diff --git a/MANIFEST.in b/MANIFEST.in
index ac2af8ff93547e9a0b30bc6bc4b3c0294c613cf2..2f44dbf82157a6e81e14acf9fd7c3ae8998a3ca4 100644
--- a/MANIFEST.in
+++ b/MANIFEST.in
@@ -1,5 +1,5 @@
 include README.md
 include setup.cfg
 include jass/swagger/swagger.yaml
-recursive-include jass/static *
-recursive-include celery_files *
+recursive-include jass/models/data/ *.tsv
+recursive-include jass/static *
\ No newline at end of file
diff --git a/data/coef_mean_model.tsv b/data/coef_mean_model.tsv
new file mode 100644
index 0000000000000000000000000000000000000000..ca07eb89886c598f96afb4e4f998f870e57d30f1
--- /dev/null
+++ b/data/coef_mean_model.tsv
@@ -0,0 +1,7 @@
+	0
+k_coef_mv	0.07740334977380119
+log10_avg_distance_cor_coef_mv	-0.6999110771883902
+log10_mean_gencov_coef_mv	0.746794584985343
+avg_Neff_coef_mv	0.07289261717080556
+avg_h2_coef_mv	-0.516496395500929
+avg_perc_h2_diff_region_coef_mv	0.15727591593399
diff --git a/data/combi_sample.tsv b/data/combi_sample.tsv
new file mode 100644
index 0000000000000000000000000000000000000000..7264b25dc3fd8cb6baad069e87b3e281a9404d3f
--- /dev/null
+++ b/data/combi_sample.tsv
@@ -0,0 +1,201 @@
+,trait,k,avg_distance_cor,mean_gencov,avg_Neff,avg_h2_mixer,avg_perc_h2_diff_region
+1590,z_VAN-HEEL_CELIAC z_GLG_HDL z_GLG_LDL z_WILLER_ATRIALFIBRI z_PGC_BIP z_SPIRO-UKB_FEV1-FVC z_UKIBD_CD,7,0.0590830304651648,0.015347619047619,127387.05229530609,0.2194681225668153,0.5603096008205554
+563,z_GEFOS_BMD-FOREARM z_GLG_HDL z_MAGIC_HOMA-B z_GLG_LDL z_DIAGRAM_T2D z_IMSGC-WTCC2_MULTSCLE z_TAGC_ASTHMA z_NEIGHBORHOOD_POAG z_WILLER_ATRIALFIBRI z_GLG_TC,10,0.0976903717379686,0.0123144082,72409.04275154244,0.0960473769919533,0.4744109853496899
+1176,z_MAGIC_HBA1C z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_UKBIOBANK_POAG z_GEFOS_BMD-FOREARM z_SPIRO-UKB_FEV1-FVC z_MAGIC_2HGLU-ADJBMI z_WILLER_ATRIALFIBRI z_GLG_HDL,9,0.1259168550911433,0.0127416666666666,101526.3699107523,0.1035261413153112,0.532680760371381
+647,z_VGHRV_SDNN z_MAGIC_HBA1C z_MAGIC_2HGLU-ADJBMI z_GLG_LDL z_UKIBD_CD z_C4D_CHD,6,0.1497129719310509,0.01508,42349.44331194103,0.1336805621997407,0.5317645663141873
+706,z_GEFOS_BMD-FOREARM z_VAN-HEEL_CELIAC z_MAGIC_HBA1C z_GLG_TG z_MAGIC_HOMA-B z_IMSGC-WTCC2_MULTSCLE,6,0.1279517984531755,0.0141858306,39131.43430378047,0.1027698883137745,0.4699712597742396
+487,z_SPIRO-UKB_FEV1 z_GLG_LDL z_VAN-HEEL_CELIAC z_GLG_TG,4,0.0845412610596257,0.018,152338.49375122687,0.1474322876775918,0.5349461523209061
+1134,z_MAGIC_HBA1C z_BCAC_BREAST-CANCER-ERPOS z_TAGC_ASTHMA z_SSGAC_COLLEGE z_MAGIC_HOMA-B z_CARDIOGRAMPLUSC4D_CAD,6,0.1420672595836319,0.00838,112852.50999980255,0.0445240218365629,0.5854264271884885
+1375,z_VGHRV_SDNN z_MAGIC_HOMA-B z_UKIBD_UC z_GLG_LDL z_MAGIC_HBA1C z_IGAP_AZ z_DIAGRAM_T2D,7,0.1203259304226253,0.0097523809523809,49070.67952593441,0.0942467793088732,0.4743856536919613
+1167,z_WILLER_ATRIALFIBRI z_NEIGHBORHOOD_POAG z_ICBP_DBP z_GLG_TG z_IGAP_AZ z_VAN-HEEL_CELIAC z_TAGC_ASTHMA z_SPIRO-UKB_PEF,8,0.0580211015914355,0.0082642857142857,145566.2038757884,0.140015833098121,0.5704705953116378
+336,z_ISGEC_SLEEP-SD z_C4D_CHD z_MAGIC_HOMA-B z_TAGC_ASTHMA z_BCAC_BREAST-CANCER-ERPOS z_DIAGRAM_T2D,6,0.1337544044789961,0.00758,82705.81943479212,0.0407266907992723,0.5956343242037365
+41,z_GLG_TG z_GLG_LDL z_SPIRO-UKB_FEV1-FVC z_GLG_HDL,4,0.1283763678145305,0.02655,174196.0,0.1236007456024044,0.4317283091016877
+298,z_TAGC_ASTHMA z_MAGIC_HBA1C z_ISGEC_SLEEP-SD z_SSGAC_COLLEGE z_BCAC_BREAST-CANCER-ERPOS z_IGAP_AZ z_DIAGRAM_T2D z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_HOMA-B z_NEIGHBORHOOD_POAG z_IMSGC-WTCC2_MULTSCLE,11,0.1472338050632623,0.0086706810727272,80626.02514303278,0.0646078587377984,0.617459161574024
+1647,z_IMSGC-WTCC2_MULTSCLE z_SSGAC_COLLEGE,2,0.0134755833219838,0.0013,75649.31540888772,0.1323774813348991,0.7223225759517726
+315,z_SPIRO-UKB_FEV1 z_SPIRO-UKB_PEF z_WILLER_ATRIALFIBRI z_IMSGC-WTCC2_MULTSCLE z_GLG_TC z_PGC_BIP,6,0.0532904011707912,0.0144466666666666,194193.69290476877,0.1775083022574499,0.61681560971493
+1887,z_MAGIC_HBA1C z_GLG_LDL z_VGHRV_SDNN z_MAGIC_HOMA-B,4,0.1252416298957048,0.0103333333333333,55141.5,0.0571012630925966,0.4261467763873102
+1644,z_VAN-HEEL_CELIAC z_MAGIC_2HGLU-ADJBMI z_GLG_TC z_SPIRO-UKB_FVC,4,0.0960418188010153,0.0156833333333333,130885.99375122684,0.1511967311641081,0.6432719530887009
+1723,z_GLG_HDL z_WILLER_ATRIALFIBRI z_C4D_CHD z_MAGIC_HOMA-B z_NEIGHBORHOOD_POAG z_GLG_LDL z_TAGC_ASTHMA z_MAGIC_HBA1C z_MAGIC_2HGLU-ADJBMI z_VAN-HEEL_CELIAC z_GLG_TC,11,0.1228551517980456,0.0144281521636363,68721.8996648356,0.0909802678793049,0.5132459717744748
+1785,z_VGHRV_SDNN z_GIANT_HIP z_GLG_TG z_GLG_LDL z_VAN-HEEL_CELIAC z_SSGAC_COLLEGE z_IMSGC-WTCC2_MULTSCLE z_PGC_BIP z_ICBP_DBP z_GLG_TC,10,0.0855612012893199,0.0182488888888888,94514.0566135874,0.1749872756491363,0.6058872516205108
+1042,z_ISGEC_SLEEP-SD z_ICBP_DBP z_ICBP_SBP z_BCAC_BREAST-CANCER-ERPOS z_CARDIOGRAMPLUSC4D_CAD z_SPIRO-UKB_FEV1-FVC z_UKBIOBANK_ALAT z_PGC_BIP z_GIANT_HIP z_SSGAC_COLLEGE z_ISGEC_SLEEP-MEAN,11,0.0906698729760977,0.0171521947818181,207684.2586868554,0.1684968807560016,0.7340270038141383
+1230,z_WILLER_ATRIALFIBRI z_VGHRV_SDNN z_GLG_TC z_UKBIOBANK_POAG,4,0.0217326319938325,0.0044166666666666,103337.56838834115,0.1183176857517645,0.537311156472734
+559,z_ISGEC_SLEEP-MEAN z_SPIRO-UKB_FEV1-FVC z_ICBP_SBP z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_PEF z_SPIRO-UKB_FEV1 z_ISGEC_DIURNAL-IN z_SSGAC_COLLEGE z_ICBP_DBP,9,0.0784367531306572,0.0245916666666666,258089.6972913661,0.1722573777134419,0.7216792330462357
+465,z_UKIBD_UC z_PGC_BIP z_ICBP_DBP z_GLG_TC z_GIANT_HIP z_UKIBD_CD z_SPIRO-UKB_PEF z_WILLER_ATRIALFIBRI z_VGHRV_SDNN z_ICBP_SBP z_GLG_HDL,11,0.0626871605470878,0.0222490909090909,152934.99516552722,0.2313358725913795,0.5733177064733321
+182,z_ISGEC_DIURNAL-IN z_GLG_HDL z_UKIBD_UC z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1 z_ICBP_SBP z_GLG_TG z_SPIRO-UKB_PEF,9,0.0646731128297258,0.0236194444444444,246347.8395287294,0.1797318914674525,0.5950392415887262
+1445,z_GIANT_HIP z_TAGC_ASTHMA z_SSGAC_COLLEGE z_MAGIC_HOMA-B z_ISGEC_DIURNAL-IN z_NEIGHBORHOOD_POAG z_SPIRO-UKB_FVC z_GLG_HDL z_UKBIOBANK_ALAT,9,0.1219434243714489,0.0142957880277777,157963.7288433767,0.097487736094446,0.6351440382469806
+1944,z_TAGC_ASTHMA z_GLG_TC z_MAGIC_2HGLU-ADJBMI z_MAGIC_FAST-INSULIN z_WILLER_ATRIALFIBRI z_SSGAC_COLLEGE z_ISGEC_DIURNAL-IN z_MAGIC_HOMA-B z_SPIRO-UKB_FEV1-FVC,9,0.0645102163671844,0.0090194444444444,123337.749006027,0.0873275459892302,0.6416114601273238
+1428,z_IMSGC-WTCC2_MULTSCLE z_PGC_BIP z_MAGIC_FAST-INSULIN z_CARDIOGRAMPLUSC4D_CAD z_GIANT_HIP z_UKBIOBANK_POAG,6,0.1068441352448858,0.0126733333333333,76243.65133443482,0.159147851665268,0.7281644888393856
+150,z_VAN-HEEL_CELIAC z_MAGIC_HBA1C z_MAGIC_2HGLU-ADJBMI,3,0.1294340950690383,0.0174999999999999,24785.325001635807,0.1155362667696048,0.6002841362666933
+274,z_PGC_BIP z_ICBP_SBP z_GIANT_HIP z_GLG_LDL z_SPIRO-UKB_FEV1 z_ISGEC_SLEEP-MEAN z_UKIBD_UC z_ICBP_DBP z_UKIBD_CD z_VAN-HEEL_CELIAC z_MAGIC_2HGLU-ADJBMI z_SPIRO-UKB_FEV1-FVC,12,0.0695153298236532,0.0221272727272727,153646.11296067174,0.2421499659078964,0.6462169458043557
+133,z_VGHRV_SDNN z_SPIRO-UKB_FEV1 z_SPIRO-UKB_FEV1-FVC z_GLG_HDL z_VAN-HEEL_CELIAC z_PGC_BIP z_SPIRO-UKB_PEF z_GEFOS_BMD-FOREARM z_GLG_TG z_UKBIOBANK_ALAT,10,0.0781496526754806,0.0185533333333333,189990.79353180985,0.14834882668588,0.5723473049474492
+625,z_GLG_HDL z_SPIRO-UKB_FEV1-FVC z_GLG_LDL z_WILLER_ATRIALFIBRI z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_2HGLU-ADJBMI z_ICBP_DBP z_VAN-HEEL_CELIAC z_UKBIOBANK_POAG z_DIAGRAM_T2D z_ISGEC_SLEEP-MEAN,11,0.0946034984804523,0.0122963636363636,136864.04808980078,0.1509498682208043,0.6035377645402723
+1334,z_UKBIOBANK_POAG z_IMSGC-WTCC2_MULTSCLE z_MAGIC_2HGLU-ADJBMI z_GLG_LDL z_VGHRV_SDNN z_ISGEC_SLEEP-SD z_NEIGHBORHOOD_POAG z_IGAP_AZ z_ICBP_DBP z_ISGEC_DIURNAL-IN z_MAGIC_FAST-INSULIN z_TAGC_ASTHMA,12,0.0945538220831093,0.0077681818181818,72649.03564810402,0.1167604478703124,0.6666392704974057
+1278,z_ISGEC_SLEEP-MEAN z_SSGAC_COLLEGE z_SPIRO-UKB_PEF z_CARDIOGRAMPLUSC4D_CAD z_ISGEC_SLEEP-SD z_SPIRO-UKB_FEV1 z_BCAC_BREAST-CANCER-ERPOS z_ICBP_SBP z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1-FVC z_PGC_BIP,11,0.0855037656709843,0.01762,236644.1677777645,0.1507616301147009,0.7410848932841055
+641,z_MAGIC_2HGLU-ADJBMI z_ICBP_DBP z_GLG_HDL z_MAGIC_FAST-INSULIN z_TAGC_ASTHMA z_MAGIC_HBA1C z_GEFOS_BMD-FOREARM z_C4D_CHD z_ISGEC_SLEEP-SD z_IGAP_AZ z_GLG_TG z_UKBIOBANK_ALAT,12,0.1550634761335628,0.0158355813484848,106494.37502418408,0.094676737091809,0.5862564612773997
+1471,z_VAN-HEEL_CELIAC z_UKIBD_UC z_TAGC_ASTHMA,3,0.0716413235817607,0.0147,38751.56850668967,0.1895962040425665,0.5360869999645724
+36,z_MAGIC_HBA1C z_DIAGRAM_T2D z_TAGC_ASTHMA z_SSGAC_COLLEGE z_BCAC_BREAST-CANCER-ERPOS z_C4D_CHD,6,0.2121136291435215,0.0136733333333333,89755.81943479214,0.0517372922116864,0.5840143317337964
+1476,z_TAGC_ASTHMA z_GIANT_HIP z_MAGIC_FAST-INSULIN z_ISGEC_DIURNAL-IN z_UKIBD_CD z_SPIRO-UKB_PEF,6,0.087021521727048,0.0120599999999999,129641.17320133257,0.1523996983463591,0.686046589714835
+1697,z_GLG_TC z_TAGC_ASTHMA z_MAGIC_HBA1C z_DIAGRAM_T2D z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE z_GLG_LDL,7,0.1141526306042843,0.0130755932857142,60081.715213907,0.0982385576043977,0.4831980138232068
+1144,z_GLG_TC z_GLG_HDL z_IMSGC-WTCC2_MULTSCLE z_GLG_TG,4,0.0884884070994064,0.0291666666666666,79243.90770444386,0.1346552715905047,0.4454331496965424
+1601,z_SPIRO-UKB_FEV1 z_PGC_BIP,2,0.0208041117370982,0.0035,208322.98015659556,0.263873901967294,0.7649789686500086
+192,z_GLG_LDL z_WILLER_ATRIALFIBRI z_NEIGHBORHOOD_POAG z_TAGC_ASTHMA z_C4D_CHD z_GLG_TG z_GLG_TC z_GEFOS_BMD-FOREARM z_UKIBD_UC z_UKIBD_CD z_IMSGC-WTCC2_MULTSCLE,11,0.1154003610074032,0.022290909090909,66805.45203054749,0.1469200872830987,0.4959194871515098
+1316,z_SSGAC_COLLEGE z_C4D_CHD z_TAGC_ASTHMA z_IGAP_AZ z_MAGIC_FAST-INSULIN z_MAGIC_HBA1C,6,0.1663614753168403,0.0110066666666666,60600.083381701465,0.0494602447159337,0.6354365108954337
+845,z_UKIBD_CD z_SPIRO-UKB_PEF,2,0.0551897688832407,0.0136,217053.4322256991,0.29602996223388,0.5594205759183581
+1268,z_ISGEC_SLEEP-SD z_SPIRO-UKB_PEF,2,0.041210212574476,0.0018,242271.5,0.0721643471173446,0.7657436043057917
+383,z_VAN-HEEL_CELIAC z_ICBP_SBP z_VGHRV_SDNN,3,0.0833788109386555,0.0155999999999999,113296.65833496914,0.2199112384468608,0.6114702939860062
+1307,z_MAGIC_HBA1C z_GLG_TC z_NEIGHBORHOOD_POAG,3,0.1924394827501134,0.015,51881.12827793105,0.0853806379083743,0.4763850235201798
+1377,z_SPIRO-UKB_FVC z_GIANT_HIP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-MEAN,4,0.0866251282826679,0.0135666666666666,267068.5,0.1345575915622025,0.7408854716352948
+168,z_WILLER_ATRIALFIBRI z_GIANT_HIP z_ICBP_DBP,3,0.1593487546287759,0.0441999999999999,224233.52209921528,0.203761331485528,0.6278651256075946
+594,z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FVC z_ICBP_SBP z_SPIRO-UKB_FEV1,4,0.051818316940652,0.0308333333333333,331729.0689055737,0.1830704849428388,0.6886005152031707
+958,z_CARDIOGRAMPLUSC4D_CAD z_C4D_CHD z_BCAC_BREAST-CANCER-ERPOS,3,0.2826585241361947,0.0257666666666666,140379.5602208221,0.0318530947963322,0.6825843118926381
+1408,z_DIAGRAM_T2D z_TAGC_ASTHMA z_GLG_HDL z_MAGIC_HBA1C z_MAGIC_2HGLU-ADJBMI z_C4D_CHD z_GLG_TC z_GLG_LDL z_UKIBD_CD z_UKBIOBANK_POAG,10,0.1366673607281095,0.0153210748666666,59062.8212693575,0.1348361504523458,0.5018382143227557
+592,z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FVC,2,0.0278200239750478,0.0135,400102.0,0.1688233005882726,0.6327641933858442
+1182,z_UKBIOBANK_POAG z_SSGAC_COLLEGE z_IGAP_AZ z_BCAC_BREAST-CANCER-ERPOS z_IMSGC-WTCC2_MULTSCLE z_MAGIC_FAST-INSULIN,6,0.1137541479724746,0.00562,88900.85730152547,0.0913860901707053,0.7237872912979717
+1801,z_DIAGRAM_T2D z_GEFOS_BMD-FOREARM z_NEIGHBORHOOD_POAG z_IGAP_AZ z_MAGIC_HOMA-B z_GLG_TG z_WILLER_ATRIALFIBRI z_UKIBD_CD z_TAGC_ASTHMA z_MAGIC_HBA1C z_IMSGC-WTCC2_MULTSCLE,11,0.1218458315016612,0.0128106810727272,59290.165643653294,0.1146575041657396,0.4939800534284094
+1400,z_PGC_BIP z_ISGEC_DIURNAL-IN z_CARDIOGRAMPLUSC4D_CAD z_GIANT_HIP z_ISGEC_SLEEP-MEAN z_SPIRO-UKB_FEV1-FVC z_ISGEC_SLEEP-SD z_ICBP_DBP z_BCAC_BREAST-CANCER-ERPOS,9,0.0694501616857693,0.0109269642499999,167381.53839504547,0.1511892195903571,0.7710492852189827
+294,z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_SPIRO-UKB_FVC z_GLG_TG z_GLG_HDL z_GEFOS_BMD-FOREARM,6,0.0826064408550955,0.0289933333333333,234205.16666666663,0.1286495461550943,0.5262108653001604
+791,z_SSGAC_COLLEGE z_SPIRO-UKB_FVC z_IMSGC-WTCC2_MULTSCLE z_ICBP_DBP z_GLG_LDL z_MAGIC_FAST-INSULIN z_UKBIOBANK_POAG z_IGAP_AZ z_GEFOS_BMD-FOREARM z_GIANT_HIP z_GLG_TC z_SPIRO-UKB_FEV1-FVC,12,0.0864742810515255,0.0111378787878787,146158.15568223817,0.1410714520107773,0.6223449420906045
+58,z_ISGEC_SLEEP-SD z_IGAP_AZ z_BCAC_BREAST-CANCER-ERPOS z_NEIGHBORHOOD_POAG z_MAGIC_HOMA-B z_IMSGC-WTCC2_MULTSCLE z_CARDIOGRAMPLUSC4D_CAD z_TAGC_ASTHMA z_MAGIC_FAST-INSULIN z_C4D_CHD,10,0.1275981228024508,0.0087244444444444,75052.24011839958,0.0569925123866621,0.6553178811045668
+284,z_ISGEC_SLEEP-MEAN z_ICBP_SBP z_SSGAC_COLLEGE z_SPIRO-UKB_PEF z_ICBP_DBP z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_CARDIOGRAMPLUSC4D_CAD z_ISGEC_DIURNAL-IN z_MAGIC_FAST-INSULIN,11,0.0974377671472767,0.0262454545454545,245852.6917836294,0.1639458997423937,0.7306692360068265
+1335,z_GLG_TG z_VGHRV_SDNN z_SPIRO-UKB_FEV1 z_GIANT_HIP z_GLG_HDL z_MAGIC_2HGLU-ADJBMI z_UKBIOBANK_ALAT z_ICBP_SBP z_UKIBD_CD,9,0.0955452129622085,0.0181916666666666,172886.87382793313,0.1826763020618484,0.5802105538041229
+759,z_GLG_TC z_C4D_CHD z_DIAGRAM_T2D z_UKIBD_UC z_GLG_TG z_GEFOS_BMD-FOREARM z_MAGIC_2HGLU-ADJBMI z_IGAP_AZ,8,0.159396788753913,0.0194607142857142,46104.444012723616,0.1042583013096612,0.5266574898619478
+1937,z_WILLER_ATRIALFIBRI z_UKIBD_CD z_MAGIC_2HGLU-ADJBMI z_PGC_BIP,4,0.0540024681989385,0.0185166666666666,73500.84776555875,0.2538079260462135,0.6648391873208915
+1343,z_VGHRV_SDNN z_MAGIC_2HGLU-ADJBMI z_WILLER_ATRIALFIBRI z_UKIBD_CD z_IMSGC-WTCC2_MULTSCLE z_GLG_TG z_MAGIC_HOMA-B z_IGAP_AZ z_MAGIC_HBA1C z_UKBIOBANK_POAG z_DIAGRAM_T2D z_GLG_LDL,12,0.0938958793569924,0.0102967796818181,63974.66414545957,0.125794382567689,0.5204863510961183
+526,z_MAGIC_FAST-INSULIN z_PGC_BIP z_UKIBD_CD z_ICBP_SBP z_ISGEC_DIURNAL-IN,5,0.0555818362243514,0.01514,96103.16495291788,0.2713259669854389,0.7522978220017557
+482,z_DIAGRAM_T2D z_NEIGHBORHOOD_POAG z_MAGIC_HBA1C z_TAGC_ASTHMA z_UKIBD_CD z_UKIBD_UC z_GLG_LDL z_WILLER_ATRIALFIBRI,8,0.1026289376303069,0.0167142857142857,70739.52711345143,0.1558030006300269,0.484469822320831
+1324,z_ICBP_SBP z_VAN-HEEL_CELIAC z_GLG_HDL z_MAGIC_2HGLU-ADJBMI z_ISGEC_SLEEP-MEAN,5,0.1042720199831351,0.01599,102528.99500098148,0.1868009468409729,0.6688643607906695
+1726,z_DIAGRAM_T2D z_ISGEC_SLEEP-MEAN z_SSGAC_COLLEGE z_ICBP_SBP z_GEFOS_BMD-FOREARM z_UKBIOBANK_ALAT z_ISGEC_DIURNAL-IN z_MAGIC_HBA1C z_C4D_CHD z_TAGC_ASTHMA z_ICBP_DBP z_SPIRO-UKB_FEV1-FVC,12,0.1382164347590501,0.021280303030303,160384.3867488715,0.1391437097269526,0.6160548100789176
+1589,z_WILLER_ATRIALFIBRI z_UKBIOBANK_POAG z_BCAC_BREAST-CANCER-ERPOS z_CARDIOGRAMPLUSC4D_CAD z_NEIGHBORHOOD_POAG z_UKIBD_UC z_VGHRV_SDNN,7,0.0742259815991077,0.0074666666666666,108362.58562684864,0.1106132008834158,0.612440764845329
+587,z_SSGAC_COLLEGE z_ICBP_DBP,2,0.0870183383059183,0.0158,212791.5,0.2356425163713894,0.727064434207636
+85,z_MAGIC_HBA1C z_ISGEC_DIURNAL-IN z_GEFOS_BMD-FOREARM z_PGC_BIP z_DIAGRAM_T2D z_SSGAC_COLLEGE z_MAGIC_2HGLU-ADJBMI z_UKIBD_UC z_UKBIOBANK_POAG z_GLG_TG,10,0.1126594908476524,0.0152133333333333,53202.68941370873,0.1382771421075048,0.6160486268503406
+1385,z_UKBIOBANK_ALAT z_UKIBD_UC z_SPIRO-UKB_FVC,3,0.0384310865836917,0.0098,291176.18525285483,0.1949314513326778,0.5977188883541729
+1725,z_VGHRV_SDNN z_GEFOS_BMD-FOREARM z_GLG_TC z_GLG_TG,4,0.0610326168725515,0.0175,57076.75,0.084074173858062,0.447340989824493
+973,z_IMSGC-WTCC2_MULTSCLE z_WILLER_ATRIALFIBRI z_DIAGRAM_T2D z_VGHRV_SDNN z_GLG_HDL z_UKIBD_UC z_UKIBD_CD z_MAGIC_2HGLU-ADJBMI z_TAGC_ASTHMA z_GLG_TG z_MAGIC_HBA1C z_C4D_CHD,12,0.1457708715704258,0.0199641792121212,62295.02152598682,0.1364958070494531,0.5083588476744398
+1137,z_BCAC_BREAST-CANCER-ERPOS z_IGAP_AZ z_SPIRO-UKB_FEV1 z_WILLER_ATRIALFIBRI z_SPIRO-UKB_PEF,5,0.0728733251303697,0.01501,260556.2744066608,0.0877155723579458,0.6502094427456256
+355,z_VGHRV_SDNN z_UKBIOBANK_POAG z_GEFOS_BMD-FOREARM z_GLG_TG z_NEIGHBORHOOD_POAG z_WILLER_ATRIALFIBRI z_MAGIC_HBA1C z_GLG_LDL,8,0.0913592125075431,0.0109571428571428,72840.83229839473,0.0900034201412496,0.4937855931392061
+293,z_TAGC_ASTHMA z_UKBIOBANK_POAG z_NEIGHBORHOOD_POAG z_SSGAC_COLLEGE z_ISGEC_SLEEP-SD z_IGAP_AZ z_CARDIOGRAMPLUSC4D_CAD z_IMSGC-WTCC2_MULTSCLE z_DIAGRAM_T2D,9,0.131508915334444,0.0091027777777777,69800.85646742053,0.0925704194665801,0.6586186242289215
+545,z_MAGIC_2HGLU-ADJBMI z_NEIGHBORHOOD_POAG z_MAGIC_HOMA-B z_GLG_HDL z_UKBIOBANK_POAG z_GLG_TG z_GEFOS_BMD-FOREARM,7,0.1310312927726678,0.0157523809523809,48818.584584216005,0.0929854799510714,0.5155884281934189
+267,z_SSGAC_COLLEGE z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_HBA1C z_IGAP_AZ,4,0.2101332266809229,0.01375,95642.0349333218,0.0556645804159107,0.6487894942290839
+189,z_GLG_LDL z_BCAC_BREAST-CANCER-ERPOS z_UKIBD_UC z_IMSGC-WTCC2_MULTSCLE z_GLG_TC z_ISGEC_DIURNAL-IN,6,0.1279879005262243,0.0177666666666666,94783.07703310576,0.1383928645500324,0.5952731219192103
+1761,z_SSGAC_COLLEGE z_C4D_CHD z_MAGIC_HOMA-B,3,0.160496923789286,0.0121,67740.93180674933,0.0415342251423417,0.6121363378127547
+702,z_WILLER_ATRIALFIBRI z_VAN-HEEL_CELIAC z_NEIGHBORHOOD_POAG z_GLG_LDL z_IGAP_AZ,5,0.0652872241071802,0.00778,80272.89124994198,0.1098285264808039,0.5852298595332885
+384,z_DIAGRAM_T2D z_TAGC_ASTHMA z_NEIGHBORHOOD_POAG z_IGAP_AZ z_GEFOS_BMD-FOREARM z_GLG_TG z_MAGIC_HOMA-B z_MAGIC_2HGLU-ADJBMI z_UKIBD_CD z_MAGIC_HBA1C z_GLG_LDL z_IMSGC-WTCC2_MULTSCLE,12,0.1166422744013943,0.0117498099848484,44925.43798187837,0.1141640353559776,0.5043586769132349
+1132,z_NEIGHBORHOOD_POAG z_MAGIC_HBA1C z_VAN-HEEL_CELIAC z_UKIBD_UC z_TAGC_ASTHMA z_GLG_TC z_VGHRV_SDNN z_IGAP_AZ z_UKBIOBANK_POAG z_GLG_HDL z_GLG_TG z_MAGIC_2HGLU-ADJBMI,12,0.0976633845018377,0.011978005590909,51688.19397691206,0.1189445472277825,0.5340887267136462
+993,z_NEIGHBORHOOD_POAG z_MAGIC_HBA1C z_C4D_CHD z_UKBIOBANK_POAG,4,0.3060055729473405,0.0227833333333333,38057.72187744002,0.086267188275563,0.5576154789359185
+1765,z_PGC_BIP z_UKBIOBANK_ALAT z_SPIRO-UKB_FEV1 z_GIANT_HIP z_BCAC_BREAST-CANCER-ERPOS z_ICBP_DBP,6,0.0541165845854049,0.0097913808666666,254346.8726559143,0.1973205030361074,0.7015257914901563
+1826,z_DIAGRAM_T2D z_UKBIOBANK_POAG z_CARDIOGRAMPLUSC4D_CAD z_NEIGHBORHOOD_POAG z_BCAC_BREAST-CANCER-ERPOS z_IMSGC-WTCC2_MULTSCLE z_MAGIC_HBA1C z_MAGIC_HOMA-B,8,0.1758989395927993,0.0114352663928571,77930.03486988983,0.0858214551182551,0.5649951770000551
+1187,z_GIANT_HIP z_VGHRV_SDNN z_WILLER_ATRIALFIBRI z_VAN-HEEL_CELIAC z_UKBIOBANK_ALAT z_GLG_TC z_MAGIC_2HGLU-ADJBMI,7,0.1074511204150545,0.0178142857142857,137499.6487575076,0.1197175247735278,0.613586087477753
+1249,z_SPIRO-UKB_FEV1-FVC z_GLG_TC z_GIANT_HIP z_GLG_HDL,4,0.085133557276738,0.01565,185299.0,0.1353765020144585,0.5270398492805137
+1261,z_ISGEC_SLEEP-SD z_GIANT_HIP,2,0.1759263121517122,0.0117,114948.5,0.072534247377043,0.8294793259320987
+576,z_ICBP_SBP z_SSGAC_COLLEGE z_UKIBD_UC,3,0.0561187044585984,0.0115333333333333,153914.1852528548,0.2499482226099366,0.6488746208757793
+1391,z_C4D_CHD z_GLG_HDL z_IGAP_AZ z_NEIGHBORHOOD_POAG z_GLG_TG z_GLG_TC z_VGHRV_SDNN,7,0.1350856609312673,0.017447619047619,58759.387195343545,0.0807143198926419,0.5207818772160989
+1475,z_SSGAC_COLLEGE z_CARDIOGRAMPLUSC4D_CAD z_ISGEC_SLEEP-MEAN z_ICBP_SBP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-SD,6,0.1454740423492998,0.0168933333333333,199285.4349366539,0.1331787892746872,0.7664887291561993
+311,z_ICBP_SBP z_UKBIOBANK_ALAT z_SPIRO-UKB_FEV1 z_ISGEC_SLEEP-SD z_SPIRO-UKB_FVC z_PGC_BIP z_BCAC_BREAST-CANCER-ERPOS z_SSGAC_COLLEGE z_ICBP_DBP,9,0.0803533923463235,0.0224555555555555,254527.91510394288,0.1908991457817186,0.7303073843548513
+491,z_UKBIOBANK_ALAT z_ICBP_SBP z_PGC_BIP z_ISGEC_DIURNAL-IN z_ICBP_DBP z_MAGIC_FAST-INSULIN z_SPIRO-UKB_FEV1 z_SSGAC_COLLEGE z_GIANT_HIP z_ISGEC_SLEEP-SD z_SPIRO-UKB_FEV1-FVC z_BCAC_BREAST-CANCER-ERPOS,12,0.0898337104940156,0.0174041017121212,213929.1863279572,0.1649151795443754,0.7453722563817959
+1918,z_MAGIC_HOMA-B z_NEIGHBORHOOD_POAG z_UKBIOBANK_POAG z_MAGIC_FAST-INSULIN z_IGAP_AZ z_DIAGRAM_T2D z_CARDIOGRAMPLUSC4D_CAD z_SSGAC_COLLEGE z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_HBA1C,10,0.1495706862465509,0.0111066666666666,81811.41782547068,0.0651939821887581,0.6320533879294423
+611,z_SPIRO-UKB_FEV1-FVC z_GLG_LDL z_IMSGC-WTCC2_MULTSCLE z_GLG_TC z_MAGIC_2HGLU-ADJBMI z_IGAP_AZ z_CARDIOGRAMPLUSC4D_CAD,7,0.0863763014370059,0.0120619047619047,120724.39579300895,0.1154662043668354,0.5847619635952243
+1359,z_GLG_HDL z_SPIRO-UKB_FEV1 z_GLG_LDL z_GLG_TC z_ICBP_SBP z_VGHRV_SDNN z_SPIRO-UKB_PEF z_WILLER_ATRIALFIBRI,8,0.0627738925603709,0.0172035714285714,206387.3207872057,0.1484198562023728,0.528850695419464
+422,z_VGHRV_SDNN z_UKIBD_UC z_SPIRO-UKB_FEV1-FVC z_PGC_BIP z_GIANT_HIP z_UKBIOBANK_ALAT z_GLG_TC z_VAN-HEEL_CELIAC z_MAGIC_2HGLU-ADJBMI z_WILLER_ATRIALFIBRI z_UKIBD_CD z_SPIRO-UKB_PEF,12,0.0694776689312947,0.017930303030303,154117.49348547557,0.1872614053643158,0.6072309666139015
+1539,z_TAGC_ASTHMA z_GLG_TC z_MAGIC_HBA1C z_GLG_HDL z_GLG_TG z_IMSGC-WTCC2_MULTSCLE z_UKIBD_UC z_UKBIOBANK_POAG z_VAN-HEEL_CELIAC,9,0.0814763852126565,0.0130593285555555,60129.11595484037,0.1488955129567141,0.487215139439201
+713,z_SPIRO-UKB_FVC z_ISGEC_SLEEP-SD z_ICBP_SBP,3,0.0450003523651912,0.0078333333333333,261189.0,0.1938270008909437,0.7485174529559334
+1875,z_VAN-HEEL_CELIAC z_MAGIC_HBA1C z_IMSGC-WTCC2_MULTSCLE z_WILLER_ATRIALFIBRI z_TAGC_ASTHMA z_UKIBD_UC,6,0.0966928307757724,0.0126391639333333,69263.81710591503,0.1491762309242631,0.518390699660841
+349,z_UKIBD_CD z_GLG_LDL z_SPIRO-UKB_PEF,3,0.0510924138579029,0.0094666666666666,178002.28815046605,0.2339849547481714,0.5084287148397412
+1781,z_ICBP_DBP z_SSGAC_COLLEGE z_SPIRO-UKB_FVC z_ICBP_SBP z_SPIRO-UKB_PEF z_PGC_BIP z_UKBIOBANK_ALAT z_ISGEC_DIURNAL-IN z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1,10,0.075444915979674,0.0240133333333333,269116.9235935486,0.1912115540924553,0.7201343239763441
+866,z_PGC_BIP z_ICBP_SBP,2,0.0197019562279949,0.0022,157783.98015659553,0.3738883466737839,0.7285907047677492
+352,z_ICBP_DBP z_ICBP_SBP z_GIANT_HIP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-SD z_SSGAC_COLLEGE z_ISGEC_SLEEP-MEAN,7,0.0997818734623576,0.0269857142857142,211031.42857142855,0.1798686785536212,0.7471756776165807
+92,z_MAGIC_HOMA-B z_VGHRV_SDNN z_GLG_TC z_UKIBD_CD z_TAGC_ASTHMA z_DIAGRAM_T2D,6,0.0604448130569876,0.0073066666666666,51866.45166960135,0.1406869962214411,0.4655853328128636
+1313,z_MAGIC_2HGLU-ADJBMI z_ICBP_DBP z_UKBIOBANK_ALAT z_ICBP_SBP z_VGHRV_SDNN z_UKIBD_CD z_GLG_LDL z_VAN-HEEL_CELIAC z_GLG_HDL z_SPIRO-UKB_FEV1-FVC,10,0.0858049350221005,0.0204866666666666,172560.58394563055,0.2153353530730189,0.5644313524752687
+724,z_UKIBD_UC z_MAGIC_HBA1C z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE z_SPIRO-UKB_FEV1-FVC z_MAGIC_HOMA-B z_CARDIOGRAMPLUSC4D_CAD z_WILLER_ATRIALFIBRI z_NEIGHBORHOOD_POAG z_SPIRO-UKB_FVC z_TAGC_ASTHMA,11,0.097427630551371,0.0095852265272727,133880.13201796936,0.1119596693288894,0.553271697514938
+674,z_C4D_CHD z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_SSGAC_COLLEGE z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_MAGIC_HBA1C z_UKBIOBANK_POAG z_TAGC_ASTHMA z_CARDIOGRAMPLUSC4D_CAD z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_HOMA-B,12,0.1603936679052523,0.0116636363636363,79475.46819318236,0.060375530631865,0.6361010086424089
+134,z_GLG_TC z_UKIBD_UC z_UKBIOBANK_ALAT z_MAGIC_2HGLU-ADJBMI z_GLG_TG z_ICBP_DBP z_GLG_LDL z_ISGEC_SLEEP-MEAN z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FVC z_GEFOS_BMD-FOREARM z_UKIBD_CD,12,0.0698459658906501,0.0174545454545454,167286.45168416356,0.1860216803874005,0.5629060760943365
+1979,z_UKIBD_CD z_GLG_TC z_UKIBD_UC z_VGHRV_SDNN z_C4D_CHD z_MAGIC_2HGLU-ADJBMI z_WILLER_ATRIALFIBRI z_GLG_TG z_IGAP_AZ,9,0.1084506721610825,0.0209027777777777,67881.03467124667,0.1456995376725871,0.5450086687589891
+1365,z_SPIRO-UKB_PEF z_ICBP_DBP z_ISGEC_DIURNAL-IN z_ICBP_SBP z_ISGEC_SLEEP-MEAN z_GLG_TG z_VGHRV_SDNN z_SPIRO-UKB_FEV1-FVC z_GIANT_HIP z_WILLER_ATRIALFIBRI z_UKIBD_CD z_UKBIOBANK_ALAT,12,0.0661944279501252,0.0195045454545454,211509.7025624203,0.1891701580319387,0.6275561519240264
+30,z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FVC,2,0.1159499384673592,0.0055,313895.1378111474,0.0861479943094108,0.7301304969043543
+266,z_MAGIC_HBA1C z_CARDIOGRAMPLUSC4D_CAD z_DIAGRAM_T2D z_ISGEC_SLEEP-SD z_SSGAC_COLLEGE z_MAGIC_HOMA-B z_IGAP_AZ z_BCAC_BREAST-CANCER-ERPOS z_UKBIOBANK_POAG,9,0.1390553750574862,0.0082055555555555,93616.42149121262,0.0623098922767981,0.6375400587757175
+1752,z_PGC_BIP z_GLG_TG z_VAN-HEEL_CELIAC,3,0.0644102028921396,0.0248333333333333,41965.311772699504,0.2225416510428823,0.632126653044214
+187,z_TAGC_ASTHMA z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_2HGLU-ADJBMI z_SPIRO-UKB_FEV1-FVC z_WILLER_ATRIALFIBRI z_SSGAC_COLLEGE z_VAN-HEEL_CELIAC z_MAGIC_HBA1C z_NEIGHBORHOOD_POAG z_ISGEC_DIURNAL-IN,10,0.0981552384265272,0.0104266666666666,115812.97105128672,0.099150644605742,0.6489238664289725
+531,z_C4D_CHD z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_HOMA-B z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_UKBIOBANK_POAG z_SSGAC_COLLEGE z_IGAP_AZ z_MAGIC_HBA1C z_IMSGC-WTCC2_MULTSCLE z_TAGC_ASTHMA z_CARDIOGRAMPLUSC4D_CAD,12,0.1376461137428259,0.0091907190757575,80932.6436338268,0.0660858025587894,0.6475386071312337
+852,z_SPIRO-UKB_FEV1 z_VAN-HEEL_CELIAC z_CARDIOGRAMPLUSC4D_CAD z_ISGEC_SLEEP-SD z_IGAP_AZ z_ICBP_DBP z_MAGIC_FAST-INSULIN z_DIAGRAM_T2D,8,0.123420132753006,0.0125249999999999,136531.09819347592,0.1307182914265283,0.6972924112316514
+554,z_ICBP_DBP z_GLG_HDL z_UKIBD_CD z_GEFOS_BMD-FOREARM z_MAGIC_2HGLU-ADJBMI z_UKIBD_UC z_ISGEC_DIURNAL-IN z_GLG_LDL z_SPIRO-UKB_FEV1,9,0.0909349803272544,0.0187583333333333,119723.15780110697,0.2000493782597522,0.5769935101935953
+73,z_NEIGHBORHOOD_POAG z_UKBIOBANK_POAG z_SSGAC_COLLEGE z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE z_CARDIOGRAMPLUSC4D_CAD z_C4D_CHD,7,0.1705445935337769,0.0136523809523809,66686.09400868895,0.0968722619207869,0.6677866962924901
+981,z_ISGEC_SLEEP-SD z_PGC_BIP z_ICBP_SBP z_GIANT_HIP z_SPIRO-UKB_FEV1 z_SSGAC_COLLEGE z_SPIRO-UKB_PEF z_ISGEC_SLEEP-MEAN z_ISGEC_DIURNAL-IN z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_FAST-INSULIN z_SPIRO-UKB_FEV1-FVC,12,0.102455964886693,0.0169742424242424,187641.21416109288,0.145103402979371,0.7692365361200699
+1266,z_NEIGHBORHOOD_POAG z_ISGEC_DIURNAL-IN z_GLG_TC z_ICBP_SBP z_VGHRV_SDNN z_UKBIOBANK_POAG z_UKIBD_CD,7,0.0864823923903655,0.0118857142857142,88105.27950584433,0.2037643407843568,0.6126096491260602
+204,z_GEFOS_BMD-FOREARM z_MAGIC_HBA1C z_UKIBD_UC z_UKBIOBANK_POAG z_DIAGRAM_T2D z_IGAP_AZ z_MAGIC_HOMA-B z_WILLER_ATRIALFIBRI z_VAN-HEEL_CELIAC z_NEIGHBORHOOD_POAG z_IMSGC-WTCC2_MULTSCLE,11,0.1301236813561674,0.0131270447090909,51338.63826285288,0.1198322816789971,0.5335422674518362
+669,z_TAGC_ASTHMA z_WILLER_ATRIALFIBRI z_MAGIC_FAST-INSULIN z_UKIBD_CD z_MAGIC_HBA1C z_CARDIOGRAMPLUSC4D_CAD z_IGAP_AZ z_NEIGHBORHOOD_POAG z_GLG_LDL z_GLG_TG,10,0.0855037918910553,0.0098711111111111,84208.11300727216,0.1105935050596514,0.5532720715393628
+1607,z_DIAGRAM_T2D z_GIANT_HIP z_UKBIOBANK_POAG z_SSGAC_COLLEGE,4,0.0901940893709414,0.0099333333333333,93419.84451633292,0.1190853263858657,0.6753116877326484
+1806,z_ISGEC_DIURNAL-IN z_GLG_HDL z_VAN-HEEL_CELIAC z_ICBP_DBP z_SPIRO-UKB_PEF,5,0.0552105633991044,0.0088399999999999,179364.1950009815,0.1899145237957183,0.6418745236680703
+43,z_SSGAC_COLLEGE z_IGAP_AZ z_DIAGRAM_T2D z_C4D_CHD,4,0.2404053150017727,0.0178666666666666,60951.49908580611,0.0616499020872246,0.6491691385672476
+586,z_WILLER_ATRIALFIBRI z_UKIBD_CD z_MAGIC_2HGLU-ADJBMI z_DIAGRAM_T2D z_VAN-HEEL_CELIAC z_SPIRO-UKB_FEV1 z_ISGEC_DIURNAL-IN,7,0.0936724541611467,0.0173666666666666,116453.29665193774,0.1764493197388772,0.6540678629534769
+1031,z_TAGC_ASTHMA z_IMSGC-WTCC2_MULTSCLE z_UKBIOBANK_POAG z_C4D_CHD,4,0.0997630796089275,0.00755,46030.57706258487,0.1204770077222811,0.5674689217726405
+42,z_SSGAC_COLLEGE z_UKBIOBANK_POAG z_C4D_CHD z_MAGIC_FAST-INSULIN z_MAGIC_HBA1C z_TAGC_ASTHMA z_ISGEC_SLEEP-SD z_DIAGRAM_T2D z_MAGIC_HOMA-B z_BCAC_BREAST-CANCER-ERPOS z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE,12,0.1462904334549347,0.0095982948333333,70693.31539963423,0.0689505091990335,0.6284435141738437
+631,z_ISGEC_DIURNAL-IN z_MAGIC_FAST-INSULIN z_SSGAC_COLLEGE z_TAGC_ASTHMA z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_PEF z_GEFOS_BMD-FOREARM z_NEIGHBORHOOD_POAG z_ICBP_SBP z_VGHRV_SDNN z_MAGIC_2HGLU-ADJBMI,11,0.0887174017080468,0.011650909090909,135398.3235991264,0.1123651339441087,0.6611010503555135
+1812,z_MAGIC_HOMA-B z_IGAP_AZ z_MAGIC_FAST-INSULIN z_IMSGC-WTCC2_MULTSCLE z_CARDIOGRAMPLUSC4D_CAD z_TAGC_ASTHMA z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_MAGIC_HBA1C,9,0.1442456397786799,0.0110774294166666,54931.55566122951,0.0712746227441069,0.5706680487576156
+1487,z_MAGIC_FAST-INSULIN z_BCAC_BREAST-CANCER-ERPOS z_IMSGC-WTCC2_MULTSCLE z_MAGIC_HBA1C z_UKBIOBANK_POAG z_MAGIC_HOMA-B z_ISGEC_SLEEP-SD z_CARDIOGRAMPLUSC4D_CAD,8,0.117245686265455,0.0079066949642857,87518.15291446408,0.0715269821135294,0.6488931223925881
+1077,z_GLG_HDL z_ISGEC_DIURNAL-IN,2,0.1781086240719913,0.019,92470.5,0.1088513282084233,0.6640416618746376
+583,z_GLG_TG z_CARDIOGRAMPLUSC4D_CAD z_UKBIOBANK_POAG z_WILLER_ATRIALFIBRI z_MAGIC_HOMA-B z_ICBP_SBP z_MAGIC_HBA1C z_UKIBD_UC z_GLG_HDL z_SSGAC_COLLEGE z_GEFOS_BMD-FOREARM,11,0.1187988331456894,0.0163963636363636,110179.85808471388,0.1290701784355871,0.5255173155182271
+178,z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_PEF z_UKBIOBANK_ALAT z_SSGAC_COLLEGE z_SPIRO-UKB_FEV1 z_ICBP_DBP z_ISGEC_DIURNAL-IN z_ISGEC_SLEEP-SD,8,0.0850799316008282,0.0121214285714285,257492.53445278684,0.1279870972722485,0.7432548186209785
+1401,z_GLG_LDL z_UKIBD_CD z_GLG_TC z_DIAGRAM_T2D z_GLG_TG z_WILLER_ATRIALFIBRI z_MAGIC_HBA1C z_GLG_HDL z_NEIGHBORHOOD_POAG z_MAGIC_2HGLU-ADJBMI z_VGHRV_SDNN,11,0.1118975085017193,0.0172618181818181,72545.22603567726,0.1259088211453398,0.4951420581368397
+884,z_SPIRO-UKB_FEV1 z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FVC,3,0.0188084719885601,0.0740333333333333,400102.0,0.169208377348774,0.649662394718645
+1516,z_DIAGRAM_T2D z_VAN-HEEL_CELIAC z_TAGC_ASTHMA z_SPIRO-UKB_FVC z_GLG_TG z_NEIGHBORHOOD_POAG z_UKIBD_CD z_WILLER_ATRIALFIBRI z_ISGEC_DIURNAL-IN z_MAGIC_2HGLU-ADJBMI z_GLG_TC z_MAGIC_FAST-INSULIN,12,0.0884271309002544,0.013630303030303,94547.80301282956,0.1370084164929212,0.614359797542807
+1864,z_NEIGHBORHOOD_POAG z_ICBP_SBP z_SPIRO-UKB_PEF,3,0.016896272244308,0.0042,237649.12827793104,0.1968689329027673,0.6200329517454207
+1680,z_ICBP_SBP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-MEAN z_PGC_BIP,4,0.0624695162793021,0.0164833333333333,209570.99007829776,0.2501241238608238,0.7409103407380914
+698,z_MAGIC_HBA1C z_TAGC_ASTHMA z_BCAC_BREAST-CANCER-ERPOS,3,0.0954172818222668,0.0037666666666666,113799.1501262973,0.0381950408393131,0.523531293171004
+996,z_SPIRO-UKB_PEF z_GLG_TG z_ISGEC_DIURNAL-IN z_GLG_LDL z_ICBP_SBP z_SPIRO-UKB_FVC z_ICBP_DBP,7,0.0561427679571051,0.0270714285714285,239929.57142857145,0.1971836904651991,0.6076068570976771
+129,z_CARDIOGRAMPLUSC4D_CAD z_UKBIOBANK_POAG,2,0.0366301648544401,0.0019,112268.1584378212,0.1250855290987236,0.6655790096469544
+228,z_ICBP_SBP z_GLG_LDL,2,0.1063007560448538,0.0127,199462.0,0.2499511800297555,0.5085636311511174
+56,z_SPIRO-UKB_FEV1-FVC z_GLG_TC,2,0.0017614861472957,0.0017,247778.0,0.1524883305139573,0.4866636027243571
+1618,z_SPIRO-UKB_FVC z_UKIBD_UC z_UKBIOBANK_ALAT z_GLG_HDL z_UKIBD_CD z_GLG_LDL,6,0.1185915991520768,0.0267466666666666,184602.9033683271,0.2141521482124616,0.5165959914612099
+393,z_C4D_CHD z_IGAP_AZ z_SSGAC_COLLEGE z_MAGIC_FAST-INSULIN z_NEIGHBORHOOD_POAG z_IMSGC-WTCC2_MULTSCLE z_DIAGRAM_T2D z_ISGEC_SLEEP-SD,8,0.1867077277789749,0.0124642857142857,51624.25149934913,0.0726619807502043,0.7002621581522893
+1193,z_MAGIC_HOMA-B z_UKBIOBANK_POAG z_C4D_CHD z_BCAC_BREAST-CANCER-ERPOS,4,0.1244409752444002,0.0062499999999999,91478.94457456542,0.0625705348936645,0.5869786483450414
+627,z_GEFOS_BMD-FOREARM z_MAGIC_2HGLU-ADJBMI z_UKIBD_UC z_GLG_TC z_IGAP_AZ z_UKIBD_CD z_IMSGC-WTCC2_MULTSCLE z_VAN-HEEL_CELIAC z_GLG_TG z_MAGIC_HBA1C z_VGHRV_SDNN,11,0.1188245020551162,0.0203961356181818,40385.0505587281,0.1533657828612879,0.5293114277361141
+854,z_DIAGRAM_T2D z_SPIRO-UKB_FEV1 z_SPIRO-UKB_PEF,3,0.1030220590195466,0.0415,280101.5569365376,0.127252225220473,0.5907345450548832
+1493,z_BCAC_BREAST-CANCER-ERPOS z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE z_TAGC_ASTHMA z_CARDIOGRAMPLUSC4D_CAD z_SSGAC_COLLEGE z_C4D_CHD z_NEIGHBORHOOD_POAG z_MAGIC_HBA1C z_MAGIC_FAST-INSULIN,10,0.1549462641340325,0.0100486102,79282.24011839957,0.0635988732341105,0.6483458856226025
+1039,z_ISGEC_SLEEP-MEAN z_SSGAC_COLLEGE z_SPIRO-UKB_FVC z_ISGEC_DIURNAL-IN z_SPIRO-UKB_PEF z_CARDIOGRAMPLUSC4D_CAD z_ICBP_DBP z_PGC_BIP z_ICBP_SBP z_UKBIOBANK_ALAT,10,0.1004557420384571,0.0237822222222222,231180.05699331145,0.1915867066834796,0.7385989249836966
+1912,z_MAGIC_HOMA-B z_C4D_CHD z_IMSGC-WTCC2_MULTSCLE z_IGAP_AZ z_UKBIOBANK_POAG z_TAGC_ASTHMA z_MAGIC_HBA1C z_BCAC_BREAST-CANCER-ERPOS z_DIAGRAM_T2D z_ISGEC_SLEEP-SD z_NEIGHBORHOOD_POAG,11,0.1518728979456498,0.0092815901636363,62672.37905721853,0.072915583133156,0.5867487616838086
+1346,z_VGHRV_SDNN z_SSGAC_COLLEGE z_ICBP_SBP z_NEIGHBORHOOD_POAG z_SPIRO-UKB_PEF z_TAGC_ASTHMA z_GLG_TC z_DIAGRAM_T2D z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1 z_GLG_TG z_GLG_HDL,12,0.1032566803527396,0.0137771187878787,157923.87550185816,0.1167607939942046,0.5688866513819743
+870,z_VGHRV_SDNN z_IMSGC-WTCC2_MULTSCLE z_GLG_LDL z_GLG_HDL z_CARDIOGRAMPLUSC4D_CAD z_SPIRO-UKB_FEV1 z_UKBIOBANK_POAG z_GLG_TG z_UKIBD_CD z_UKIBD_UC z_ISGEC_SLEEP-SD z_ICBP_SBP,12,0.1015086062445222,0.0160166666666666,118983.44732528173,0.180621448723582,0.570134692527162
+799,z_SPIRO-UKB_PEF z_GIANT_HIP z_UKBIOBANK_ALAT z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1 z_SPIRO-UKB_FEV1-FVC z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_ICBP_DBP z_SSGAC_COLLEGE z_SPIRO-UKB_FVC z_CARDIOGRAMPLUSC4D_CAD,12,0.1116617892858211,0.0184374350454545,260833.4904368515,0.1228199087118925,0.7156526604685894
+1449,z_MAGIC_FAST-INSULIN z_GEFOS_BMD-FOREARM z_MAGIC_HBA1C z_SSGAC_COLLEGE z_UKIBD_UC z_ICBP_DBP z_BCAC_BREAST-CANCER-ERPOS,7,0.0975909599201299,0.0115809523809523,112875.4044829799,0.127517140805905,0.6207617707284622
+797,z_ICBP_SBP z_SPIRO-UKB_FVC z_CARDIOGRAMPLUSC4D_CAD z_SPIRO-UKB_FEV1-FVC z_ICBP_DBP z_MAGIC_FAST-INSULIN z_SPIRO-UKB_PEF z_ISGEC_SLEEP-MEAN,8,0.0873394827589807,0.0265678571428571,261620.20120249045,0.1825574111558176,0.6951777274361935
+361,z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_CARDIOGRAMPLUSC4D_CAD z_SSGAC_COLLEGE z_UKBIOBANK_ALAT z_SPIRO-UKB_PEF z_PGC_BIP z_ISGEC_SLEEP-SD z_ICBP_SBP z_GIANT_HIP z_MAGIC_FAST-INSULIN,12,0.1062118853462607,0.0155192532272727,228870.3204629508,0.1380511473881252,0.7277526983953627
+1130,z_UKIBD_CD z_GLG_LDL z_GLG_TC z_VGHRV_SDNN z_IGAP_AZ z_DIAGRAM_T2D z_GEFOS_BMD-FOREARM z_NEIGHBORHOOD_POAG z_MAGIC_HOMA-B z_TAGC_ASTHMA z_IMSGC-WTCC2_MULTSCLE z_WILLER_ATRIALFIBRI,12,0.0860585419678969,0.011310606060606,61057.65184001551,0.1186015332539134,0.5058176743180883
+503,z_MAGIC_FAST-INSULIN z_CARDIOGRAMPLUSC4D_CAD z_IMSGC-WTCC2_MULTSCLE z_NEIGHBORHOOD_POAG z_UKBIOBANK_POAG z_ISGEC_SLEEP-SD,6,0.1394521689621997,0.00966,65620.7220878685,0.0974778826416972,0.7227631217072056
+1764,z_GEFOS_BMD-FOREARM z_UKBIOBANK_POAG z_MAGIC_2HGLU-ADJBMI z_GLG_LDL z_VGHRV_SDNN z_GLG_HDL z_DIAGRAM_T2D z_UKIBD_UC,8,0.1027078239874987,0.0109357142857142,48674.61672798701,0.1247137059011896,0.515936136670362
+35,z_SPIRO-UKB_FEV1 z_VAN-HEEL_CELIAC z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_ISGEC_SLEEP-MEAN,5,0.1177238055335039,0.01227,125786.39500098149,0.1131733816379913,0.8092728725720985
+340,z_NEIGHBORHOOD_POAG z_C4D_CHD z_CARDIOGRAMPLUSC4D_CAD z_UKBIOBANK_POAG z_MAGIC_HOMA-B z_SSGAC_COLLEGE z_TAGC_ASTHMA z_BCAC_BREAST-CANCER-ERPOS z_IMSGC-WTCC2_MULTSCLE,9,0.1426152251211962,0.0100055555555555,84594.39759181679,0.0802879603112493,0.6213230511402251
+1447,z_GLG_LDL z_UKBIOBANK_ALAT,2,0.1705977739626475,0.0185,268583.5,0.1205676248688687,0.5029039893692331
+657,z_IMSGC-WTCC2_MULTSCLE z_TAGC_ASTHMA z_NEIGHBORHOOD_POAG z_GEFOS_BMD-FOREARM z_UKIBD_UC z_WILLER_ATRIALFIBRI z_DIAGRAM_T2D z_GLG_LDL z_MAGIC_HOMA-B z_GLG_TG,10,0.1048840988498445,0.0132155555555555,66120.99832739888,0.1093648152124252,0.478005399791865
+419,z_ICBP_DBP z_VGHRV_SDNN,2,0.1819092209048439,0.0378,163568.0,0.2273786384558559,0.5732608303425372
+183,z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_GLG_LDL z_TAGC_ASTHMA z_SPIRO-UKB_PEF z_MAGIC_HBA1C z_ISGEC_DIURNAL-IN z_UKIBD_UC z_GLG_TG z_SPIRO-UKB_FEV1,10,0.0877207883109859,0.0116577777777777,136195.47305151616,0.1051494156247887,0.6101287515046896
+1214,z_IGAP_AZ z_C4D_CHD z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_MAGIC_HOMA-B z_CARDIOGRAMPLUSC4D_CAD z_BCAC_BREAST-CANCER-ERPOS,7,0.1626078670871484,0.0113619047619047,81130.75234560513,0.0489715944931344,0.6002027327043091
+1612,z_SPIRO-UKB_FEV1-FVC z_ISGEC_DIURNAL-IN,2,0.0679982307201221,0.0095,242429.5,0.1362074114637421,0.7414340407318739
+1568,z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_UKBIOBANK_ALAT z_ICBP_SBP z_SPIRO-UKB_FVC z_MAGIC_FAST-INSULIN z_GIANT_HIP z_BCAC_BREAST-CANCER-ERPOS z_ISGEC_DIURNAL-IN z_SSGAC_COLLEGE,10,0.1028685179703238,0.0188549047333333,256724.32756222948,0.136261094752845,0.7300606948765767
+368,z_UKBIOBANK_POAG z_IGAP_AZ z_MAGIC_2HGLU-ADJBMI z_MAGIC_HOMA-B z_TAGC_ASTHMA z_UKIBD_CD,6,0.0740921120764503,0.0057466666666666,45166.37942951298,0.1493378518188367,0.5652871307727031
+903,z_UKIBD_CD z_PGC_BIP z_SPIRO-UKB_PEF z_UKBIOBANK_ALAT z_WILLER_ATRIALFIBRI z_ICBP_DBP z_MAGIC_2HGLU-ADJBMI z_ICBP_SBP,8,0.0482832530338222,0.0235,216177.54888277937,0.2567920469382481,0.6347500098421232
+100,z_SPIRO-UKB_PEF z_MAGIC_2HGLU-ADJBMI z_C4D_CHD,3,0.0669304760610667,0.0059333333333333,148604.598473416,0.080324507855312,0.6573115618152242
+205,z_GIANT_HIP z_C4D_CHD,2,0.1921093489746714,0.0181,87966.897710124,0.0750925662768479,0.6699008631710204
+1086,z_WILLER_ATRIALFIBRI z_MAGIC_HBA1C z_GLG_LDL z_IGAP_AZ z_UKIBD_UC z_TAGC_ASTHMA z_IMSGC-WTCC2_MULTSCLE z_MAGIC_HOMA-B z_VGHRV_SDNN z_GLG_TC,10,0.0830076252222064,0.0105597213111111,71914.94577439466,0.1052430692481412,0.4861163244380796
+1629,z_GLG_LDL z_PGC_BIP,2,0.0453295390878284,0.0103,58221.98015659554,0.2338321064207826,0.6264720662991389
+1002,z_ICBP_DBP z_UKBIOBANK_ALAT z_UKIBD_UC z_SPIRO-UKB_FEV1-FVC z_UKIBD_CD z_ISGEC_SLEEP-MEAN z_GLG_TG,7,0.0546819183122963,0.0187666666666666,198372.06002999467,0.2400197777380834,0.5730271233528134
+668,z_PGC_BIP z_SPIRO-UKB_FVC z_SSGAC_COLLEGE,3,0.1770495273387668,0.0296666666666666,181068.32010439705,0.1986560427879616,0.8072134748083363
+922,z_ISGEC_DIURNAL-IN z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_PEF z_SPIRO-UKB_FVC z_MAGIC_FAST-INSULIN z_PGC_BIP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-MEAN,8,0.0878611428633019,0.0142642857142857,212261.9044919357,0.1296505195461909,0.7781142806266398
+841,z_SPIRO-UKB_FVC z_SPIRO-UKB_PEF z_GLG_TC z_VAN-HEEL_CELIAC z_SPIRO-UKB_FEV1-FVC,5,0.0555488447692277,0.0206799999999999,261702.79500098148,0.160752089229191,0.5951257832267514
+86,z_UKBIOBANK_POAG z_UKBIOBANK_ALAT z_SPIRO-UKB_FEV1-FVC z_VAN-HEEL_CELIAC z_GLG_TC z_BCAC_BREAST-CANCER-ERPOS z_ISGEC_SLEEP-MEAN z_ISGEC_SLEEP-SD z_DIAGRAM_T2D z_PGC_BIP,10,0.0663606048617142,0.0082644444444444,146136.35890057252,0.144588021477301,0.6763132135948521
+763,z_SPIRO-UKB_FEV1 z_WILLER_ATRIALFIBRI z_GIANT_HIP z_ICBP_SBP z_GLG_TG z_SPIRO-UKB_FEV1-FVC,6,0.0687196467130402,0.0228466666666666,261583.7610496076,0.1732928960220614,0.5847455790979587
+736,z_BCAC_BREAST-CANCER-ERPOS z_UKBIOBANK_POAG z_NEIGHBORHOOD_POAG z_TAGC_ASTHMA z_C4D_CHD z_MAGIC_HOMA-B z_IGAP_AZ z_MAGIC_HBA1C z_IMSGC-WTCC2_MULTSCLE z_DIAGRAM_T2D,10,0.1621229006633941,0.0103086102,60495.5169629404,0.0776555657969178,0.5535862974527916
+1954,z_GLG_TG z_CARDIOGRAMPLUSC4D_CAD z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_2HGLU-ADJBMI z_ISGEC_SLEEP-MEAN z_MAGIC_HBA1C z_MAGIC_HOMA-B z_ISGEC_SLEEP-SD z_MAGIC_FAST-INSULIN z_NEIGHBORHOOD_POAG z_UKIBD_CD,11,0.1074187132011613,0.0100345454545454,78086.28495703725,0.0956366693159962,0.6513345138353268
+1948,z_GEFOS_BMD-FOREARM z_IMSGC-WTCC2_MULTSCLE z_UKIBD_UC,3,0.3939309463723131,0.0547666666666666,23014.06219211329,0.1771876763137216,0.5000463372797482
+638,z_SPIRO-UKB_PEF z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_HOMA-B z_IMSGC-WTCC2_MULTSCLE z_SSGAC_COLLEGE z_SPIRO-UKB_FEV1-FVC z_UKIBD_CD z_GLG_TG z_GEFOS_BMD-FOREARM z_UKBIOBANK_ALAT,10,0.1121971774233451,0.0142822222222222,180138.97708914685,0.1335106922945046,0.5648224299421633
+697,z_GIANT_HIP z_CARDIOGRAMPLUSC4D_CAD z_SPIRO-UKB_FVC z_ICBP_SBP z_SSGAC_COLLEGE z_ISGEC_SLEEP-MEAN z_UKBIOBANK_ALAT z_ISGEC_DIURNAL-IN z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_ISGEC_SLEEP-SD,12,0.0956672338014924,0.0155041017121212,237826.65710351817,0.1277762346935627,0.747175457955343
+1882,z_SPIRO-UKB_FEV1 z_UKIBD_CD z_GLG_TG z_GEFOS_BMD-FOREARM z_UKIBD_UC z_SPIRO-UKB_FEV1-FVC z_GIANT_HIP z_WILLER_ATRIALFIBRI,8,0.08275119055248,0.0255999999999999,168598.24831345104,0.1827557547817658,0.5397071264222475
+1518,z_UKIBD_CD z_VGHRV_SDNN z_GLG_TG z_GEFOS_BMD-FOREARM,4,0.0905571280731117,0.0182666666666666,41714.46611284955,0.1690639491037382,0.467698950646491
+1106,z_UKBIOBANK_POAG z_ISGEC_SLEEP-SD z_IGAP_AZ z_MAGIC_HBA1C z_TAGC_ASTHMA z_C4D_CHD,6,0.1024978474031893,0.0058666666666666,56143.36792432128,0.067789736501491,0.6056649612409757
+1229,z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_HBA1C z_UKBIOBANK_POAG z_C4D_CHD z_IGAP_AZ z_BCAC_BREAST-CANCER-ERPOS z_DIAGRAM_T2D z_TAGC_ASTHMA,8,0.1634373290803187,0.0111785714285714,85397.59544971985,0.0673893449574684,0.5799729817275958
+1708,z_UKIBD_CD z_MAGIC_HOMA-B z_GLG_TC z_IMSGC-WTCC2_MULTSCLE z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_VGHRV_SDNN z_UKIBD_UC z_GLG_LDL z_VAN-HEEL_CELIAC z_C4D_CHD,11,0.1261221842377835,0.0200236363636363,41973.62519057268,0.1539435956798403,0.5193811119015223
+470,z_ICBP_SBP z_DIAGRAM_T2D z_GLG_HDL z_GLG_TG z_ICBP_DBP z_IGAP_AZ z_PGC_BIP z_MAGIC_HOMA-B z_SPIRO-UKB_FEV1-FVC z_ISGEC_SLEEP-SD z_WILLER_ATRIALFIBRI,11,0.0932666770274273,0.0183799999999999,150644.7934121648,0.164998835004596,0.5778542362236005
+1153,z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_PEF z_ICBP_DBP z_ICBP_SBP z_SPIRO-UKB_FEV1 z_UKIBD_CD z_UKBIOBANK_ALAT z_MAGIC_2HGLU-ADJBMI z_SPIRO-UKB_FVC,9,0.0481348822782422,0.0303777777777777,298329.09605015535,0.2346116646253,0.6258846959094124
+1597,z_GEFOS_BMD-FOREARM z_SSGAC_COLLEGE z_GLG_LDL z_ISGEC_DIURNAL-IN z_ICBP_SBP z_ISGEC_SLEEP-MEAN z_GLG_TG z_ISGEC_SLEEP-SD z_VAN-HEEL_CELIAC z_MAGIC_FAST-INSULIN z_MAGIC_2HGLU-ADJBMI,11,0.1147501593653129,0.0155636363636363,87185.90681862795,0.1188710492794739,0.7041953884707207
+1009,z_UKBIOBANK_ALAT z_ICBP_DBP z_GLG_TC z_GLG_HDL z_ISGEC_SLEEP-SD z_SPIRO-UKB_FVC z_GLG_LDL z_GIANT_HIP z_IMSGC-WTCC2_MULTSCLE z_IGAP_AZ,10,0.1009167352542022,0.0131533333333333,173323.6160931139,0.1444744979103856,0.6044475028778752
+1732,z_ICBP_DBP z_GEFOS_BMD-FOREARM,2,0.1084535271625758,0.024,153583.5,0.2252484404358153,0.5161628672992529
+116,z_MAGIC_HOMA-B z_IMSGC-WTCC2_MULTSCLE z_C4D_CHD z_GEFOS_BMD-FOREARM z_GLG_TC z_NEIGHBORHOOD_POAG,6,0.1318655607001345,0.0119533333333333,36470.30184530277,0.0852337972089061,0.5102007861999914
+60,z_BCAC_BREAST-CANCER-ERPOS z_ISGEC_SLEEP-SD z_NEIGHBORHOOD_POAG z_UKBIOBANK_POAG z_MAGIC_FAST-INSULIN z_TAGC_ASTHMA,6,0.1085654124442258,0.0069066666666666,83506.92374473398,0.0678803617400797,0.707973853804313
diff --git a/data/combination_example.tsv b/data/combination_example.tsv
new file mode 100644
index 0000000000000000000000000000000000000000..b42f3a73d6e4e8d2ef72070c2b7174f804ce0ed9
--- /dev/null
+++ b/data/combination_example.tsv
@@ -0,0 +1,2 @@
+GRP1,z_GIANT_HIP z_GLG_HDL z_GLG_LDL z_MAGIC_2HGLU-ADJBMI
+GRP2,z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1 z_TAGC_ASTHMA
diff --git a/data/gain_results.tsv b/data/gain_results.tsv
new file mode 100644
index 0000000000000000000000000000000000000000..cd44d997b8fe28075d6dd53ef1374fc77cf4e6af
--- /dev/null
+++ b/data/gain_results.tsv
@@ -0,0 +1,3 @@
+	traits	k	avg_distance_cor	mean_gencov	avg_Neff	avg_h2	avg_perc_h2_diff_region	log10_mean_gencov	log10_avg_distance_cor	gain
+1	['z_SPIRO-UKB_FVC', 'z_SPIRO-UKB_FEV1', 'z_TAGC_ASTHMA']	0.1	0.1731946683845993	0.0637	0.3843393026739591	0.2785193310634847	0.7976315890930669	0.8139196701681637	0.8013809378674498	0.06428524764535551
+0	['z_GIANT_HIP', 'z_GLG_HDL', 'z_GLG_LDL', 'z_MAGIC_2HGLU-ADJBMI']	0.2	0.14899001074867035	0.01535	0.12076877719858631	0.22628198390356655	0.9055326131023057	0.6573854616675169	0.7879956172999502	-0.010766494024690904
diff --git a/data/range_feature_gain_prediction.tsv b/data/range_feature_gain_prediction.tsv
new file mode 100644
index 0000000000000000000000000000000000000000..30c63afb46258403eeb27bf17cb6a9095afbd972
--- /dev/null
+++ b/data/range_feature_gain_prediction.tsv
@@ -0,0 +1,7 @@
+	minimum_value	maximum_value
+k	2.0	12.0
+log10_avg_distance_cor	-4.675617219570908	0.20864138105896807
+log10_mean_gencov	-4.4093921991254446	-0.46117501106209624
+avg_Neff	6730.5	697828.0
+avg_h2	0.014033707225812	0.4361454950334251
+avg_perc_h2_diff_region	0.0906544694784672	0.9831222899777692
diff --git a/doc/source/get_predicted_gain.rst b/doc/source/get_predicted_gain.rst
new file mode 100644
index 0000000000000000000000000000000000000000..9dea792471e07a2846adb7a73d92f8f0c14ea103
--- /dev/null
+++ b/doc/source/get_predicted_gain.rst
@@ -0,0 +1,39 @@
+Compute JASS power gain from the genetic architecture of traits
+===============================================================
+
+In a recent study :cite:`suzuki2023trait`, we explore how the genetic architecture of the set of traits (heritability, genetic covariance, heritability undetected by the univariate test, ...) can be predictive of statistical power gain of the multi-trait test.
+
+
+
+We implement an additional command line tool to give access our predictive model (the **jass predict-gain** command). 
+This command allows the to score swiftly a large number of traits combinations and to focus on set of traits the most promising for multi-trait testing.
+
+To work the inittable provided to the **jass predict-gain** command must contain the genetic covariance between traits. 
+
+
+.. code-block:: shell
+
+    jass predict-gain --inittable-path inittable_curated_111_traits_20-03-2024.hdf5 --combination_path ./combination_example.tsv --gain-path predicted_gain.tsv
+
+
+The second argument (--combination_path) is a path to a file containing the set of traits to be scored.
+
+.. csv-table:: Set of traits
+  :widths: 20, 70
+  :header-rows: 1
+
+    GRP1,z_GIANT_HIP z_GLG_HDL z_GLG_LDL z_MAGIC_2HGLU-ADJBMI
+    GRP2,z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1 z_TAGC_ASTHMA
+
+When executed the command will created a report at --gain-path
+
+.. csv-table:: Predicted gain
+    :header-rows: 1
+
+    traits,k,avg_distance_cor,mean_gencov,avg_Neff,avg_h2,avg_perc_h2_diff_region,log10_mean_gencov,log10_avg_distance_cor,gain
+    ['z_SPIRO-UKB_FVC'; 'z_SPIRO-UKB_FEV1'; 'z_TAGC_ASTHMA'],0.1,0.1731946683845993,0.0637,0.3843393026739591,0.2785193310634847,0.7976315890930669,0.8139196701681637,0.8013809378674498,0.06428524764535551
+    ['z_GIANT_HIP'; 'z_GLG_HDL'; 'z_GLG_LDL'; 'z_MAGIC_2HGLU-ADJBMI'],0.2,0.14899001074867035,0.01535,0.12076877719858631,0.22628198390356655,0.9055326131023057,0.6573854616675169,0.7879956172999502,-0.010766494024690904
+
+The last column provide the predicted gain ("the higher the more promising"). Note that extrapoling on new data might give lesser performances than reported in :cite:`suzuki2023trait`.
+
+.. bibliography:: reference.bib
\ No newline at end of file
diff --git a/doc/source/index.rst b/doc/source/index.rst
index 270f8c072ce9a715e642250b4daf5aa1b29772b3..87967f4a2da31ea34bc97b1035c41e2f138b0896 100644
--- a/doc/source/index.rst
+++ b/doc/source/index.rst
@@ -14,6 +14,7 @@ JASS documentation
    install
    data_import
    generating_joint_analysis
+   get_predicted_gain
    command_line_usage
    web_usage
    web_admin
diff --git a/doc/source/reference.bib b/doc/source/reference.bib
index 469a6903a53fa58d8e729b5e0d0e3b16c820968f..901b14a9691c75bac3e660837b9f99777a24a58a 100644
--- a/doc/source/reference.bib
+++ b/doc/source/reference.bib
@@ -20,6 +20,13 @@
   publisher={Oxford University Press}
 }
 
+@article{suzuki2023trait,
+  title={Trait selection strategy in multi-trait GWAS: Boosting SNPs discoverability},
+  author={Suzuki, Yuka and M{\'e}nager, Herv{\'e} and Brancotte, Bryan and Vernet, Rapha{\"e}l and Nerin, Cyril and Boetto, Christophe and Auvergne, Antoine and Linhard, Christophe and Torchet, Rachel and Lechat, Pierre and others},
+  journal={bioRxiv},
+  year={2023},
+  publisher={Cold Spring Harbor Laboratory Preprints}
+}
 
 
 @article{Pasaniuc2014,
diff --git a/jass/__main__.py b/jass/__main__.py
index 586b489bc19b43b64b7d1ad111983e4e04613f5f..4a7cd1e8c133f485a1875caa841970c91a5cbafc 100644
--- a/jass/__main__.py
+++ b/jass/__main__.py
@@ -21,6 +21,8 @@ from jass.models.plots import (
     create_local_plot,
     create_qq_plot,
 )
+from jass.models.gain import create_features, compute_gain
+
 from pandas import read_hdf
 
 def absolute_path_of_the_file(fileName, output_file=False):
@@ -279,6 +281,15 @@ def w_gene_annotation(args):
         gene_data_path, initTable_path, df_gene_csv_path, df_exon_csv_path
     )
 
+def w_compute_gain(args):
+    inittable_path = absolute_path_of_the_file(args.inittable_path)
+    combi_path = absolute_path_of_the_file(args.combination_path)
+    combi_path_with_gain = absolute_path_of_the_file(args.gain_path, True)
+    
+    features = create_features(inittable_path, combi_path)
+    compute_gain(features, combi_path_with_gain)
+
+
 
 def get_parser():
     parser = argparse.ArgumentParser(prog="jass")
@@ -619,6 +630,27 @@ def get_parser():
         help="Existing key are 'SumStatTab' : The results of the joint analysis by SNPs - 'PhenoList' : the meta data of analysed GWAS - 'COV' : The H0 covariance used to perform joint analysis - 'GENCOV' (If present in the initTable): The genetic covariance as computed by the LDscore. Uniquely for the worktable: 'Regions' : Results of the joint analysis summarised by LD regions (Notably Lead SNPs by regions) - 'summaryTable': a double entry table summarizing the number of significant regions by test (univariate vs joint test)",
     )
     parser_create_mp.set_defaults(func=w_extract_tsv)
+    
+    # ------- compute predicted gain -------#
+    parser_create_mp = subparsers.add_parser(
+        "predict-gain", help="Predict gain based on the genetic architecture of the set of multi-trait. To function, this command need the inittable to contain genetic covariance store under the key 'GEN_COV in the inittable'"
+    )
+    parser_create_mp.add_argument(
+        "--inittable-path",
+        required=True,
+        help="Path to the inittable",
+    )
+    parser_create_mp.add_argument(
+        "--combination-path",
+        required=True,
+        help="Path to the file storing combination to be scored",
+    )
+    parser_create_mp.add_argument(
+        "--gain-path", required=True, help="path to save predicted gain"
+    )
+
+    parser_create_mp.set_defaults(func=w_compute_gain)
+    
     return parser
 
 
diff --git a/jass/models/data/coef_mean_model.tsv b/jass/models/data/coef_mean_model.tsv
new file mode 100644
index 0000000000000000000000000000000000000000..ca07eb89886c598f96afb4e4f998f870e57d30f1
--- /dev/null
+++ b/jass/models/data/coef_mean_model.tsv
@@ -0,0 +1,7 @@
+	0
+k_coef_mv	0.07740334977380119
+log10_avg_distance_cor_coef_mv	-0.6999110771883902
+log10_mean_gencov_coef_mv	0.746794584985343
+avg_Neff_coef_mv	0.07289261717080556
+avg_h2_coef_mv	-0.516496395500929
+avg_perc_h2_diff_region_coef_mv	0.15727591593399
diff --git a/jass/models/data/range_feature_gain_prediction.tsv b/jass/models/data/range_feature_gain_prediction.tsv
new file mode 100644
index 0000000000000000000000000000000000000000..30c63afb46258403eeb27bf17cb6a9095afbd972
--- /dev/null
+++ b/jass/models/data/range_feature_gain_prediction.tsv
@@ -0,0 +1,7 @@
+	minimum_value	maximum_value
+k	2.0	12.0
+log10_avg_distance_cor	-4.675617219570908	0.20864138105896807
+log10_mean_gencov	-4.4093921991254446	-0.46117501106209624
+avg_Neff	6730.5	697828.0
+avg_h2	0.014033707225812	0.4361454950334251
+avg_perc_h2_diff_region	0.0906544694784672	0.9831222899777692
diff --git a/jass/models/gain.py b/jass/models/gain.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0cef418e986c6a041b520dac976a061f1c32f5a
--- /dev/null
+++ b/jass/models/gain.py
@@ -0,0 +1,145 @@
+import pkg_resources
+import pandas as pd
+import numpy as np
+import os
+
+# data issued from https://doi.org/10.1101/2023.10.27.564319
+stream = pkg_resources.resource_stream(__name__, 'data/range_feature_gain_prediction.tsv')
+X_range = pd.read_csv(stream, sep="\t", index_col=0)
+
+stream = pkg_resources.resource_stream(__name__, 'data/coef_mean_model.tsv')
+model_coefficients =  pd.read_csv(stream, sep="\t", index_col=0)
+
+# Scale according to observed 
+def scale_feature(X, feature_name):
+    X_std = (X - X_range.loc[feature_name, "minimum_value"]) / ( X_range.loc[feature_name, "maximum_value"] -  X_range.loc[feature_name, "minimum_value"])
+    return X_std
+
+def preprocess_feature(df_combinations):
+    # transformation of features
+ 
+    df_combinations['log10_mean_gencov'] = np.log10(df_combinations.mean_gencov)
+    df_combinations['log10_avg_distance_cor'] = np.log10(df_combinations.avg_distance_cor)
+    for f in ["k", "log10_avg_distance_cor", "log10_mean_gencov", "avg_Neff", "avg_h2", "avg_perc_h2_diff_region"]:
+        df_combinations[f] = scale_feature(df_combinations[f], f)
+    return df_combinations
+
+def compute_gain(df_combinations, path_output):
+
+    preprocess_feature(df_combinations)
+    df_combinations["gain"] = df_combinations[["k", "log10_avg_distance_cor", "log10_mean_gencov", "avg_Neff", "avg_h2", "avg_perc_h2_diff_region"]].dot(model_coefficients["0"].values)
+    df_combinations.sort_values(by="gain", ascending=False).to_csv(path_output, sep="\t")
+
+# cov to cor
+def cov2cor(c):
+    """
+    Return a correlation matrix given a covariance matrix. 
+    : c = covariance matrix
+    """
+    D = 1 / np.sqrt(np.diag(c)) # takes the inverse of sqrt of diag.
+    return D * c * D
+
+def compute_detected_undected_h2(inittable_path): 
+
+    phenoL = pd.read_hdf(inittable_path, "PhenoList")
+    gen_cov = pd.read_hdf(inittable_path, "GEN_COV")
+    region = pd.read_hdf(inittable_path, "Regions")
+
+    combi_c = list(phenoL.index)
+    reg_start=0
+    reg_end=50
+
+    chunk_size=50
+    Nchunk = region.shape[0] // chunk_size + 1
+    start_value = 0
+    
+    zscore_threshold = 5.452
+    h2_GW = np.zeros(len(combi_c))
+
+    for chunk in range(start_value, Nchunk):
+        print(chunk)
+        binf = chunk * chunk_size
+        bsup = (chunk + 1) * chunk_size
+
+        init_extract = pd.read_hdf(inittable_path, "SumStatTab", where= "Region >= {0} and Region < {1}".format(reg_start, reg_end))
+
+        init_extract[combi_c] = init_extract[combi_c].abs()
+        max_zscore = init_extract[["Region"] + combi_c].groupby("Region").max()
+
+        Neff_term = np.ones(max_zscore.shape)
+        Neff_term = Neff_term* (1/phenoL.loc[combi_c, "Effective_sample_size"].values)
+
+        beta_2 = max_zscore.mask((max_zscore < zscore_threshold)) 
+        beta_2 = beta_2 * np.sqrt(Neff_term)
+        beta_2 = beta_2.mask( (beta_2 > 0.019))
+
+        h2_GW += (beta_2**2).sum()
+
+    h2 = np.diag(gen_cov.loc[combi_c, combi_c])
+    undetected_h2 = ((h2 - h2_GW) / h2)
+
+    phenoL["h2"] = h2
+    phenoL["h2_GW"] = h2_GW
+    phenoL["undetected_h2_perc"] = undetected_h2
+    
+    return phenoL
+
+def add_h2_to_pheno_description(inittable_path):
+    phenoL_before = pd.read_hdf(inittable_path, "PhenoList")
+    if "avg_perc_h2_diff_region" in phenoL_before.columns:    
+        phenoL = compute_detected_undected_h2(inittable_path)
+        phenoL.to_hdf(inittable_path, key="table")
+
+
+def compute_mean_cov(cov, combi_c):
+    rows, cols = np.indices(cov.loc[combi_c, combi_c].shape)
+    mean_gencov = cov.loc[combi_c, combi_c].where(rows != cols).stack().abs().mean()
+    return mean_gencov
+
+def compute_diff_cor(res_cov, gen_cov, combi_c):
+    res_cor = cov2cor(res_cov.loc[combi_c, combi_c])
+    gen_cor = cov2cor(gen_cov.loc[combi_c, combi_c])
+    rows, cols = np.indices(res_cor.loc[combi_c, combi_c].shape)
+    off_gencor = res_cor.where(rows != cols).stack()
+    off_rescor = gen_cor.where(rows != cols).stack()
+    return (off_gencor - off_rescor).abs().mean()
+
+def compute_mean_undetected_h2(phenoL, combi_c):
+    mean_h2 = np.mean(phenoL.loc[combi_c, "undetected_h2_perc"])
+    return mean_h2
+
+def compute_mean_h2(phenoL, combi_c):
+    mean_h2 = np.mean(phenoL.loc[combi_c, "h2"])
+    return mean_h2
+
+def compute_mean_Neff(phenoL, combi_c):
+    mean_neff = np.mean(phenoL.loc[combi_c, "Effective_sample_size"])
+    return mean_neff
+
+
+#beta_2_GW = beta_2_GW * (1/phenoL.loc[combi_c, "Effective_sample_size"].values)
+def create_features(inittable_path, combi_file):
+    add_h2_to_pheno_description(inittable_path)
+
+    phenoL = pd.read_hdf(inittable_path, "PhenoList")
+    gen_cov = pd.read_hdf(inittable_path, "GEN_COV")
+    res_cov = pd.read_hdf(inittable_path, "COV")
+
+    combi = pd.read_csv(combi_file, sep=",", index_col=0, names=["combi"])
+    combi = list(combi.combi.str.split(" "))
+
+    D = {'traits':[] ,'k':[], 'avg_distance_cor': [], 'mean_gencov': [], 
+        'avg_Neff':[], 'avg_h2':[], 'avg_perc_h2_diff_region':[]}
+
+    for c in combi:
+        D['traits'].append(str(c))
+        D["k"].append(len(c))
+        D["avg_distance_cor"].append(compute_diff_cor(res_cov, gen_cov, c))
+        D["mean_gencov"].append(compute_mean_cov(gen_cov, c))
+        D["avg_Neff"].append(compute_mean_Neff(phenoL, c))
+
+        D["avg_h2"].append(compute_mean_h2(phenoL, c))
+        D["avg_perc_h2_diff_region"].append(compute_mean_undetected_h2(phenoL, c))
+
+    return pd.DataFrame.from_dict(D)
+
diff --git a/jass/test/data_real/initTable.hdf5 b/jass/test/data_real/initTable.hdf5
index 821bdcc09b2740e389cec2d5049da4fb1b2d3523..bbeb66410fbcbb9dcbfaf5dae49355d0b9018cf9 100644
Binary files a/jass/test/data_real/initTable.hdf5 and b/jass/test/data_real/initTable.hdf5 differ
diff --git a/jass/test/data_real/worktable.hdf5 b/jass/test/data_real/worktable.hdf5
index 6c0162e61d22b93316dfe293a05b5b47d6c68fe4..809f790a23140377941366ffc081c41dfd0e4e97 100644
Binary files a/jass/test/data_real/worktable.hdf5 and b/jass/test/data_real/worktable.hdf5 differ
diff --git a/jass/test/data_test1/COV.csv b/jass/test/data_test1/COV.csv
deleted file mode 100644
index 2c45ac17818b90efa5afbc3d58060bf9c65263a8..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/COV.csv
+++ /dev/null
@@ -1,3 +0,0 @@
-ID	z_DISNEY_RATATOUY	z_DISNEY_POCAHONT
-z_DISNEY_RATATOUY	2.05403006060606	0.394332909090909
-z_DISNEY_POCAHONT	0.394332909090909	1.17729254545455
diff --git a/jass/test/data_test1/SumStatTab.txt b/jass/test/data_test1/SumStatTab.txt
deleted file mode 100644
index c35ae04ecf7404997a7401dfd84c29a2ef2dfe40..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/SumStatTab.txt
+++ /dev/null
@@ -1,13 +0,0 @@
-rsid	position	chr	region	Z_ratatouy	Z_pocahont
-rs1	1	1	1	0.812	-1.06
-rs2	2	1	1	2.197	0.937
-rs3	3	1	2	2.049	0.854
-rs4	1	2	3	1.632	1.461
-rs5	2	2	3	0.254	-1.413
-rs6	3	2	4	0.491	0.567
-rs7	4	2	4	-0.324	0.583
-rs8	5	2	4	-1.662	-1.307
-rs9	1	3	5	1.768	-0.54
-rs10	2	3	5	0.026	1.948
-rs11	3	3	6	1.129	0.054
-rs12	4	3	7	-2.38	0.352
diff --git a/jass/test/data_test1/chr.txt b/jass/test/data_test1/chr.txt
deleted file mode 100644
index 337d7e8e0b79701321e9bffec5fd47093cd0a61b..0000000000000000000000000000000000000000
Binary files a/jass/test/data_test1/chr.txt and /dev/null differ
diff --git a/jass/test/data_test1/initTable.hdf5 b/jass/test/data_test1/initTable.hdf5
deleted file mode 100644
index 43518edff657babee693ad6a63b453d2fbe434cb..0000000000000000000000000000000000000000
Binary files a/jass/test/data_test1/initTable.hdf5 and /dev/null differ
diff --git a/jass/test/data_test1/metadata.txt b/jass/test/data_test1/metadata.txt
deleted file mode 100644
index 8eb75e7afde9d6be08b89e2cf8892384a384af5a..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/metadata.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-information	content
-title	Mock dataset with disney
-description	"lorem ipsum"
-ancestry	DIS
-assembly	dSNY
diff --git a/jass/test/data_test1/regions.txt b/jass/test/data_test1/regions.txt
deleted file mode 100644
index c7241b86a4541d8c7d7f5c5ba9e6317e339a64e2..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/regions.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-chr	start	stop
-chr1	1	2
-chr1	3	4
-chr2	1	2
-chr2	3	5
-chr3	1	2
-chr3	3	3
-chr3	4	4
diff --git a/jass/test/data_test1/summary.csv b/jass/test/data_test1/summary.csv
deleted file mode 100644
index 149b6ca13274a17c43fced1f210ca452e0d7f733..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/summary.csv
+++ /dev/null
@@ -1,3 +0,0 @@
-Outcome	FullName	Consortium	Type	Reference	ReferenceLink	dataLink	internalDataLink	Nsample	Ncase	Ncontrol
-RATATOUY	Ratatouille ou la mort de l'hygiène en cuisine	DISNEY	BrainWashing	Courgette et al., 1754	http://www.marmiton.org/recettes/recette_ratatouille_23223.asp	pouet	pouet	1000000		
-POCAHONT	Pocahontas mange des tapas	DISNEY	BrainWashing	Rolfe et al., 1614	https://fr.wikipedia.org/wiki/Pocahontas	Gargar	Gargar	1000000		
diff --git a/jass/test/data_test1/worktable.hdf5 b/jass/test/data_test1/worktable.hdf5
deleted file mode 100644
index 69f0978b16d217d89fc994c26c296cc397846bb5..0000000000000000000000000000000000000000
Binary files a/jass/test/data_test1/worktable.hdf5 and /dev/null differ
diff --git a/jass/test/data_test1/z_DISNEY_POCAHONT_chr1.txt b/jass/test/data_test1/z_DISNEY_POCAHONT_chr1.txt
deleted file mode 100644
index ded3476cd998c42133d1ca9c4d5d27b3f4b60c22..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/z_DISNEY_POCAHONT_chr1.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs1	1	C	T	-1.06
-rs2	2	G	T	0.937
-rs3	3	C	T	0.854
diff --git a/jass/test/data_test1/z_DISNEY_POCAHONT_chr2.txt b/jass/test/data_test1/z_DISNEY_POCAHONT_chr2.txt
deleted file mode 100644
index d4eec567807c2eec9e6932c02faec9daa46fcf22..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/z_DISNEY_POCAHONT_chr2.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs4	1	G	T	1.461
-rs5	2	A	T	-1.413
-rs6	3	A	C	0.567
-rs7	4	A	G	0.583
-rs8	5	C	G	-1.307
diff --git a/jass/test/data_test1/z_DISNEY_POCAHONT_chr3.txt b/jass/test/data_test1/z_DISNEY_POCAHONT_chr3.txt
deleted file mode 100644
index 18264b859cb897c27cc558548820a1d5b2abd83a..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/z_DISNEY_POCAHONT_chr3.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs9	1	C	T	-0.54
-rs10	2	G	T	1.948
-rs11	3	A	C	0.054
-rs12	4	A	C	0.352
diff --git a/jass/test/data_test1/z_DISNEY_RATATOUY_chr1.txt b/jass/test/data_test1/z_DISNEY_RATATOUY_chr1.txt
deleted file mode 100644
index a4e8fa9cd4ec1ba8dac092aab3230362196e20c3..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/z_DISNEY_RATATOUY_chr1.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs1	1	C	T	0.812
-rs2	2	G	T	2.197
-rs3	3	C	T	2.049
diff --git a/jass/test/data_test1/z_DISNEY_RATATOUY_chr2.txt b/jass/test/data_test1/z_DISNEY_RATATOUY_chr2.txt
deleted file mode 100644
index 86f61ecbd7d6aab1dc8b7655cebfed8fbf272ee6..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/z_DISNEY_RATATOUY_chr2.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs4	1	G	T	1.632
-rs5	2	A	T	0.254
-rs6	3	A	C	0.491
-rs7	4	A	G	-0.324
-rs8	5	C	G	-1.662
diff --git a/jass/test/data_test1/z_DISNEY_RATATOUY_chr3.txt b/jass/test/data_test1/z_DISNEY_RATATOUY_chr3.txt
deleted file mode 100644
index c1959185fdc4e2157ede61fc170790e6c863d8bc..0000000000000000000000000000000000000000
--- a/jass/test/data_test1/z_DISNEY_RATATOUY_chr3.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs9	1	C	T	1.768
-rs10	2	G	T	0.026
-rs11	3	A	C	1.129
-rs12	4	A	C	-2.38
diff --git a/jass/test/data_test2/COV.csv b/jass/test/data_test2/COV.csv
deleted file mode 100644
index 46119fe1b9a6a3eb86a4666fb07f93d318018fa0..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/COV.csv
+++ /dev/null
@@ -1,7 +0,0 @@
-ID	z_BMW_ISETTA	z_BMW_MINI	z_FIAT_CINQCENT	z_FIAT_CINQUECENTO	z_MERCO_SMART	z_TATA_TATANANO
-z_BMW_ISETTA	2	1	1	1	1	1
-z_BMW_MINI	1	2	1	1	1	1
-z_FIAT_CINQCENT	1	1	2	1	1	1
-z_FIAT_CINQUECENTO	1	1	1	2	1	1
-z_MERCO_SMART	1	1	1	1	2	1
-z_TATA_TATANANO	1	1	1	1	1	2
diff --git a/jass/test/data_test2/chr.txt b/jass/test/data_test2/chr.txt
deleted file mode 100644
index 9c5544b333bb58576eb22e68abfca405ed445acb..0000000000000000000000000000000000000000
Binary files a/jass/test/data_test2/chr.txt and /dev/null differ
diff --git a/jass/test/data_test2/create_unit_test_smart.R b/jass/test/data_test2/create_unit_test_smart.R
deleted file mode 100644
index 71a0e7631b1c5ea8ab8804b94ff984665164ea91..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/create_unit_test_smart.R
+++ /dev/null
@@ -1,87 +0,0 @@
-## There 6 phenotypes
-sumtab <- read.table("summary.txt", sep="\t", header=TRUE, stringsAsFactors = FALSE)
-## Zscore ID: z_CONSORITUM_PHENOTYPE_chr#chr.txt
-ids <- sprintf("z_%s_%s",sumtab$Consortium, sumtab$Outcome)
-## The covariance is set to 1 and the variance to 2
-COV <- toeplitz(c(2,1,1,1,1,1))
-rownames(COV) <- colnames(COV) <- ids
-
-
-## Structure:
-# - 5 chromosomes, 2 regions per chromosomes
-# - 10 regions, 2 regions per chromosome
-# - 30 SNPs, 3 SNPs per region
-
-## Structure of missing values region per region ;
-##   ".." means no missing values
-##   "XX" means the whole region is missing
-#
-#      Z1 Z2 Z3 Z4 Z5 Z6
-# R1   .. .. .. .. .. ..
-# R2   .. .. .. .. .. ..
-# R3   XX .. .. .. .. ..
-# R4   .. XX .. .. .. .. 
-# R5   .. .. XX .. .. ..
-# R6   .. .. .. XX .. ..
-# R7   .. .. .. .. XX ..
-# R8   .. .. .. .. .. XX
-# R9   XX XX XX .. .. .. 
-# R10  .. .. .. XX XX XX
-filenames <- paste0(rep(ids,e=5), "_chr", rep(1:5, 6), ".txt")
-
-## rsid : rs_#chr_#region_#snp
-rsid <- paste0("rs", "_chr", rep(1:5, e=6), # chr
-               "_reg", sprintf("%02i", rep(1:10, e=3)), # region
-               "_", sprintf("%02i", 1:30)) # snp
-pos <- rep(1:6, 5)
-chr <- rep(1:5, e=6)
-reg <- rep(1:10, e=3)
-ref <- "A"
-alt <- "G"
-BIGZ <- matrix(1:(30*6), 30, 6)
-BIGZ[grep("reg03", rsid),1] <- NA
-BIGZ[grep("reg04", rsid),2] <- NA
-BIGZ[grep("reg05", rsid),3] <- NA
-BIGZ[grep("reg06", rsid),4] <- NA
-BIGZ[grep("reg07", rsid),5] <- NA
-BIGZ[grep("reg08", rsid),6] <- NA
-BIGZ[grep("reg09", rsid),1:3] <- NA
-BIGZ[grep("reg10", rsid),4:6] <- NA
-rownames(BIGZ) <- rsid
-
-# What does it look like ?
-require(pheatmap)
-png("zscores.png", res = 100)
-pheatmap(BIGZ, cluster_rows = FALSE, cluster_cols = FALSE, cellwidth = 10, cellheight = 10)
-dev.off()
-# Create regions
-
-# Create Z scores
-
-
-# Write covariance matrix
-write.table(data.frame(ID=ids, COV), file="COV.csv", row.names = F, quote=F, sep="\t")
-
-# Write region file
-regions <- data.frame(chr=sprintf("chr%i", rep(1:5,e=2)),
-                      start=rep(c(1,4),5),
-                      stop=rep(c(3,6),5))
-write.table(regions, file="regions.txt", row.names = F, quote=F, sep="\t")
-# Write all the Z files
-k <- 1
-for (j in 1:6) {
-  for (chrnum in 1:5) {
-    ind <- grep(sprintf("chr%i", chrnum), rsid)
-    tmp <- data.frame(rsid = rsid[ind], 
-                      pos = pos[ind],
-                      ref=ref,
-                      alt=alt,
-                      Zscore=unname(BIGZ[ind, j]))
-    write.table(na.omit(tmp), file = filenames[k], quote=FALSE)
-    k <- k+1
-  }
-}
-
-# Compute the summary statistic
-
-
diff --git a/jass/test/data_test2/initTable.hdf5 b/jass/test/data_test2/initTable.hdf5
deleted file mode 100644
index b7dc5d7db470bf3819f4617cd3b9e92e1a2c1f0d..0000000000000000000000000000000000000000
Binary files a/jass/test/data_test2/initTable.hdf5 and /dev/null differ
diff --git a/jass/test/data_test2/metadata.txt b/jass/test/data_test2/metadata.txt
deleted file mode 100644
index e70e8c5f23fb4ce9142e833a6da916d228e9f001..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/metadata.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-information	content
-title	Mock dataset with car
-description	"lorem ipsum"
-ancestry	CAR
-assembly	car1
diff --git a/jass/test/data_test2/regions.txt b/jass/test/data_test2/regions.txt
deleted file mode 100644
index 020c4d931922cf1e0b267f44c89dea30e9b73385..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/regions.txt
+++ /dev/null
@@ -1,11 +0,0 @@
-chr	start	stop
-chr1	1	3
-chr1	4	6
-chr2	1	3
-chr2	4	6
-chr3	1	3
-chr3	4	6
-chr4	1	3
-chr4	4	6
-chr5	1	3
-chr5	4	6
diff --git a/jass/test/data_test2/summary.csv b/jass/test/data_test2/summary.csv
deleted file mode 100644
index 6aef4f3a55b773fa1a7faf0ec0488aba59e3373d..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/summary.csv
+++ /dev/null
@@ -1,7 +0,0 @@
-Outcome	FullName	Consortium	Type	Reference	ReferenceLink	dataLink	internalDataLink	Nsample	Ncase	Ncontrol
-ISETTA	Wer an seine Frau denkt, fahrt Isetta.	BMW	Pascher	Ghirlanda, S., Jansson, L., & Enquist, M. (2002). Chickens prefer beautiful humans. Human Nature, 13(3), 383_389.	https://fr.wikipedia.org/wiki/Isetta	/data_test2/isetta	/data_test2/isetta	1000000		
-MINI	Matte hi	BMW	Cher	Fardin, M. A. (2014). On the rheology of cats. Rheology Bulletin, 83(2).	https://fr.wikipedia.org/wiki/Mini_(1959-2000)	/data_test2/mini	/data_test2/mini	1000000		
-CINQCENT	TE baby come on, uh-huh Trackmasters uh-huh	FIAT	Pascher	Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Cortex, 53, 60_77.	https://www.fiat500nelmondo.it/fr/tag/cinquecento/	/data_test2/cinqcent	/data_test2/cinqcent	1000000		
-CINQUECENTO	Elle a tout d une grande	FIAT	Cher	Royet, J.-P., Meunier, D., Torquet, N., Mouly, A.-M., & Jiang, T. (2016). The Neural Bases of Disgust for Cheese: An fMRI Study. Frontiers in Human Neuroscience, 10, 511. https://doi.org/10.3389/fnhum.2016.00511	https://fr.wikipedia.org/wiki/Cinquecento	/data_test2/cinquecento	/data_test2/cinquecento	1000000		
-SMART	Pas assez cher mon fils	MERCO	Cher	Barss, P. (1984). Injuries due to falling coconuts. The Journal of Trauma, 24(11), 990_1.	https://fr.wikipedia.org/wiki/Smart	/data_test2/smart	/data_test2/smart	1000000		
-TATANANO	Qu est-ce que t as sous ton grand chapeau?	TATA	Pascher	Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing ones own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121_34.	https://fr.wikipedia.org/wiki/Tata_Nano	/data_test2/tatanano	/data_test2/tatanano	1000000		
diff --git a/jass/test/data_test2/worktable.hdf5 b/jass/test/data_test2/worktable.hdf5
deleted file mode 100644
index 3f450db54e44deaaebf5df421e71aeb66a69e8ea..0000000000000000000000000000000000000000
Binary files a/jass/test/data_test2/worktable.hdf5 and /dev/null differ
diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr1.txt b/jass/test/data_test2/z_BMW_ISETTA_chr1.txt
deleted file mode 100644
index ba168c87cb4a0d7a71bb9e345e8e52058f81c6c6..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_ISETTA_chr1.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr1_reg01_01	1	A	G	1.001
-rs_chr1_reg01_02	2	A	G	2.001
-rs_chr1_reg01_03	3	A	G	3.001
-rs_chr1_reg02_04	4	A	G	4.001
-rs_chr1_reg02_05	5	A	G	5.001
-rs_chr1_reg02_06	6	A	G	6.001
diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr2.txt b/jass/test/data_test2/z_BMW_ISETTA_chr2.txt
deleted file mode 100644
index f654684b8edbad4b0c8570e6e673a898bf3968e8..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_ISETTA_chr2.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr2_reg04_10	4	A	G	10.001
-rs_chr2_reg04_11	5	A	G	11.001
-rs_chr2_reg04_12	6	A	G	12.001
diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr3.txt b/jass/test/data_test2/z_BMW_ISETTA_chr3.txt
deleted file mode 100644
index 30b5fefe1978c0e8d5b8002adcebc6f674bab97b..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_ISETTA_chr3.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr3_reg05_13	1	A	G	13.001
-rs_chr3_reg05_14	2	A	G	14.001
-rs_chr3_reg05_15	3	A	G	15.001
-rs_chr3_reg06_16	4	A	G	16.001
-rs_chr3_reg06_17	5	A	G	17.001
-rs_chr3_reg06_18	6	A	G	18.001
diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr4.txt b/jass/test/data_test2/z_BMW_ISETTA_chr4.txt
deleted file mode 100644
index f5269355934349a3552ac1421a1761b3e57c9af4..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_ISETTA_chr4.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr4_reg07_19	1	A	G	19.001
-rs_chr4_reg07_20	2	A	G	20.001
-rs_chr4_reg07_21	3	A	G	21.001
-rs_chr4_reg08_22	4	A	G	22.001
-rs_chr4_reg08_23	5	A	G	23.001
-rs_chr4_reg08_24	6	A	G	24.001
diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr5.txt b/jass/test/data_test2/z_BMW_ISETTA_chr5.txt
deleted file mode 100644
index be6510ece435217aad150b535b63a6c7a3b36843..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_ISETTA_chr5.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr5_reg10_28	4	A	G	28.001
-rs_chr5_reg10_29	5	A	G	29.001
-rs_chr5_reg10_30	6	A	G	30.001
diff --git a/jass/test/data_test2/z_BMW_MINI_chr1.txt b/jass/test/data_test2/z_BMW_MINI_chr1.txt
deleted file mode 100644
index fe30e814732cf650b50b165aecfe015eabb061bc..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_MINI_chr1.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr1_reg01_01	1	A	G	31.001
-rs_chr1_reg01_02	2	A	G	32.001
-rs_chr1_reg01_03	3	A	G	33.001
-rs_chr1_reg02_04	4	A	G	34.001
-rs_chr1_reg02_05	5	A	G	35.001
-rs_chr1_reg02_06	6	A	G	36.001
diff --git a/jass/test/data_test2/z_BMW_MINI_chr2.txt b/jass/test/data_test2/z_BMW_MINI_chr2.txt
deleted file mode 100644
index 8d43408a9306776e8d1d8f5888e5a734ac8b163b..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_MINI_chr2.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr2_reg03_07	1	A	G	37.001
-rs_chr2_reg03_08	2	A	G	38.001
-rs_chr2_reg03_09	3	A	G	39.001
diff --git a/jass/test/data_test2/z_BMW_MINI_chr3.txt b/jass/test/data_test2/z_BMW_MINI_chr3.txt
deleted file mode 100644
index 01931f84bbf48153933ae21b4590f8e367157f4a..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_MINI_chr3.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr3_reg05_13	1	A	G	43.001
-rs_chr3_reg05_14	2	A	G	44.001
-rs_chr3_reg05_15	3	A	G	45.001
-rs_chr3_reg06_16	4	A	G	46.001
-rs_chr3_reg06_17	5	A	G	47.001
-rs_chr3_reg06_18	6	A	G	48.001
diff --git a/jass/test/data_test2/z_BMW_MINI_chr4.txt b/jass/test/data_test2/z_BMW_MINI_chr4.txt
deleted file mode 100644
index 7cbd68f13544cfe0da4b81cf38b0a1853e63ec0a..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_MINI_chr4.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr4_reg07_19	1	A	G	49.001
-rs_chr4_reg07_20	2	A	G	50.001
-rs_chr4_reg07_21	3	A	G	51.001
-rs_chr4_reg08_22	4	A	G	52.001
-rs_chr4_reg08_23	5	A	G	53.001
-rs_chr4_reg08_24	6	A	G	54.001
diff --git a/jass/test/data_test2/z_BMW_MINI_chr5.txt b/jass/test/data_test2/z_BMW_MINI_chr5.txt
deleted file mode 100644
index ee8a72149b041dba76cde9e38347aac4fc8dc185..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_BMW_MINI_chr5.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr5_reg10_28	4	A	G	58.001
-rs_chr5_reg10_29	5	A	G	59.001
-rs_chr5_reg10_30	6	A	G	60.001
diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr1.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr1.txt
deleted file mode 100644
index 90c8298ac67ab48c1521708e82dd2cc8aadc08bd..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQCENT_chr1.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr1_reg01_01	1	A	G	61.001
-rs_chr1_reg01_02	2	A	G	62.001
-rs_chr1_reg01_03	3	A	G	63.001
-rs_chr1_reg02_04	4	A	G	64.001
-rs_chr1_reg02_05	5	A	G	65.001
-rs_chr1_reg02_06	6	A	G	66.001
diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr2.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr2.txt
deleted file mode 100644
index eaeaedff3e765943efabe07bc592cafafe2e2153..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQCENT_chr2.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr2_reg03_07	1	A	G	67.001
-rs_chr2_reg03_08	2	A	G	68.001
-rs_chr2_reg03_09	3	A	G	69.001
-rs_chr2_reg04_10	4	A	G	70.001
-rs_chr2_reg04_11	5	A	G	71.001
-rs_chr2_reg04_12	6	A	G	72.001
diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr3.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr3.txt
deleted file mode 100644
index 79f6654e10d70614c5df7b159e4632649943f512..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQCENT_chr3.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr3_reg06_16	4	A	G	76.001
-rs_chr3_reg06_17	5	A	G	77.001
-rs_chr3_reg06_18	6	A	G	78.001
diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr4.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr4.txt
deleted file mode 100644
index e3ee62385639908a2e5b4ac9a6fe25701391101b..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQCENT_chr4.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr4_reg07_19	1	A	G	79.001
-rs_chr4_reg07_20	2	A	G	80.001
-rs_chr4_reg07_21	3	A	G	81.001
-rs_chr4_reg08_22	4	A	G	82.001
-rs_chr4_reg08_23	5	A	G	83.001
-rs_chr4_reg08_24	6	A	G	84.001
diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr5.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr5.txt
deleted file mode 100644
index ff4a6d54b2699b83c398267413910ea680412861..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQCENT_chr5.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr5_reg10_28	4	A	G	88.001
-rs_chr5_reg10_29	5	A	G	89.001
-rs_chr5_reg10_30	6	A	G	90.001
diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr1.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr1.txt
deleted file mode 100644
index ab76c899a0c8cacc10549e329126c162467efe95..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr1.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr1_reg01_01	1	A	G	91.001
-rs_chr1_reg01_02	2	A	G	92.001
-rs_chr1_reg01_03	3	A	G	93.001
-rs_chr1_reg02_04	4	A	G	94.001
-rs_chr1_reg02_05	5	A	G	95.001
-rs_chr1_reg02_06	6	A	G	96.001
diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr2.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr2.txt
deleted file mode 100644
index 41efda8549747b5aa27865a3e3bf1e4c7eb6589b..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr2.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr2_reg03_07	1	A	G	97.001
-rs_chr2_reg03_08	2	A	G	98.001
-rs_chr2_reg03_09	3	A	G	99.001
-rs_chr2_reg04_10	4	A	G	100.001
-rs_chr2_reg04_11	5	A	G	101.001
-rs_chr2_reg04_12	6	A	G	102.001
diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr3.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr3.txt
deleted file mode 100644
index bb75d15270802fdd2ce684f50b84cb10da58aa8e..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr3.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr3_reg05_13	1	A	G	103.001
-rs_chr3_reg05_14	2	A	G	104.001
-rs_chr3_reg05_15	3	A	G	105.001
diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr4.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr4.txt
deleted file mode 100644
index f39337397edcfd212ec5f5a0d84ad2b08cd518ce..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr4.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr4_reg07_19	1	A	G	109.001
-rs_chr4_reg07_20	2	A	G	110.001
-rs_chr4_reg07_21	3	A	G	111.001
-rs_chr4_reg08_22	4	A	G	112.001
-rs_chr4_reg08_23	5	A	G	113.001
-rs_chr4_reg08_24	6	A	G	114.001
diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr5.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr5.txt
deleted file mode 100644
index ce0f5748472d5cd7e27f945ed87aecef2840603a..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr5.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr5_reg09_25	1	A	G	115.001
-rs_chr5_reg09_26	2	A	G	116.001
-rs_chr5_reg09_27	3	A	G	117.001
diff --git a/jass/test/data_test2/z_MERCO_SMART_chr1.txt b/jass/test/data_test2/z_MERCO_SMART_chr1.txt
deleted file mode 100644
index c1690edd2238a345d6579cb796abe8d21817eaa7..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_MERCO_SMART_chr1.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr1_reg01_01	1	A	G	121.001
-rs_chr1_reg01_02	2	A	G	122.001
-rs_chr1_reg01_03	3	A	G	123.001
-rs_chr1_reg02_04	4	A	G	124.001
-rs_chr1_reg02_05	5	A	G	125.001
-rs_chr1_reg02_06	6	A	G	126.001
diff --git a/jass/test/data_test2/z_MERCO_SMART_chr2.txt b/jass/test/data_test2/z_MERCO_SMART_chr2.txt
deleted file mode 100644
index b550771006bb7919a0199d3a3d2f7e0429eb5b80..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_MERCO_SMART_chr2.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr2_reg03_07	1	A	G	127.001
-rs_chr2_reg03_08	2	A	G	128.001
-rs_chr2_reg03_09	3	A	G	129.001
-rs_chr2_reg04_10	4	A	G	130.001
-rs_chr2_reg04_11	5	A	G	131.001
-rs_chr2_reg04_12	6	A	G	132.001
diff --git a/jass/test/data_test2/z_MERCO_SMART_chr3.txt b/jass/test/data_test2/z_MERCO_SMART_chr3.txt
deleted file mode 100644
index e81f2ac70279ecaa6fc7f626e35952af4a47e49a..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_MERCO_SMART_chr3.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr3_reg05_13	1	A	G	133.001
-rs_chr3_reg05_14	2	A	G	134.001
-rs_chr3_reg05_15	3	A	G	135.001
-rs_chr3_reg06_16	4	A	G	136.001
-rs_chr3_reg06_17	5	A	G	137.001
-rs_chr3_reg06_18	6	A	G	138.001
diff --git a/jass/test/data_test2/z_MERCO_SMART_chr4.txt b/jass/test/data_test2/z_MERCO_SMART_chr4.txt
deleted file mode 100644
index bb4267422d8903207c9f986377365925fede7c97..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_MERCO_SMART_chr4.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr4_reg08_22	4	A	G	142.001
-rs_chr4_reg08_23	5	A	G	143.001
-rs_chr4_reg08_24	6	A	G	144.001
diff --git a/jass/test/data_test2/z_MERCO_SMART_chr5.txt b/jass/test/data_test2/z_MERCO_SMART_chr5.txt
deleted file mode 100644
index 84a041f4660f4e7927c65caa88997efb7b2f9505..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_MERCO_SMART_chr5.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr5_reg09_25	1	A	G	145.001
-rs_chr5_reg09_26	2	A	G	146.001
-rs_chr5_reg09_27	3	A	G	147.001
diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr1.txt b/jass/test/data_test2/z_TATA_TATANANO_chr1.txt
deleted file mode 100644
index 909ae54449de02a93e2988cdcbcc12205d913dff..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_TATA_TATANANO_chr1.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr1_reg01_01	1	A	G	151.001
-rs_chr1_reg01_02	2	A	G	152.001
-rs_chr1_reg01_03	3	A	G	153.001
-rs_chr1_reg02_04	4	A	G	154.001
-rs_chr1_reg02_05	5	A	G	155.001
-rs_chr1_reg02_06	6	A	G	156.001
diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr2.txt b/jass/test/data_test2/z_TATA_TATANANO_chr2.txt
deleted file mode 100644
index 7b83919ad2352ca41bb726672d95f5795939cb6a..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_TATA_TATANANO_chr2.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr2_reg03_07	1	A	G	157.001
-rs_chr2_reg03_08	2	A	G	158.001
-rs_chr2_reg03_09	3	A	G	159.001
-rs_chr2_reg04_10	4	A	G	160.001
-rs_chr2_reg04_11	5	A	G	161.001
-rs_chr2_reg04_12	6	A	G	162.001
diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr3.txt b/jass/test/data_test2/z_TATA_TATANANO_chr3.txt
deleted file mode 100644
index 2e18b72c75b85e8b36de115ad275c31e2ee23431..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_TATA_TATANANO_chr3.txt
+++ /dev/null
@@ -1,7 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr3_reg05_13	1	A	G	163.001
-rs_chr3_reg05_14	2	A	G	164.001
-rs_chr3_reg05_15	3	A	G	165.001
-rs_chr3_reg06_16	4	A	G	166.001
-rs_chr3_reg06_17	5	A	G	167.001
-rs_chr3_reg06_18	6	A	G	168.001
diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr4.txt b/jass/test/data_test2/z_TATA_TATANANO_chr4.txt
deleted file mode 100644
index c10363107c3e979971a3e60e8ff1efef7fd0f3a3..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_TATA_TATANANO_chr4.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr4_reg07_19	1	A	G	169.001
-rs_chr4_reg07_20	2	A	G	170.001
-rs_chr4_reg07_21	3	A	G	171.001
diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr5.txt b/jass/test/data_test2/z_TATA_TATANANO_chr5.txt
deleted file mode 100644
index 765fd14e4bc6d5742677609829a04b54c1ec48c9..0000000000000000000000000000000000000000
--- a/jass/test/data_test2/z_TATA_TATANANO_chr5.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-rsid	position	refAllele	altAllele	Z
-rs_chr5_reg09_25	1	A	G	175.001
-rs_chr5_reg09_26	2	A	G	176.001
-rs_chr5_reg09_27	3	A	G	177.001
diff --git a/jass/test/data_test2/zscores.png b/jass/test/data_test2/zscores.png
deleted file mode 100644
index d311c401bcdb3f586728a01a5314a19be8b9d6dd..0000000000000000000000000000000000000000
Binary files a/jass/test/data_test2/zscores.png and /dev/null differ
diff --git a/setup.py b/setup.py
index f219c359653ae00d87b9dfacea28330db078ba1f..61bba8e85879dc9f5f6e8efca8c09667813475b9 100644
--- a/setup.py
+++ b/setup.py
@@ -31,7 +31,7 @@ setup(
     install_requires=REQUIRES,
     license="MIT",
     keywords=["GWAS", "Data analysis", "summary statistics"],
-    package_data={'jass': ['swagger/swagger.yaml']},
+    package_data={'jass': ['swagger/swagger.yaml', "data/*.tsv"]},
     include_package_data=True,
     long_description=readme,
     long_description_content_type="text/markdown",