGER's avatar
Hervé MENAGER committed
208

209
class Domain(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
210
211
212
    """
    Domain (i.e. Protein domain) information (from PFAM) 
    """
Hervé  MENAGER's avatar
Hervé MENAGER committed
213
214
    pfam_acc = models.CharField('Pfam Accession', max_length=10, unique=True)
    pfam_id = models.CharField('Pfam Family Identifier', max_length=20)
Hervé  MENAGER's avatar
Hervé MENAGER committed
215
    pfam_description = models.CharField('Pfam Description', max_length=100)
Hervé  MENAGER's avatar
Hervé MENAGER committed
216
    domain_family = models.CharField('Domain family', max_length=25)
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
217

Hervé  MENAGER's avatar
Hervé MENAGER committed
218
219
    # TODO: what is this field? check database
    # contents
220

221
    def autofill(self):
Hervé  MENAGER's avatar
Hervé MENAGER committed
222
223
224
225
        """
        fetch information from external services
        (PFAM)
        """
226
227
228
        info = get_pfam_info(self.pfam_acc)
        self.pfam_id = info['id']
        self.pfam_description = info['description']
Hervé  MENAGER's avatar
Hervé MENAGER committed
229

230
231
232
233
    @property
    def name(self):
        return self.pfam_id

234
235
236
    def __str__(self):
        return '{} ({}-{})'.format(self.pfam_acc, self.pfam_id, self.pfam_description)

Hervé  MENAGER's avatar
Hervé MENAGER committed
237

238
class ProteinDomainComplex(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
239
    """
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
240
    Protein-Domain association
Hervé  MENAGER's avatar
Hervé MENAGER committed
241
    """
242
243
    protein = models.ForeignKey('Protein', models.CASCADE)
    domain = models.ForeignKey('Domain', models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
244
245
246
    ppc_copy_nb = models.IntegerField(
        'Number of copies of the protein in the complex')

Hervé  MENAGER's avatar
Hervé MENAGER committed
247
248
    class Meta:
        verbose_name_plural = "complexes"
249

250
251
252
    def __str__(self):
        return '{}-{}'.format(self.protein_id, self.domain_id)

253
254
    def name(self):
        return self.protein.short_name
Hervé  MENAGER's avatar
Hervé MENAGER committed
255

256

257
class ProteinDomainBoundComplex(ProteinDomainComplex):
Hervé  MENAGER's avatar
Hervé MENAGER committed
258
259
260
    """
    Protein-Domain association with a "bound complex" role
    """
Hervé  MENAGER's avatar
Hervé MENAGER committed
261
262
263
    ppp_copy_nb_per_p = models.IntegerField(
        'Number of copies of the protein in the pocket')

264
265
    class Meta:
        verbose_name_plural = "bound complexes"
Hervé  MENAGER's avatar
Hervé MENAGER committed
266
267


268
class ProteinDomainPartnerComplex(ProteinDomainComplex):
Hervé  MENAGER's avatar
Hervé MENAGER committed
269
270
271
    """
    Protein-Domain association with a "partner complex" role
    """
Hervé  MENAGER's avatar
Hervé MENAGER committed
272

273
274
    class Meta:
        verbose_name_plural = "partner complexes"
Hervé  MENAGER's avatar
Hervé MENAGER committed
275

Hervé  MENAGER's avatar
Hervé MENAGER committed
276

277
class Symmetry(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
278
279
280
    """
    Symmetry of a PPI
    """
281
282
    code = models.CharField('Symmetry code', max_length=2)
    description = models.CharField('Description', max_length=300)
Hervé  MENAGER's avatar
Hervé MENAGER committed
283

284
285
286
    class Meta:
        verbose_name_plural = "symmetries"

287
288
289
    def __str__(self):
        return '{} ({})'.format(self.code, self.description)

290
291

class Disease(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
292
    name = models.CharField('Disease', max_length=30, unique=True)
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
293

Hervé  MENAGER's avatar
Hervé MENAGER committed
294
    # is there any database/nomenclature for diseases?
295
296
297
298

    def __str__(self):
        return self.name

Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
299

Hervé  MENAGER's avatar
Hervé MENAGER committed
300
class PpiFamily(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
301
302
303
    """
    PPI Family
    """
Hervé  MENAGER's avatar
Hervé MENAGER committed
304
305
    name = models.CharField('Name', max_length=30, unique=True)

306
307
308
    class Meta:
        verbose_name_plural = "PPI Families"

Hervé  MENAGER's avatar
Hervé MENAGER committed
309
310
    def __str__(self):
        return self.name
Hervé  MENAGER's avatar
Hervé MENAGER committed
311

Hervé  MENAGER's avatar
Hervé MENAGER committed
312

313
class Ppi(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
314
315
316
    """
    PPI
    """
317
    pdb_id = models.CharField('PDB ID', max_length=4, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
318
319
    pockets_nb = models.IntegerField(
        'Total number of pockets in the complex', default=1)
320
    symmetry = models.ForeignKey(Symmetry, models.CASCADE)
321
    diseases = models.ManyToManyField(Disease)
322
    family = models.ForeignKey(PpiFamily, models.CASCADE, null=True, blank=True)
323
    name = models.TextField('PPI name', null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
324

325
    def __str__(self):
326
        return 'PPI #{} on {}'.format(self.id, self.name)
327

328
329
330
    def autofill(self):
        # name is denormalized and stored in the database to reduce SQL queries in query mode
        self.name = self.compute_name_from_protein_names()
331
332
333
334
335

    def get_ppi_bound_complexes(self):
        """
        return bound ppi complexes belonging to this ppi
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
336
        # this is the less efficient query ever seen, FIXME
337
338
        return PpiComplex.objects.filter(ppi=self, complex__in=ProteinDomainBoundComplex.objects.all())

339
    def compute_name_from_protein_names(self):
Hervé  MENAGER's avatar
Hervé MENAGER committed
340
        all_protein_names = set(
341
            [ppi_complex.complex.protein.short_name for ppi_complex in self.ppicomplex_set.all()])
Hervé  MENAGER's avatar
Hervé MENAGER committed
342
343
        bound_protein_names = set(
            [ppi_complex.complex.protein.short_name for ppi_complex in self.get_ppi_bound_complexes()])
344
345
346
347
        partner_protein_names = all_protein_names - bound_protein_names
        bound_str = ','.join(bound_protein_names)
        partner_str = ','.join(partner_protein_names)
        name = bound_str
Hervé  MENAGER's avatar
Hervé MENAGER committed
348
        if partner_str != '':
349
350
            name += ' / ' + partner_str
        return name
351

Hervé  MENAGER's avatar
Hervé MENAGER committed
352

Hervé  MENAGER's avatar
Hervé MENAGER committed
353
class PpiComplex(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
354
355
356
    """
    PPI Complex
    """
357
358
    ppi = models.ForeignKey(Ppi, models.CASCADE)
    complex = models.ForeignKey(ProteinDomainComplex, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
359
360
    cc_nb = models.IntegerField(
        'Number of copies of the complex in the PPI', default=1)
Hervé  MENAGER's avatar
Hervé MENAGER committed
361
362
363
364

    class Meta:
        verbose_name_plural = "Ppi complexes"

365
366
367
    def __str__(self):
        return 'PPI {}, Complex {} ({})'.format(self.ppi, self.complex, self.cc_nb)

Hervé  MENAGER's avatar
Hervé MENAGER committed
368

369
class CompoundManager(models.Manager):
Hervé  MENAGER's avatar
Hervé MENAGER committed
370
371
372
373
    """
    CompoundManager adds automatically a number of annotations to the results
    of the database query, used for filters and compound card
    """
374
375

    def get_queryset(self):
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
376
        # @formatter:off
377
        qs = super().get_queryset()
378
        # with number of publications
379
        qs = qs.annotate(pubs=Count('refcompoundbiblio', distinct=True))
380
        # with best activity
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
381
        qs = qs.annotate(best_activity=Max('compoundactivityresult__activity'))
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        # with LE
        qs = qs.annotate(le=Cast(1.37 * Max('compoundactivityresult__activity') / F('nb_atom_non_h'), FloatField()))
        # with LLE
        qs = qs.annotate(lle=Cast(Max('compoundactivityresult__activity') - F('a_log_p'), FloatField()))
        # Lipinsky MW (<=500)
        qs = qs.annotate(lipinsky_mw=Case(When(molecular_weight__lte=500, then=True), default=False, output_field=BooleanField()))
        # Lipinsky hba (<=10)
        qs = qs.annotate(lipinsky_hba=Case(When(nb_acceptor_h__lte=10, then=True), default=False, output_field=BooleanField()))
        # Lipinsky hbd (<5)
        qs = qs.annotate(lipinsky_hbd=Case(When(nb_donor_h__lte=5, then=True), default=False, output_field=BooleanField()))
        # Lipinsky a_log_p (<5)
        qs = qs.annotate(lipinsky_a_log_p=Case(When(a_log_p__lte=5, then=True), default=False, output_field=BooleanField()))
        # Lipinsky global
        qs = qs.annotate(lipinsky_score=Cast(F('lipinsky_mw'), IntegerField())+Cast(F('lipinsky_hba'), IntegerField())+ \
            Cast(F('lipinsky_hbd'), IntegerField()) + Cast(F('lipinsky_a_log_p'), IntegerField()))
        qs = qs.annotate(lipinsky=Case(When(lipinsky_score__gte=3, then=True), default=False, output_field=BooleanField()))
        # Veber hba_hbd (<=12)
        qs = qs.annotate(hba_hbd=F('nb_acceptor_h')+F('nb_donor_h'))
        qs = qs.annotate(veber_hba_hbd=Case(When(hba_hbd__lte=12, then=True), default=False, output_field=BooleanField()))
        # Veber TPSA (<=140)
        qs = qs.annotate(veber_tpsa=Case(When(tpsa__lte=140, then=True), default=False, output_field=BooleanField()))
        # Veber Rotatable Bonds (<=10)
        qs = qs.annotate(veber_rb=Case(When(nb_rotatable_bonds__lte=10, then=True), default=False, output_field=BooleanField()))
        # Veber global (Rotatable bonds and (hba_hbd or tpsa))
406
407
        #qs = qs.annotate(veber=F('veber_rb').bitand(F('veber_hba_hbd').bitor(F('veber_tpsa'))))
        qs = qs.annotate(veber=Case(When(Q(Q(nb_rotatable_bonds__lte=10) & (Q(hba_hbd__lte=12) | Q(tpsa__lte=140))), then=True), default=False, output_field=BooleanField()))
408
409
410
411
412
        # Pfizer AlogP (<=3)
        qs = qs.annotate(pfizer_a_log_p=Case(When(a_log_p__lte=3, then=True), default=False, output_field=BooleanField()))
        # Pfizer TPSA (>=75)
        qs = qs.annotate(pfizer_tpsa=Case(When(tpsa__gte=75, then=True), default=False, output_field=BooleanField()))
        # Pfizer global (AlogP and TPSA)
413
414
        #qs = qs.annotate(pfizer=F('pfizer_a_log_p').bitand(F('pfizer_tpsa')))
        qs = qs.annotate(pfizer=Case(When(Q(Q(a_log_p__lte=3) & Q(tpsa__gte=75)), then=True), default=False, output_field=BooleanField()))
415
        # PDB ligand available
416
        qs = qs.annotate(pdb_ligand_av=Cast(Max(Case(When(compoundaction__ligand_id__isnull=False, then=1), default=0, output_field=IntegerField())), BooleanField()))
417
418
419
420
421
422
        # inhibition role
        qs = qs.annotate(inhibition_role=Case(When(compoundactivityresult__modulation_type='I', then=True), default=False, output_field=BooleanField()))
        # binding role
        qs = qs.annotate(binding_role=Case(When(compoundactivityresult__modulation_type='B', then=True), default=False, output_field=BooleanField()))
        # stabilisation role
        qs = qs.annotate(stabilisation_role=Case(When(compoundactivityresult__modulation_type='S', then=True), default=False, output_field=BooleanField()))
423
        # cellular tests performed
424
        qs = qs.annotate(celltest_av=Cast(Max(Case(When(compoundactivityresult__test_activity_description__test_type='CELL', then=1), default=0, output_field=IntegerField())), BooleanField()))
425
        # inhibition tests performed
426
        qs = qs.annotate(inhitest_av=Cast(Max(Case(When(compoundactivityresult__test_activity_description__test_modulation_type='I', then=1), default=0, output_field=IntegerField())), BooleanField()))
427
        # stabilisation tests performed
428
        qs = qs.annotate(stabtest_av=Cast(Max(Case(When(compoundactivityresult__test_activity_description__test_modulation_type='S', then=1), default=0, output_field=IntegerField())), BooleanField()))
429
        # binding tests performed
430
        qs = qs.annotate(bindtest_av=Cast(Max(Case(When(compoundactivityresult__test_activity_description__test_modulation_type='B', then=1), default=0, output_field=IntegerField())), BooleanField()))
431
        # pharmacokinetic tests performed
432
        qs = qs.annotate(pktest_av=Cast(Max(Case(When(refcompoundbiblio__bibliography__pharmacokinetic=True, then=1), default=0, output_field=IntegerField())), BooleanField()))
433
        # cytotoxicity tests performedudy
434
        qs = qs.annotate(cytoxtest_av=Cast(Max(Case(When(refcompoundbiblio__bibliography__cytotox=True, then=1), default=0, output_field=IntegerField())), BooleanField()))
435
        # in silico st performed
436
        qs = qs.annotate(insilico_av=Cast(Max(Case(When(refcompoundbiblio__bibliography__in_silico=True, then=1), default=0, output_field=IntegerField())), BooleanField()))
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
437
        #@formatter:on
438
439
        return qs

Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
440

441
class Compound(AutoFillableModel):
Hervé  MENAGER's avatar
Hervé MENAGER committed
442
443
444
    """
    Chemical compound
    """
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
445
    objects = CompoundManager()
446
447
    canonical_smile = models.TextField(
        'Canonical Smile', unique=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
448
449
450
451
452
    is_macrocycle = models.BooleanField('Contains one or more macrocycles')
    aromatic_ratio = models.DecimalField(
        'Aromatic ratio', max_digits=3, decimal_places=2)
    balaban_index = models.DecimalField(
        'Balaban index', max_digits=3, decimal_places=2)
453
    fsp3 = models.DecimalField('Fsp3', max_digits=3, decimal_places=2)
Hervé  MENAGER's avatar
Hervé MENAGER committed
454
455
456
457
458
459
460
461
462
463
    gc_molar_refractivity = models.DecimalField(
        'GC Molar Refractivity', max_digits=5, decimal_places=2)
    log_d = models.DecimalField(
        'LogD (Partition coefficient octanol-1/water, with pKa information)', max_digits=4, decimal_places=2)
    a_log_p = models.DecimalField(
        'ALogP (Partition coefficient octanol-1/water)', max_digits=4, decimal_places=2)
    mean_atom_vol_vdw = models.DecimalField(
        'Mean atom volume computed with VdW radii', max_digits=4, decimal_places=2)
    molecular_weight = models.DecimalField(
        'Molecular weight', max_digits=6, decimal_places=2)
464
465
466
467
    nb_acceptor_h = models.IntegerField('Number of hydrogen bond acceptors')
    nb_aliphatic_amines = models.IntegerField('Number of aliphatics amines')
    nb_aromatic_bonds = models.IntegerField('Number of aromatic bonds')
    nb_aromatic_ether = models.IntegerField('Number of aromatic ethers')
Hervé  MENAGER's avatar
Hervé MENAGER committed
468
469
470
471
    nb_aromatic_sssr = models.IntegerField(
        'Number of aromatic Smallest Set of System Rings (SSSR)')
    nb_atom = models.IntegerField('Number of atoms')
    nb_atom_non_h = models.IntegerField('Number of non hydrogen atoms')
472
473
    nb_benzene_like_rings = models.IntegerField('Number of benzene-like rings')
    nb_bonds = models.IntegerField('Number of bonds')
Hervé  MENAGER's avatar
Hervé MENAGER committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    nb_bonds_non_h = models.IntegerField(
        'Number of bonds not involving a hydrogen')
    nb_br = models.IntegerField('Number of Bromine atoms')
    nb_c = models.IntegerField('Number of Carbon atoms')
    nb_chiral_centers = models.IntegerField('Number of chiral centers')
    nb_circuits = models.IntegerField('Number of circuits')
    nb_cl = models.IntegerField('Number of Chlorine atoms')
    nb_csp2 = models.IntegerField('Number of sp2-hybridized carbon atoms')
    nb_csp3 = models.IntegerField('Number of sp3-hybridized carbon atoms')
    nb_donor_h = models.IntegerField('Number of hydrogen bond donors')
    nb_double_bonds = models.IntegerField('Number of double bonds')
    nb_f = models.IntegerField('Number of fluorine atoms')
    nb_i = models.IntegerField('Number of iodine atoms')
    nb_multiple_bonds = models.IntegerField('Number of multiple bonds')
488
    nb_n = models.IntegerField('Number of nitrogen atoms')
Hervé  MENAGER's avatar
Hervé MENAGER committed
489
490
491
    nb_o = models.IntegerField('Number of oxygen atoms')
    nb_rings = models.IntegerField('Number of rings')
    nb_rotatable_bonds = models.IntegerField('Number of rotatable bonds')
492
493
    inchi = models.TextField('InChi')
    inchikey = models.TextField('InChiKey')
Hervé  MENAGER's avatar
Hervé MENAGER committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    randic_index = models.DecimalField(
        'Randic index', max_digits=4, decimal_places=2)
    rdf070m = models.DecimalField(
        'RDF070m, radial distribution function weighted by the atomic masses at 7Å', max_digits=5, decimal_places=2)
    rotatable_bond_fraction = models.DecimalField(
        'Fraction of rotatable bonds', max_digits=3, decimal_places=2)
    sum_atom_polar = models.DecimalField(
        'Sum of atomic polarizabilities', max_digits=5, decimal_places=2)
    sum_atom_vol_vdw = models.DecimalField(
        'Sum of atom volumes computed with VdW radii', max_digits=6, decimal_places=2)
    tpsa = models.DecimalField(
        'Topological Polar Surface Area (TPSA)', max_digits=5, decimal_places=2)
    ui = models.DecimalField(
        'Unsaturation index', max_digits=4, decimal_places=2)
    wiener_index = models.IntegerField('Wiener index')
    common_name = models.CharField(
        'Common name', unique=True, max_length=20, blank=True, null=True)
    pubchem_id = models.CharField(
        'Pubchem ID', max_length=10, blank=True, null=True)
    chemspider_id = models.CharField(
        'Chemspider ID', unique=True, max_length=10, blank=True, null=True)
    chembl_id = models.CharField(
        'Chembl ID', max_length=30, blank=True, null=True)
    iupac_name = models.CharField(
        'IUPAC name', max_length=255, blank=True, null=True)
519

520
    class Meta:
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
521
        ordering = ['id']
522

523
524
525
    def compute_drugbank_compound_similarity(self):
        """ compute Tanimoto similarity to existing DrugBank compounds """
        self.save()
526
        # fingerprints to compute drugbank similarities are in settings module, default FP2
527
        fingerprinter = FingerPrinter(getattr(settings, "DRUGBANK_FINGERPRINTS", "FP2"))
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
528
529
        # 1. compute tanimoto for SMILES query vs all compounds
        smiles_dict = {c.id: c.canonical_smiles for c in DrugBankCompound.objects.all()}
530
531
532
533
        tanimoto_dict = fingerprinter.tanimoto_smiles(self.canonical_smile, smiles_dict)
        tanimoto_dict = dict(sorted(tanimoto_dict.items(), key=operator.itemgetter(1), reverse=True)[:15])
        dbcts = []
        for id_, tanimoto in tanimoto_dict.items():
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
534
535
536
537
538
            dbcts.append(DrugbankCompoundTanimoto(
                compound=self,
                drugbank_compound=DrugBankCompound.objects.get(id=id_),
                tanimoto=tanimoto,
            ))
539
540
        DrugbankCompoundTanimoto.objects.bulk_create(dbcts)

Hervé  MENAGER's avatar
Hervé MENAGER committed
541
542
543
    @property
    def biblio_refs(self):
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
544
        return all RefCompoundBiblio related to this compound
Hervé  MENAGER's avatar
Hervé MENAGER committed
545
546
        """
        return RefCompoundBiblio.objects.filter(compound=self)
547

548
549
550
551
552
553
554
555
556
557
558
559
560
    @property
    def pfam_ids(self):
        """
        return all PFAM ids for the domain of the proteins of the bound
        complexes in the PPIs this compound has an action on
        """
        pfam_ids = set()
        for ca in self.compoundaction_set.all():
            ca.get_complexes()
            for bound_complex in ca.ppi.get_ppi_bound_complexes():
                pfam_ids.add(bound_complex.complex.domain.pfam_id)
        return pfam_ids

561
    @property
Hervé  MENAGER's avatar
Hervé MENAGER committed
562
    def compound_action_ligand_ids(self):
563
564
565
        """
        return all PDB codes of the corresponding compound actions
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
566
        ligand_ids = set()
567
        for ca in self.compoundaction_set.all():
Hervé  MENAGER's avatar
Hervé MENAGER committed
568
569
            ligand_ids.add(ca.ligand_id)
        return ligand_ids
570

571
572
    @property
    def best_pXC50_activity(self):
573
        return self.compoundactivityresult_set.aggregate(Max('activity'))['activity__max']
574
575
576
577
578
579

    @property
    def best_pXC50_compound_activity_result(self):
        best_pXC50_activity = self.best_pXC50_activity
        if best_pXC50_activity is None:
            return None
580
        return self.compoundactivityresult_set.filter(activity=best_pXC50_activity)[0]
581

582
    @property
583
    def best_pXC50_activity_ppi_name(self):
584
        """
585
        Name of the PPI corresponding to the best PXC50 activity
586
        """
587
588
589
        best_activity_car = self.best_pXC50_compound_activity_result
        if best_activity_car is None:
            return None
590
591
592
        ppi_name = best_activity_car.test_activity_description.ppi.name
        return ppi_name

593
594
595
596
597
598
599
600
601
602
603
    @property
    def best_pXC50_activity_ppi_family(self):
        """
        Family of the PPI corresponding to the best PXC50 activity
        """
        best_activity_car = self.best_pXC50_compound_activity_result
        if best_activity_car is None:
            return None
        ppi_family = best_activity_car.test_activity_description.ppi.family.name
        return ppi_family

604
605
606
607
608
609
610
611
612
613
614
615
616
617
    @property
    def bioch_tests_count(self):
        """
        return the number of associated biochemical tests
        """
        return self.compoundactivityresult_set.all().filter(test_activity_description__test_type='BIOCH').count()

    @property
    def cell_tests_count(self):
        """
        return the number of associated cell tests
        """
        return self.compoundactivityresult_set.all().filter(test_activity_description__test_type='CELL').count()

618
619
620
621
622
623
    @property
    def families(self):
        """
        return the all PPI families for PPIs involved in the compound activity of the compound
        """
        return list(set([ca.ppi.family for ca in self.compoundaction_set.all()]))
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
624

625
626
627
    @property
    def sorted_similar_drugbank_compounds(self):
        return self.drugbankcompoundtanimoto_set.order_by('-tanimoto')
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
628

629
630
631
    def autofill(self):
        # compute InChi and InChiKey
        self.inchi = smi2inchi(self.canonical_smile)
632
        self.inchikey = smi2inchikey(self.canonical_smile)
633
        self.compute_drugbank_compound_similarity()
634

635
636
637
    def __str__(self):
        return 'Compound #{}'.format(self.id)

Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
638

639
640
641
class CompoundTanimoto(models.Model):
    canonical_smiles = models.TextField(
        'Canonical Smile')
642
    fingerprint = models.TextField('Fingerprint')
643
644
645
646
647
648
    compound = models.ForeignKey(Compound, models.CASCADE)
    tanimoto = models.DecimalField(
        'Tanimoto value', max_digits=5, decimal_places=4)

    class Meta:
        unique_together = (
649
            ('canonical_smiles', 'fingerprint', 'compound'))
650

Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
651

652
def create_tanimoto(smiles_query, fingerprint):
Hervé  MENAGER's avatar
Hervé MENAGER committed
653
654
655
656
    """
    Compute the Tanimoto similarity between a given SMILES and the compounds
    then insert the results in CompoundTanimoto
    """
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
657
658
    if CompoundTanimoto.objects.filter(canonical_smiles=smiles_query, fingerprint=fingerprint).count() == 0:
        smiles_dict = {c.id: c.canonical_smile for c in Compound.objects.all()}
659
        fingerprinter = FingerPrinter(fingerprint)
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
660
        # 1. compute tanimoto for SMILES query vs all compounds
661
        tanimoto_dict = fingerprinter.tanimoto_smiles(smiles_query, smiles_dict)
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
662
        # 2. insert results in a table with three fields: SMILES query, compound id, tanimoto index
663
664
        cts = []
        for id_, smiles in smiles_dict.items():
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
665
666
            cts.append(CompoundTanimoto(canonical_smiles=smiles_query, fingerprint=fingerprint,
                                        compound=Compound.objects.get(id=id_), tanimoto=tanimoto_dict[id_]))
667
        CompoundTanimoto.objects.bulk_create(cts)
668

Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
669

670
class PcaBiplotData(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
671
672
673
674
    """
    PCA biplot data
    the table contains all the data as one JSON text in one row
    """
675
676
    pca_biplot_data = models.TextField(
        'PCA biplot JSON data', blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
677

678

679
class LeLleBiplotData(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
680
681
682
683
    """
    LE-LLE biplot data
    the table contains all the data as one JSON text in one row
    """
684
685
    le_lle_biplot_data = models.TextField(
        'LE-LLE biplot JSON data', blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
686

687

688
class CellLine(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
689
690
691
    """
    Cell lines
    """
692
    name = models.CharField('Name', max_length=50, unique=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
693

694
695
696
    def __str__(self):
        return self.name

Hervé  MENAGER's avatar
Hervé MENAGER committed
697

698
class TestActivityDescription(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
699
700
701
    """
    Activity test descriptions
    """
702
703
704
705
706
707
708
709
710
    TEST_TYPES = (
        ('BIOCH', 'Biochemical assay'),
        ('CELL', 'Cellular assay')
    )
    TEST_MODULATION_TYPES = (
        ('B', 'Binding'),
        ('I', 'Inhibition'),
        ('S', 'Stabilization')
    )
711
712
713
714
    PROTEIN_BOUND_CONSTRUCTS = (
        ('F', 'Full length'),
        ('U', 'Unspecified')
    )
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
715
716
717
718
    biblio = models.ForeignKey(
        Bibliography,
        on_delete=models.CASCADE,
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
719
    protein_domain_bound_complex = models.ForeignKey(
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
720
721
722
        ProteinDomainBoundComplex,
        on_delete=models.CASCADE,
    )
723
    ppi = models.ForeignKey(Ppi, models.CASCADE, blank=True, null=True)
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
724
725
726
727
728
729
730
    test_name = models.CharField(
        verbose_name='Test name',
        max_length=100,
    )
    is_primary = models.BooleanField(
        verbose_name='Is primary',
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
731
    protein_bound_construct = models.CharField(
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
732
733
734
735
736
737
738
739
740
741
742
        verbose_name='Protein bound construct',
        max_length=5,
        choices=PROTEIN_BOUND_CONSTRUCTS,
        blank=True,
        null=True,
    )
    test_type = models.CharField(
        verbose_name='Test type',
        max_length=5,
        choices=TEST_TYPES,
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
743
    test_modulation_type = models.CharField(
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
744
745
746
747
        verbose_name='Test modulation type',
        max_length=1,
        choices=TEST_MODULATION_TYPES,
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
748
    nb_active_compounds = models.IntegerField(
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
749
750
        verbose_name='Total number of active compounds',
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
751
    cell_line = models.ForeignKey(
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
752
753
754
755
756
        CellLine,
        on_delete=models.CASCADE,
        blank=True,
        null=True,
    )
757

Hervé  MENAGER's avatar
Hervé MENAGER committed
758
    def get_complexes(self):
759
760
761
762
        """
        get the complexes tested for this PPI
        depends on the modulation type
        """
Hervé  MENAGER's avatar
Hervé MENAGER committed
763
        if self.test_modulation_type == 'I':
764
            return self.ppi.ppicomplex_set.all()
765
766
        else:
            return self.ppi.get_ppi_bound_complexes()
767

768
769
770
    @property
    def protein_domain_partner_complex(self):
        for ppic in self.ppi.ppicomplex_set.all():
Hervé  MENAGER's avatar
Hervé MENAGER committed
771
            if hasattr(ppic.complex, 'proteindomainpartnercomplex'):
772
773
774
                return ppic.complex.proteindomainpartnercomplex
        return None

775
776
777
778
779
780
781
    @property
    def name(self):
        return self.test_name

    def __str__(self):
        return self.get_test_type_display()

Hervé  MENAGER's avatar
Hervé MENAGER committed
782

783
class CompoundActivityResult(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
784
785
786
    """
    Activity test results on a compound
    """
787
788
789
790
    MODULATION_TYPES = (
        ('I', 'Inhibition'),
        ('S', 'Stabilization')
    )
Hervé  MENAGER's avatar
Hervé MENAGER committed
791
    ACTIVITY_TYPES = (
Hervé  MENAGER's avatar
Hervé MENAGER committed
792
793
794
795
        ('pIC50', 'pIC50 (half maximal inhibitory concentration, -log10)'),
        ('pEC50', 'pEC50 (half maximal effective concentration, -log10)'),
        ('pKd', 'pKd (dissociation constant, -log10)'),
        ('pKi', 'pKi (inhibition constant, -log10)'),
Hervé  MENAGER's avatar
Hervé MENAGER committed
796
    )
797
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
798
799
    test_activity_description = models.ForeignKey(
        TestActivityDescription, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
800
801
802
803
    activity_type = models.CharField(
        'Activity type', max_length=5, choices=ACTIVITY_TYPES)
    activity = models.DecimalField(
        'Activity', max_digits=12, decimal_places=10)
804
    inhibition_percentage = models.DecimalField(
805
        'Inhibition percentage', max_digits=3, decimal_places=0, null=True, blank=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
806
807
    modulation_type = models.CharField(
        'Modulation type', max_length=1, choices=MODULATION_TYPES)
Hervé  MENAGER's avatar
Hervé MENAGER committed
808
809

    class Meta:
Hervé  MENAGER's avatar
Hervé MENAGER committed
810
811
812
        unique_together = (
            ('compound', 'test_activity_description', 'activity_type'),)

813
    def __str__(self):
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
814
815
816
817
818
        return 'Compound activity result for {} test {} on {}'.format(
            self.activity_type,
            self.test_activity_description.id,
            self.compound.id,
        )
Hervé  MENAGER's avatar
Hervé MENAGER committed
819

820
821
822
    def is_best(self):
        return self.compound.best_pXC50_compound_activity_result.id == self.id

Hervé  MENAGER's avatar
Hervé MENAGER committed
823

824
class TestCytotoxDescription(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
825
826
827
    """
    Cytotoxicity test descriptions
    """
828
    biblio = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
829
    test_name = models.CharField('Cytotoxicity test name', max_length=100)
830
    cell_line = models.ForeignKey(CellLine, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
831
832
833
    compound_concentration = models.DecimalField(
        'Compound concentration in μM', max_digits=7, decimal_places=3, blank=True, null=True)

Hervé  MENAGER's avatar
Hervé MENAGER committed
834

835
class CompoundCytotoxicityResult(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
836
837
838
    """
    Cytotoxicity test results on a compound
    """
839
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
840
841
    test_cytotoxicity_description = models.ForeignKey(
        TestCytotoxDescription, models.CASCADE)
842
    toxicity = models.BooleanField('Toxicity', default=False)
Hervé  MENAGER's avatar
Hervé MENAGER committed
843
844

    class Meta:
845
        unique_together = (('compound', 'test_cytotoxicity_description'),)
846

847
    def __str__(self):
Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
848
849
850
851
        return 'Compound cytotoxicity result for test {} on {}'.format(
            self.test_cytotoxicity_description.id,
            self.compound.id,
        )
852

Hervé  MENAGER's avatar
Hervé MENAGER committed
853

854
class TestPKDescription(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
855
856
857
    """
    Pharmacokinetic test descriptions
    """
858
859
860
861
862
863
    ADMINISTRATION_MODES = (
        ('IV', ''),
        ('PO', ''),
        ('IP', ''),
        ('SL', 'SL')
    )
864
    biblio = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
865
    test_name = models.CharField('Pharmacokinetic test name', max_length=100)
866
    organism = models.ForeignKey(Taxonomy, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
867
868
    administration_mode = models.CharField(
        'Administration mode', max_length=2, choices=ADMINISTRATION_MODES, blank=True, null=True)
869
870
    concentration = models.DecimalField(
        'Concentration in mg/l', max_digits=7, decimal_places=3, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
871
    dose = models.DecimalField(
872
        'Dose in mg/kg', max_digits=9, decimal_places=4, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
873
874
875
    dose_interval = models.IntegerField(
        'Dose interval, in hours', blank=True, null=True)

876
877

class CompoundPKResult(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
878
879
880
    """
    Pharmacokinetic test results on a compound
    """
881
882
    compound = models.ForeignKey(Compound, models.CASCADE)
    test_pk_description = models.ForeignKey(TestPKDescription, models.CASCADE)
883
    tolerated = models.NullBooleanField('Tolerated', null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
884
885
886
887
    auc = models.IntegerField(
        'Area under curve (ng.mL-1.hr)', blank=True, null=True)
    clearance = models.DecimalField(
        'Clearance (mL/hr)', max_digits=7, decimal_places=3, blank=True, null=True)
888
    c_max = models.DecimalField(
Hervé  MENAGER's avatar
Hervé MENAGER committed
889
890
891
892
893
894
895
        'Maximal concentration (ng/mL)', max_digits=7, decimal_places=3, blank=True, null=True)
    oral_bioavailability = models.IntegerField(
        'Oral Bioavailability (%F)', blank=True, null=True)
    t_demi = models.IntegerField('t½', blank=True, null=True)
    t_max = models.IntegerField('tmax', blank=True, null=True)
    voldistribution = models.DecimalField(
        'Volume distribution (Vd)', max_digits=5, decimal_places=2, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
896
897

    class Meta:
898
        unique_together = (('compound', 'test_pk_description'),)
Hervé  MENAGER's avatar
Hervé MENAGER committed
899

900
901
902
    def __str__(self):
        return 'Compound PK result for test {} on {}'.format(self.test_pk_description.id, self.compound.id)

Hervé  MENAGER's avatar
Hervé MENAGER committed
903

904
class CompoundAction(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
905
906
907
    """
    Compound action
    """
908
909
    ACTIVATION_MODES = (
        ('O', 'Orthosteric'),
910
911
        ('A', 'Allosteric'),
        ('U', 'Unspecified')
912
    )
913
    compound = models.ForeignKey(Compound, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
914
915
    activation_mode = models.CharField(
        'Activation mode', max_length=1, choices=ACTIVATION_MODES)
916
    ppi = models.ForeignKey(Ppi, models.CASCADE)
917
    ligand_id = models.CharField('PDB Ligand ID', max_length=3, blank=True, null=True)
Hervé  MENAGER's avatar
Hervé MENAGER committed
918
919
    nb_copy_compounds = models.IntegerField(
        'Number of copies for the compound')
Hervé  MENAGER's avatar
Hervé MENAGER committed
920
921

    class Meta:
922
        unique_together = (('ppi', 'compound', 'activation_mode', 'ligand_id'),)
Hervé  MENAGER's avatar
Hervé MENAGER committed
923
924

    def get_complexes(self):
925
926
927
928
        """
        get the complexes involved in the compound action
        which are always the bound complexes
        """
929
        return self.ppi.get_ppi_bound_complexes()
Hervé  MENAGER's avatar
Hervé MENAGER committed
930

931
932
    def __str__(self):
        return 'Action of {} on {}'.format(self.compound, self.ppi)
Hervé  MENAGER's avatar
Hervé MENAGER committed
933

Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
934

935
class RefCompoundBiblio(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
936
937
938
    """
    Compound-Bibliographic reference association
    """
939
940
    compound = models.ForeignKey(Compound, models.CASCADE)
    bibliography = models.ForeignKey(Bibliography, models.CASCADE)
Hervé  MENAGER's avatar
Hervé MENAGER committed
941
942
    compound_name = models.CharField(
        'Compound name in the publication', max_length=50)
Hervé  MENAGER's avatar
Hervé MENAGER committed
943
944

    class Meta:
945
        unique_together = (('compound', 'bibliography'),)
946

Bryan  BRANCOTTE's avatar
Bryan BRANCOTTE committed
947

948
class DrugBankCompound(models.Model):
Hervé  MENAGER's avatar
Hervé MENAGER committed
949
950
951
    """
    Drugbank compound
    """
952
953
954