diff --git a/content/3.defense-systems/abic.md b/content/3.defense-systems/abic.md
index 3e70eaa076d3f7fb251ebd90449615be5506f8ce..d0d0f0080e7c669736411c5af8e6ca0f0c16b75f 100644
--- a/content/3.defense-systems/abic.md
+++ b/content/3.defense-systems/abic.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF16872
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiC
@@ -54,14 +56,3 @@ A system from *Klebsiella pneumoniae's PICI (KpCIFDAARGOS_1313)* in *Klebsiella
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, P335 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abid.md b/content/3.defense-systems/abid.md
index e2a378647c5196403fd635b0baf8b4ea3ee853f9..6e3892472462a87423ab3c7497215b53383b7460 100644
--- a/content/3.defense-systems/abid.md
+++ b/content/3.defense-systems/abid.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF07751
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiD
@@ -48,14 +50,3 @@ AbiD systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, c2, P335 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abie.md b/content/3.defense-systems/abie.md
index f2b7575e3f2acd57a18e20586fcc0e7dcf7b15da..eb657d76a81ad40f1143f9a3c3ac12b2cdbe8694 100644
--- a/content/3.defense-systems/abie.md
+++ b/content/3.defense-systems/abie.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF08843, PF09407, PF09952, PF11459, PF13338, PF17194
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiE
@@ -67,15 +69,3 @@ AbiE systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-    - doi: 10.1093/nar/gkt1419
-
----
-::
-
diff --git a/content/3.defense-systems/abig.md b/content/3.defense-systems/abig.md
index f3958bf670026f8253a312804b62c5dab2b0f1fe..046dc968a5332ece267e9d9ae311a9b228d36541 100644
--- a/content/3.defense-systems/abig.md
+++ b/content/3.defense-systems/abig.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF10899, PF16873
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiG
@@ -55,14 +57,3 @@ AbiG systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, c2, P335 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abih.md b/content/3.defense-systems/abih.md
index a5957d00691f8c1b1b314463d5bb868d20e4acd6..8b51c5cf07b8497bc30f1670559bf9692d7ad455 100644
--- a/content/3.defense-systems/abih.md
+++ b/content/3.defense-systems/abih.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF14253
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiH
@@ -50,15 +52,3 @@ AbiH systems were experimentally validated using:
 
 A system from *lactococci* in *lactococci* has an anti-phage effect against 936, c2 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-    - doi: 10.1111/j.1574-6968.1996.tb08446.x
-
----
-::
-
diff --git a/content/3.defense-systems/abii.md b/content/3.defense-systems/abii.md
index 1e1d819a00dc17f9291b6df820c57d0b961733ae..fea7a1be1aa58b951f7a51d376be107a0f0b5611 100644
--- a/content/3.defense-systems/abii.md
+++ b/content/3.defense-systems/abii.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiI
@@ -49,13 +51,3 @@ AbiI systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, c2 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
diff --git a/content/3.defense-systems/abij.md b/content/3.defense-systems/abij.md
index 1e5f58de3936e82f1a9aea04df24654029bd4bee..19a1441f3ac6d5a9411e5fc330d418c085aa8866 100644
--- a/content/3.defense-systems/abij.md
+++ b/content/3.defense-systems/abij.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF14355
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiJ
@@ -50,14 +52,3 @@ AbiJ systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abik.md b/content/3.defense-systems/abik.md
index 9bb989a338642f5ed47526eb4fc02f05e50d0ab6..9806f66d2013b13ab3c43e649dfaf8a9911b6940 100644
--- a/content/3.defense-systems/abik.md
+++ b/content/3.defense-systems/abik.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00078
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiK
@@ -50,15 +52,3 @@ AbiK systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, c2, P335 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-    - doi: 10.1093/nar/gkac467
-
----
-::
-
diff --git a/content/3.defense-systems/abil.md b/content/3.defense-systems/abil.md
index 2453dab6fee61bd73b7848f8ce7b0c273bd4a37e..0c21f903dd7e7b5a31c66d75fa5c7625417aa3d4 100644
--- a/content/3.defense-systems/abil.md
+++ b/content/3.defense-systems/abil.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13175, PF13304, PF13707
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiL
@@ -57,14 +59,3 @@ AbiL systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, c2 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abin.md b/content/3.defense-systems/abin.md
index f356f9657d08d3055367286ce773720125bd05f5..e9c798a2f969805d3b4e495b689034f29a51030a 100644
--- a/content/3.defense-systems/abin.md
+++ b/content/3.defense-systems/abin.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiN
@@ -49,13 +51,3 @@ AbiN systems were experimentally validated using:
 
 A system from *lactococcal prophage* in *lactococci* has an anti-phage effect against 936, c2 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
diff --git a/content/3.defense-systems/abio.md b/content/3.defense-systems/abio.md
index 5547f58a646c33105a18ff1701d84b532b572486..9164a09131d07e3b56ba36abf2a0f1d2c7c5d753 100644
--- a/content/3.defense-systems/abio.md
+++ b/content/3.defense-systems/abio.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF01443, PF09848
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiO
@@ -50,14 +52,3 @@ AbiO systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, c2 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abip2.md b/content/3.defense-systems/abip2.md
index c0f80220a2ded86a7560611dfacbc69746d3a5ce..98dad8579d8a9a51c89a2697863ad0efd6217a8e 100644
--- a/content/3.defense-systems/abip2.md
+++ b/content/3.defense-systems/abip2.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00078
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiP2
@@ -52,15 +54,3 @@ Subsystem RT-Abi-P2 with a system from *Escherichia coli* in *Escherichia coli*
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-    - doi: 10.1093/nar/gkac467
-
----
-::
-
diff --git a/content/3.defense-systems/abiq.md b/content/3.defense-systems/abiq.md
index dab1ef15ac67b4554a07e0251a367dd5bca16544..a821c24b1c45dc6ed095c4a3be02a88e1488dda3 100644
--- a/content/3.defense-systems/abiq.md
+++ b/content/3.defense-systems/abiq.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13958
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiQ
@@ -50,15 +52,3 @@ AbiQ systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, c2 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-    - doi: 10.1128/AEM.64.12.4748-4756.1998
-
----
-::
-
diff --git a/content/3.defense-systems/abir.md b/content/3.defense-systems/abir.md
index b856d890464003e4490973340df38f59b6aded77..c3dcb75dec71d67bd12912d2d5d78cd0bd323110 100644
--- a/content/3.defense-systems/abir.md
+++ b/content/3.defense-systems/abir.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00176, PF00271, PF04545, PF04851, PF13091
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiR
@@ -64,14 +66,3 @@ AbiR systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against c2 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abit.md b/content/3.defense-systems/abit.md
index 296cfe9b7c16247cd274de7b321052adacd77a9f..6615b17c2a7fc3500aa0f5ad716da70b8f5c2785 100644
--- a/content/3.defense-systems/abit.md
+++ b/content/3.defense-systems/abit.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF18864
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiT
@@ -57,14 +59,3 @@ AbiT systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, P335 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abiu.md b/content/3.defense-systems/abiu.md
index f01863b3bf63af18a0493098bbfe19be8917d9c3..f78fa37a4a2b2560b3cc62b80b13005b2e6c6f40 100644
--- a/content/3.defense-systems/abiu.md
+++ b/content/3.defense-systems/abiu.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF10592
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiU
@@ -50,14 +52,3 @@ AbiU systems were experimentally validated using:
 
 A system from *lactococcal plasmid* in *lactococci* has an anti-phage effect against 936, c2, P335 (Chopin et al., 2005)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1016/j.mib.2005.06.006
-
----
-::
-
diff --git a/content/3.defense-systems/abiv.md b/content/3.defense-systems/abiv.md
index 36136ea343a6087ae8177e4e19b3b345e09817a3..b5927dfc0d6d0b1fa720271df1a3c7e41bb19f9a 100644
--- a/content/3.defense-systems/abiv.md
+++ b/content/3.defense-systems/abiv.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF18728
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiV
@@ -50,14 +52,3 @@ AbiV systems were experimentally validated using:
 
 A system from *Lactococcus lactis* in *Lactococcus lactis* has an anti-phage effect against sk1, p2, jj50, P008, bIL170, c2, bIL67, ml3, eb1 (Haaber et al., 2008)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1128/AEM.00780-08
-
----
-::
-
diff --git a/content/3.defense-systems/abiz.md b/content/3.defense-systems/abiz.md
index 4497aa72c28d93cbfa378b43dafd5934e65551b3..1e5e23f22edc9db4dcd7ac734b7d11ee4838e400 100644
--- a/content/3.defense-systems/abiz.md
+++ b/content/3.defense-systems/abiz.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Membrane disrupting
+relevantAbstracts:
+    - doi: 10.1023/A:1002027321171
 ---
 
 # AbiZ
@@ -49,13 +51,3 @@ AbiZ systems were experimentally validated using:
 
 A system from *Lactococcus lactis* in *Lactococcus lactis* has an anti-phage effect against Phi31.2, ul36, phi31, phi48, phi31.1, Q30, Q36, Q33, phi50, phi48 (Durmaz et al., 2007)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1023/A:1002027321171
-    - doi: 10.1128/JB.00904-06
-
----
-::
diff --git a/content/3.defense-systems/aditi.md b/content/3.defense-systems/aditi.md
index f7a1e705cc0b0794b8cb3b6dd3318aa68229bd45..360dfef73673d63eb74f7065161d60deb7e6f7a5 100644
--- a/content/3.defense-systems/aditi.md
+++ b/content/3.defense-systems/aditi.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF18928
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Aditi
@@ -57,13 +59,3 @@ Aditi systems were experimentally validated using:
 
 A system from *Saccharibacillus kuerlensis* in *Bacillus subtilis* has an anti-phage effect against phi105, Rho14, SPP1 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/azaca.md b/content/3.defense-systems/azaca.md
index 51d8cf1fab38598fba24c30fad81021612f4c033..2f1da606f8780cfdb82178c69bf3b8d59d5a3e2d 100644
--- a/content/3.defense-systems/azaca.md
+++ b/content/3.defense-systems/azaca.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00271
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Azaca
@@ -66,13 +68,3 @@ A system from *Bacillus massilioanorexius* in *Escherichia coli* has an anti-pha
 
 A system from *Bacillus massilioanorexius* in *Bacillus subtilis* has an anti-phage effect against SBSphiC (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/borvo.md b/content/3.defense-systems/borvo.md
index 2b6c3368cb33ea4a3be3856d0209d2c3d24a6ace..05dc49b44a50d4165d839231281c0114ad95ebb0 100644
--- a/content/3.defense-systems/borvo.md
+++ b/content/3.defense-systems/borvo.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF12770
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Borvo
@@ -50,13 +52,3 @@ Borvo systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T5, SECphi4, SECphi6, SECphi18 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/bsta.md b/content/3.defense-systems/bsta.md
index 9d021f998c1d1382a42e05275cd5989cac35973e..a037bd486969378b85ef06158ab8b154a73e1b7c 100644
--- a/content/3.defense-systems/bsta.md
+++ b/content/3.defense-systems/bsta.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2021.09.002
 ---
 
 # BstA
@@ -81,17 +83,3 @@ A system from *Escherichia coli* in *Salmonella Typhimurium* has an anti-phage e
 
 A system from *Salmonella Typhimurium's BTP1* in *Escherichia coli* has an anti-phage effect against Lambda, Phi80, P1vir, T7 (Owen et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2021.09.002
-
----
-::
-
-
-## References
-
-1. Owen SV, Wenner N, Dulberger CL, Rodwell EV, Bowers-Barnard A, Quinones-Olvera N, Rigden DJ, Rubin EJ, Garner EC, Baym M, Hinton JCD. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe. 2021 Nov 10;29(11):1620-1633.e8. doi: 10.1016/j.chom.2021.09.002. Epub 2021 Sep 30. PMID: 34597593; PMCID: PMC8585504.
diff --git a/content/3.defense-systems/bunzi.md b/content/3.defense-systems/bunzi.md
index 9fc80b181baa23f8b84ce3c628432752e37d702c..18b2b78e2f1ee6175b93e97604ce7a2c665b2b88 100644
--- a/content/3.defense-systems/bunzi.md
+++ b/content/3.defense-systems/bunzi.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Bunzi
@@ -56,12 +58,3 @@ Bunzi systems were experimentally validated using:
 
 A system from *Ligilactobacillus animalis* in *Bacillus subtilis* has an anti-phage effect against AR9 (Jumbo), PBS1 (Jumbo) (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
diff --git a/content/3.defense-systems/butters_gp30_gp31.md b/content/3.defense-systems/butters_gp30_gp31.md
index 48881175ca54ab6419d24219d9afe469ea121c01..1fc19bc4d92253c63125597cfa5f26c322743478 100644
--- a/content/3.defense-systems/butters_gp30_gp31.md
+++ b/content/3.defense-systems/butters_gp30_gp31.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1128/mSystems.00534-20
       abstract: |
         Many sequenced bacterial genomes, including those of pathogenic bacteria, contain prophages. Some prophages encode defense systems that protect their bacterial host against heterotypic viral attack. Understanding the mechanisms undergirding these defense systems is crucial to appreciate the scope of bacterial immunity against viral infections and will be critical for better implementation of phage therapy that would require evasion of these defenses. Furthermore, such knowledge of prophage-encoded defense mechanisms may be useful for developing novel genetic tools for engineering phage-resistant bacteria of industrial importance., A diverse set of prophage-mediated mechanisms protecting bacterial hosts from infection has been recently uncovered within cluster N mycobacteriophages isolated on the host, Mycobacterium smegmatis mc2155. In that context, we unveil a novel defense mechanism in cluster N prophage Butters. By using bioinformatics analyses, phage plating efficiency experiments, microscopy, and immunoprecipitation assays, we show that Butters genes located in the central region of the genome play a key role in the defense against heterotypic viral attack. Our study suggests that a two-component system, articulated by interactions between protein products of genes 30 and 31, confers defense against heterotypic phage infection by PurpleHaze (cluster A/subcluster A3) or Alma (cluster A/subcluster A9) but is insufficient to confer defense against attack by the heterotypic phage Island3 (cluster I/subcluster I1). Therefore, based on heterotypic phage plating efficiencies on the Butters lysogen, additional prophage genes required for defense are implicated and further show specificity of prophage-encoded defense systems., IMPORTANCE Many sequenced bacterial genomes, including those of pathogenic bacteria, contain prophages. Some prophages encode defense systems that protect their bacterial host against heterotypic viral attack. Understanding the mechanisms undergirding these defense systems is crucial to appreciate the scope of bacterial immunity against viral infections and will be critical for better implementation of phage therapy that would require evasion of these defenses. Furthermore, such knowledge of prophage-encoded defense mechanisms may be useful for developing novel genetic tools for engineering phage-resistant bacteria of industrial importance.
+relevantAbstracts:
+    - doi: 10.1128/mSystems.00534-20
 ---
 
 # Butters_gp30_gp31
@@ -30,11 +32,3 @@ dataUrl: /butters_gp30_gp31/Butters_gp30_gp31__Butters_gp31-plddts_84.75463.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1128/mSystems.00534-20
-
----
-::
diff --git a/content/3.defense-systems/butters_gp57r.md b/content/3.defense-systems/butters_gp57r.md
index ad95f49b7dabcbea8694586af8984906503e2a3d..45b8d07b985b01e682e588bed9dc7f1286795dbf 100644
--- a/content/3.defense-systems/butters_gp57r.md
+++ b/content/3.defense-systems/butters_gp57r.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1101/2023.01.03.522681
       abstract: |
         During lysogeny temperate phages establish a truce with the bacterial host. In this state, the phage genome (prophage) is maintained within the host environment. Consequently, many prophages have evolved systems to protect the host from heterotypic viral attack. This phenomenon of prophages mediating defense of their host against competitor phages is widespread among temperate mycobacteriophages. We previously showed that the Mycobacterium phage Butters prophage encodes a two-component system (gp30/31) that inhibits infection from a subset of mycobacteriophages that include PurpleHaze, but not Island3. Here we show that Butters gp57r is both necessary and sufficient to inhibit infection by Island3 and other phages. Gp57r acts post-DNA injection and its antagonism results in the impairment of Island3 DNA amplification. Gp57r inhibition of Island3 is absolute with no defense escape mutants. However, mutations mapping to minor tail proteins allow PurpleHaze to overcome gp57r defense. Gp57r has a HEPN domain which is present in many proteins involved in inter-genomic conflicts, suggesting that gp57r may inhibit heterotypic phage infections via its HEPN domain. We also show that Butters gp57r has orthologues in clinical isolates of Mycobacterium abscessus sp. including the phage therapy candidate strain GD91 which was found to be resistant to the panel of phages tested. It is conceivable that this GD91 orthologue of gp57r may mediate resistance to the subset of phages tested. Challenges of this nature underscore the importance of elucidating mechanisms of antiphage systems and mutations that allow for escape from inhibition. IMPORTANCE The evolutionary arms race between phages and their bacteria host is ancient. During lysogeny, temperate phages establish a ceasefire with the host where they do not kill the host but derive shelter from it. Within the phenomenon of prophage-mediated defense, some temperate phages contribute genes that make their host more fit and resistant to infections by other phages. This arrangement has significance for both phage and bacterial evolutionary dynamics. Further, the prevalence of such antiphage systems poses a challenge to phage therapy. Thus, studies aimed at elucidating antiphage systems will further our understanding of phage-bacteria evolution as well as help with efforts to engineer therapeutic phages that circumvent antiphage systems.
+relevantAbstracts:
+    - doi: 10.1101/2023.01.03.522681
 ---
 
 # Butters_gp57r
@@ -23,11 +25,3 @@ dataUrl: /butters_gp57r/Butters_gp57r__gp57r-plddts_90.7432.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2023.01.03.522681
-
----
-::
diff --git a/content/3.defense-systems/caprel.md b/content/3.defense-systems/caprel.md
index 7ed9c7fa4fff69ef2e940f442cc4450134f85e28..dec211bdf11b883aa3ef0048f6db923124a1e4a0 100644
--- a/content/3.defense-systems/caprel.md
+++ b/content/3.defense-systems/caprel.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleic acid degrading (pyrophosphorylates tRNAs)
     PFAM: PF04607
+relevantAbstracts:
+    - doi: 10.1038/s41586-022-05444-z
 ---
 
 # CapRel
@@ -66,17 +68,3 @@ A system from *Enterobacter chengduensis* in *Escherichia coli* has an anti-phag
 
 A system from *Klebsiella pneumoniae* in *Escherichia coli* has an anti-phage effect against SECphi18 (Zhang et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41586-022-05444-z
-
----
-::
-
-
-## References
-Zhang T, Tamman H, Coppieters 't Wallant K, Kurata T, LeRoux M, Srikant S, Brodiazhenko T, Cepauskas A, Talavera A, Martens C, Atkinson GC, Hauryliuk V, Garcia-Pino A, Laub MT. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature. 2022 Dec;612(7938):132-140. doi: 10.1038/s41586-022-05444-z. Epub 2022 Nov 16. PMID: 36385533.
-
diff --git a/content/3.defense-systems/card_nlr.md b/content/3.defense-systems/card_nlr.md
index 6e30f08afad19cc002fa87024a8fa28d00cf67a0..88b8b3904746dc14c8a549c42af842adfd690cd4 100644
--- a/content/3.defense-systems/card_nlr.md
+++ b/content/3.defense-systems/card_nlr.md
@@ -7,18 +7,11 @@ tableColumns:
       abstract: |
         Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis. Upon pathogen recognition by NLR proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore forming proteins to and induce pyroptotic cell death. Here we show that CARD-like domains are present in defense systems that protect bacteria against phage. The bacterial CARD is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defense systems utilize CARD-like domains to activate a variety of cell death effectors. We find that these systems are triggered by a conserved immune evasion protein that phages use to overcome the bacterial defense system RexAB, demonstrating that phage proteins inhibiting one defense system can activate another. We also detect a phage protein with a predicted CARD-like structure that can inhibit the CARD-containing bacterial gasdermin system. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is conserved in organisms across the tree of life.
     PFAM: PF00082, PF00089, PF00614, PF01223, PF13091, PF13191, PF13365
+relevantAbstracts:
+    - doi: 10.1101/2023.05.28.542683
 ---
 
 # CARD_NLR
 
 ## To do 
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2023.05.28.542683
-
----
-::
-
diff --git a/content/3.defense-systems/cbass.md b/content/3.defense-systems/cbass.md
index 12f93515c8f065393e996b05bee0ba0e2ebf49e2..1837c383689ad4515035f16f0504ed1da642dae2 100644
--- a/content/3.defense-systems/cbass.md
+++ b/content/3.defense-systems/cbass.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Signaling molecules
     Effector: Divers (Nucleic acid degrading, Nucleotide modifying, Membrane disrupting)
     PFAM: PF00004, PF00027, PF00899, PF01048, PF01734, PF06508, PF10137, PF14461, PF14464, PF18134, PF18138, PF18144, PF18145, PF18153, PF18159, PF18167, PF18173, PF18178, PF18179, PF18186, PF18303, PF18967
+relevantAbstracts:
+    - doi: 10.1016/j.molcel.2019.12.009
 ---
 
 # CBASS
@@ -179,17 +181,3 @@ A system from *Enterobacter cloacae* in *Escherichia coli* has an anti-phage eff
 
 A system from *Pseudomonas aeruginosa* in *Pseudomonas aeruginosa* has an anti-phage effect against PaMx41, PaMx33, PaMx35, PaMx43 (Huiting et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.molcel.2019.12.009
-    - doi: 10.1016/j.molcel.2021.10.020
-    - doi: 10.1038/s41564-020-0777-y
-    - doi: 10.1038/s41586-019-1605-5
-    - doi: 10.1038/s41586-020-2719-5
-
----
-::
-
diff --git a/content/3.defense-systems/charlie_gp32.md b/content/3.defense-systems/charlie_gp32.md
index 45d8ee9893b17836cb9aa9d69eb2df0b130d339b..b710df9d939cd1bd7cb327e8a1bcfe9cf8950aa0 100644
--- a/content/3.defense-systems/charlie_gp32.md
+++ b/content/3.defense-systems/charlie_gp32.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1038/nmicrobiol.2016.251
       abstract: |
         Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.
+relevantAbstracts:
+    - doi: 10.1038/nmicrobiol.2016.251
 ---
 
 # Charlie_gp32
@@ -23,11 +25,3 @@ dataUrl: /charlie_gp32/Charlie_gp32__gp32-plddts_82.99758.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/nmicrobiol.2016.251
-
----
-::
diff --git a/content/3.defense-systems/dartg.md b/content/3.defense-systems/dartg.md
index 79546aa62d70d962fcfe2b43dfc1f602f79392e1..5ef911530b2fd0fa73877cae6dd77c0a605d6bab 100644
--- a/content/3.defense-systems/dartg.md
+++ b/content/3.defense-systems/dartg.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Nucleic acid degrading (ADP-ribosylation)
     PFAM: PF01661, PF14487
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01153-5
 ---
 
 # DarTG
@@ -57,13 +59,3 @@ DarTG systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against RB69, T5, SECphi18, Lust (Leroux et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01153-5
-
----
-::
-
diff --git a/content/3.defense-systems/dazbog.md b/content/3.defense-systems/dazbog.md
index c771b8e9afbfa51f6b6382f56cadac5332848d7c..39dbb54f330be163fa84822f88be647b00673d46 100644
--- a/content/3.defense-systems/dazbog.md
+++ b/content/3.defense-systems/dazbog.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Dazbog
@@ -74,12 +76,3 @@ A system from *Bacillus cereus* in *Escherichia coli* has an anti-phage effect a
 
 A system from *Bacillus cereus* in *Bacillus subtilis* has an anti-phage effect against Fado, SPR (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
diff --git a/content/3.defense-systems/dctpdeaminase.md b/content/3.defense-systems/dctpdeaminase.md
index d8a12c5a367deaf8e68c7792cc55389625678349..74ea41fbb5dd35c5aa2a2860ed675f293b26a76e 100644
--- a/content/3.defense-systems/dctpdeaminase.md
+++ b/content/3.defense-systems/dctpdeaminase.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleotide modifying
     PFAM: PF00383, PF14437
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01162-4
 ---
 
 # dCTPdeaminase
@@ -68,12 +70,3 @@ Subsystem AvcID with a system from *Vibrio parahaemolyticus* in *Escherichia col
 
 Subsystem AvcID with a system from *Vibrio cholerae* in *Escherichia coli* has an anti-phage effect against T2, T3 (Hsueh et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01162-4
----
-::
-
diff --git a/content/3.defense-systems/dgtpase.md b/content/3.defense-systems/dgtpase.md
index b3413fc8b0a0ecf0cf34d2d8f42b62d61fbbf06f..b1f9cc313898922347489301fa36799fd81c125e 100644
--- a/content/3.defense-systems/dgtpase.md
+++ b/content/3.defense-systems/dgtpase.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direc
     Effector: Nucleotide modifying
     PFAM: PF01966, PF13286
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01162-4
 ---
 
 # dGTPase
@@ -56,13 +58,3 @@ A system from *Pseudoalteromonas luteoviolacea* in *Escherichia coli* has an ant
 
 A system from *Shewanella putrefaciens* in *Escherichia coli* has an anti-phage effect against T5, SECphi4, SECphi6, SECphi18, SECphi27, T2, T6, T7, SECphi17 (Tal et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01162-4
-
----
-::
-
diff --git a/content/3.defense-systems/disarm.md b/content/3.defense-systems/disarm.md
index 295c7d931df208ed316fdf3e3a053904131918b2..ffb59f3ff1d179b7339f570015c7125f949cefea 100644
--- a/content/3.defense-systems/disarm.md
+++ b/content/3.defense-systems/disarm.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00145, PF00176, PF00271, PF04851, PF09369, PF13091
+relevantAbstracts:
+    - doi: 10.1038/s41467-022-30673-1
 ---
 
 # DISARM
@@ -63,14 +65,3 @@ A system from *Bacillus paralicheniformis* in *Bacillus subtilis* has an anti-ph
 
 A system from *Serratia sp. SCBI* in *Escherichia coli* has an anti-phage effect against T1, Nami, T7, M13 (Aparicio-Maldonado et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41467-022-30673-1
-    - doi: 10.1038/s41564-017-0051-0
-
----
-::
-
diff --git a/content/3.defense-systems/dmdde.md b/content/3.defense-systems/dmdde.md
index a52da2f6f5c4d497bebb2743435f26f6084d4534..3d919a8bd7792271fa45998035253b7ea6181662 100644
--- a/content/3.defense-systems/dmdde.md
+++ b/content/3.defense-systems/dmdde.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1038/s41586-022-04546-y
       abstract: |
         Horizontal gene transfer can trigger rapid shifts in bacterial evolution. Driven by a variety of mobile genetic elements—in particular bacteriophages and plasmids—the ability to share genes within and across species underpins the exceptional adaptability of bacteria. Nevertheless, invasive mobile genetic elements can also present grave risks to the host; bacteria have therefore evolved a vast array of defences against these elements1. Here we identify two plasmid defence systems conserved in the Vibrio cholerae El Tor strains responsible for the ongoing seventh cholera pandemic2-4. These systems, termed DdmABC and DdmDE, are encoded on two major pathogenicity islands that are a hallmark of current pandemic strains. We show that the modules cooperate to rapidly eliminate small multicopy plasmids by degradation. Moreover, the DdmABC system is widespread and can defend against bacteriophage infection by triggering cell suicide (abortive infection, or Abi). Notably, we go on to show that, through an Abi-like mechanism, DdmABC increases the burden of large low-copy-number conjugative plasmids, including a broad-host IncC multidrug resistance plasmid, which creates a fitness disadvantage that counterselects against plasmid-carrying cells. Our results answer the long-standing question of why plasmids, although abundant in environmental strains, are rare in pandemic strains; have implications for understanding the dissemination of antibiotic resistance plasmids; and provide insights into how the interplay between two defence systems has shaped the evolution of the most successful lineage of pandemic V. cholerae.
+relevantAbstracts:
+    - doi: 10.1038/s41586-022-04546-y
 ---
 
 # DmdDE
@@ -47,12 +49,3 @@ dataUrl: /dmdde/DdmDE,DdmDE__DdmE,0,V-plddts_90.70804.pdb
 ---
 ::
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41586-022-04546-y
-
----
-::
diff --git a/content/3.defense-systems/dnd.md b/content/3.defense-systems/dnd.md
index a6e2ffb0864b6ab019fe520339ba0cc3d1cf691f..d9a89471c1a60a4aa8562e682ffdd6e21adf98cc 100644
--- a/content/3.defense-systems/dnd.md
+++ b/content/3.defense-systems/dnd.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Nucleic acid degrading
     PFAM: PF00266, PF01507, PF01935, PF08870, PF13476, PF14072
+relevantAbstracts:
+    - doi: 10.1038/nchembio.2007.39
 ---
 
 # Dnd
@@ -140,14 +142,3 @@ Dnd systems were experimentally validated using:
 
 Subsystem DndCDEA-PbeABCD with a system from *Halalkalicoccus jeotgali* in *Natrinema sp. CJ7-F* has an anti-phage effect against SNJ1 (Xiong et al., 2019)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/nchembio.2007.39
-    - doi: 10.1038/s41467-019-09390-9
-
----
-::
-
diff --git a/content/3.defense-systems/dodola.md b/content/3.defense-systems/dodola.md
index 83277bd843d0f08f6ff9143b52670bb569de9e2d..68cee01d25f475c3abd1f957f395e608a6c97f19 100644
--- a/content/3.defense-systems/dodola.md
+++ b/content/3.defense-systems/dodola.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00004, PF07724, PF07728
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Dodola
@@ -57,13 +59,3 @@ Dodola systems were experimentally validated using:
 
 A system from *Bacillus cereus* in *Bacillus subtilis* has an anti-phage effect against SPP1 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/dpd.md b/content/3.defense-systems/dpd.md
index 62211f4e698c0441b2b5ee153b5ec4379ec19c55..0c3d749112545a22c57a75435fc9601c227d887c 100644
--- a/content/3.defense-systems/dpd.md
+++ b/content/3.defense-systems/dpd.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         The discovery of ?20-kb gene clusters containing a family of paralogs of tRNA guanosine transglycosylase genes, called tgtA5, alongside 7-cyano-7-deazaguanine (preQ0) synthesis and DNA metabolism genes, led to the hypothesis that 7-deazaguanine derivatives are inserted in DNA. This was established by detecting 2’-deoxy-preQ0 and 2’-deoxy-7-amido-7-deazaguanosine in enzymatic hydrolysates of DNA extracted from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo. These modifications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S. Montevideo, each lacking the gene cluster. This led us to rename the genes of the S. Montevideo cluster as dpdA-K for 7-deazapurine in DNA. Similar gene clusters were analyzed in ?150 phylogenetically diverse bacteria, and the modifications were detected in DNA from other organisms containing these clusters, including Kineococcus radiotolerans, Comamonas testosteroni, and Sphingopyxis alaskensis. Comparative genomic analysis shows that, in Enterobacteriaceae, the cluster is a genomic island integrated at the leuX locus, and the phylogenetic analysis of the TgtA5 family is consistent with widespread horizontal gene transfer. Comparison of transformation efficiencies of modified or unmodified plasmids into isogenic S. Montevideo strains containing or lacking the cluster strongly suggests a restriction-modification role for the cluster in Enterobacteriaceae. Another preQ0 derivative, 2’-deoxy-7-formamidino-7-deazaguanosine, was found in the Escherichia coli bacteriophage 9g, as predicted from the presence of homologs of genes involved in the synthesis of the archaeosine tRNA modification. These results illustrate a deep and unexpected evolutionary connection between DNA and tRNA metabolism.
     PFAM: PF00176, PF00270, PF00271, PF01227, PF01242, PF04055, PF04851, PF06508, PF13091, PF13353, PF13394, PF14072
+relevantAbstracts:
+    - doi: 10.1073/pnas.1518570113
 ---
 
 # Dpd
@@ -120,13 +122,3 @@ dataUrl: /dpd/Dpd,Dpd__DpdK,0,DF-plddts_93.96529.pdb
 ---
 ::
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1073/pnas.1518570113
-
----
-::
-
diff --git a/content/3.defense-systems/drt.md b/content/3.defense-systems/drt.md
index c2247f602b501d9e2f7ae08cfb1ad803ef7fdaa0..2ec5d5d6fe0691c76ba00697d0a4f237db9b8341 100644
--- a/content/3.defense-systems/drt.md
+++ b/content/3.defense-systems/drt.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00078
+relevantAbstracts:
+    - doi: 10.1093/nar/gkac467
 ---
 
 # DRT
@@ -178,14 +180,3 @@ Subsystem RT(UG7) (Type 8) with a system from *Escherichia coli* in *Escherichia
 
 Subsystem RT (UG28) (Type 9) with a system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T5, ZL-19 (Mestre et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1093/nar/gkac467
-    - doi: 10.1126/science.aba0372
-
----
-::
-
diff --git a/content/3.defense-systems/druantia.md b/content/3.defense-systems/druantia.md
index 7306c6b0ae47505e88bf48e84fb39bdbb688e02a..c9de12bed107164b5ee2dc6e588f12eb07377aa4 100644
--- a/content/3.defense-systems/druantia.md
+++ b/content/3.defense-systems/druantia.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00145, PF00270, PF00271, PF04851, PF09369, PF14236
+relevantAbstracts:
+    - doi: 10.1126/science.aar4120
 ---
 
 # Druantia
@@ -132,13 +134,3 @@ Druantia systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T5, P1, Lambda, T3, T7, PhiV-1, Lambdavir, SECphi18, SECphi27 (Gao et al., 2020; Doron et al., 2018)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aar4120
-
----
-::
-
diff --git a/content/3.defense-systems/dsr.md b/content/3.defense-systems/dsr.md
index 22ee59e32db62c30f33bcd9cc8a3e08fca517a8b..3b49a999d9d2cc76857202ce2c87638ebf43b540 100644
--- a/content/3.defense-systems/dsr.md
+++ b/content/3.defense-systems/dsr.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleotide modifying
     PFAM: PF13289
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01207-8
 ---
 
 # Dsr
@@ -69,14 +71,3 @@ Subsystem DSR2 with a system from *Bacillus subtilis* in *Bacillus subtilis * ha
 
 Subsystem DSR1 with a system from *Bacillus subtilis* in *Bacillus subtilis * has an anti-phage effect against phi29 (Garb et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01207-8
-    - doi: 10.1126/science.aba0372
-
----
-::
-
diff --git a/content/3.defense-systems/eleos.md b/content/3.defense-systems/eleos.md
index d60586e6103c24b146eae8a252507e793e39dec0..c6cbbadcf083214ff30b9dc4e0278e319c37582e 100644
--- a/content/3.defense-systems/eleos.md
+++ b/content/3.defense-systems/eleos.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00350, PF01926, PF18709
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Eleos
@@ -59,13 +61,3 @@ Eleos systems were experimentally validated using:
 A system from *Bacillus vietnamensis* in *Bacillus subtilis* has an anti-phage effect against AR9 (Jumbo), PBS1(Jumbo) (Millman et al., 2022)
 
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/fs_giy_yig.md b/content/3.defense-systems/fs_giy_yig.md
index 5cde4e3119fa74768a2828c3d7031ba63710dacb..9342d98a77a2aedaf5c6e1dbc9c9226a9dd6c9b7 100644
--- a/content/3.defense-systems/fs_giy_yig.md
+++ b/content/3.defense-systems/fs_giy_yig.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1016/j.cell.2022.07.014
       abstract: |
         Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2022.07.014
 ---
 
 # FS_GIY_YIG
@@ -23,11 +25,3 @@ dataUrl: /fs_giy_yig/FS_GIY_YIG__GIY_YIG-plddts_93.05664.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2022.07.014
-
----
-::
diff --git a/content/3.defense-systems/fs_hepn_tm.md b/content/3.defense-systems/fs_hepn_tm.md
index e147130b9a689225c486de0e17bb3b4957b98b81..165e6d841271c153ac063a8deea7788dc1d65e0f 100644
--- a/content/3.defense-systems/fs_hepn_tm.md
+++ b/content/3.defense-systems/fs_hepn_tm.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1016/j.cell.2022.07.014
       abstract: |
         Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2022.07.014
 ---
 
 # FS_HEPN_TM
@@ -30,11 +32,3 @@ dataUrl: /fs_hepn_tm/FS_HEPN_TM__TM-plddts_90.28126.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2022.07.014
-
----
-::
diff --git a/content/3.defense-systems/fs_hp.md b/content/3.defense-systems/fs_hp.md
index ee17cc9a1b8d1c1a3acdb3c587e1e5be84362111..cfe0ccfa8a2fba3a7102ccf1a20f9ab2f060ad73 100644
--- a/content/3.defense-systems/fs_hp.md
+++ b/content/3.defense-systems/fs_hp.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1016/j.cell.2022.07.014
       abstract: |
         Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2022.07.014
 ---
 
 # FS_HP
@@ -23,11 +25,3 @@ dataUrl: /fs_hp/FS_HP__HP-plddts_94.44828.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2022.07.014
-
----
-::
diff --git a/content/3.defense-systems/fs_hp_sdh_sah.md b/content/3.defense-systems/fs_hp_sdh_sah.md
index 49fb231dfc267122c9f245d61cb0135e439b54f1..82ced52dd84155a3d347001e9d6536c97b901b9a 100644
--- a/content/3.defense-systems/fs_hp_sdh_sah.md
+++ b/content/3.defense-systems/fs_hp_sdh_sah.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.
     PFAM: PF01972
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2022.07.014
 ---
 
 # FS_HP_SDH_sah
@@ -31,12 +33,3 @@ dataUrl: /fs_hp_sdh_sah/FS_HP_SDH_sah__SDH_sah-plddts_95.32024.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2022.07.014
-
----
-::
-
diff --git a/content/3.defense-systems/fs_hsdr_like.md b/content/3.defense-systems/fs_hsdr_like.md
index ad60e69ecce48ff9d787266bd8c8738f8f01fdac..b2f4f5ffb55e0dd6096729f7c5175cfd10765bdd 100644
--- a/content/3.defense-systems/fs_hsdr_like.md
+++ b/content/3.defense-systems/fs_hsdr_like.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1016/j.cell.2022.07.014
       abstract: |
         Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2022.07.014
 ---
 
 # FS_HsdR_like
@@ -30,11 +32,3 @@ dataUrl: /fs_hsdr_like/FS_HsdR_like__HdrR-plddts_88.7069.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2022.07.014
-
----
-::
diff --git a/content/3.defense-systems/fs_sma.md b/content/3.defense-systems/fs_sma.md
index 55512c5349dfeeed0c395d37654a505f3b740d73..fe279a9de210380b4af3117173db7c67cb524c50 100644
--- a/content/3.defense-systems/fs_sma.md
+++ b/content/3.defense-systems/fs_sma.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.
     PFAM: PF02452
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2022.07.014
 ---
 
 # FS_Sma
@@ -24,12 +26,3 @@ dataUrl: /fs_sma/FS_Sma__Sma-plddts_94.14969.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2022.07.014
-
----
-::
-
diff --git a/content/3.defense-systems/gabija.md b/content/3.defense-systems/gabija.md
index d961bb83416d29f0fc06c5da0d77ec8c22e5cf83..c8a48a0394fa82d0833099b5f1b79bea0c4442dc 100644
--- a/content/3.defense-systems/gabija.md
+++ b/content/3.defense-systems/gabija.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Degrading nucleic acids
     PFAM: PF00580, PF11398, PF13175, PF13245, PF13304, PF13361, PF13476
+relevantAbstracts:
+    - doi: 10.1093/nar/gkab277
 ---
 
 # Gabija
@@ -71,14 +73,3 @@ A system from *Bacillus cereus* in *Bacillus subtilis* has an anti-phage effect
 
 A system from *Bacillus cereus* in *Escherichia coli* has an anti-phage effect against T7 (Cheng et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1093/nar/gkab277
-    - doi: 10.1126/science.aar4120
-
----
-::
-
diff --git a/content/3.defense-systems/gao_ape.md b/content/3.defense-systems/gao_ape.md
index 22b3714d29feac07768e05f7b3b33b69e21d2e14..f0be2f715cee731f463dc875ec987dbf1afa9f86 100644
--- a/content/3.defense-systems/gao_ape.md
+++ b/content/3.defense-systems/gao_ape.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Ape
@@ -49,12 +51,3 @@ Gao_Ape systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T5, T3, T7, PhiV-1 (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
diff --git a/content/3.defense-systems/gao_her.md b/content/3.defense-systems/gao_her.md
index 87bee93f8d0bb434c67a68829576faf8b8c931f5..40e30c02da56958ff131d979759b502755d5ecb4 100644
--- a/content/3.defense-systems/gao_her.md
+++ b/content/3.defense-systems/gao_her.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF01935, PF10412, PF13289
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Her
@@ -79,13 +81,3 @@ Subsystem SIR2 + HerA with a system from *Escherichia coli* in *Escherichia coli
 
 Subsystem DUF4297 + HerA with a system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T4, P1, Lambda, T3, T7 (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
-
diff --git a/content/3.defense-systems/gao_hhe.md b/content/3.defense-systems/gao_hhe.md
index 2ad765ff14dec65fece551b3e966b0fb6545dce0..864731c5bf34c3cc3922654cb134ab5def645048 100644
--- a/content/3.defense-systems/gao_hhe.md
+++ b/content/3.defense-systems/gao_hhe.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF04480, PF13086, PF13087, PF13195, PF18741
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Hhe
@@ -50,13 +52,3 @@ Gao_Hhe systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against Lambda, T3, T7, PhiV-1 (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
-
diff --git a/content/3.defense-systems/gao_iet.md b/content/3.defense-systems/gao_iet.md
index 29aab70635a74631212d615c573322a1fcd1b19f..2528e419dce943f4152d6f7681c888cab0b7b8ac 100644
--- a/content/3.defense-systems/gao_iet.md
+++ b/content/3.defense-systems/gao_iet.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00004, PF00082
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Iet
@@ -57,13 +59,3 @@ Gao_Iet systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against Lambda, T3, T7, PhiV-1 (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
-
diff --git a/content/3.defense-systems/gao_mza.md b/content/3.defense-systems/gao_mza.md
index e8eab809b6607fd1aea91d1f1cbba76fc6df529b..2b33a1c5270e6c8a716ac43d6513dabea561e239 100644
--- a/content/3.defense-systems/gao_mza.md
+++ b/content/3.defense-systems/gao_mza.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00023, PF04542, PF04545, PF10592, PF10593, PF13589, PF13606, PF14390
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Mza
@@ -78,13 +80,3 @@ Gao_Mza systems were experimentally validated using:
 
 A system from *Salmonella enterica* in *Escherichia coli* has an anti-phage effect against T2, T4, T5, Lambda, M13 (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
-
diff --git a/content/3.defense-systems/gao_ppl.md b/content/3.defense-systems/gao_ppl.md
index 818c4a676b47eeb62877c23fa95b87dc51b5101a..21d85d3dfd9fc899bcaba50b3ef9b45bc5c19543 100644
--- a/content/3.defense-systems/gao_ppl.md
+++ b/content/3.defense-systems/gao_ppl.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Ppl
@@ -49,12 +51,3 @@ Gao_Ppl systems were experimentally validated using:
 
 A system from *Salmonella enterica* in *Escherichia coli* has an anti-phage effect against Lambda, T3, T7, PhiV-1 (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
diff --git a/content/3.defense-systems/gao_qat.md b/content/3.defense-systems/gao_qat.md
index 3199a3e14fb063b6c6aeaede108b97f35bfd87d4..2feb9bd0c9fd9a11a192e9834cbe058a34453cda 100644
--- a/content/3.defense-systems/gao_qat.md
+++ b/content/3.defense-systems/gao_qat.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF01026, PF07693
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Qat
@@ -71,13 +73,3 @@ Gao_Qat systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against P1, Lambda (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
-
diff --git a/content/3.defense-systems/gao_rl.md b/content/3.defense-systems/gao_rl.md
index a4c90e5babfa137baa8906eaaf48fd3beb09247e..47acada57b4e24b5ed6c8076cff160a85b54322a 100644
--- a/content/3.defense-systems/gao_rl.md
+++ b/content/3.defense-systems/gao_rl.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00176, PF00271, PF04465, PF04851, PF06634, PF12635, PF13091, PF13287, PF13290
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_RL
@@ -71,13 +73,3 @@ Gao_RL systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against P1, Lambda, M13 (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
-
diff --git a/content/3.defense-systems/gao_tery.md b/content/3.defense-systems/gao_tery.md
index 7d4f8c1c6ac5c4156b94ccfc5511a10090cd56ed..3979ae25c7dfe707a138c12c5512a0d7da16f490 100644
--- a/content/3.defense-systems/gao_tery.md
+++ b/content/3.defense-systems/gao_tery.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_TerY
@@ -63,12 +65,3 @@ Gao_TerY systems were experimentally validated using:
 
 A system from *Citrobacter gillenii* in *Escherichia coli* has an anti-phage effect against T3, T7, PhiV-1 (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
diff --git a/content/3.defense-systems/gao_tmn.md b/content/3.defense-systems/gao_tmn.md
index 339529f58126304178d0b581258539c4c6a9d269..c4c4dc31ad56a293e085e11b47b2ef3f42b3e143 100644
--- a/content/3.defense-systems/gao_tmn.md
+++ b/content/3.defense-systems/gao_tmn.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Tmn
@@ -49,12 +51,3 @@ Gao_Tmn systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, P1, PhiV-1, PhiX (Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
diff --git a/content/3.defense-systems/gao_upx.md b/content/3.defense-systems/gao_upx.md
index 61497b90d0c448291ddfce75fcd3482fbb0e3689..f9fea3f5dd8de95fa7f0f5ed81493bb150bf7c9a 100644
--- a/content/3.defense-systems/gao_upx.md
+++ b/content/3.defense-systems/gao_upx.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # Gao_Upx
@@ -49,12 +51,3 @@ Gao_Upx systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against P1, PhiV-1(Gao et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
diff --git a/content/3.defense-systems/gaps1.md b/content/3.defense-systems/gaps1.md
index ead7f405b1479dbc7ac11dc31e23798f07b57ab8..95395e20ca38b56cf8e142123ae9cab01d1c513a 100644
--- a/content/3.defense-systems/gaps1.md
+++ b/content/3.defense-systems/gaps1.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1101/2023.03.28.534373
       abstract: |
         Bacteria are found in ongoing conflicts with rivals and predators, which lead to an evolutionary arms race and the development of innate and adaptive immune systems. Although diverse bacterial immunity mechanisms have been recently identified, many remain unknown, and their dissemination within bacterial populations is poorly understood. Here, we describe a widespread genetic element, defined by the Gamma-Mobile-Trio (GMT) proteins, that serves as a mobile bacterial weapons armory. We show that GMT islands have cargo comprising various combinations of secreted antibacterial toxins, anti-phage defense systems, and secreted anti-eukaryotic toxins. This finding led us to identify four new anti-phage defense systems encoded within GMT islands and reveal their active domains and mechanisms of action. We also find the phage protein that triggers the activation of one of these systems. Thus, we can identify novel toxins and defense systems by investigating proteins of unknown function encoded within GMT islands. Our findings imply that the concept of "defense islands" may be broadened to include other types of bacterial innate immunity mechanisms, such as antibacterial and anti-eukaryotic toxins that appear to stockpile with anti-phage defense systems within GMT weapon islands.
+relevantAbstracts:
+    - doi: 10.1101/2023.03.28.534373
 ---
 
 # GAPS1
@@ -23,11 +25,3 @@ dataUrl: /gaps1/GAPS1__GAPS1-plddts_91.57482.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2023.03.28.534373
-
----
-::
diff --git a/content/3.defense-systems/gaps2.md b/content/3.defense-systems/gaps2.md
index 361f3889fe80c34d6838e41510a95305752cf392..6febf6df44d255c2eb5bc3ba7135929ccdfe114c 100644
--- a/content/3.defense-systems/gaps2.md
+++ b/content/3.defense-systems/gaps2.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         Bacteria are found in ongoing conflicts with rivals and predators, which lead to an evolutionary arms race and the development of innate and adaptive immune systems. Although diverse bacterial immunity mechanisms have been recently identified, many remain unknown, and their dissemination within bacterial populations is poorly understood. Here, we describe a widespread genetic element, defined by the Gamma-Mobile-Trio (GMT) proteins, that serves as a mobile bacterial weapons armory. We show that GMT islands have cargo comprising various combinations of secreted antibacterial toxins, anti-phage defense systems, and secreted anti-eukaryotic toxins. This finding led us to identify four new anti-phage defense systems encoded within GMT islands and reveal their active domains and mechanisms of action. We also find the phage protein that triggers the activation of one of these systems. Thus, we can identify novel toxins and defense systems by investigating proteins of unknown function encoded within GMT islands. Our findings imply that the concept of "defense islands" may be broadened to include other types of bacterial innate immunity mechanisms, such as antibacterial and anti-eukaryotic toxins that appear to stockpile with anti-phage defense systems within GMT weapon islands.
     PFAM: PF00533, PF01653, PF03119, PF03120, PF12826, PF14520
+relevantAbstracts:
+    - doi: 10.1101/2023.03.28.534373
 ---
 
 # GAPS2
@@ -24,12 +26,3 @@ dataUrl: /gaps2/GAPS2__GAPS2-plddts_87.94657.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2023.03.28.534373
-
----
-::
-
diff --git a/content/3.defense-systems/gaps4.md b/content/3.defense-systems/gaps4.md
index c847454313ac550f561b53a64efa11e810279059..9e7dce5c82530a4b5d0854480123054f26bc4a42 100644
--- a/content/3.defense-systems/gaps4.md
+++ b/content/3.defense-systems/gaps4.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1101/2023.03.28.534373
       abstract: |
         Bacteria are found in ongoing conflicts with rivals and predators, which lead to an evolutionary arms race and the development of innate and adaptive immune systems. Although diverse bacterial immunity mechanisms have been recently identified, many remain unknown, and their dissemination within bacterial populations is poorly understood. Here, we describe a widespread genetic element, defined by the Gamma-Mobile-Trio (GMT) proteins, that serves as a mobile bacterial weapons armory. We show that GMT islands have cargo comprising various combinations of secreted antibacterial toxins, anti-phage defense systems, and secreted anti-eukaryotic toxins. This finding led us to identify four new anti-phage defense systems encoded within GMT islands and reveal their active domains and mechanisms of action. We also find the phage protein that triggers the activation of one of these systems. Thus, we can identify novel toxins and defense systems by investigating proteins of unknown function encoded within GMT islands. Our findings imply that the concept of "defense islands" may be broadened to include other types of bacterial innate immunity mechanisms, such as antibacterial and anti-eukaryotic toxins that appear to stockpile with anti-phage defense systems within GMT weapon islands.
+relevantAbstracts:
+    - doi: 10.1101/2023.03.28.534373
 ---
 
 # GAPS4
@@ -30,11 +32,3 @@ dataUrl: /gaps4/GAPS4__GAPS4b-plddts_86.45931.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2023.03.28.534373
-
----
-::
diff --git a/content/3.defense-systems/gaps6.md b/content/3.defense-systems/gaps6.md
index 558f70763ac3e8613cca4c42d5867416e0acd02c..841806202a707c8897e03cb63d6956b6b561c12b 100644
--- a/content/3.defense-systems/gaps6.md
+++ b/content/3.defense-systems/gaps6.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1101/2023.03.28.534373
       abstract: |
         Bacteria are found in ongoing conflicts with rivals and predators, which lead to an evolutionary arms race and the development of innate and adaptive immune systems. Although diverse bacterial immunity mechanisms have been recently identified, many remain unknown, and their dissemination within bacterial populations is poorly understood. Here, we describe a widespread genetic element, defined by the Gamma-Mobile-Trio (GMT) proteins, that serves as a mobile bacterial weapons armory. We show that GMT islands have cargo comprising various combinations of secreted antibacterial toxins, anti-phage defense systems, and secreted anti-eukaryotic toxins. This finding led us to identify four new anti-phage defense systems encoded within GMT islands and reveal their active domains and mechanisms of action. We also find the phage protein that triggers the activation of one of these systems. Thus, we can identify novel toxins and defense systems by investigating proteins of unknown function encoded within GMT islands. Our findings imply that the concept of defense islands may be broadened to include other types of bacterial innate immunity mechanisms, such as antibacterial and anti-eukaryotic toxins that appear to stockpile with anti-phage defense systems within GMT weapon islands.
+relevantAbstracts:
+    - doi: 10.1101/2023.03.28.534373
 ---
 
 # GAPS6
@@ -30,11 +32,3 @@ dataUrl: /gaps6/GAPS6__GAPS6b-plddts_90.04892.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2023.03.28.534373
-
----
-::
diff --git a/content/3.defense-systems/gasdermin.md b/content/3.defense-systems/gasdermin.md
index 9e92e61cace453ece4b6c4a84f3572a37d5fc894..373b304778c6409266b73e363ff9a181b4f02912 100644
--- a/content/3.defense-systems/gasdermin.md
+++ b/content/3.defense-systems/gasdermin.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Membrane disrupting
+relevantAbstracts:
+    - doi: 10.1126/science.abj8432
 ---
 
 # GasderMIN
@@ -84,12 +86,3 @@ GasderMIN systems were experimentally validated using:
 
 A system from *Lysobacter enzymogenes* in *Escherichia coli* has an anti-phage effect against T5, T4, T6 (Johnson et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.abj8432
-
----
-::
diff --git a/content/3.defense-systems/hachiman.md b/content/3.defense-systems/hachiman.md
index fec562a1fc1190e7053eb86093038bdb306660a8..4e460a117402c65023346204b84960cee238e010 100644
--- a/content/3.defense-systems/hachiman.md
+++ b/content/3.defense-systems/hachiman.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00270, PF00271, PF04851, PF08878, PF14130
+relevantAbstracts:
+    - doi: 10.1126/science.aar4120
 ---
 
 # Hachiman
@@ -67,20 +69,3 @@ A system from *Bacillus cereus* in *Bacillus subtilis* has an anti-phage effect
 
 Subsystem Hachiman Type II with a system from *Sphingopyxis witflariensis* in *Escherichia coli* has an anti-phage effect against T3, PVP-SE1 (Payne et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aar4120
-
----
-::
-
-
-## References
-
-1. Doron S, Melamed S, Ofir G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. *Science*. 2018;359(6379):eaar4120. doi:10.1126/science.aar4120
-
-2. Payne LJ, Todeschini TC, Wu Y, Perry BJ, Ronson CW, Fineran PC, Nobrega FL, Jackson SA. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Res. 2021 Nov 8;49(19):10868-10878. doi: 10.1093/nar/gkab883. PMID: 34606606; PMCID: PMC8565338.
-
diff --git a/content/3.defense-systems/hna.md b/content/3.defense-systems/hna.md
index a2a47871df76237cb2641e3156e5eddd2ce0d2b5..d1a54d9103056560567b66d18ce661aaa29cd5e0 100644
--- a/content/3.defense-systems/hna.md
+++ b/content/3.defense-systems/hna.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         There is strong selection for the evolution of systems that protect bacterial populations from viral attack. We report a single phage defense protein, Hna, that provides protection against diverse phages in Sinorhizobium meliloti, a nitrogen-fixing alpha-proteobacterium. Homologs of Hna are distributed widely across bacterial lineages, and a homologous protein from Escherichia coli also confers phage defense. Hna contains superfamily II helicase motifs at its N terminus and a nuclease motif at its C terminus, with mutagenesis of these motifs inactivating viral defense. Hna variably impacts phage DNA replication but consistently triggers an abortive infection response in which infected cells carrying the system die but do not release phage progeny. A similar host cell response is triggered in cells containing Hna upon expression of a phage-encoded single-stranded DNA binding protein (SSB), independent of phage infection. Thus, we conclude that Hna limits phage spread by initiating abortive infection in response to a phage protein.
     PFAM: PF00270, PF04851, PF13307
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2023.01.010
 ---
 
 # Hna
@@ -24,12 +26,3 @@ dataUrl: /hna/Hna__Hna-plddts_91.2064.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2023.01.010
-
----
-::
-
diff --git a/content/3.defense-systems/isg15-like.md b/content/3.defense-systems/isg15-like.md
index 6bfea784c245af940c434f29133c0003219b1671..a7eb0029ed4da0d8a65c426c60cb3b0662d51f7b 100644
--- a/content/3.defense-systems/isg15-like.md
+++ b/content/3.defense-systems/isg15-like.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # ISG15-like
@@ -195,12 +197,3 @@ A system from *Paraburkholderia caffeinilytica* in *Escherichia coli* has an ant
 
 A system from *Thiomonas sp. FB-6* in *Escherichia coli* has an anti-phage effect against SECphi27 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
diff --git a/content/3.defense-systems/jukab.md b/content/3.defense-systems/jukab.md
index 0aec5c3014e124db10123b500f8b457acf27b5ac..729b9e3ed096ff9247459cb89c2fcf26d20a6d23 100644
--- a/content/3.defense-systems/jukab.md
+++ b/content/3.defense-systems/jukab.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         Jumbo bacteriophages of the ?KZ-like family are characterized by large genomes (>200 kb) and the remarkable ability to assemble a proteinaceous nucleus-like structure. The nucleus protects the phage genome from canonical DNA-targeting immune systems, such as CRISPR-Cas and restriction-modification. We hypothesized that the failure of common bacterial defenses creates selective pressure for immune systems that target the unique jumbo phage biology. Here, we identify the "jumbo phage killer"(Juk) immune system that is deployed by a clinical isolate of Pseudomonas aeruginosa to resist PhiKZ. Juk immunity rescues the cell by preventing early phage transcription, DNA replication, and nucleus assembly. Phage infection is first sensed by JukA (formerly YaaW), which localizes rapidly to the site of phage infection at the cell pole, triggered by ejected phage factors. The effector protein JukB is recruited by JukA, which is required to enable immunity and the subsequent degradation of the phage DNA. JukA homologs are found in several bacterial phyla and are associated with numerous other putative effectors, many of which provided specific antiPhiKZ activity when expressed in P. aeruginosa. Together, these data reveal a novel strategy for immunity whereby immune factors are recruited to the site of phage protein and DNA ejection to prevent phage progression and save the cell.
     PFAM: PF13099
+relevantAbstracts:
+    - doi: 10.1101/2022.09.17.508391
 ---
 
 # JukAB
@@ -31,12 +33,3 @@ dataUrl: /jukab/JukAB__JukB-plddts_67.28863.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2022.09.17.508391
-
----
-::
-
diff --git a/content/3.defense-systems/kiwa.md b/content/3.defense-systems/kiwa.md
index 2c6e98b1c7ba26ae75955f8c62657c3d0e6bbd9b..09ba636fcd2ce01b6de75a2933b83a37f08f652f 100644
--- a/content/3.defense-systems/kiwa.md
+++ b/content/3.defense-systems/kiwa.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF16162
+relevantAbstracts:
+    - doi: 10.1126/science.aar4120
 ---
 
 # Kiwa
@@ -57,13 +59,3 @@ Kiwa systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against LambdaVir, SECphi18 (Doron et al., 2018)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aar4120
-
----
-::
-
diff --git a/content/3.defense-systems/lamassu-fam.md b/content/3.defense-systems/lamassu-fam.md
index 296df2a897ccfe7dfc178c5a4035652a53379fa7..ce52067587cf1498b73506d34a4f6d1fbf9676d3 100644
--- a/content/3.defense-systems/lamassu-fam.md
+++ b/content/3.defense-systems/lamassu-fam.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Diverse (Nucleic acid degrading (?), Nucleotide modifying (?), Membrane disrupting (?))
     PFAM: PF00753, PF02463, PF05057, PF12532, PF13175, PF13289, PF13476, PF14130
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Lamassu-Fam
@@ -340,24 +342,3 @@ Subsystem LmuA+LmuC+LmuB with a system from *Janthinobacterium agaricidamnosum*
 
 Subsystem DdmABC with a system from *Vibrio cholerae* in *Escherichia coli* has an anti-phage effect against P1, Lambda (Jaskólska et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-    - doi: 10.1038/s41586-022-04546-y
-    - doi: 10.1126/science.aar4120
-
----
-::
-
-
-## References
-
-1. Doron S, Melamed S, Ofir G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. *Science*. 2018;359(6379):eaar4120. doi:10.1126/science.aar4120
-
-2. Payne LJ, Todeschini TC, Wu Y, et al. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. *Nucleic Acids Res*. 2021;49(19):10868-10878. doi:10.1093/nar/gkab883
-
-3. Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J.L.M., Dar, D., Kacen, A., Amitai, G., Sorek, R., 2022. An expanding arsenal of immune systems that protect bacteria from phages. bioRxiv. https://doi.org/10.1101/2022.05.11.491447
-
diff --git a/content/3.defense-systems/lit.md b/content/3.defense-systems/lit.md
index 55ddaf31c1ac2086b0727057dea09870b4427a51..b360721b8de9cd414a6e716de9334e49add340c4 100644
--- a/content/3.defense-systems/lit.md
+++ b/content/3.defense-systems/lit.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Other (Cleaves an elongation factor, inhibiting cellular translation
     PFAM: PF10463
+relevantAbstracts:
+    - doi: 10.1073/pnas.91.2.802
 ---
 
 # Lit
@@ -50,15 +52,3 @@ Lit systems were experimentally validated using:
 
 A system from *Escherichia coli defective prophage e14* in *Escherichia coli* has an anti-phage effect against T4 (Yu and Snyder, 1994)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1073/pnas.91.2.802
-    - doi: 10.1074/jbc.M002546200
-    - doi: 10.1186/1743-422X-7-360
-
----
-::
-
diff --git a/content/3.defense-systems/mads.md b/content/3.defense-systems/mads.md
index ae2362ba72c8f9b461e2e3ca945fb9dc00be2ee1..d5a33031ba79a1095975aebd04d9f49a4580c717 100644
--- a/content/3.defense-systems/mads.md
+++ b/content/3.defense-systems/mads.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         The constant arms race between bacteria and their phages has resulted in a large diversity of bacterial defence systems1,2, with many bacteria carrying several systems3,4. In response, phages often carry counter-defence genes5-9. If and how bacterial defence mechanisms interact to protect against phages with counter-defence genes remains unclear. Here, we report the existence of a novel defence system, coined MADS (Methylation Associated Defence System), which is located in a strongly conserved genomic defence hotspot in Pseudomonas aeruginosa and distributed across Gram-positive and Gram-negative bacteria. We find that the natural co-existence of MADS and a Type IE CRISPR-Cas adaptive immune system in the genome of P. aeruginosa SMC4386 provides synergistic levels of protection against phage DMS3, which carries an anti-CRISPR (acr) gene. Previous work has demonstrated that Acr-phages need to cooperate to overcome CRISPR immunity, with a first sacrificial phage causing host immunosuppression to enable successful secondary phage infections10,11. Modelling and experiments show that the co-existence of MADS and CRISPR-Cas provides strong and durable protection against Acr-phages by disrupting their cooperation and limiting the spread of mutants that overcome MADS. These data reveal that combining bacterial defences can robustly neutralise phage with counter-defence genes, even if each defence on its own can be readily by-passed, which is key to understanding how selection acts on defence combinations and their coevolutionary consequences.
     PFAM: PF00069, PF01170, PF02384, PF07714, PF08378, PF12728, PF13304, PF13588
+relevantAbstracts:
+    - doi: 10.1101/2023.03.30.534895
 ---
 
 # MADS
@@ -66,12 +68,3 @@ dataUrl: /mads/MADS__mad8-plddts_82.23514.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2023.03.30.534895
-
----
-::
-
diff --git a/content/3.defense-systems/mazef.md b/content/3.defense-systems/mazef.md
index 2ca8dee24bac2914f5edbbc0ddcd905e300f7efd..61096d36b2d0ee91ea27ee3dbdb63c4151c4a3c5 100644
--- a/content/3.defense-systems/mazef.md
+++ b/content/3.defense-systems/mazef.md
@@ -7,18 +7,11 @@ tableColumns:
       abstract: |
         The Escherichia coli gene pair mazEF is a regulatable chromosomal toxin-antitoxin module: mazF encodes a stable toxin and mazE encodes for a labile antitoxin that overcomes the lethal effect of MazF. Because MazE is labile, inhibition of mazE expression results in cell death. We studied the effect of mazEF on the development of bacteriophage P1 upon thermoinduction of the prophage P1CM c1ts and upon infection with virulent phage particles (P1vir). In several E. coli strains, we showed that the ?mazEF derivative strains produced significantly more phages than did the parent strain. In addition, upon induction of K38(P1CM c1ts), nearly all of the ?mazEF mutant cells lysed; in contrast, very few of the parental mazEF + K38 cells underwent lysis. However, most of these cells did not remain viable. Thus, while the ?mazEF cells die as a result of the lytic action of the phage, most of the mazEF + cells are killed by a different mechanism, apparently through the action of the chromosomal mazEF system itself. Furthermore, the introduction of lysogens into a growing non-lysogenic culture is lethal to ?mazEF but not for mazEF + cultures. Thus, although mazEF action causes individual cells to die, upon phage growth this is generally beneficial to the bacterial culture because it causes P1 phage exclusion from the bacterial population. These results provide additional support for the view that bacterial cultures may share some of the characteristics of multicellular organisms.
     PFAM: PF02452, PF04014
+relevantAbstracts:
+    - doi: 10.1007/s00438-004-1048-y
 ---
 
 # MazEF
 
 ## To do 
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1007/s00438-004-1048-y
-
----
-::
-
diff --git a/content/3.defense-systems/menshen.md b/content/3.defense-systems/menshen.md
index 85131b621afe4bca93e8e2b01331d143f999c5a7..2a7f2b67f1ce31c2064e3b648bc4e269995e1514 100644
--- a/content/3.defense-systems/menshen.md
+++ b/content/3.defense-systems/menshen.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF03235, PF05973, PF12476, PF13175, PF13304, PF13476
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Menshen
@@ -66,13 +68,3 @@ A system from *Solibacillus silvestris* in *Escherichia coli* has an anti-phage
 
 A system from *Solibacillus silvestris* in *Bacillus subtilis* has an anti-phage effect against Fado (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/mmb_gp29_gp30.md b/content/3.defense-systems/mmb_gp29_gp30.md
index 8be0aab3e0f49a86126772a53457839598bbde14..97cb93ed51f65b997e4db92c22707a0c0ff9853c 100644
--- a/content/3.defense-systems/mmb_gp29_gp30.md
+++ b/content/3.defense-systems/mmb_gp29_gp30.md
@@ -6,6 +6,8 @@ tableColumns:
       doi: 10.1038/nmicrobiol.2016.251
       abstract: |
         Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.
+relevantAbstracts:
+    - doi: 10.1038/nmicrobiol.2016.251
 ---
 
 # MMB_gp29_gp30
@@ -30,11 +32,3 @@ dataUrl: /mmb_gp29_gp30/MMB_gp29_gp30__gp30-plddts_65.6043.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/nmicrobiol.2016.251
-
----
-::
diff --git a/content/3.defense-systems/mok_hok_sok.md b/content/3.defense-systems/mok_hok_sok.md
index 3e6c483486e22d35d94b5c6f2a36e59b73ee6999..56be8725f96e70395b9b42bd757e36e3f06b096a 100644
--- a/content/3.defense-systems/mok_hok_sok.md
+++ b/content/3.defense-systems/mok_hok_sok.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF01848
+relevantAbstracts:
+    - doi: 10.1128/jb.178.7.2044-2050.1996
 ---
 
 # Mok_Hok_Sok
@@ -50,13 +52,3 @@ Mok_Hok_Sok systems were experimentally validated using:
 
 A system from *R1 plasmid of Salmonella paratyphi* in *Escherichia coli* has an anti-phage effect against T4, LambdaVir (Pecota and Wood, 1996)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1128/jb.178.7.2044-2050.1996
-
----
-::
-
diff --git a/content/3.defense-systems/mokosh.md b/content/3.defense-systems/mokosh.md
index 45a48f560b893896738eadb6e69d841e1a1309a2..512835e4aea513765a794b337a41ce03ffdda9c6 100644
--- a/content/3.defense-systems/mokosh.md
+++ b/content/3.defense-systems/mokosh.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00069, PF07714, PF08378, PF13086, PF13087, PF13091, PF13245, PF13604
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Mokosh
@@ -88,13 +90,3 @@ Subsystem Type I with a system from *Escherichia coli* in *Escherichia coli* has
 
 Subsystem Type II with a system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against SECphi17 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/mqsrac.md b/content/3.defense-systems/mqsrac.md
index dfb6b3cf1fd96ca09b419fda4dd41faa29874c4c..df3252afc3d4ca83708759098ecae5ef2961a6e3 100644
--- a/content/3.defense-systems/mqsrac.md
+++ b/content/3.defense-systems/mqsrac.md
@@ -6,6 +6,7 @@ tableColumns:
       doi: 10.1101/2023.02.25.529695
       abstract: |
         Myriad bacterial anti-phage systems have been described and often the mechanism of programmed cell death is invoked for phage inhibition. However, there is little evidence of ‘suicide’ under physiological conditions for these systems. Instead of death to stop phage propagation, we show here that persister cells, i.e., transiently-tolerant, dormant, antibiotic-insensitive cells, are formed and survive using the Escherichia coli C496_10 tripartite toxin/antitoxin system MqsR/MqsA/MqsC to inhibit T2 phage. Specifically, MqsR/MqsA/MqsC inhibited T2 phage by one million-fold and reduced T2 titers by 500-fold. During T2 phage attack, in the presence of MqsR/MqsA/MqsC, evidence of persistence include the single-cell physiological change of reduced metabolism (via flow cytometry), increased spherical morphology (via transmission electron microscopy), and heterogeneous resuscitation. Critically, we found restriction-modification systems (primarily EcoK McrBC) work in concert with the toxin/antitoxin system to inactivate phage, likely while the cells are in the persister state. Phage attack also induces persistence in Klebsiella and Pseudomonas spp. Hence, phage attack invokes a stress response similar to antibiotics, starvation, and oxidation, which leads to persistence, and this dormant state likely allows restriction/modification systems to clear phage DNA.
+relevantAbstracts:
 ---
 
 # MqsRAC
@@ -29,5 +30,3 @@ Among the 22k complete genomes of RefSeq, this system is present in 26 genomes (
 
 *Proportion of genome encoding the MqsRAC system for the 14 phyla with more than 50 genomes in the RefSeq database.* 
 
-## Relevant abstracts
-
diff --git a/content/3.defense-systems/nhi.md b/content/3.defense-systems/nhi.md
index 44b872754c6a6fda85e381e732615162840ffeef..9d4160dfd0a592495147f445fd9adcb77d047373 100644
--- a/content/3.defense-systems/nhi.md
+++ b/content/3.defense-systems/nhi.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Nucleic acid degrading (?)
     PFAM: PF01443, PF09848, PF13604
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.03.001
 ---
 
 # Nhi
@@ -58,13 +60,3 @@ A system from *Staphylococcus aureus* in *Staphylococcus aureus* has an anti-pha
 
 A system from *Vibrio vulnificus* in *Staphylococcus aureus* has an anti-phage effect against Lorac (Bari et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.03.001
-
----
-::
-
diff --git a/content/3.defense-systems/nixi.md b/content/3.defense-systems/nixi.md
index 0058acc89f97ec08676ad4b3b36a5c7d5f2f6ef3..443e7110d397888e86b9ed1457689074864a5c49 100644
--- a/content/3.defense-systems/nixi.md
+++ b/content/3.defense-systems/nixi.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Nucleic acid degrading
+relevantAbstracts:
+    - doi: 10.1101/2021.07.12.452122
 ---
 
 # NixI
@@ -49,12 +51,3 @@ NixI systems were experimentally validated using:
 
 A system from *Vibrio cholerae* in *Vibrio cholerae* has an anti-phage effect against ICP1 (Legault et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2021.07.12.452122
-
----
-::
diff --git a/content/3.defense-systems/nlr.md b/content/3.defense-systems/nlr.md
index 930fd1692347dbac31b814565bfb3720cf5dcc6e..934e074f62a2152a7325dbf7849e40eb948d20b1 100644
--- a/content/3.defense-systems/nlr.md
+++ b/content/3.defense-systems/nlr.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF05729
+relevantAbstracts:
+    - doi: 10.1101/2022.07.19.500537
 ---
 
 # NLR
@@ -79,13 +81,3 @@ Subsystem bNACHT67 with a system from *Klebsiella michiganensis* in *Escherichia
 
 Subsystem bNACHT09 with a system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T5, LambdaVir, T3, T7 (Kibby et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/2022.07.19.500537
-
----
-::
-
diff --git a/content/3.defense-systems/old_exonuclease.md b/content/3.defense-systems/old_exonuclease.md
index 185ea8ba704059715bb838fc6bca34aa2ceb9085..77ce0f3444e41576fa5b70b9b739e04e8d4ac50a 100644
--- a/content/3.defense-systems/old_exonuclease.md
+++ b/content/3.defense-systems/old_exonuclease.md
@@ -10,6 +10,7 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13175, PF13304
+relevantAbstracts:
 ---
 
 # Old_exonuclease
@@ -50,9 +51,3 @@ Old_exonuclease systems were experimentally validated using:
 
 A system from *Enterobacteria phage P2* in *Escherichia coli* has an anti-phage effect against Lambda, T4, LF82_P8, Al505_P2 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-**Rousset, F. et al. Phages and their satellites encode hotspots of antiviral systems. Cell Host & Microbe 30, 740-753.e5 (2022).**
-Bacteria carry diverse genetic systems to defend against viral infection, some of which are found within prophages where they inhibit competing viruses. Phage satellites pose additional pressures on phages by hijacking key viral elements to their own benefit. Here, we show that E. coli P2-like phages and their parasitic P4-like satellites carry hotspots of genetic variation containing reservoirs of anti-phage systems. We validate the activity of diverse systems and describe PARIS, an abortive infection system triggered by a phage-encoded anti-restriction protein. Antiviral hotspots participate in inter-viral competition and shape dynamics between the bacterial host, P2-like phages, and P4-like satellites. Notably, the anti-phage activity of satellites can benefit the helper phage during competition with virulent phages, turning a parasitic relationship into a mutualistic one. Anti-phage hotspots are present across distant species and constitute a substantial source of systems that participate in the competition between mobile genetic elements.
-
-
diff --git a/content/3.defense-systems/olokun.md b/content/3.defense-systems/olokun.md
index 92aa955a7d8f5f5c3643cd642f1150b7de6599ec..0860e23aabe1393139489f36ae96c0af6f538f52 100644
--- a/content/3.defense-systems/olokun.md
+++ b/content/3.defense-systems/olokun.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Olokun
@@ -56,12 +58,3 @@ Olokun systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against LambdaVir, SECphi27 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
diff --git a/content/3.defense-systems/pago.md b/content/3.defense-systems/pago.md
index 911f122f883b79be7d2131b88f2b4f674ab68d60..a7300f4ab2aa095d436d60c6c6afca4b0e77fdcb 100644
--- a/content/3.defense-systems/pago.md
+++ b/content/3.defense-systems/pago.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Diverse (Nucleotide modifyingn, Membrane disrupting)
     PFAM: PF02171, PF13289, PF13676, PF14280, PF18742
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2022.03.012
 ---
 
 # pAgo
@@ -128,18 +130,3 @@ Subsystem Sir2/Ago with a system from *Geobacter sulfurreducens* in *Escherichia
 
 Subsystem SiAgo/Aga1/Aga2 with a system from *Sulfolobus islandicus* in *Sulfolobus islandicus* has an anti-phage effect against SMV1 (Zeng et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2022.03.012
-    - doi: 10.1016/j.chom.2022.04.015
-    - doi: 10.1038/s41564-022-01207-8
-    - doi: 10.1038/s41586-020-2605-1
-    - doi: 10.1186/1745-6150-4-29
-    - doi: 10.1038/s41564-022-01239-0
-
----
-::
-
diff --git a/content/3.defense-systems/panchino_gp28.md b/content/3.defense-systems/panchino_gp28.md
index c6d2ad59082418901cb7cf1b926a97dca163c043..3a31b33d559989e71a79d90e525249a0250933ea 100644
--- a/content/3.defense-systems/panchino_gp28.md
+++ b/content/3.defense-systems/panchino_gp28.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.
     PFAM: PF01170, PF02384, PF13588
+relevantAbstracts:
+    - doi: 10.1038/nmicrobiol.2016.251
 ---
 
 # Panchino_gp28
@@ -24,12 +26,3 @@ dataUrl: /panchino_gp28/Panchino_gp28__gp28-plddts_90.80762.pdb
 ---
 ::
 
-## Relevant abstract
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/nmicrobiol.2016.251
-
----
-::
-
diff --git a/content/3.defense-systems/paris.md b/content/3.defense-systems/paris.md
index afc2c846986841763f3b76ffb1b254ba49c96c86..d9ab8582c92317a6a92855ac782d8596fd07e56b 100644
--- a/content/3.defense-systems/paris.md
+++ b/content/3.defense-systems/paris.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Sensing of phage protein
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Paris
@@ -111,13 +113,3 @@ Subsystem Paris 1 with a system from *Escherichia coli (P4 loci)* in *Escherichi
 
 Subsystem Paris 2 with a system from *Escherichia coli (P4 loci)* in *Escherichia coli* has an anti-phage effect against Lambda, T4, CLB_P2, LF82_P8, T7 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
-
----
-::
diff --git a/content/3.defense-systems/pd-lambda-1.md b/content/3.defense-systems/pd-lambda-1.md
index 042701a1c18aa16b04f3750e1b0e404d29b228d8..80984b555f357f076d2c4e5eb87f9d76ca16da34 100644
--- a/content/3.defense-systems/pd-lambda-1.md
+++ b/content/3.defense-systems/pd-lambda-1.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF10544, PF13250, PF13455
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-Lambda-1
@@ -50,13 +52,3 @@ PD-Lambda-1 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against LambdaVir (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-lambda-2.md b/content/3.defense-systems/pd-lambda-2.md
index 15237efbd9ee0eb5ad7901046aa9ba7801755fe3..2f819e0bd2a6737cb57b01504a29534d8f735442 100644
--- a/content/3.defense-systems/pd-lambda-2.md
+++ b/content/3.defense-systems/pd-lambda-2.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF06114, PF09907, PF14350
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-Lambda-2
@@ -64,13 +66,3 @@ PD-Lambda-2 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against LambdaVir, SECphi17, SECphi18, SECphi27, T3 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-lambda-3.md b/content/3.defense-systems/pd-lambda-3.md
index d592552a9477c81a5e4a2aaf0a34d3d18ffdf93c..46a4f35f771fde1297e6a30fd02b40faf7fc9bde 100644
--- a/content/3.defense-systems/pd-lambda-3.md
+++ b/content/3.defense-systems/pd-lambda-3.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF09509
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-Lambda-3
@@ -64,13 +66,3 @@ PD-Lambda-3 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against LambdaVir (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-lambda-4.md b/content/3.defense-systems/pd-lambda-4.md
index 8583dd0bb2dcbfdaf157f683c91dcc8d94b3bfb8..cd86cc767f832a6124a143620569590dd321953e 100644
--- a/content/3.defense-systems/pd-lambda-4.md
+++ b/content/3.defense-systems/pd-lambda-4.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-Lambda-4
@@ -56,12 +58,3 @@ PD-Lambda-4 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T4, LambdaVir, SECphi27, T7 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
diff --git a/content/3.defense-systems/pd-lambda-5.md b/content/3.defense-systems/pd-lambda-5.md
index 2ed438503f442831265b12ce21b2e63081672c1e..42bf9dd55be4b040b9921ee049ca07669905ca0a 100644
--- a/content/3.defense-systems/pd-lambda-5.md
+++ b/content/3.defense-systems/pd-lambda-5.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF02086
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-Lambda-5
@@ -57,13 +59,3 @@ PD-Lambda-5 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6, LambdaVir, SECphi17, SECphi18, SECphi27, T3, T7 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-lambda-6.md b/content/3.defense-systems/pd-lambda-6.md
index 5983f9aec4f92dac47433fff3d5ae018948bbe23..a9103b093e5101103a4f7cee8dcee4faf4677ffe 100644
--- a/content/3.defense-systems/pd-lambda-6.md
+++ b/content/3.defense-systems/pd-lambda-6.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-Lambda-6
@@ -49,12 +51,3 @@ PD-Lambda-6 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against LambdaVir, T5 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
diff --git a/content/3.defense-systems/pd-t4-1.md b/content/3.defense-systems/pd-t4-1.md
index 6ec543d17a7111c31aa7a35dbcb8e0a623aab062..840f5ec61cc975e16513e8ce40321bba61d95f09 100644
--- a/content/3.defense-systems/pd-t4-1.md
+++ b/content/3.defense-systems/pd-t4-1.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13020
+relevantAbstracts:
+    - doi: 10.1371/journal.pgen.1010065
 ---
 
 # PD-T4-1
@@ -50,13 +52,3 @@ PD-T4-1 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1371/journal.pgen.1010065
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t4-10.md b/content/3.defense-systems/pd-t4-10.md
index 09bba3f5bef6a8d291e7dda8c11de7d1509ea589..29fa88cb98eaa64732dea6d626dfff8954f1d54d 100644
--- a/content/3.defense-systems/pd-t4-10.md
+++ b/content/3.defense-systems/pd-t4-10.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1371/journal.pgen.1010065
 ---
 
 # PD-T4-10
@@ -56,12 +58,3 @@ PD-T4-10 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6, T5, SECphi27 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1371/journal.pgen.1010065
-
----
-::
diff --git a/content/3.defense-systems/pd-t4-2.md b/content/3.defense-systems/pd-t4-2.md
index 9c3e67fd2c24362b70fcd3571476b62b98c484cc..742afc4ef088f0d1c857e453a6ed33fe37a4b858 100644
--- a/content/3.defense-systems/pd-t4-2.md
+++ b/content/3.defense-systems/pd-t4-2.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF03235, PF18735
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T4-2
@@ -57,13 +59,3 @@ PD-T4-2 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6, T5, SECphi27 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t4-3.md b/content/3.defense-systems/pd-t4-3.md
index d5739ccb398ca3be1d6575dcb253668906352eea..502fc227a3b5b74904896d2d350d6867c922254c 100644
--- a/content/3.defense-systems/pd-t4-3.md
+++ b/content/3.defense-systems/pd-t4-3.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T4-3
@@ -49,12 +51,3 @@ PD-T4-3 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
diff --git a/content/3.defense-systems/pd-t4-4.md b/content/3.defense-systems/pd-t4-4.md
index 8a6550d71c4da119195b6a7a6c711e4d278b11ca..8cf52247145f393beb816b3435201f80077d0bea 100644
--- a/content/3.defense-systems/pd-t4-4.md
+++ b/content/3.defense-systems/pd-t4-4.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13175, PF13304
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T4-4
@@ -57,13 +59,3 @@ PD-T4-4 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6, SECphi17 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t4-5.md b/content/3.defense-systems/pd-t4-5.md
index aab0d33dd4282cef66014e11e14442b9e5f7d29f..ded3b89ce556ae7e134997499807039c99f73c30 100644
--- a/content/3.defense-systems/pd-t4-5.md
+++ b/content/3.defense-systems/pd-t4-5.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF07751
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T4-5
@@ -50,13 +52,3 @@ PD-T4-5 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T4, T6, LambdaVir, T5 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t4-6.md b/content/3.defense-systems/pd-t4-6.md
index 7734d40a5581f0bf427a0516d057faa2b663f708..5225f75c232ec7a252d67e4e39dc91928915bc8b 100644
--- a/content/3.defense-systems/pd-t4-6.md
+++ b/content/3.defense-systems/pd-t4-6.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00069, PF03793, PF07714
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T4-6
@@ -50,13 +52,3 @@ PD-T4-6 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t4-7.md b/content/3.defense-systems/pd-t4-7.md
index 8c40ef4bebd8037d95ea398e8432cc09f57c2ab1..e9fdef12c7127dbfd2260cb37eeb6f98e1added1 100644
--- a/content/3.defense-systems/pd-t4-7.md
+++ b/content/3.defense-systems/pd-t4-7.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T4-7
@@ -49,12 +51,3 @@ PD-T4-7 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
diff --git a/content/3.defense-systems/pd-t4-8.md b/content/3.defense-systems/pd-t4-8.md
index ebacb14a342f47724e2fe4ea27c3f856bfd0942a..3b682d7f05da31520b2a58b12614d77571fdafd7 100644
--- a/content/3.defense-systems/pd-t4-8.md
+++ b/content/3.defense-systems/pd-t4-8.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF14082
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T4-8
@@ -50,13 +52,3 @@ PD-T4-8 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6, SECphi18, SECphi27 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t4-9.md b/content/3.defense-systems/pd-t4-9.md
index bf220afdf865dbc0f6ccacd3b64faad94c419ead..b4c224be9173bd316cef971437cf3f952c3a87c5 100644
--- a/content/3.defense-systems/pd-t4-9.md
+++ b/content/3.defense-systems/pd-t4-9.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF02556
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T4-9
@@ -64,13 +66,3 @@ PD-T4-9 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t7-1.md b/content/3.defense-systems/pd-t7-1.md
index 0323f4585b6c1ac71d3d7b04afeed1f4a8ebd650..049bc84223dc240d2a2ed01cc594e26957274651 100644
--- a/content/3.defense-systems/pd-t7-1.md
+++ b/content/3.defense-systems/pd-t7-1.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T7-1
@@ -49,12 +51,3 @@ PD-T7-1 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T7(Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
diff --git a/content/3.defense-systems/pd-t7-2.md b/content/3.defense-systems/pd-t7-2.md
index 69f5f63e29a0b9b5f76c549db0d499f18ff5df42..5ff80db6bf3d0f6791b9ae8ab966f5d714caa83b 100644
--- a/content/3.defense-systems/pd-t7-2.md
+++ b/content/3.defense-systems/pd-t7-2.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF01935, PF13289
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T7-2
@@ -57,13 +59,3 @@ PD-T7-2 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6, LambdaVir, T5, SECphi18, SECphi27, T3, T7 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t7-3.md b/content/3.defense-systems/pd-t7-3.md
index 873cfafc562fd58093108c2656decfe623882bd9..fc376bf88b5aff7807264a135c4840d935667626 100644
--- a/content/3.defense-systems/pd-t7-3.md
+++ b/content/3.defense-systems/pd-t7-3.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T7-3
@@ -49,12 +51,3 @@ PD-T7-3 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T2, T4, T6, T5, SECphi17, T3, T7 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
diff --git a/content/3.defense-systems/pd-t7-4.md b/content/3.defense-systems/pd-t7-4.md
index 0fba1c7ca9f1dbe3cdc74e03441f5dcd0bfa60d5..814035046eb579ce5474de570283a774dd1b350a 100644
--- a/content/3.defense-systems/pd-t7-4.md
+++ b/content/3.defense-systems/pd-t7-4.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13643
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T7-4
@@ -50,13 +52,3 @@ PD-T7-4 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against SECphi18, SECphi27, T3, T7 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
-
diff --git a/content/3.defense-systems/pd-t7-5.md b/content/3.defense-systems/pd-t7-5.md
index a6f14af8dcf40515cee0de9aa310d4cac9128a00..f6ca3d7382a2cadc67dd70a62cceebf45f7351c3 100644
--- a/content/3.defense-systems/pd-t7-5.md
+++ b/content/3.defense-systems/pd-t7-5.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1038/s41564-022-01219-4
 ---
 
 # PD-T7-5
@@ -49,12 +51,3 @@ PD-T7-5 systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against SECphi17, T3, T7 (Vassallo et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41564-022-01219-4
-
----
-::
diff --git a/content/3.defense-systems/pfiat.md b/content/3.defense-systems/pfiat.md
index c5debcb8c7ef1b9be241e5f19438ee5b66cdb6eb..8833819265816e93f2f141f7fb2a654ab0d1e96e 100644
--- a/content/3.defense-systems/pfiat.md
+++ b/content/3.defense-systems/pfiat.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF02604, PF05016
+relevantAbstracts:
+    - doi: 10.1111/1751-7915.13570
 ---
 
 # PfiAT
@@ -51,13 +53,3 @@ dataUrl: /pfiat/PfiAT,PfiAT__PfiT,0,V-plddts_94.1034.pdb
 ---
 ::
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1111/1751-7915.13570
-
----
-::
-
diff --git a/content/3.defense-systems/phrann_gp29_gp30.md b/content/3.defense-systems/phrann_gp29_gp30.md
index 8a87438571db59f2ca9704ff2cabae056d5e443b..8d595a897552f60b8b7ec685b0df516240cf1841 100644
--- a/content/3.defense-systems/phrann_gp29_gp30.md
+++ b/content/3.defense-systems/phrann_gp29_gp30.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.
     PFAM: PF04607
+relevantAbstracts:
+    - doi: 10.1038/nmicrobiol.2016.251
 ---
 
 # Phrann_gp29_gp30
@@ -31,13 +33,3 @@ Among the 22k complete genomes of RefSeq, this system is present in 314 genomes
 
 *Proportion of genome encoding the phrann_gp29_gp30 system for the 14 phyla with more than 50 genomes in the RefSeq database.* 
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/nmicrobiol.2016.251
-
----
-::
-
diff --git a/content/3.defense-systems/pif.md b/content/3.defense-systems/pif.md
index 7cbf6e9a21e00c7f7d484531b2f5ff5f76b0df74..df25f117269741fa07ed08d23157ed0ea9498d7f 100644
--- a/content/3.defense-systems/pif.md
+++ b/content/3.defense-systems/pif.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Membrane disrupting (?)
     PFAM: PF07693
+relevantAbstracts:
+    - doi: 10.1007/BF00327934
 ---
 
 # Pif
@@ -57,15 +59,3 @@ Pif systems were experimentally validated using:
 
 A system from *Escherichia coli F-plasmid* in *Escherichia coli* has an anti-phage effect against T7 (Cheng et al., 2004)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1007/BF00327934
-    - doi: 10.1016/j.virol.2004.06.001
-    - doi: 10.1128/jb.173.20.6507-6514.1991
-
----
-::
-
diff --git a/content/3.defense-systems/prrc.md b/content/3.defense-systems/prrc.md
index ecc2ad471b6e080d7f54a1e4722ea23ac8bf0e20..754be8863cb2b4cbb0648394820bd357dde399f5 100644
--- a/content/3.defense-systems/prrc.md
+++ b/content/3.defense-systems/prrc.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleic acid degrading
     PFAM: PF00270, PF02384, PF04313, PF04851, PF12008, PF12161, PF13166, PF18766
+relevantAbstracts:
+    - doi: 10.1006/jmbi.1995.0343
 ---
 
 # PrrC
@@ -57,14 +59,3 @@ PrrC systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against Lambda, T4 Dec8 (Jabbar and Snyder, 1984)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1006/jmbi.1995.0343
-    - doi: 10.1186/1743-422X-7-360
-
----
-::
-
diff --git a/content/3.defense-systems/psyrta.md b/content/3.defense-systems/psyrta.md
index 5efe47042789e679b1c28a7ba5f5a91c91a375ba..f0d2e66fde2c9c308d78b7a39bafb2aa176309bf 100644
--- a/content/3.defense-systems/psyrta.md
+++ b/content/3.defense-systems/psyrta.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00270, PF00271, PF02481, PF04851, PF18306
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # PsyrTA
@@ -57,14 +59,3 @@ PsyrTA systems were experimentally validated using:
 
 A system from *Bacillus sp. FJAT-29814* in *Escherichia coli* has an anti-phage effect against T2, T4, T6 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-    - doi: 10.1016/j.molcel.2013.02.002
-
----
-::
-
diff --git a/content/3.defense-systems/pycsar.md b/content/3.defense-systems/pycsar.md
index 7a5e184aed44189050c5708cf2769513f6db003b..daaf29161f77a6d848e6c4afd03d5a8fd6d5ae14 100644
--- a/content/3.defense-systems/pycsar.md
+++ b/content/3.defense-systems/pycsar.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Signaling molecules
     Effector: Membrane disrupting, Nucleotides modifying
     PFAM: PF00004, PF00027, PF00211, PF00899, PF01734, PF10137, PF14461, PF14464, PF18145, PF18153, PF18303, PF18967
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2021.09.031
 ---
 
 # Pycsar
@@ -75,13 +77,3 @@ A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect
 
 A system from *Xanthomonas perforans* in *Escherichia coli* has an anti-phage effect against T7 (Tal et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2021.09.031
-
----
-::
-
diff --git a/content/3.defense-systems/radar.md b/content/3.defense-systems/radar.md
index 55a39ecab1c1f6ace936548a3370022115c54e52..69e05eea03cd4cf82fde59a99e78cb2706b5bad7 100644
--- a/content/3.defense-systems/radar.md
+++ b/content/3.defense-systems/radar.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Nucleic acid degrading
+relevantAbstracts:
+    - doi: 10.1126/science.aba0372
 ---
 
 # RADAR
@@ -96,17 +98,3 @@ A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect
 
 A system from *Streptococcus suis* in *Escherichia coli* has an anti-phage effect against T2, T4, T5, T6 (Duncan-Lowey et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aba0372
-
----
-::
-
-
-## References
-
-1. Gao L, Altae-Tran H, Böhning F, et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. *Science*. 2020;369(6507):1077-1084. doi:10.1126/science.aba0372
diff --git a/content/3.defense-systems/retron.md b/content/3.defense-systems/retron.md
index e977224eae8c8789e873988f479444d2de1a8850..8166ece0670e50fa47b785a94453e88131a17a8a 100644
--- a/content/3.defense-systems/retron.md
+++ b/content/3.defense-systems/retron.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Diverse
     PFAM: PF00078, PF00089, PF01381, PF01582, PF12686, PF12844, PF13175, PF13304, PF13365, PF13476, PF13560, PF13676
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2020.09.065
 ---
 
 # Retron
@@ -339,14 +341,3 @@ Subsystem Retron-Eco9 with a system from *Escherichia coli* in *Escherichia coli
 
 Subsystem Retron-Eco1 with a system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T5 (Bobonis et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2020.09.065
-    - doi: 10.1093/nar/gkaa1149
-
----
-::
-
diff --git a/content/3.defense-systems/rexab.md b/content/3.defense-systems/rexab.md
index 332b7ab4148b35b45a4065efb356b2866f695395..170f507c246b6a6c7f7b9ef4af996b543c82efaf 100644
--- a/content/3.defense-systems/rexab.md
+++ b/content/3.defense-systems/rexab.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Membrane disrupting
     PFAM: PF15968, PF15969
+relevantAbstracts:
+    - doi: 10.1101/gad.6.3.497
 ---
 
 # RexAB
@@ -57,13 +59,3 @@ RexAB systems were experimentally validated using:
 
 A system from *Escherichia coli lambda prophage* in *Escherichia coli* has an anti-phage effect against T4, Lamboid phages (Parma et al., 1992)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1101/gad.6.3.497
-
----
-::
-
diff --git a/content/3.defense-systems/rloc.md b/content/3.defense-systems/rloc.md
index cf96c9586341dce9c66631dcfaa4161e9d88db5c..0274b760f62510012b47e1cbe42c3bc575802727 100644
--- a/content/3.defense-systems/rloc.md
+++ b/content/3.defense-systems/rloc.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Nucleic acid degrading
     PFAM: PF13166
+relevantAbstracts:
+    - doi: 10.1111/j.1365-2958.2008.06387.x
 ---
 
 # RloC
@@ -50,14 +52,3 @@ RloC systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T4 (Penner et al., 1995)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1111/j.1365-2958.2008.06387.x
-    - doi: 10.1111/mmi.13074
-
----
-::
-
diff --git a/content/3.defense-systems/rm.md b/content/3.defense-systems/rm.md
index bf3a3f6acc307a1439461f0f86f6fed1f98ce22e..922ca847ad71446dd2dcfbe12c314c4db88d11ac 100644
--- a/content/3.defense-systems/rm.md
+++ b/content/3.defense-systems/rm.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleic acid degrading
     PFAM: PF00270, PF02384, PF04313, PF04851, PF12008, PF12161, PF18766
+relevantAbstracts:
+    - doi: 10.1093/nar/gku734
 ---
 
 # RM
@@ -141,13 +143,3 @@ dataUrl: /rm/RM__Type_I_S-plddts_91.98582.pdb
 ---
 ::
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1093/nar/gku734
-
----
-::
-
diff --git a/content/3.defense-systems/rnlab.md b/content/3.defense-systems/rnlab.md
index 575b7b3d828cf616078f9218080c79a03de483a5..79b0567f86a35555e579ef60a97d64b537314141 100644
--- a/content/3.defense-systems/rnlab.md
+++ b/content/3.defense-systems/rnlab.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleic acid degrading
     PFAM: PF15933, PF15935, PF18869, PF19034
+relevantAbstracts:
+    - doi: 10.1534/genetics.110.121798
 ---
 
 # RnlAB
@@ -57,13 +59,3 @@ RnlAB systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T4 (Koga et al., 2011)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1534/genetics.110.121798
-
----
-::
-
diff --git a/content/3.defense-systems/rosmerta.md b/content/3.defense-systems/rosmerta.md
index 4664af1f65bdef35dae406205907ac6a7354c3a9..37e9a4097ca5f7112f5c15ea2691dfde17a951c4 100644
--- a/content/3.defense-systems/rosmerta.md
+++ b/content/3.defense-systems/rosmerta.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF01381, PF06114, PF12844, PF13443, PF13560
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # RosmerTA
@@ -57,13 +59,3 @@ RosmerTA systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against P1, LambdaVir (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/rst_2tm_1tm_tir.md b/content/3.defense-systems/rst_2tm_1tm_tir.md
index 15dc322cd058d45cc3d64e48ef9d933761005731..a36c7953a38d078337cad58b072e27c91fd8d16f 100644
--- a/content/3.defense-systems/rst_2tm_1tm_tir.md
+++ b/content/3.defense-systems/rst_2tm_1tm_tir.md
@@ -7,6 +7,8 @@ tableColumns:
       abstract: |
         Bacteria carry diverse genetic systems to defend against viral infection, some of which are found within prophages where they inhibit competing viruses. Phage satellites pose additional pressures on phages by hijacking key viral elements to their own benefit. Here, we show that E. coli P2-like phages and their parasitic P4-like satellites carry hotspots of genetic variation containing reservoirs of anti-phage systems. We validate the activity of diverse systems and describe PARIS, an abortive infection system triggered by a phage-encoded anti-restriction protein. Antiviral hotspots participate in inter-viral competition and shape dynamics between the bacterial host, P2-like phages, and P4-like satellites. Notably, the anti-phage activity of satellites can benefit the helper phage during competition with virulent phages, turning a parasitic relationship into a mutualistic one. Anti-phage hotspots are present across distant species and constitute a substantial source of systems that participate in the competition between mobile genetic elements.
     PFAM: PF13676
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Rst_2TM_1TM_TIR
@@ -55,13 +57,3 @@ dataUrl: /rst_2tm_1tm_tir/Rst_2TM_1TM_TIR,Rst_2TM_1TM_TIR__Rst_TIR_tm,0,V-plddts
 ---
 ::
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
----
-::
-
diff --git a/content/3.defense-systems/rst_3hp.md b/content/3.defense-systems/rst_3hp.md
index f57a036e8aca8ecd60b2d0bad787f9da27e7fe82..72d3019e4a53d78ed70b6393f511769cde3da7b7 100644
--- a/content/3.defense-systems/rst_3hp.md
+++ b/content/3.defense-systems/rst_3hp.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Rst_3HP
@@ -63,12 +65,3 @@ Rst_3HP systems were experimentally validated using:
 
 A system from *Escherichia coli (P2 loci)* in *Escherichia coli* has an anti-phage effect against P1 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
----
-::
diff --git a/content/3.defense-systems/rst_duf4238.md b/content/3.defense-systems/rst_duf4238.md
index af72cbfde012f4b2800eca6a77932bf300220838..28bd6a502928539e3fcc20341f8ba65e72c2a5de 100644
--- a/content/3.defense-systems/rst_duf4238.md
+++ b/content/3.defense-systems/rst_duf4238.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF14022
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Rst_DUF4238
@@ -50,13 +52,3 @@ Rst_DUF4238 systems were experimentally validated using:
 
 A system from *Escherichia coli (P2 loci)* in *Escherichia coli* has an anti-phage effect against T7 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
----
-::
-
diff --git a/content/3.defense-systems/rst_gop_beta_cll.md b/content/3.defense-systems/rst_gop_beta_cll.md
index f7e32190bd3f0bf97c3b595073d4cbf36d4d6f25..d09bb37cb1e846cc0a9453c0e048402c794a89a1 100644
--- a/content/3.defense-systems/rst_gop_beta_cll.md
+++ b/content/3.defense-systems/rst_gop_beta_cll.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF14350
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Rst_gop_beta_cll
@@ -64,13 +66,3 @@ Rst_gop_beta_cll systems were experimentally validated using:
 
 A system from *Enterobacteria phage P4* in *Escherichia coli* has an anti-phage effect against Lambda, P1 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
----
-::
-
diff --git a/content/3.defense-systems/rst_helicaseduf2290.md b/content/3.defense-systems/rst_helicaseduf2290.md
index 8e94dd2d728116a87016e3914cbe815e10e18ee8..6c9cc66c7731cc0eb9278b9693adf9622a7e8196 100644
--- a/content/3.defense-systems/rst_helicaseduf2290.md
+++ b/content/3.defense-systems/rst_helicaseduf2290.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF10053, PF13538
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Rst_HelicaseDUF2290
@@ -57,13 +59,3 @@ Rst_HelicaseDUF2290 systems were experimentally validated using:
 
 A system from *Klebsiella pneumoniae (P4 loci)* in *Escherichia coli* has an anti-phage effect against T7 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
----
-::
-
diff --git a/content/3.defense-systems/rst_hydrolase-3tm.md b/content/3.defense-systems/rst_hydrolase-3tm.md
index 34c3d7c5a27c75187b1707c2b1f566e34f575adb..9f4b0fa6c7c3003b12f42d73f72f1770553ee41a 100644
--- a/content/3.defense-systems/rst_hydrolase-3tm.md
+++ b/content/3.defense-systems/rst_hydrolase-3tm.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13242, PF13419
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Rst_Hydrolase-3Tm
@@ -57,13 +59,3 @@ Rst_Hydrolase-3Tm systems were experimentally validated using:
 
 A system from *Escherichia coli (P4 loci)* in *Escherichia coli* has an anti-phage effect against T7 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
----
-::
-
diff --git a/content/3.defense-systems/rst_rt-nitrilase-tm.md b/content/3.defense-systems/rst_rt-nitrilase-tm.md
index ef862c48f9b1122e412151ebcaca53b14d5eb923..8ec61df17e5227d56fb1de053d49bb30bd79b7d4 100644
--- a/content/3.defense-systems/rst_rt-nitrilase-tm.md
+++ b/content/3.defense-systems/rst_rt-nitrilase-tm.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00078
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Rst_RT-nitrilase-Tm
@@ -57,13 +59,3 @@ Rst_RT-nitrilase-Tm systems were experimentally validated using:
 
 A system from *Escherichia coli (P4 loci)* in *Escherichia coli* has an anti-phage effect against Al505_P2 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
----
-::
-
diff --git a/content/3.defense-systems/rst_tir-nlr.md b/content/3.defense-systems/rst_tir-nlr.md
index a1bb04a2e100c785f277562f2cff0cf7bcd750f6..86c906c7a1e1de82714c51cda2f7da508012e5b9 100644
--- a/content/3.defense-systems/rst_tir-nlr.md
+++ b/content/3.defense-systems/rst_tir-nlr.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13676
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.02.018
 ---
 
 # Rst_TIR-NLR
@@ -50,13 +52,3 @@ Rst_TIR-NLR systems were experimentally validated using:
 
 A system from *Klebsiella pneumoniae (P4 loci)* in *Escherichia coli* has an anti-phage effect against T4, P1, CLB_P2, LF82_P8, AL505_P2, T7 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.02.018
-
----
-::
-
diff --git a/content/3.defense-systems/sanata.md b/content/3.defense-systems/sanata.md
index a054e42caacef7e77bf2e1e01259c275c726b414..cbc1bc422fd65de2dc8e2da6e2f6c0d53ac07be0 100644
--- a/content/3.defense-systems/sanata.md
+++ b/content/3.defense-systems/sanata.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF08843
+relevantAbstracts:
+    - doi: 10.1016/j.molcel.2013.02.002
 ---
 
 # SanaTA
@@ -57,13 +59,3 @@ SanaTA systems were experimentally validated using:
 
 A system from *Shewanella sp. ANA-3* in *Escherichia coli* has an anti-phage effect against T7 (Sberro et al., 2013)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.molcel.2013.02.002
-
----
-::
-
diff --git a/content/3.defense-systems/sefir.md b/content/3.defense-systems/sefir.md
index 6137599b92a9efb9e718151dd7052971c1fe5750..ce8e7098d981eebb242a16f3433bca0abbb41a99 100644
--- a/content/3.defense-systems/sefir.md
+++ b/content/3.defense-systems/sefir.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF08357, PF13676
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # SEFIR
@@ -58,18 +60,3 @@ SEFIR systems were experimentally validated using:
 
 A system from *Bacillus sp. NIO-1130* in *Bacillus subtilis* has an anti-phage effect against phi29 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
-
-## References
-[1] Millman, A. et al. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 30, 1556-1569.e5 (2022).
-[2] Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubüser, A., & Eisenhaber, F. (2003). The STIR-domain superfamily in signal transduction, development and immunity. _Trends in biochemical sciences_, _28_(5), 226-229.
-
diff --git a/content/3.defense-systems/septu.md b/content/3.defense-systems/septu.md
index ee3f9144cff1db0beec3806f27d102de019612cf..bedcda273981cb2944a0ca81902b6f6185bc6914 100644
--- a/content/3.defense-systems/septu.md
+++ b/content/3.defense-systems/septu.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13175, PF13304, PF13476
+relevantAbstracts:
+    - doi: 10.1016/j.cell.2020.09.065
 ---
 
 # Septu
@@ -75,15 +77,3 @@ A system from *Bacillus thuringiensis* in *Bacillus subtilis* has an anti-phage
 
 A system from *Bacillus weihenstephanensis* in *Bacillus subtilis* has an anti-phage effect against SBSphiC, SpBeta (Doron et al., 2018)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.cell.2020.09.065
-    - doi: 10.1093/nar/gkab883
-    - doi: 10.1126/science.aar4120
-
----
-::
-
diff --git a/content/3.defense-systems/shango.md b/content/3.defense-systems/shango.md
index 3314b5d73f109cdc4811fb71042429ab9092cb25..8d67d12c571a4df5d3b533d647ea41aa665c4116 100644
--- a/content/3.defense-systems/shango.md
+++ b/content/3.defense-systems/shango.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00270, PF00271, PF05099, PF10923, PF13208, PF15615
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Shango
@@ -77,23 +79,3 @@ Shango systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against LambdaVir, SECphi18 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
-
-## References
-Shango was discovered in parallel by Adi Millman (Sorek group) and the team of J. Bondy-Denomy (UCSF). 
-
-[1] Millman, A., Melamed, S., Leavitt, A., Doron, S., Bernheim, A., Hör, J., Garb, J., Bechon, N., Brandis, A., Lopatina, A., Ofir, G., Hochhauser, D., Stokar-Avihail, A., Tal, N., Sharir, S., Voichek, M., Erez, Z., Ferrer, J. L. M., Dar, D., … Sorek, R. (2022). An expanded arsenal of immune systems that protect bacteria from phages. _Cell Host & Microbe_, _30_(11), 1556-1569.e5. [https://doi.org/10.1016/j.chom.2022.09.017](https://doi.org/10.1016/j.chom.2022.09.017)
-
-[2] Johnson, Matthew, Laderman, Eric, Huiting, Erin, Zhang, Charles, Davidson, Alan, & Bondy-Denomy, Joseph. (2022). _Core Defense Hotspots within Pseudomonas aeruginosa are a consistent and rich source of anti-phage defense systems_. [https://doi.org/10.5281/ZENODO.7254690](https://doi.org/10.5281/ZENODO.7254690)
-
-[3] Alekhina, O., Valkovicova, L., & Turna, J. (2011). Study of membrane attachment and in vivo co-localization of TerB protein from uropathogenic Escherichia coli KL53. _General physiology and biophysics_, _30_(3), 286-292.
-
diff --git a/content/3.defense-systems/shedu.md b/content/3.defense-systems/shedu.md
index 25062ee689cdc71468d7b34d030f75994ee6f3f9..b517bb27d37ad166dd4029b9bba73aa2249cc4bc 100644
--- a/content/3.defense-systems/shedu.md
+++ b/content/3.defense-systems/shedu.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF14082
+relevantAbstracts:
+    - doi: 10.1126/science.aar4120
 ---
 
 # Shedu
@@ -50,13 +52,3 @@ Shedu systems were experimentally validated using:
 
 A system from *Bacillus cereus* in *Bacillus subtilis* has an anti-phage effect against phi105, rho14, SPP1, phi29 (Doron et al., 2018)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aar4120
-
----
-::
-
diff --git a/content/3.defense-systems/shosta.md b/content/3.defense-systems/shosta.md
index 93b01cfda76a55b2687cf3d5b518b006e8cce928..4eaf68d38beb4e6c0f5bfc9f7c0921b7ea824f71 100644
--- a/content/3.defense-systems/shosta.md
+++ b/content/3.defense-systems/shosta.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF02481
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # ShosTA
@@ -59,15 +61,3 @@ A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect
 
 A system from *Escherichia coli (P2 loci)* in *Escherichia coli* has an anti-phage effect against Lambda, T7 (Rousset et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-    - doi: 10.1016/j.chom.2022.09.017
-    - doi: 10.1101/gr.133850.111
-
----
-::
-
diff --git a/content/3.defense-systems/sofic.md b/content/3.defense-systems/sofic.md
index 38e1c8defc5ef3e42e4dff8d56ff2393e4789bcd..2ea2460f4b46674ccee23f91dba3d14286739a86 100644
--- a/content/3.defense-systems/sofic.md
+++ b/content/3.defense-systems/sofic.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF02661, PF13784
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # SoFIC
@@ -50,13 +52,3 @@ SoFIC systems were experimentally validated using:
 
 A system from *Escherichia coli* in *Escherichia coli* has an anti-phage effect against T5 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/spbk.md b/content/3.defense-systems/spbk.md
index 50aaf76e7d6ae1dcc8a2853c9325bd30466d6731..c6141af914f1e9fd75671d5d8d764dceb0a2a18d 100644
--- a/content/3.defense-systems/spbk.md
+++ b/content/3.defense-systems/spbk.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF13676
+relevantAbstracts:
+    - doi: 10.1371/journal.pgen.1010065
 ---
 
 # SpbK
@@ -50,13 +52,3 @@ SpbK systems were experimentally validated using:
 
 A system from *Bacillus subtilis* in *Bacillus subtilis* has an anti-phage effect against SPbeta (Johnson et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1371/journal.pgen.1010065
-
----
-::
-
diff --git a/content/3.defense-systems/sspbcde.md b/content/3.defense-systems/sspbcde.md
index 499b665319dac8851c099218d7334e6ae77548e7..ede3eb43bd24aa45f5d60d8eac198e23dd4962f6 100644
--- a/content/3.defense-systems/sspbcde.md
+++ b/content/3.defense-systems/sspbcde.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleic acid degrading
     PFAM: PF01507, PF01580, PF03235, PF07510, PF13182
+relevantAbstracts:
+    - doi: 10.1128/mBio.00613-21
 ---
 
 # SspBCDE
@@ -121,14 +123,3 @@ Subsystem SspBCD+SspE with a system from *Streptomyces yokosukanensis* in *Strep
 
 Subsystem SspBCD+SspFGH with a system from *Vibrio anguillarum* in *Escherichia coli* has an anti-phage effect against T1, JMPW2, T4, EEP (Wang et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1128/mBio.00613-21
-    - doi: 10.1128/mBio.00613-21
-
----
-::
-
diff --git a/content/3.defense-systems/stk2.md b/content/3.defense-systems/stk2.md
index 0ef68de6757b07a61e8d839afccda5e33e5aac6c..a9c2f320a592dfd7718940d56b80f04acdb834b7 100644
--- a/content/3.defense-systems/stk2.md
+++ b/content/3.defense-systems/stk2.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Other (protein modifying)
     PFAM: PF00069, PF07714
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2016.08.010
 ---
 
 # Stk2
@@ -61,13 +63,3 @@ A system from *Staphylococcus epidermidis* in *Staphylococcus epidermidis* has a
 
 A system from *Staphylococcus epidermidis* in *Staphylococcus aureus* has an anti-phage effect against phage 80alpha, phage 85, phiNM1, phiNM2, phiNM4 (Depardieu et al., 2016)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2016.08.010
-
----
-::
-
diff --git a/content/3.defense-systems/thoeris.md b/content/3.defense-systems/thoeris.md
index 66b69abec4c176fa77f8bc89948689774182aa87..f7fdad37a553251a63b740874cfd7bff23030885 100644
--- a/content/3.defense-systems/thoeris.md
+++ b/content/3.defense-systems/thoeris.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Signaling
     Effector: Nucleotide modifying
     PFAM: PF08937, PF13289, PF18185
+relevantAbstracts:
+    - doi: 10.1038/s41586-021-04098-7
 ---
 
 # Thoeris
@@ -81,14 +83,3 @@ A system from *Bacillus cereus* in *Bacillus subtilis* has an anti-phage effect
 
 A system from *Bacillus dafuensis* in *Bacillus subtilis* has an anti-phage effect against phi3T, SPBeta, SPR, SBSphi11, SBSphi13, phi29, SBSphiJ, SPO1 (Ofir et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41586-021-04098-7
-    - doi: 10.1126/science.aar4120
-
----
-::
-
diff --git a/content/3.defense-systems/tiamat.md b/content/3.defense-systems/tiamat.md
index 0324f6c6c2fa550d20b8c38b520a13287330f122..1d1fb72974818ea6b57d57119c8c4c3cae869071 100644
--- a/content/3.defense-systems/tiamat.md
+++ b/content/3.defense-systems/tiamat.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00656, PF13020
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Tiamat
@@ -50,13 +52,3 @@ Tiamat systems were experimentally validated using:
 
 A system from *Bacillus cereus* in *Escherichia coli* has an anti-phage effect against T6, T5 (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
-
diff --git a/content/3.defense-systems/uzume.md b/content/3.defense-systems/uzume.md
index c8f0aabf9c67f8b4c93fc11e9baca95d5d23314e..eff6ed45fd3f151f348c01f1cf6909060df81aa5 100644
--- a/content/3.defense-systems/uzume.md
+++ b/content/3.defense-systems/uzume.md
@@ -9,6 +9,8 @@ tableColumns:
     Sensor: Unknown
     Activator: Unknown
     Effector: Unknown
+relevantAbstracts:
+    - doi: 10.1016/j.chom.2022.09.017
 ---
 
 # Uzume
@@ -49,12 +51,3 @@ Uzume systems were experimentally validated using:
 
 A system from *Bacillus sp. FJAT-27231* in *Bacillus subtilis* has an anti-phage effect against SPO1, SP82G, SBSphiC (Millman et al., 2022)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1016/j.chom.2022.09.017
-
----
-::
diff --git a/content/3.defense-systems/viperin.md b/content/3.defense-systems/viperin.md
index b2cf1ae9e7f4ab7d3e4f1876bd55b7e516c17120..65de655f0f2ecd536a2ca515b55e12208918fb8e 100644
--- a/content/3.defense-systems/viperin.md
+++ b/content/3.defense-systems/viperin.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleotide modifying
     PFAM: PF04055, PF13353
+relevantAbstracts:
+    - doi: 10.1038/s41586-020-2762-2
 ---
 
 # Viperin
@@ -101,13 +103,3 @@ Subsystem pVip62 with a system from *Fibrobacteria bacterium* in *Escherichia co
 
 Subsystem pVip63 with a system from *Pseudoalteromonas sp. XI10* in *Escherichia coli* has an anti-phage effect against T7 (Bernheim et al., 2020)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1038/s41586-020-2762-2
-
----
-::
-
diff --git a/content/3.defense-systems/wadjet.md b/content/3.defense-systems/wadjet.md
index e0a469df4f5957567f4551d6ca1f90b3cd65d162..0ac11a29e7b83aa64f19fec495b79b72f7b20140 100644
--- a/content/3.defense-systems/wadjet.md
+++ b/content/3.defense-systems/wadjet.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Direct
     Effector: Nucleic acid degrading
     PFAM: PF09660, PF09661, PF09664, PF09983, PF11795, PF11796, PF11855, PF13555, PF13558, PF13835
+relevantAbstracts:
+    - doi: 10.1126/science.aar4120
 ---
 
 # Wadjet
@@ -133,13 +135,3 @@ dataUrl: /wadjet/Wadjet_III,Wadjet__JetD_III,0,V-plddts_91.07357.pdb
 ---
 ::
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1126/science.aar4120
-
----
-::
-
diff --git a/content/3.defense-systems/zorya.md b/content/3.defense-systems/zorya.md
index 77310bbe8ac5772be8ff28f939b033fc16fe20f7..b68419ebacc6b4f0113f3bda8825e5beac0c6df6 100644
--- a/content/3.defense-systems/zorya.md
+++ b/content/3.defense-systems/zorya.md
@@ -10,6 +10,8 @@ tableColumns:
     Activator: Unknown
     Effector: Unknown
     PFAM: PF00176, PF00271, PF00691, PF04851, PF15611
+relevantAbstracts:
+    - doi: 10.1093/nar/gkab883
 ---
 
 # Zorya
@@ -102,14 +104,3 @@ Subsystem Type II with a system from *Escherichia coli* in *Escherichia coli* ha
 
 Subsystem Type III with a system from *Stenotrophomonas nitritireducens* in *Escherichia coli* has an anti-phage effect against T1, T4, T7, LambdaVir, PVP-SE1 (Payne et al., 2021)
 
-## Relevant abstracts
-
-::relevant-abstracts
----
-items:
-    - doi: 10.1093/nar/gkab883
-    - doi: 10.1126/science.aar4120
-
----
-::
-