diff --git a/MANIFEST.in b/MANIFEST.in index ac2af8ff93547e9a0b30bc6bc4b3c0294c613cf2..2f44dbf82157a6e81e14acf9fd7c3ae8998a3ca4 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,5 +1,5 @@ include README.md include setup.cfg include jass/swagger/swagger.yaml -recursive-include jass/static * -recursive-include celery_files * +recursive-include jass/models/data/ *.tsv +recursive-include jass/static * \ No newline at end of file diff --git a/data/coef_mean_model.tsv b/data/coef_mean_model.tsv new file mode 100644 index 0000000000000000000000000000000000000000..ca07eb89886c598f96afb4e4f998f870e57d30f1 --- /dev/null +++ b/data/coef_mean_model.tsv @@ -0,0 +1,7 @@ + 0 +k_coef_mv 0.07740334977380119 +log10_avg_distance_cor_coef_mv -0.6999110771883902 +log10_mean_gencov_coef_mv 0.746794584985343 +avg_Neff_coef_mv 0.07289261717080556 +avg_h2_coef_mv -0.516496395500929 +avg_perc_h2_diff_region_coef_mv 0.15727591593399 diff --git a/data/combi_sample.tsv b/data/combi_sample.tsv new file mode 100644 index 0000000000000000000000000000000000000000..7264b25dc3fd8cb6baad069e87b3e281a9404d3f --- /dev/null +++ b/data/combi_sample.tsv @@ -0,0 +1,201 @@ +,trait,k,avg_distance_cor,mean_gencov,avg_Neff,avg_h2_mixer,avg_perc_h2_diff_region +1590,z_VAN-HEEL_CELIAC z_GLG_HDL z_GLG_LDL z_WILLER_ATRIALFIBRI z_PGC_BIP z_SPIRO-UKB_FEV1-FVC z_UKIBD_CD,7,0.0590830304651648,0.015347619047619,127387.05229530609,0.2194681225668153,0.5603096008205554 +563,z_GEFOS_BMD-FOREARM z_GLG_HDL z_MAGIC_HOMA-B z_GLG_LDL z_DIAGRAM_T2D z_IMSGC-WTCC2_MULTSCLE z_TAGC_ASTHMA z_NEIGHBORHOOD_POAG z_WILLER_ATRIALFIBRI z_GLG_TC,10,0.0976903717379686,0.0123144082,72409.04275154244,0.0960473769919533,0.4744109853496899 +1176,z_MAGIC_HBA1C z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_UKBIOBANK_POAG z_GEFOS_BMD-FOREARM z_SPIRO-UKB_FEV1-FVC z_MAGIC_2HGLU-ADJBMI z_WILLER_ATRIALFIBRI z_GLG_HDL,9,0.1259168550911433,0.0127416666666666,101526.3699107523,0.1035261413153112,0.532680760371381 +647,z_VGHRV_SDNN z_MAGIC_HBA1C z_MAGIC_2HGLU-ADJBMI z_GLG_LDL z_UKIBD_CD z_C4D_CHD,6,0.1497129719310509,0.01508,42349.44331194103,0.1336805621997407,0.5317645663141873 +706,z_GEFOS_BMD-FOREARM z_VAN-HEEL_CELIAC z_MAGIC_HBA1C z_GLG_TG z_MAGIC_HOMA-B z_IMSGC-WTCC2_MULTSCLE,6,0.1279517984531755,0.0141858306,39131.43430378047,0.1027698883137745,0.4699712597742396 +487,z_SPIRO-UKB_FEV1 z_GLG_LDL z_VAN-HEEL_CELIAC z_GLG_TG,4,0.0845412610596257,0.018,152338.49375122687,0.1474322876775918,0.5349461523209061 +1134,z_MAGIC_HBA1C z_BCAC_BREAST-CANCER-ERPOS z_TAGC_ASTHMA z_SSGAC_COLLEGE z_MAGIC_HOMA-B z_CARDIOGRAMPLUSC4D_CAD,6,0.1420672595836319,0.00838,112852.50999980255,0.0445240218365629,0.5854264271884885 +1375,z_VGHRV_SDNN z_MAGIC_HOMA-B z_UKIBD_UC z_GLG_LDL z_MAGIC_HBA1C z_IGAP_AZ z_DIAGRAM_T2D,7,0.1203259304226253,0.0097523809523809,49070.67952593441,0.0942467793088732,0.4743856536919613 +1167,z_WILLER_ATRIALFIBRI z_NEIGHBORHOOD_POAG z_ICBP_DBP z_GLG_TG z_IGAP_AZ z_VAN-HEEL_CELIAC z_TAGC_ASTHMA z_SPIRO-UKB_PEF,8,0.0580211015914355,0.0082642857142857,145566.2038757884,0.140015833098121,0.5704705953116378 +336,z_ISGEC_SLEEP-SD z_C4D_CHD z_MAGIC_HOMA-B z_TAGC_ASTHMA z_BCAC_BREAST-CANCER-ERPOS z_DIAGRAM_T2D,6,0.1337544044789961,0.00758,82705.81943479212,0.0407266907992723,0.5956343242037365 +41,z_GLG_TG z_GLG_LDL z_SPIRO-UKB_FEV1-FVC z_GLG_HDL,4,0.1283763678145305,0.02655,174196.0,0.1236007456024044,0.4317283091016877 +298,z_TAGC_ASTHMA z_MAGIC_HBA1C z_ISGEC_SLEEP-SD z_SSGAC_COLLEGE z_BCAC_BREAST-CANCER-ERPOS z_IGAP_AZ z_DIAGRAM_T2D z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_HOMA-B z_NEIGHBORHOOD_POAG z_IMSGC-WTCC2_MULTSCLE,11,0.1472338050632623,0.0086706810727272,80626.02514303278,0.0646078587377984,0.617459161574024 +1647,z_IMSGC-WTCC2_MULTSCLE z_SSGAC_COLLEGE,2,0.0134755833219838,0.0013,75649.31540888772,0.1323774813348991,0.7223225759517726 +315,z_SPIRO-UKB_FEV1 z_SPIRO-UKB_PEF z_WILLER_ATRIALFIBRI z_IMSGC-WTCC2_MULTSCLE z_GLG_TC z_PGC_BIP,6,0.0532904011707912,0.0144466666666666,194193.69290476877,0.1775083022574499,0.61681560971493 +1887,z_MAGIC_HBA1C z_GLG_LDL z_VGHRV_SDNN z_MAGIC_HOMA-B,4,0.1252416298957048,0.0103333333333333,55141.5,0.0571012630925966,0.4261467763873102 +1644,z_VAN-HEEL_CELIAC z_MAGIC_2HGLU-ADJBMI z_GLG_TC z_SPIRO-UKB_FVC,4,0.0960418188010153,0.0156833333333333,130885.99375122684,0.1511967311641081,0.6432719530887009 +1723,z_GLG_HDL z_WILLER_ATRIALFIBRI z_C4D_CHD z_MAGIC_HOMA-B z_NEIGHBORHOOD_POAG z_GLG_LDL z_TAGC_ASTHMA z_MAGIC_HBA1C z_MAGIC_2HGLU-ADJBMI z_VAN-HEEL_CELIAC z_GLG_TC,11,0.1228551517980456,0.0144281521636363,68721.8996648356,0.0909802678793049,0.5132459717744748 +1785,z_VGHRV_SDNN z_GIANT_HIP z_GLG_TG z_GLG_LDL z_VAN-HEEL_CELIAC z_SSGAC_COLLEGE z_IMSGC-WTCC2_MULTSCLE z_PGC_BIP z_ICBP_DBP z_GLG_TC,10,0.0855612012893199,0.0182488888888888,94514.0566135874,0.1749872756491363,0.6058872516205108 +1042,z_ISGEC_SLEEP-SD z_ICBP_DBP z_ICBP_SBP z_BCAC_BREAST-CANCER-ERPOS z_CARDIOGRAMPLUSC4D_CAD z_SPIRO-UKB_FEV1-FVC z_UKBIOBANK_ALAT z_PGC_BIP z_GIANT_HIP z_SSGAC_COLLEGE z_ISGEC_SLEEP-MEAN,11,0.0906698729760977,0.0171521947818181,207684.2586868554,0.1684968807560016,0.7340270038141383 +1230,z_WILLER_ATRIALFIBRI z_VGHRV_SDNN z_GLG_TC z_UKBIOBANK_POAG,4,0.0217326319938325,0.0044166666666666,103337.56838834115,0.1183176857517645,0.537311156472734 +559,z_ISGEC_SLEEP-MEAN z_SPIRO-UKB_FEV1-FVC z_ICBP_SBP z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_PEF z_SPIRO-UKB_FEV1 z_ISGEC_DIURNAL-IN z_SSGAC_COLLEGE z_ICBP_DBP,9,0.0784367531306572,0.0245916666666666,258089.6972913661,0.1722573777134419,0.7216792330462357 +465,z_UKIBD_UC z_PGC_BIP z_ICBP_DBP z_GLG_TC z_GIANT_HIP z_UKIBD_CD z_SPIRO-UKB_PEF z_WILLER_ATRIALFIBRI z_VGHRV_SDNN z_ICBP_SBP z_GLG_HDL,11,0.0626871605470878,0.0222490909090909,152934.99516552722,0.2313358725913795,0.5733177064733321 +182,z_ISGEC_DIURNAL-IN z_GLG_HDL z_UKIBD_UC z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1 z_ICBP_SBP z_GLG_TG z_SPIRO-UKB_PEF,9,0.0646731128297258,0.0236194444444444,246347.8395287294,0.1797318914674525,0.5950392415887262 +1445,z_GIANT_HIP z_TAGC_ASTHMA z_SSGAC_COLLEGE z_MAGIC_HOMA-B z_ISGEC_DIURNAL-IN z_NEIGHBORHOOD_POAG z_SPIRO-UKB_FVC z_GLG_HDL z_UKBIOBANK_ALAT,9,0.1219434243714489,0.0142957880277777,157963.7288433767,0.097487736094446,0.6351440382469806 +1944,z_TAGC_ASTHMA z_GLG_TC z_MAGIC_2HGLU-ADJBMI z_MAGIC_FAST-INSULIN z_WILLER_ATRIALFIBRI z_SSGAC_COLLEGE z_ISGEC_DIURNAL-IN z_MAGIC_HOMA-B z_SPIRO-UKB_FEV1-FVC,9,0.0645102163671844,0.0090194444444444,123337.749006027,0.0873275459892302,0.6416114601273238 +1428,z_IMSGC-WTCC2_MULTSCLE z_PGC_BIP z_MAGIC_FAST-INSULIN z_CARDIOGRAMPLUSC4D_CAD z_GIANT_HIP z_UKBIOBANK_POAG,6,0.1068441352448858,0.0126733333333333,76243.65133443482,0.159147851665268,0.7281644888393856 +150,z_VAN-HEEL_CELIAC z_MAGIC_HBA1C z_MAGIC_2HGLU-ADJBMI,3,0.1294340950690383,0.0174999999999999,24785.325001635807,0.1155362667696048,0.6002841362666933 +274,z_PGC_BIP z_ICBP_SBP z_GIANT_HIP z_GLG_LDL z_SPIRO-UKB_FEV1 z_ISGEC_SLEEP-MEAN z_UKIBD_UC z_ICBP_DBP z_UKIBD_CD z_VAN-HEEL_CELIAC z_MAGIC_2HGLU-ADJBMI z_SPIRO-UKB_FEV1-FVC,12,0.0695153298236532,0.0221272727272727,153646.11296067174,0.2421499659078964,0.6462169458043557 +133,z_VGHRV_SDNN z_SPIRO-UKB_FEV1 z_SPIRO-UKB_FEV1-FVC z_GLG_HDL z_VAN-HEEL_CELIAC z_PGC_BIP z_SPIRO-UKB_PEF z_GEFOS_BMD-FOREARM z_GLG_TG z_UKBIOBANK_ALAT,10,0.0781496526754806,0.0185533333333333,189990.79353180985,0.14834882668588,0.5723473049474492 +625,z_GLG_HDL z_SPIRO-UKB_FEV1-FVC z_GLG_LDL z_WILLER_ATRIALFIBRI z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_2HGLU-ADJBMI z_ICBP_DBP z_VAN-HEEL_CELIAC z_UKBIOBANK_POAG z_DIAGRAM_T2D z_ISGEC_SLEEP-MEAN,11,0.0946034984804523,0.0122963636363636,136864.04808980078,0.1509498682208043,0.6035377645402723 +1334,z_UKBIOBANK_POAG z_IMSGC-WTCC2_MULTSCLE z_MAGIC_2HGLU-ADJBMI z_GLG_LDL z_VGHRV_SDNN z_ISGEC_SLEEP-SD z_NEIGHBORHOOD_POAG z_IGAP_AZ z_ICBP_DBP z_ISGEC_DIURNAL-IN z_MAGIC_FAST-INSULIN z_TAGC_ASTHMA,12,0.0945538220831093,0.0077681818181818,72649.03564810402,0.1167604478703124,0.6666392704974057 +1278,z_ISGEC_SLEEP-MEAN z_SSGAC_COLLEGE z_SPIRO-UKB_PEF z_CARDIOGRAMPLUSC4D_CAD z_ISGEC_SLEEP-SD z_SPIRO-UKB_FEV1 z_BCAC_BREAST-CANCER-ERPOS z_ICBP_SBP z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1-FVC z_PGC_BIP,11,0.0855037656709843,0.01762,236644.1677777645,0.1507616301147009,0.7410848932841055 +641,z_MAGIC_2HGLU-ADJBMI z_ICBP_DBP z_GLG_HDL z_MAGIC_FAST-INSULIN z_TAGC_ASTHMA z_MAGIC_HBA1C z_GEFOS_BMD-FOREARM z_C4D_CHD z_ISGEC_SLEEP-SD z_IGAP_AZ z_GLG_TG z_UKBIOBANK_ALAT,12,0.1550634761335628,0.0158355813484848,106494.37502418408,0.094676737091809,0.5862564612773997 +1471,z_VAN-HEEL_CELIAC z_UKIBD_UC z_TAGC_ASTHMA,3,0.0716413235817607,0.0147,38751.56850668967,0.1895962040425665,0.5360869999645724 +36,z_MAGIC_HBA1C z_DIAGRAM_T2D z_TAGC_ASTHMA z_SSGAC_COLLEGE z_BCAC_BREAST-CANCER-ERPOS z_C4D_CHD,6,0.2121136291435215,0.0136733333333333,89755.81943479214,0.0517372922116864,0.5840143317337964 +1476,z_TAGC_ASTHMA z_GIANT_HIP z_MAGIC_FAST-INSULIN z_ISGEC_DIURNAL-IN z_UKIBD_CD z_SPIRO-UKB_PEF,6,0.087021521727048,0.0120599999999999,129641.17320133257,0.1523996983463591,0.686046589714835 +1697,z_GLG_TC z_TAGC_ASTHMA z_MAGIC_HBA1C z_DIAGRAM_T2D z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE z_GLG_LDL,7,0.1141526306042843,0.0130755932857142,60081.715213907,0.0982385576043977,0.4831980138232068 +1144,z_GLG_TC z_GLG_HDL z_IMSGC-WTCC2_MULTSCLE z_GLG_TG,4,0.0884884070994064,0.0291666666666666,79243.90770444386,0.1346552715905047,0.4454331496965424 +1601,z_SPIRO-UKB_FEV1 z_PGC_BIP,2,0.0208041117370982,0.0035,208322.98015659556,0.263873901967294,0.7649789686500086 +192,z_GLG_LDL z_WILLER_ATRIALFIBRI z_NEIGHBORHOOD_POAG z_TAGC_ASTHMA z_C4D_CHD z_GLG_TG z_GLG_TC z_GEFOS_BMD-FOREARM z_UKIBD_UC z_UKIBD_CD z_IMSGC-WTCC2_MULTSCLE,11,0.1154003610074032,0.022290909090909,66805.45203054749,0.1469200872830987,0.4959194871515098 +1316,z_SSGAC_COLLEGE z_C4D_CHD z_TAGC_ASTHMA z_IGAP_AZ z_MAGIC_FAST-INSULIN z_MAGIC_HBA1C,6,0.1663614753168403,0.0110066666666666,60600.083381701465,0.0494602447159337,0.6354365108954337 +845,z_UKIBD_CD z_SPIRO-UKB_PEF,2,0.0551897688832407,0.0136,217053.4322256991,0.29602996223388,0.5594205759183581 +1268,z_ISGEC_SLEEP-SD z_SPIRO-UKB_PEF,2,0.041210212574476,0.0018,242271.5,0.0721643471173446,0.7657436043057917 +383,z_VAN-HEEL_CELIAC z_ICBP_SBP z_VGHRV_SDNN,3,0.0833788109386555,0.0155999999999999,113296.65833496914,0.2199112384468608,0.6114702939860062 +1307,z_MAGIC_HBA1C z_GLG_TC z_NEIGHBORHOOD_POAG,3,0.1924394827501134,0.015,51881.12827793105,0.0853806379083743,0.4763850235201798 +1377,z_SPIRO-UKB_FVC z_GIANT_HIP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-MEAN,4,0.0866251282826679,0.0135666666666666,267068.5,0.1345575915622025,0.7408854716352948 +168,z_WILLER_ATRIALFIBRI z_GIANT_HIP z_ICBP_DBP,3,0.1593487546287759,0.0441999999999999,224233.52209921528,0.203761331485528,0.6278651256075946 +594,z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FVC z_ICBP_SBP z_SPIRO-UKB_FEV1,4,0.051818316940652,0.0308333333333333,331729.0689055737,0.1830704849428388,0.6886005152031707 +958,z_CARDIOGRAMPLUSC4D_CAD z_C4D_CHD z_BCAC_BREAST-CANCER-ERPOS,3,0.2826585241361947,0.0257666666666666,140379.5602208221,0.0318530947963322,0.6825843118926381 +1408,z_DIAGRAM_T2D z_TAGC_ASTHMA z_GLG_HDL z_MAGIC_HBA1C z_MAGIC_2HGLU-ADJBMI z_C4D_CHD z_GLG_TC z_GLG_LDL z_UKIBD_CD z_UKBIOBANK_POAG,10,0.1366673607281095,0.0153210748666666,59062.8212693575,0.1348361504523458,0.5018382143227557 +592,z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FVC,2,0.0278200239750478,0.0135,400102.0,0.1688233005882726,0.6327641933858442 +1182,z_UKBIOBANK_POAG z_SSGAC_COLLEGE z_IGAP_AZ z_BCAC_BREAST-CANCER-ERPOS z_IMSGC-WTCC2_MULTSCLE z_MAGIC_FAST-INSULIN,6,0.1137541479724746,0.00562,88900.85730152547,0.0913860901707053,0.7237872912979717 +1801,z_DIAGRAM_T2D z_GEFOS_BMD-FOREARM z_NEIGHBORHOOD_POAG z_IGAP_AZ z_MAGIC_HOMA-B z_GLG_TG z_WILLER_ATRIALFIBRI z_UKIBD_CD z_TAGC_ASTHMA z_MAGIC_HBA1C z_IMSGC-WTCC2_MULTSCLE,11,0.1218458315016612,0.0128106810727272,59290.165643653294,0.1146575041657396,0.4939800534284094 +1400,z_PGC_BIP z_ISGEC_DIURNAL-IN z_CARDIOGRAMPLUSC4D_CAD z_GIANT_HIP z_ISGEC_SLEEP-MEAN z_SPIRO-UKB_FEV1-FVC z_ISGEC_SLEEP-SD z_ICBP_DBP z_BCAC_BREAST-CANCER-ERPOS,9,0.0694501616857693,0.0109269642499999,167381.53839504547,0.1511892195903571,0.7710492852189827 +294,z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_SPIRO-UKB_FVC z_GLG_TG z_GLG_HDL z_GEFOS_BMD-FOREARM,6,0.0826064408550955,0.0289933333333333,234205.16666666663,0.1286495461550943,0.5262108653001604 +791,z_SSGAC_COLLEGE z_SPIRO-UKB_FVC z_IMSGC-WTCC2_MULTSCLE z_ICBP_DBP z_GLG_LDL z_MAGIC_FAST-INSULIN z_UKBIOBANK_POAG z_IGAP_AZ z_GEFOS_BMD-FOREARM z_GIANT_HIP z_GLG_TC z_SPIRO-UKB_FEV1-FVC,12,0.0864742810515255,0.0111378787878787,146158.15568223817,0.1410714520107773,0.6223449420906045 +58,z_ISGEC_SLEEP-SD z_IGAP_AZ z_BCAC_BREAST-CANCER-ERPOS z_NEIGHBORHOOD_POAG z_MAGIC_HOMA-B z_IMSGC-WTCC2_MULTSCLE z_CARDIOGRAMPLUSC4D_CAD z_TAGC_ASTHMA z_MAGIC_FAST-INSULIN z_C4D_CHD,10,0.1275981228024508,0.0087244444444444,75052.24011839958,0.0569925123866621,0.6553178811045668 +284,z_ISGEC_SLEEP-MEAN z_ICBP_SBP z_SSGAC_COLLEGE z_SPIRO-UKB_PEF z_ICBP_DBP z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_CARDIOGRAMPLUSC4D_CAD z_ISGEC_DIURNAL-IN z_MAGIC_FAST-INSULIN,11,0.0974377671472767,0.0262454545454545,245852.6917836294,0.1639458997423937,0.7306692360068265 +1335,z_GLG_TG z_VGHRV_SDNN z_SPIRO-UKB_FEV1 z_GIANT_HIP z_GLG_HDL z_MAGIC_2HGLU-ADJBMI z_UKBIOBANK_ALAT z_ICBP_SBP z_UKIBD_CD,9,0.0955452129622085,0.0181916666666666,172886.87382793313,0.1826763020618484,0.5802105538041229 +759,z_GLG_TC z_C4D_CHD z_DIAGRAM_T2D z_UKIBD_UC z_GLG_TG z_GEFOS_BMD-FOREARM z_MAGIC_2HGLU-ADJBMI z_IGAP_AZ,8,0.159396788753913,0.0194607142857142,46104.444012723616,0.1042583013096612,0.5266574898619478 +1937,z_WILLER_ATRIALFIBRI z_UKIBD_CD z_MAGIC_2HGLU-ADJBMI z_PGC_BIP,4,0.0540024681989385,0.0185166666666666,73500.84776555875,0.2538079260462135,0.6648391873208915 +1343,z_VGHRV_SDNN z_MAGIC_2HGLU-ADJBMI z_WILLER_ATRIALFIBRI z_UKIBD_CD z_IMSGC-WTCC2_MULTSCLE z_GLG_TG z_MAGIC_HOMA-B z_IGAP_AZ z_MAGIC_HBA1C z_UKBIOBANK_POAG z_DIAGRAM_T2D z_GLG_LDL,12,0.0938958793569924,0.0102967796818181,63974.66414545957,0.125794382567689,0.5204863510961183 +526,z_MAGIC_FAST-INSULIN z_PGC_BIP z_UKIBD_CD z_ICBP_SBP z_ISGEC_DIURNAL-IN,5,0.0555818362243514,0.01514,96103.16495291788,0.2713259669854389,0.7522978220017557 +482,z_DIAGRAM_T2D z_NEIGHBORHOOD_POAG z_MAGIC_HBA1C z_TAGC_ASTHMA z_UKIBD_CD z_UKIBD_UC z_GLG_LDL z_WILLER_ATRIALFIBRI,8,0.1026289376303069,0.0167142857142857,70739.52711345143,0.1558030006300269,0.484469822320831 +1324,z_ICBP_SBP z_VAN-HEEL_CELIAC z_GLG_HDL z_MAGIC_2HGLU-ADJBMI z_ISGEC_SLEEP-MEAN,5,0.1042720199831351,0.01599,102528.99500098148,0.1868009468409729,0.6688643607906695 +1726,z_DIAGRAM_T2D z_ISGEC_SLEEP-MEAN z_SSGAC_COLLEGE z_ICBP_SBP z_GEFOS_BMD-FOREARM z_UKBIOBANK_ALAT z_ISGEC_DIURNAL-IN z_MAGIC_HBA1C z_C4D_CHD z_TAGC_ASTHMA z_ICBP_DBP z_SPIRO-UKB_FEV1-FVC,12,0.1382164347590501,0.021280303030303,160384.3867488715,0.1391437097269526,0.6160548100789176 +1589,z_WILLER_ATRIALFIBRI z_UKBIOBANK_POAG z_BCAC_BREAST-CANCER-ERPOS z_CARDIOGRAMPLUSC4D_CAD z_NEIGHBORHOOD_POAG z_UKIBD_UC z_VGHRV_SDNN,7,0.0742259815991077,0.0074666666666666,108362.58562684864,0.1106132008834158,0.612440764845329 +587,z_SSGAC_COLLEGE z_ICBP_DBP,2,0.0870183383059183,0.0158,212791.5,0.2356425163713894,0.727064434207636 +85,z_MAGIC_HBA1C z_ISGEC_DIURNAL-IN z_GEFOS_BMD-FOREARM z_PGC_BIP z_DIAGRAM_T2D z_SSGAC_COLLEGE z_MAGIC_2HGLU-ADJBMI z_UKIBD_UC z_UKBIOBANK_POAG z_GLG_TG,10,0.1126594908476524,0.0152133333333333,53202.68941370873,0.1382771421075048,0.6160486268503406 +1385,z_UKBIOBANK_ALAT z_UKIBD_UC z_SPIRO-UKB_FVC,3,0.0384310865836917,0.0098,291176.18525285483,0.1949314513326778,0.5977188883541729 +1725,z_VGHRV_SDNN z_GEFOS_BMD-FOREARM z_GLG_TC z_GLG_TG,4,0.0610326168725515,0.0175,57076.75,0.084074173858062,0.447340989824493 +973,z_IMSGC-WTCC2_MULTSCLE z_WILLER_ATRIALFIBRI z_DIAGRAM_T2D z_VGHRV_SDNN z_GLG_HDL z_UKIBD_UC z_UKIBD_CD z_MAGIC_2HGLU-ADJBMI z_TAGC_ASTHMA z_GLG_TG z_MAGIC_HBA1C z_C4D_CHD,12,0.1457708715704258,0.0199641792121212,62295.02152598682,0.1364958070494531,0.5083588476744398 +1137,z_BCAC_BREAST-CANCER-ERPOS z_IGAP_AZ z_SPIRO-UKB_FEV1 z_WILLER_ATRIALFIBRI z_SPIRO-UKB_PEF,5,0.0728733251303697,0.01501,260556.2744066608,0.0877155723579458,0.6502094427456256 +355,z_VGHRV_SDNN z_UKBIOBANK_POAG z_GEFOS_BMD-FOREARM z_GLG_TG z_NEIGHBORHOOD_POAG z_WILLER_ATRIALFIBRI z_MAGIC_HBA1C z_GLG_LDL,8,0.0913592125075431,0.0109571428571428,72840.83229839473,0.0900034201412496,0.4937855931392061 +293,z_TAGC_ASTHMA z_UKBIOBANK_POAG z_NEIGHBORHOOD_POAG z_SSGAC_COLLEGE z_ISGEC_SLEEP-SD z_IGAP_AZ z_CARDIOGRAMPLUSC4D_CAD z_IMSGC-WTCC2_MULTSCLE z_DIAGRAM_T2D,9,0.131508915334444,0.0091027777777777,69800.85646742053,0.0925704194665801,0.6586186242289215 +545,z_MAGIC_2HGLU-ADJBMI z_NEIGHBORHOOD_POAG z_MAGIC_HOMA-B z_GLG_HDL z_UKBIOBANK_POAG z_GLG_TG z_GEFOS_BMD-FOREARM,7,0.1310312927726678,0.0157523809523809,48818.584584216005,0.0929854799510714,0.5155884281934189 +267,z_SSGAC_COLLEGE z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_HBA1C z_IGAP_AZ,4,0.2101332266809229,0.01375,95642.0349333218,0.0556645804159107,0.6487894942290839 +189,z_GLG_LDL z_BCAC_BREAST-CANCER-ERPOS z_UKIBD_UC z_IMSGC-WTCC2_MULTSCLE z_GLG_TC z_ISGEC_DIURNAL-IN,6,0.1279879005262243,0.0177666666666666,94783.07703310576,0.1383928645500324,0.5952731219192103 +1761,z_SSGAC_COLLEGE z_C4D_CHD z_MAGIC_HOMA-B,3,0.160496923789286,0.0121,67740.93180674933,0.0415342251423417,0.6121363378127547 +702,z_WILLER_ATRIALFIBRI z_VAN-HEEL_CELIAC z_NEIGHBORHOOD_POAG z_GLG_LDL z_IGAP_AZ,5,0.0652872241071802,0.00778,80272.89124994198,0.1098285264808039,0.5852298595332885 +384,z_DIAGRAM_T2D z_TAGC_ASTHMA z_NEIGHBORHOOD_POAG z_IGAP_AZ z_GEFOS_BMD-FOREARM z_GLG_TG z_MAGIC_HOMA-B z_MAGIC_2HGLU-ADJBMI z_UKIBD_CD z_MAGIC_HBA1C z_GLG_LDL z_IMSGC-WTCC2_MULTSCLE,12,0.1166422744013943,0.0117498099848484,44925.43798187837,0.1141640353559776,0.5043586769132349 +1132,z_NEIGHBORHOOD_POAG z_MAGIC_HBA1C z_VAN-HEEL_CELIAC z_UKIBD_UC z_TAGC_ASTHMA z_GLG_TC z_VGHRV_SDNN z_IGAP_AZ z_UKBIOBANK_POAG z_GLG_HDL z_GLG_TG z_MAGIC_2HGLU-ADJBMI,12,0.0976633845018377,0.011978005590909,51688.19397691206,0.1189445472277825,0.5340887267136462 +993,z_NEIGHBORHOOD_POAG z_MAGIC_HBA1C z_C4D_CHD z_UKBIOBANK_POAG,4,0.3060055729473405,0.0227833333333333,38057.72187744002,0.086267188275563,0.5576154789359185 +1765,z_PGC_BIP z_UKBIOBANK_ALAT z_SPIRO-UKB_FEV1 z_GIANT_HIP z_BCAC_BREAST-CANCER-ERPOS z_ICBP_DBP,6,0.0541165845854049,0.0097913808666666,254346.8726559143,0.1973205030361074,0.7015257914901563 +1826,z_DIAGRAM_T2D z_UKBIOBANK_POAG z_CARDIOGRAMPLUSC4D_CAD z_NEIGHBORHOOD_POAG z_BCAC_BREAST-CANCER-ERPOS z_IMSGC-WTCC2_MULTSCLE z_MAGIC_HBA1C z_MAGIC_HOMA-B,8,0.1758989395927993,0.0114352663928571,77930.03486988983,0.0858214551182551,0.5649951770000551 +1187,z_GIANT_HIP z_VGHRV_SDNN z_WILLER_ATRIALFIBRI z_VAN-HEEL_CELIAC z_UKBIOBANK_ALAT z_GLG_TC z_MAGIC_2HGLU-ADJBMI,7,0.1074511204150545,0.0178142857142857,137499.6487575076,0.1197175247735278,0.613586087477753 +1249,z_SPIRO-UKB_FEV1-FVC z_GLG_TC z_GIANT_HIP z_GLG_HDL,4,0.085133557276738,0.01565,185299.0,0.1353765020144585,0.5270398492805137 +1261,z_ISGEC_SLEEP-SD z_GIANT_HIP,2,0.1759263121517122,0.0117,114948.5,0.072534247377043,0.8294793259320987 +576,z_ICBP_SBP z_SSGAC_COLLEGE z_UKIBD_UC,3,0.0561187044585984,0.0115333333333333,153914.1852528548,0.2499482226099366,0.6488746208757793 +1391,z_C4D_CHD z_GLG_HDL z_IGAP_AZ z_NEIGHBORHOOD_POAG z_GLG_TG z_GLG_TC z_VGHRV_SDNN,7,0.1350856609312673,0.017447619047619,58759.387195343545,0.0807143198926419,0.5207818772160989 +1475,z_SSGAC_COLLEGE z_CARDIOGRAMPLUSC4D_CAD z_ISGEC_SLEEP-MEAN z_ICBP_SBP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-SD,6,0.1454740423492998,0.0168933333333333,199285.4349366539,0.1331787892746872,0.7664887291561993 +311,z_ICBP_SBP z_UKBIOBANK_ALAT z_SPIRO-UKB_FEV1 z_ISGEC_SLEEP-SD z_SPIRO-UKB_FVC z_PGC_BIP z_BCAC_BREAST-CANCER-ERPOS z_SSGAC_COLLEGE z_ICBP_DBP,9,0.0803533923463235,0.0224555555555555,254527.91510394288,0.1908991457817186,0.7303073843548513 +491,z_UKBIOBANK_ALAT z_ICBP_SBP z_PGC_BIP z_ISGEC_DIURNAL-IN z_ICBP_DBP z_MAGIC_FAST-INSULIN z_SPIRO-UKB_FEV1 z_SSGAC_COLLEGE z_GIANT_HIP z_ISGEC_SLEEP-SD z_SPIRO-UKB_FEV1-FVC z_BCAC_BREAST-CANCER-ERPOS,12,0.0898337104940156,0.0174041017121212,213929.1863279572,0.1649151795443754,0.7453722563817959 +1918,z_MAGIC_HOMA-B z_NEIGHBORHOOD_POAG z_UKBIOBANK_POAG z_MAGIC_FAST-INSULIN z_IGAP_AZ z_DIAGRAM_T2D z_CARDIOGRAMPLUSC4D_CAD z_SSGAC_COLLEGE z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_HBA1C,10,0.1495706862465509,0.0111066666666666,81811.41782547068,0.0651939821887581,0.6320533879294423 +611,z_SPIRO-UKB_FEV1-FVC z_GLG_LDL z_IMSGC-WTCC2_MULTSCLE z_GLG_TC z_MAGIC_2HGLU-ADJBMI z_IGAP_AZ z_CARDIOGRAMPLUSC4D_CAD,7,0.0863763014370059,0.0120619047619047,120724.39579300895,0.1154662043668354,0.5847619635952243 +1359,z_GLG_HDL z_SPIRO-UKB_FEV1 z_GLG_LDL z_GLG_TC z_ICBP_SBP z_VGHRV_SDNN z_SPIRO-UKB_PEF z_WILLER_ATRIALFIBRI,8,0.0627738925603709,0.0172035714285714,206387.3207872057,0.1484198562023728,0.528850695419464 +422,z_VGHRV_SDNN z_UKIBD_UC z_SPIRO-UKB_FEV1-FVC z_PGC_BIP z_GIANT_HIP z_UKBIOBANK_ALAT z_GLG_TC z_VAN-HEEL_CELIAC z_MAGIC_2HGLU-ADJBMI z_WILLER_ATRIALFIBRI z_UKIBD_CD z_SPIRO-UKB_PEF,12,0.0694776689312947,0.017930303030303,154117.49348547557,0.1872614053643158,0.6072309666139015 +1539,z_TAGC_ASTHMA z_GLG_TC z_MAGIC_HBA1C z_GLG_HDL z_GLG_TG z_IMSGC-WTCC2_MULTSCLE z_UKIBD_UC z_UKBIOBANK_POAG z_VAN-HEEL_CELIAC,9,0.0814763852126565,0.0130593285555555,60129.11595484037,0.1488955129567141,0.487215139439201 +713,z_SPIRO-UKB_FVC z_ISGEC_SLEEP-SD z_ICBP_SBP,3,0.0450003523651912,0.0078333333333333,261189.0,0.1938270008909437,0.7485174529559334 +1875,z_VAN-HEEL_CELIAC z_MAGIC_HBA1C z_IMSGC-WTCC2_MULTSCLE z_WILLER_ATRIALFIBRI z_TAGC_ASTHMA z_UKIBD_UC,6,0.0966928307757724,0.0126391639333333,69263.81710591503,0.1491762309242631,0.518390699660841 +349,z_UKIBD_CD z_GLG_LDL z_SPIRO-UKB_PEF,3,0.0510924138579029,0.0094666666666666,178002.28815046605,0.2339849547481714,0.5084287148397412 +1781,z_ICBP_DBP z_SSGAC_COLLEGE z_SPIRO-UKB_FVC z_ICBP_SBP z_SPIRO-UKB_PEF z_PGC_BIP z_UKBIOBANK_ALAT z_ISGEC_DIURNAL-IN z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1,10,0.075444915979674,0.0240133333333333,269116.9235935486,0.1912115540924553,0.7201343239763441 +866,z_PGC_BIP z_ICBP_SBP,2,0.0197019562279949,0.0022,157783.98015659553,0.3738883466737839,0.7285907047677492 +352,z_ICBP_DBP z_ICBP_SBP z_GIANT_HIP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-SD z_SSGAC_COLLEGE z_ISGEC_SLEEP-MEAN,7,0.0997818734623576,0.0269857142857142,211031.42857142855,0.1798686785536212,0.7471756776165807 +92,z_MAGIC_HOMA-B z_VGHRV_SDNN z_GLG_TC z_UKIBD_CD z_TAGC_ASTHMA z_DIAGRAM_T2D,6,0.0604448130569876,0.0073066666666666,51866.45166960135,0.1406869962214411,0.4655853328128636 +1313,z_MAGIC_2HGLU-ADJBMI z_ICBP_DBP z_UKBIOBANK_ALAT z_ICBP_SBP z_VGHRV_SDNN z_UKIBD_CD z_GLG_LDL z_VAN-HEEL_CELIAC z_GLG_HDL z_SPIRO-UKB_FEV1-FVC,10,0.0858049350221005,0.0204866666666666,172560.58394563055,0.2153353530730189,0.5644313524752687 +724,z_UKIBD_UC z_MAGIC_HBA1C z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE z_SPIRO-UKB_FEV1-FVC z_MAGIC_HOMA-B z_CARDIOGRAMPLUSC4D_CAD z_WILLER_ATRIALFIBRI z_NEIGHBORHOOD_POAG z_SPIRO-UKB_FVC z_TAGC_ASTHMA,11,0.097427630551371,0.0095852265272727,133880.13201796936,0.1119596693288894,0.553271697514938 +674,z_C4D_CHD z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_SSGAC_COLLEGE z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_MAGIC_HBA1C z_UKBIOBANK_POAG z_TAGC_ASTHMA z_CARDIOGRAMPLUSC4D_CAD z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_HOMA-B,12,0.1603936679052523,0.0116636363636363,79475.46819318236,0.060375530631865,0.6361010086424089 +134,z_GLG_TC z_UKIBD_UC z_UKBIOBANK_ALAT z_MAGIC_2HGLU-ADJBMI z_GLG_TG z_ICBP_DBP z_GLG_LDL z_ISGEC_SLEEP-MEAN z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FVC z_GEFOS_BMD-FOREARM z_UKIBD_CD,12,0.0698459658906501,0.0174545454545454,167286.45168416356,0.1860216803874005,0.5629060760943365 +1979,z_UKIBD_CD z_GLG_TC z_UKIBD_UC z_VGHRV_SDNN z_C4D_CHD z_MAGIC_2HGLU-ADJBMI z_WILLER_ATRIALFIBRI z_GLG_TG z_IGAP_AZ,9,0.1084506721610825,0.0209027777777777,67881.03467124667,0.1456995376725871,0.5450086687589891 +1365,z_SPIRO-UKB_PEF z_ICBP_DBP z_ISGEC_DIURNAL-IN z_ICBP_SBP z_ISGEC_SLEEP-MEAN z_GLG_TG z_VGHRV_SDNN z_SPIRO-UKB_FEV1-FVC z_GIANT_HIP z_WILLER_ATRIALFIBRI z_UKIBD_CD z_UKBIOBANK_ALAT,12,0.0661944279501252,0.0195045454545454,211509.7025624203,0.1891701580319387,0.6275561519240264 +30,z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FVC,2,0.1159499384673592,0.0055,313895.1378111474,0.0861479943094108,0.7301304969043543 +266,z_MAGIC_HBA1C z_CARDIOGRAMPLUSC4D_CAD z_DIAGRAM_T2D z_ISGEC_SLEEP-SD z_SSGAC_COLLEGE z_MAGIC_HOMA-B z_IGAP_AZ z_BCAC_BREAST-CANCER-ERPOS z_UKBIOBANK_POAG,9,0.1390553750574862,0.0082055555555555,93616.42149121262,0.0623098922767981,0.6375400587757175 +1752,z_PGC_BIP z_GLG_TG z_VAN-HEEL_CELIAC,3,0.0644102028921396,0.0248333333333333,41965.311772699504,0.2225416510428823,0.632126653044214 +187,z_TAGC_ASTHMA z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_2HGLU-ADJBMI z_SPIRO-UKB_FEV1-FVC z_WILLER_ATRIALFIBRI z_SSGAC_COLLEGE z_VAN-HEEL_CELIAC z_MAGIC_HBA1C z_NEIGHBORHOOD_POAG z_ISGEC_DIURNAL-IN,10,0.0981552384265272,0.0104266666666666,115812.97105128672,0.099150644605742,0.6489238664289725 +531,z_C4D_CHD z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_HOMA-B z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_UKBIOBANK_POAG z_SSGAC_COLLEGE z_IGAP_AZ z_MAGIC_HBA1C z_IMSGC-WTCC2_MULTSCLE z_TAGC_ASTHMA z_CARDIOGRAMPLUSC4D_CAD,12,0.1376461137428259,0.0091907190757575,80932.6436338268,0.0660858025587894,0.6475386071312337 +852,z_SPIRO-UKB_FEV1 z_VAN-HEEL_CELIAC z_CARDIOGRAMPLUSC4D_CAD z_ISGEC_SLEEP-SD z_IGAP_AZ z_ICBP_DBP z_MAGIC_FAST-INSULIN z_DIAGRAM_T2D,8,0.123420132753006,0.0125249999999999,136531.09819347592,0.1307182914265283,0.6972924112316514 +554,z_ICBP_DBP z_GLG_HDL z_UKIBD_CD z_GEFOS_BMD-FOREARM z_MAGIC_2HGLU-ADJBMI z_UKIBD_UC z_ISGEC_DIURNAL-IN z_GLG_LDL z_SPIRO-UKB_FEV1,9,0.0909349803272544,0.0187583333333333,119723.15780110697,0.2000493782597522,0.5769935101935953 +73,z_NEIGHBORHOOD_POAG z_UKBIOBANK_POAG z_SSGAC_COLLEGE z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE z_CARDIOGRAMPLUSC4D_CAD z_C4D_CHD,7,0.1705445935337769,0.0136523809523809,66686.09400868895,0.0968722619207869,0.6677866962924901 +981,z_ISGEC_SLEEP-SD z_PGC_BIP z_ICBP_SBP z_GIANT_HIP z_SPIRO-UKB_FEV1 z_SSGAC_COLLEGE z_SPIRO-UKB_PEF z_ISGEC_SLEEP-MEAN z_ISGEC_DIURNAL-IN z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_FAST-INSULIN z_SPIRO-UKB_FEV1-FVC,12,0.102455964886693,0.0169742424242424,187641.21416109288,0.145103402979371,0.7692365361200699 +1266,z_NEIGHBORHOOD_POAG z_ISGEC_DIURNAL-IN z_GLG_TC z_ICBP_SBP z_VGHRV_SDNN z_UKBIOBANK_POAG z_UKIBD_CD,7,0.0864823923903655,0.0118857142857142,88105.27950584433,0.2037643407843568,0.6126096491260602 +204,z_GEFOS_BMD-FOREARM z_MAGIC_HBA1C z_UKIBD_UC z_UKBIOBANK_POAG z_DIAGRAM_T2D z_IGAP_AZ z_MAGIC_HOMA-B z_WILLER_ATRIALFIBRI z_VAN-HEEL_CELIAC z_NEIGHBORHOOD_POAG z_IMSGC-WTCC2_MULTSCLE,11,0.1301236813561674,0.0131270447090909,51338.63826285288,0.1198322816789971,0.5335422674518362 +669,z_TAGC_ASTHMA z_WILLER_ATRIALFIBRI z_MAGIC_FAST-INSULIN z_UKIBD_CD z_MAGIC_HBA1C z_CARDIOGRAMPLUSC4D_CAD z_IGAP_AZ z_NEIGHBORHOOD_POAG z_GLG_LDL z_GLG_TG,10,0.0855037918910553,0.0098711111111111,84208.11300727216,0.1105935050596514,0.5532720715393628 +1607,z_DIAGRAM_T2D z_GIANT_HIP z_UKBIOBANK_POAG z_SSGAC_COLLEGE,4,0.0901940893709414,0.0099333333333333,93419.84451633292,0.1190853263858657,0.6753116877326484 +1806,z_ISGEC_DIURNAL-IN z_GLG_HDL z_VAN-HEEL_CELIAC z_ICBP_DBP z_SPIRO-UKB_PEF,5,0.0552105633991044,0.0088399999999999,179364.1950009815,0.1899145237957183,0.6418745236680703 +43,z_SSGAC_COLLEGE z_IGAP_AZ z_DIAGRAM_T2D z_C4D_CHD,4,0.2404053150017727,0.0178666666666666,60951.49908580611,0.0616499020872246,0.6491691385672476 +586,z_WILLER_ATRIALFIBRI z_UKIBD_CD z_MAGIC_2HGLU-ADJBMI z_DIAGRAM_T2D z_VAN-HEEL_CELIAC z_SPIRO-UKB_FEV1 z_ISGEC_DIURNAL-IN,7,0.0936724541611467,0.0173666666666666,116453.29665193774,0.1764493197388772,0.6540678629534769 +1031,z_TAGC_ASTHMA z_IMSGC-WTCC2_MULTSCLE z_UKBIOBANK_POAG z_C4D_CHD,4,0.0997630796089275,0.00755,46030.57706258487,0.1204770077222811,0.5674689217726405 +42,z_SSGAC_COLLEGE z_UKBIOBANK_POAG z_C4D_CHD z_MAGIC_FAST-INSULIN z_MAGIC_HBA1C z_TAGC_ASTHMA z_ISGEC_SLEEP-SD z_DIAGRAM_T2D z_MAGIC_HOMA-B z_BCAC_BREAST-CANCER-ERPOS z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE,12,0.1462904334549347,0.0095982948333333,70693.31539963423,0.0689505091990335,0.6284435141738437 +631,z_ISGEC_DIURNAL-IN z_MAGIC_FAST-INSULIN z_SSGAC_COLLEGE z_TAGC_ASTHMA z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_PEF z_GEFOS_BMD-FOREARM z_NEIGHBORHOOD_POAG z_ICBP_SBP z_VGHRV_SDNN z_MAGIC_2HGLU-ADJBMI,11,0.0887174017080468,0.011650909090909,135398.3235991264,0.1123651339441087,0.6611010503555135 +1812,z_MAGIC_HOMA-B z_IGAP_AZ z_MAGIC_FAST-INSULIN z_IMSGC-WTCC2_MULTSCLE z_CARDIOGRAMPLUSC4D_CAD z_TAGC_ASTHMA z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_MAGIC_HBA1C,9,0.1442456397786799,0.0110774294166666,54931.55566122951,0.0712746227441069,0.5706680487576156 +1487,z_MAGIC_FAST-INSULIN z_BCAC_BREAST-CANCER-ERPOS z_IMSGC-WTCC2_MULTSCLE z_MAGIC_HBA1C z_UKBIOBANK_POAG z_MAGIC_HOMA-B z_ISGEC_SLEEP-SD z_CARDIOGRAMPLUSC4D_CAD,8,0.117245686265455,0.0079066949642857,87518.15291446408,0.0715269821135294,0.6488931223925881 +1077,z_GLG_HDL z_ISGEC_DIURNAL-IN,2,0.1781086240719913,0.019,92470.5,0.1088513282084233,0.6640416618746376 +583,z_GLG_TG z_CARDIOGRAMPLUSC4D_CAD z_UKBIOBANK_POAG z_WILLER_ATRIALFIBRI z_MAGIC_HOMA-B z_ICBP_SBP z_MAGIC_HBA1C z_UKIBD_UC z_GLG_HDL z_SSGAC_COLLEGE z_GEFOS_BMD-FOREARM,11,0.1187988331456894,0.0163963636363636,110179.85808471388,0.1290701784355871,0.5255173155182271 +178,z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_PEF z_UKBIOBANK_ALAT z_SSGAC_COLLEGE z_SPIRO-UKB_FEV1 z_ICBP_DBP z_ISGEC_DIURNAL-IN z_ISGEC_SLEEP-SD,8,0.0850799316008282,0.0121214285714285,257492.53445278684,0.1279870972722485,0.7432548186209785 +1401,z_GLG_LDL z_UKIBD_CD z_GLG_TC z_DIAGRAM_T2D z_GLG_TG z_WILLER_ATRIALFIBRI z_MAGIC_HBA1C z_GLG_HDL z_NEIGHBORHOOD_POAG z_MAGIC_2HGLU-ADJBMI z_VGHRV_SDNN,11,0.1118975085017193,0.0172618181818181,72545.22603567726,0.1259088211453398,0.4951420581368397 +884,z_SPIRO-UKB_FEV1 z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FVC,3,0.0188084719885601,0.0740333333333333,400102.0,0.169208377348774,0.649662394718645 +1516,z_DIAGRAM_T2D z_VAN-HEEL_CELIAC z_TAGC_ASTHMA z_SPIRO-UKB_FVC z_GLG_TG z_NEIGHBORHOOD_POAG z_UKIBD_CD z_WILLER_ATRIALFIBRI z_ISGEC_DIURNAL-IN z_MAGIC_2HGLU-ADJBMI z_GLG_TC z_MAGIC_FAST-INSULIN,12,0.0884271309002544,0.013630303030303,94547.80301282956,0.1370084164929212,0.614359797542807 +1864,z_NEIGHBORHOOD_POAG z_ICBP_SBP z_SPIRO-UKB_PEF,3,0.016896272244308,0.0042,237649.12827793104,0.1968689329027673,0.6200329517454207 +1680,z_ICBP_SBP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-MEAN z_PGC_BIP,4,0.0624695162793021,0.0164833333333333,209570.99007829776,0.2501241238608238,0.7409103407380914 +698,z_MAGIC_HBA1C z_TAGC_ASTHMA z_BCAC_BREAST-CANCER-ERPOS,3,0.0954172818222668,0.0037666666666666,113799.1501262973,0.0381950408393131,0.523531293171004 +996,z_SPIRO-UKB_PEF z_GLG_TG z_ISGEC_DIURNAL-IN z_GLG_LDL z_ICBP_SBP z_SPIRO-UKB_FVC z_ICBP_DBP,7,0.0561427679571051,0.0270714285714285,239929.57142857145,0.1971836904651991,0.6076068570976771 +129,z_CARDIOGRAMPLUSC4D_CAD z_UKBIOBANK_POAG,2,0.0366301648544401,0.0019,112268.1584378212,0.1250855290987236,0.6655790096469544 +228,z_ICBP_SBP z_GLG_LDL,2,0.1063007560448538,0.0127,199462.0,0.2499511800297555,0.5085636311511174 +56,z_SPIRO-UKB_FEV1-FVC z_GLG_TC,2,0.0017614861472957,0.0017,247778.0,0.1524883305139573,0.4866636027243571 +1618,z_SPIRO-UKB_FVC z_UKIBD_UC z_UKBIOBANK_ALAT z_GLG_HDL z_UKIBD_CD z_GLG_LDL,6,0.1185915991520768,0.0267466666666666,184602.9033683271,0.2141521482124616,0.5165959914612099 +393,z_C4D_CHD z_IGAP_AZ z_SSGAC_COLLEGE z_MAGIC_FAST-INSULIN z_NEIGHBORHOOD_POAG z_IMSGC-WTCC2_MULTSCLE z_DIAGRAM_T2D z_ISGEC_SLEEP-SD,8,0.1867077277789749,0.0124642857142857,51624.25149934913,0.0726619807502043,0.7002621581522893 +1193,z_MAGIC_HOMA-B z_UKBIOBANK_POAG z_C4D_CHD z_BCAC_BREAST-CANCER-ERPOS,4,0.1244409752444002,0.0062499999999999,91478.94457456542,0.0625705348936645,0.5869786483450414 +627,z_GEFOS_BMD-FOREARM z_MAGIC_2HGLU-ADJBMI z_UKIBD_UC z_GLG_TC z_IGAP_AZ z_UKIBD_CD z_IMSGC-WTCC2_MULTSCLE z_VAN-HEEL_CELIAC z_GLG_TG z_MAGIC_HBA1C z_VGHRV_SDNN,11,0.1188245020551162,0.0203961356181818,40385.0505587281,0.1533657828612879,0.5293114277361141 +854,z_DIAGRAM_T2D z_SPIRO-UKB_FEV1 z_SPIRO-UKB_PEF,3,0.1030220590195466,0.0415,280101.5569365376,0.127252225220473,0.5907345450548832 +1493,z_BCAC_BREAST-CANCER-ERPOS z_IGAP_AZ z_IMSGC-WTCC2_MULTSCLE z_TAGC_ASTHMA z_CARDIOGRAMPLUSC4D_CAD z_SSGAC_COLLEGE z_C4D_CHD z_NEIGHBORHOOD_POAG z_MAGIC_HBA1C z_MAGIC_FAST-INSULIN,10,0.1549462641340325,0.0100486102,79282.24011839957,0.0635988732341105,0.6483458856226025 +1039,z_ISGEC_SLEEP-MEAN z_SSGAC_COLLEGE z_SPIRO-UKB_FVC z_ISGEC_DIURNAL-IN z_SPIRO-UKB_PEF z_CARDIOGRAMPLUSC4D_CAD z_ICBP_DBP z_PGC_BIP z_ICBP_SBP z_UKBIOBANK_ALAT,10,0.1004557420384571,0.0237822222222222,231180.05699331145,0.1915867066834796,0.7385989249836966 +1912,z_MAGIC_HOMA-B z_C4D_CHD z_IMSGC-WTCC2_MULTSCLE z_IGAP_AZ z_UKBIOBANK_POAG z_TAGC_ASTHMA z_MAGIC_HBA1C z_BCAC_BREAST-CANCER-ERPOS z_DIAGRAM_T2D z_ISGEC_SLEEP-SD z_NEIGHBORHOOD_POAG,11,0.1518728979456498,0.0092815901636363,62672.37905721853,0.072915583133156,0.5867487616838086 +1346,z_VGHRV_SDNN z_SSGAC_COLLEGE z_ICBP_SBP z_NEIGHBORHOOD_POAG z_SPIRO-UKB_PEF z_TAGC_ASTHMA z_GLG_TC z_DIAGRAM_T2D z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1 z_GLG_TG z_GLG_HDL,12,0.1032566803527396,0.0137771187878787,157923.87550185816,0.1167607939942046,0.5688866513819743 +870,z_VGHRV_SDNN z_IMSGC-WTCC2_MULTSCLE z_GLG_LDL z_GLG_HDL z_CARDIOGRAMPLUSC4D_CAD z_SPIRO-UKB_FEV1 z_UKBIOBANK_POAG z_GLG_TG z_UKIBD_CD z_UKIBD_UC z_ISGEC_SLEEP-SD z_ICBP_SBP,12,0.1015086062445222,0.0160166666666666,118983.44732528173,0.180621448723582,0.570134692527162 +799,z_SPIRO-UKB_PEF z_GIANT_HIP z_UKBIOBANK_ALAT z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1 z_SPIRO-UKB_FEV1-FVC z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_ICBP_DBP z_SSGAC_COLLEGE z_SPIRO-UKB_FVC z_CARDIOGRAMPLUSC4D_CAD,12,0.1116617892858211,0.0184374350454545,260833.4904368515,0.1228199087118925,0.7156526604685894 +1449,z_MAGIC_FAST-INSULIN z_GEFOS_BMD-FOREARM z_MAGIC_HBA1C z_SSGAC_COLLEGE z_UKIBD_UC z_ICBP_DBP z_BCAC_BREAST-CANCER-ERPOS,7,0.0975909599201299,0.0115809523809523,112875.4044829799,0.127517140805905,0.6207617707284622 +797,z_ICBP_SBP z_SPIRO-UKB_FVC z_CARDIOGRAMPLUSC4D_CAD z_SPIRO-UKB_FEV1-FVC z_ICBP_DBP z_MAGIC_FAST-INSULIN z_SPIRO-UKB_PEF z_ISGEC_SLEEP-MEAN,8,0.0873394827589807,0.0265678571428571,261620.20120249045,0.1825574111558176,0.6951777274361935 +361,z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_CARDIOGRAMPLUSC4D_CAD z_SSGAC_COLLEGE z_UKBIOBANK_ALAT z_SPIRO-UKB_PEF z_PGC_BIP z_ISGEC_SLEEP-SD z_ICBP_SBP z_GIANT_HIP z_MAGIC_FAST-INSULIN,12,0.1062118853462607,0.0155192532272727,228870.3204629508,0.1380511473881252,0.7277526983953627 +1130,z_UKIBD_CD z_GLG_LDL z_GLG_TC z_VGHRV_SDNN z_IGAP_AZ z_DIAGRAM_T2D z_GEFOS_BMD-FOREARM z_NEIGHBORHOOD_POAG z_MAGIC_HOMA-B z_TAGC_ASTHMA z_IMSGC-WTCC2_MULTSCLE z_WILLER_ATRIALFIBRI,12,0.0860585419678969,0.011310606060606,61057.65184001551,0.1186015332539134,0.5058176743180883 +503,z_MAGIC_FAST-INSULIN z_CARDIOGRAMPLUSC4D_CAD z_IMSGC-WTCC2_MULTSCLE z_NEIGHBORHOOD_POAG z_UKBIOBANK_POAG z_ISGEC_SLEEP-SD,6,0.1394521689621997,0.00966,65620.7220878685,0.0974778826416972,0.7227631217072056 +1764,z_GEFOS_BMD-FOREARM z_UKBIOBANK_POAG z_MAGIC_2HGLU-ADJBMI z_GLG_LDL z_VGHRV_SDNN z_GLG_HDL z_DIAGRAM_T2D z_UKIBD_UC,8,0.1027078239874987,0.0109357142857142,48674.61672798701,0.1247137059011896,0.515936136670362 +35,z_SPIRO-UKB_FEV1 z_VAN-HEEL_CELIAC z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_ISGEC_SLEEP-MEAN,5,0.1177238055335039,0.01227,125786.39500098149,0.1131733816379913,0.8092728725720985 +340,z_NEIGHBORHOOD_POAG z_C4D_CHD z_CARDIOGRAMPLUSC4D_CAD z_UKBIOBANK_POAG z_MAGIC_HOMA-B z_SSGAC_COLLEGE z_TAGC_ASTHMA z_BCAC_BREAST-CANCER-ERPOS z_IMSGC-WTCC2_MULTSCLE,9,0.1426152251211962,0.0100055555555555,84594.39759181679,0.0802879603112493,0.6213230511402251 +1447,z_GLG_LDL z_UKBIOBANK_ALAT,2,0.1705977739626475,0.0185,268583.5,0.1205676248688687,0.5029039893692331 +657,z_IMSGC-WTCC2_MULTSCLE z_TAGC_ASTHMA z_NEIGHBORHOOD_POAG z_GEFOS_BMD-FOREARM z_UKIBD_UC z_WILLER_ATRIALFIBRI z_DIAGRAM_T2D z_GLG_LDL z_MAGIC_HOMA-B z_GLG_TG,10,0.1048840988498445,0.0132155555555555,66120.99832739888,0.1093648152124252,0.478005399791865 +419,z_ICBP_DBP z_VGHRV_SDNN,2,0.1819092209048439,0.0378,163568.0,0.2273786384558559,0.5732608303425372 +183,z_MAGIC_FAST-INSULIN z_ISGEC_SLEEP-SD z_GLG_LDL z_TAGC_ASTHMA z_SPIRO-UKB_PEF z_MAGIC_HBA1C z_ISGEC_DIURNAL-IN z_UKIBD_UC z_GLG_TG z_SPIRO-UKB_FEV1,10,0.0877207883109859,0.0116577777777777,136195.47305151616,0.1051494156247887,0.6101287515046896 +1214,z_IGAP_AZ z_C4D_CHD z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_MAGIC_HOMA-B z_CARDIOGRAMPLUSC4D_CAD z_BCAC_BREAST-CANCER-ERPOS,7,0.1626078670871484,0.0113619047619047,81130.75234560513,0.0489715944931344,0.6002027327043091 +1612,z_SPIRO-UKB_FEV1-FVC z_ISGEC_DIURNAL-IN,2,0.0679982307201221,0.0095,242429.5,0.1362074114637421,0.7414340407318739 +1568,z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_UKBIOBANK_ALAT z_ICBP_SBP z_SPIRO-UKB_FVC z_MAGIC_FAST-INSULIN z_GIANT_HIP z_BCAC_BREAST-CANCER-ERPOS z_ISGEC_DIURNAL-IN z_SSGAC_COLLEGE,10,0.1028685179703238,0.0188549047333333,256724.32756222948,0.136261094752845,0.7300606948765767 +368,z_UKBIOBANK_POAG z_IGAP_AZ z_MAGIC_2HGLU-ADJBMI z_MAGIC_HOMA-B z_TAGC_ASTHMA z_UKIBD_CD,6,0.0740921120764503,0.0057466666666666,45166.37942951298,0.1493378518188367,0.5652871307727031 +903,z_UKIBD_CD z_PGC_BIP z_SPIRO-UKB_PEF z_UKBIOBANK_ALAT z_WILLER_ATRIALFIBRI z_ICBP_DBP z_MAGIC_2HGLU-ADJBMI z_ICBP_SBP,8,0.0482832530338222,0.0235,216177.54888277937,0.2567920469382481,0.6347500098421232 +100,z_SPIRO-UKB_PEF z_MAGIC_2HGLU-ADJBMI z_C4D_CHD,3,0.0669304760610667,0.0059333333333333,148604.598473416,0.080324507855312,0.6573115618152242 +205,z_GIANT_HIP z_C4D_CHD,2,0.1921093489746714,0.0181,87966.897710124,0.0750925662768479,0.6699008631710204 +1086,z_WILLER_ATRIALFIBRI z_MAGIC_HBA1C z_GLG_LDL z_IGAP_AZ z_UKIBD_UC z_TAGC_ASTHMA z_IMSGC-WTCC2_MULTSCLE z_MAGIC_HOMA-B z_VGHRV_SDNN z_GLG_TC,10,0.0830076252222064,0.0105597213111111,71914.94577439466,0.1052430692481412,0.4861163244380796 +1629,z_GLG_LDL z_PGC_BIP,2,0.0453295390878284,0.0103,58221.98015659554,0.2338321064207826,0.6264720662991389 +1002,z_ICBP_DBP z_UKBIOBANK_ALAT z_UKIBD_UC z_SPIRO-UKB_FEV1-FVC z_UKIBD_CD z_ISGEC_SLEEP-MEAN z_GLG_TG,7,0.0546819183122963,0.0187666666666666,198372.06002999467,0.2400197777380834,0.5730271233528134 +668,z_PGC_BIP z_SPIRO-UKB_FVC z_SSGAC_COLLEGE,3,0.1770495273387668,0.0296666666666666,181068.32010439705,0.1986560427879616,0.8072134748083363 +922,z_ISGEC_DIURNAL-IN z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_PEF z_SPIRO-UKB_FVC z_MAGIC_FAST-INSULIN z_PGC_BIP z_UKBIOBANK_ALAT z_ISGEC_SLEEP-MEAN,8,0.0878611428633019,0.0142642857142857,212261.9044919357,0.1296505195461909,0.7781142806266398 +841,z_SPIRO-UKB_FVC z_SPIRO-UKB_PEF z_GLG_TC z_VAN-HEEL_CELIAC z_SPIRO-UKB_FEV1-FVC,5,0.0555488447692277,0.0206799999999999,261702.79500098148,0.160752089229191,0.5951257832267514 +86,z_UKBIOBANK_POAG z_UKBIOBANK_ALAT z_SPIRO-UKB_FEV1-FVC z_VAN-HEEL_CELIAC z_GLG_TC z_BCAC_BREAST-CANCER-ERPOS z_ISGEC_SLEEP-MEAN z_ISGEC_SLEEP-SD z_DIAGRAM_T2D z_PGC_BIP,10,0.0663606048617142,0.0082644444444444,146136.35890057252,0.144588021477301,0.6763132135948521 +763,z_SPIRO-UKB_FEV1 z_WILLER_ATRIALFIBRI z_GIANT_HIP z_ICBP_SBP z_GLG_TG z_SPIRO-UKB_FEV1-FVC,6,0.0687196467130402,0.0228466666666666,261583.7610496076,0.1732928960220614,0.5847455790979587 +736,z_BCAC_BREAST-CANCER-ERPOS z_UKBIOBANK_POAG z_NEIGHBORHOOD_POAG z_TAGC_ASTHMA z_C4D_CHD z_MAGIC_HOMA-B z_IGAP_AZ z_MAGIC_HBA1C z_IMSGC-WTCC2_MULTSCLE z_DIAGRAM_T2D,10,0.1621229006633941,0.0103086102,60495.5169629404,0.0776555657969178,0.5535862974527916 +1954,z_GLG_TG z_CARDIOGRAMPLUSC4D_CAD z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_2HGLU-ADJBMI z_ISGEC_SLEEP-MEAN z_MAGIC_HBA1C z_MAGIC_HOMA-B z_ISGEC_SLEEP-SD z_MAGIC_FAST-INSULIN z_NEIGHBORHOOD_POAG z_UKIBD_CD,11,0.1074187132011613,0.0100345454545454,78086.28495703725,0.0956366693159962,0.6513345138353268 +1948,z_GEFOS_BMD-FOREARM z_IMSGC-WTCC2_MULTSCLE z_UKIBD_UC,3,0.3939309463723131,0.0547666666666666,23014.06219211329,0.1771876763137216,0.5000463372797482 +638,z_SPIRO-UKB_PEF z_BCAC_BREAST-CANCER-ERPOS z_MAGIC_HOMA-B z_IMSGC-WTCC2_MULTSCLE z_SSGAC_COLLEGE z_SPIRO-UKB_FEV1-FVC z_UKIBD_CD z_GLG_TG z_GEFOS_BMD-FOREARM z_UKBIOBANK_ALAT,10,0.1121971774233451,0.0142822222222222,180138.97708914685,0.1335106922945046,0.5648224299421633 +697,z_GIANT_HIP z_CARDIOGRAMPLUSC4D_CAD z_SPIRO-UKB_FVC z_ICBP_SBP z_SSGAC_COLLEGE z_ISGEC_SLEEP-MEAN z_UKBIOBANK_ALAT z_ISGEC_DIURNAL-IN z_BCAC_BREAST-CANCER-ERPOS z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_FEV1 z_ISGEC_SLEEP-SD,12,0.0956672338014924,0.0155041017121212,237826.65710351817,0.1277762346935627,0.747175457955343 +1882,z_SPIRO-UKB_FEV1 z_UKIBD_CD z_GLG_TG z_GEFOS_BMD-FOREARM z_UKIBD_UC z_SPIRO-UKB_FEV1-FVC z_GIANT_HIP z_WILLER_ATRIALFIBRI,8,0.08275119055248,0.0255999999999999,168598.24831345104,0.1827557547817658,0.5397071264222475 +1518,z_UKIBD_CD z_VGHRV_SDNN z_GLG_TG z_GEFOS_BMD-FOREARM,4,0.0905571280731117,0.0182666666666666,41714.46611284955,0.1690639491037382,0.467698950646491 +1106,z_UKBIOBANK_POAG z_ISGEC_SLEEP-SD z_IGAP_AZ z_MAGIC_HBA1C z_TAGC_ASTHMA z_C4D_CHD,6,0.1024978474031893,0.0058666666666666,56143.36792432128,0.067789736501491,0.6056649612409757 +1229,z_CARDIOGRAMPLUSC4D_CAD z_MAGIC_HBA1C z_UKBIOBANK_POAG z_C4D_CHD z_IGAP_AZ z_BCAC_BREAST-CANCER-ERPOS z_DIAGRAM_T2D z_TAGC_ASTHMA,8,0.1634373290803187,0.0111785714285714,85397.59544971985,0.0673893449574684,0.5799729817275958 +1708,z_UKIBD_CD z_MAGIC_HOMA-B z_GLG_TC z_IMSGC-WTCC2_MULTSCLE z_NEIGHBORHOOD_POAG z_DIAGRAM_T2D z_VGHRV_SDNN z_UKIBD_UC z_GLG_LDL z_VAN-HEEL_CELIAC z_C4D_CHD,11,0.1261221842377835,0.0200236363636363,41973.62519057268,0.1539435956798403,0.5193811119015223 +470,z_ICBP_SBP z_DIAGRAM_T2D z_GLG_HDL z_GLG_TG z_ICBP_DBP z_IGAP_AZ z_PGC_BIP z_MAGIC_HOMA-B z_SPIRO-UKB_FEV1-FVC z_ISGEC_SLEEP-SD z_WILLER_ATRIALFIBRI,11,0.0932666770274273,0.0183799999999999,150644.7934121648,0.164998835004596,0.5778542362236005 +1153,z_SPIRO-UKB_FEV1-FVC z_SPIRO-UKB_PEF z_ICBP_DBP z_ICBP_SBP z_SPIRO-UKB_FEV1 z_UKIBD_CD z_UKBIOBANK_ALAT z_MAGIC_2HGLU-ADJBMI z_SPIRO-UKB_FVC,9,0.0481348822782422,0.0303777777777777,298329.09605015535,0.2346116646253,0.6258846959094124 +1597,z_GEFOS_BMD-FOREARM z_SSGAC_COLLEGE z_GLG_LDL z_ISGEC_DIURNAL-IN z_ICBP_SBP z_ISGEC_SLEEP-MEAN z_GLG_TG z_ISGEC_SLEEP-SD z_VAN-HEEL_CELIAC z_MAGIC_FAST-INSULIN z_MAGIC_2HGLU-ADJBMI,11,0.1147501593653129,0.0155636363636363,87185.90681862795,0.1188710492794739,0.7041953884707207 +1009,z_UKBIOBANK_ALAT z_ICBP_DBP z_GLG_TC z_GLG_HDL z_ISGEC_SLEEP-SD z_SPIRO-UKB_FVC z_GLG_LDL z_GIANT_HIP z_IMSGC-WTCC2_MULTSCLE z_IGAP_AZ,10,0.1009167352542022,0.0131533333333333,173323.6160931139,0.1444744979103856,0.6044475028778752 +1732,z_ICBP_DBP z_GEFOS_BMD-FOREARM,2,0.1084535271625758,0.024,153583.5,0.2252484404358153,0.5161628672992529 +116,z_MAGIC_HOMA-B z_IMSGC-WTCC2_MULTSCLE z_C4D_CHD z_GEFOS_BMD-FOREARM z_GLG_TC z_NEIGHBORHOOD_POAG,6,0.1318655607001345,0.0119533333333333,36470.30184530277,0.0852337972089061,0.5102007861999914 +60,z_BCAC_BREAST-CANCER-ERPOS z_ISGEC_SLEEP-SD z_NEIGHBORHOOD_POAG z_UKBIOBANK_POAG z_MAGIC_FAST-INSULIN z_TAGC_ASTHMA,6,0.1085654124442258,0.0069066666666666,83506.92374473398,0.0678803617400797,0.707973853804313 diff --git a/data/combination_example.tsv b/data/combination_example.tsv new file mode 100644 index 0000000000000000000000000000000000000000..b42f3a73d6e4e8d2ef72070c2b7174f804ce0ed9 --- /dev/null +++ b/data/combination_example.tsv @@ -0,0 +1,2 @@ +GRP1,z_GIANT_HIP z_GLG_HDL z_GLG_LDL z_MAGIC_2HGLU-ADJBMI +GRP2,z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1 z_TAGC_ASTHMA diff --git a/data/gain_results.tsv b/data/gain_results.tsv new file mode 100644 index 0000000000000000000000000000000000000000..cd44d997b8fe28075d6dd53ef1374fc77cf4e6af --- /dev/null +++ b/data/gain_results.tsv @@ -0,0 +1,3 @@ + traits k avg_distance_cor mean_gencov avg_Neff avg_h2 avg_perc_h2_diff_region log10_mean_gencov log10_avg_distance_cor gain +1 ['z_SPIRO-UKB_FVC', 'z_SPIRO-UKB_FEV1', 'z_TAGC_ASTHMA'] 0.1 0.1731946683845993 0.0637 0.3843393026739591 0.2785193310634847 0.7976315890930669 0.8139196701681637 0.8013809378674498 0.06428524764535551 +0 ['z_GIANT_HIP', 'z_GLG_HDL', 'z_GLG_LDL', 'z_MAGIC_2HGLU-ADJBMI'] 0.2 0.14899001074867035 0.01535 0.12076877719858631 0.22628198390356655 0.9055326131023057 0.6573854616675169 0.7879956172999502 -0.010766494024690904 diff --git a/data/range_feature_gain_prediction.tsv b/data/range_feature_gain_prediction.tsv new file mode 100644 index 0000000000000000000000000000000000000000..30c63afb46258403eeb27bf17cb6a9095afbd972 --- /dev/null +++ b/data/range_feature_gain_prediction.tsv @@ -0,0 +1,7 @@ + minimum_value maximum_value +k 2.0 12.0 +log10_avg_distance_cor -4.675617219570908 0.20864138105896807 +log10_mean_gencov -4.4093921991254446 -0.46117501106209624 +avg_Neff 6730.5 697828.0 +avg_h2 0.014033707225812 0.4361454950334251 +avg_perc_h2_diff_region 0.0906544694784672 0.9831222899777692 diff --git a/doc/source/get_predicted_gain.rst b/doc/source/get_predicted_gain.rst new file mode 100644 index 0000000000000000000000000000000000000000..9dea792471e07a2846adb7a73d92f8f0c14ea103 --- /dev/null +++ b/doc/source/get_predicted_gain.rst @@ -0,0 +1,39 @@ +Compute JASS power gain from the genetic architecture of traits +=============================================================== + +In a recent study :cite:`suzuki2023trait`, we explore how the genetic architecture of the set of traits (heritability, genetic covariance, heritability undetected by the univariate test, ...) can be predictive of statistical power gain of the multi-trait test. + + + +We implement an additional command line tool to give access our predictive model (the **jass predict-gain** command). +This command allows the to score swiftly a large number of traits combinations and to focus on set of traits the most promising for multi-trait testing. + +To work the inittable provided to the **jass predict-gain** command must contain the genetic covariance between traits. + + +.. code-block:: shell + + jass predict-gain --inittable-path inittable_curated_111_traits_20-03-2024.hdf5 --combination_path ./combination_example.tsv --gain-path predicted_gain.tsv + + +The second argument (--combination_path) is a path to a file containing the set of traits to be scored. + +.. csv-table:: Set of traits + :widths: 20, 70 + :header-rows: 1 + + GRP1,z_GIANT_HIP z_GLG_HDL z_GLG_LDL z_MAGIC_2HGLU-ADJBMI + GRP2,z_SPIRO-UKB_FVC z_SPIRO-UKB_FEV1 z_TAGC_ASTHMA + +When executed the command will created a report at --gain-path + +.. csv-table:: Predicted gain + :header-rows: 1 + + traits,k,avg_distance_cor,mean_gencov,avg_Neff,avg_h2,avg_perc_h2_diff_region,log10_mean_gencov,log10_avg_distance_cor,gain + ['z_SPIRO-UKB_FVC'; 'z_SPIRO-UKB_FEV1'; 'z_TAGC_ASTHMA'],0.1,0.1731946683845993,0.0637,0.3843393026739591,0.2785193310634847,0.7976315890930669,0.8139196701681637,0.8013809378674498,0.06428524764535551 + ['z_GIANT_HIP'; 'z_GLG_HDL'; 'z_GLG_LDL'; 'z_MAGIC_2HGLU-ADJBMI'],0.2,0.14899001074867035,0.01535,0.12076877719858631,0.22628198390356655,0.9055326131023057,0.6573854616675169,0.7879956172999502,-0.010766494024690904 + +The last column provide the predicted gain ("the higher the more promising"). Note that extrapoling on new data might give lesser performances than reported in :cite:`suzuki2023trait`. + +.. bibliography:: reference.bib \ No newline at end of file diff --git a/doc/source/index.rst b/doc/source/index.rst index 270f8c072ce9a715e642250b4daf5aa1b29772b3..87967f4a2da31ea34bc97b1035c41e2f138b0896 100644 --- a/doc/source/index.rst +++ b/doc/source/index.rst @@ -14,6 +14,7 @@ JASS documentation install data_import generating_joint_analysis + get_predicted_gain command_line_usage web_usage web_admin diff --git a/doc/source/reference.bib b/doc/source/reference.bib index 469a6903a53fa58d8e729b5e0d0e3b16c820968f..901b14a9691c75bac3e660837b9f99777a24a58a 100644 --- a/doc/source/reference.bib +++ b/doc/source/reference.bib @@ -20,6 +20,13 @@ publisher={Oxford University Press} } +@article{suzuki2023trait, + title={Trait selection strategy in multi-trait GWAS: Boosting SNPs discoverability}, + author={Suzuki, Yuka and M{\'e}nager, Herv{\'e} and Brancotte, Bryan and Vernet, Rapha{\"e}l and Nerin, Cyril and Boetto, Christophe and Auvergne, Antoine and Linhard, Christophe and Torchet, Rachel and Lechat, Pierre and others}, + journal={bioRxiv}, + year={2023}, + publisher={Cold Spring Harbor Laboratory Preprints} +} @article{Pasaniuc2014, diff --git a/jass/__main__.py b/jass/__main__.py index 586b489bc19b43b64b7d1ad111983e4e04613f5f..4a7cd1e8c133f485a1875caa841970c91a5cbafc 100644 --- a/jass/__main__.py +++ b/jass/__main__.py @@ -21,6 +21,8 @@ from jass.models.plots import ( create_local_plot, create_qq_plot, ) +from jass.models.gain import create_features, compute_gain + from pandas import read_hdf def absolute_path_of_the_file(fileName, output_file=False): @@ -279,6 +281,15 @@ def w_gene_annotation(args): gene_data_path, initTable_path, df_gene_csv_path, df_exon_csv_path ) +def w_compute_gain(args): + inittable_path = absolute_path_of_the_file(args.inittable_path) + combi_path = absolute_path_of_the_file(args.combination_path) + combi_path_with_gain = absolute_path_of_the_file(args.gain_path, True) + + features = create_features(inittable_path, combi_path) + compute_gain(features, combi_path_with_gain) + + def get_parser(): parser = argparse.ArgumentParser(prog="jass") @@ -619,6 +630,27 @@ def get_parser(): help="Existing key are 'SumStatTab' : The results of the joint analysis by SNPs - 'PhenoList' : the meta data of analysed GWAS - 'COV' : The H0 covariance used to perform joint analysis - 'GENCOV' (If present in the initTable): The genetic covariance as computed by the LDscore. Uniquely for the worktable: 'Regions' : Results of the joint analysis summarised by LD regions (Notably Lead SNPs by regions) - 'summaryTable': a double entry table summarizing the number of significant regions by test (univariate vs joint test)", ) parser_create_mp.set_defaults(func=w_extract_tsv) + + # ------- compute predicted gain -------# + parser_create_mp = subparsers.add_parser( + "predict-gain", help="Predict gain based on the genetic architecture of the set of multi-trait. To function, this command need the inittable to contain genetic covariance store under the key 'GEN_COV in the inittable'" + ) + parser_create_mp.add_argument( + "--inittable-path", + required=True, + help="Path to the inittable", + ) + parser_create_mp.add_argument( + "--combination-path", + required=True, + help="Path to the file storing combination to be scored", + ) + parser_create_mp.add_argument( + "--gain-path", required=True, help="path to save predicted gain" + ) + + parser_create_mp.set_defaults(func=w_compute_gain) + return parser diff --git a/jass/models/data/coef_mean_model.tsv b/jass/models/data/coef_mean_model.tsv new file mode 100644 index 0000000000000000000000000000000000000000..ca07eb89886c598f96afb4e4f998f870e57d30f1 --- /dev/null +++ b/jass/models/data/coef_mean_model.tsv @@ -0,0 +1,7 @@ + 0 +k_coef_mv 0.07740334977380119 +log10_avg_distance_cor_coef_mv -0.6999110771883902 +log10_mean_gencov_coef_mv 0.746794584985343 +avg_Neff_coef_mv 0.07289261717080556 +avg_h2_coef_mv -0.516496395500929 +avg_perc_h2_diff_region_coef_mv 0.15727591593399 diff --git a/jass/models/data/range_feature_gain_prediction.tsv b/jass/models/data/range_feature_gain_prediction.tsv new file mode 100644 index 0000000000000000000000000000000000000000..30c63afb46258403eeb27bf17cb6a9095afbd972 --- /dev/null +++ b/jass/models/data/range_feature_gain_prediction.tsv @@ -0,0 +1,7 @@ + minimum_value maximum_value +k 2.0 12.0 +log10_avg_distance_cor -4.675617219570908 0.20864138105896807 +log10_mean_gencov -4.4093921991254446 -0.46117501106209624 +avg_Neff 6730.5 697828.0 +avg_h2 0.014033707225812 0.4361454950334251 +avg_perc_h2_diff_region 0.0906544694784672 0.9831222899777692 diff --git a/jass/models/gain.py b/jass/models/gain.py new file mode 100644 index 0000000000000000000000000000000000000000..b0cef418e986c6a041b520dac976a061f1c32f5a --- /dev/null +++ b/jass/models/gain.py @@ -0,0 +1,145 @@ +import pkg_resources +import pandas as pd +import numpy as np +import os + +# data issued from https://doi.org/10.1101/2023.10.27.564319 +stream = pkg_resources.resource_stream(__name__, 'data/range_feature_gain_prediction.tsv') +X_range = pd.read_csv(stream, sep="\t", index_col=0) + +stream = pkg_resources.resource_stream(__name__, 'data/coef_mean_model.tsv') +model_coefficients = pd.read_csv(stream, sep="\t", index_col=0) + +# Scale according to observed +def scale_feature(X, feature_name): + X_std = (X - X_range.loc[feature_name, "minimum_value"]) / ( X_range.loc[feature_name, "maximum_value"] - X_range.loc[feature_name, "minimum_value"]) + return X_std + +def preprocess_feature(df_combinations): + # transformation of features + + df_combinations['log10_mean_gencov'] = np.log10(df_combinations.mean_gencov) + df_combinations['log10_avg_distance_cor'] = np.log10(df_combinations.avg_distance_cor) + for f in ["k", "log10_avg_distance_cor", "log10_mean_gencov", "avg_Neff", "avg_h2", "avg_perc_h2_diff_region"]: + df_combinations[f] = scale_feature(df_combinations[f], f) + return df_combinations + +def compute_gain(df_combinations, path_output): + + preprocess_feature(df_combinations) + df_combinations["gain"] = df_combinations[["k", "log10_avg_distance_cor", "log10_mean_gencov", "avg_Neff", "avg_h2", "avg_perc_h2_diff_region"]].dot(model_coefficients["0"].values) + df_combinations.sort_values(by="gain", ascending=False).to_csv(path_output, sep="\t") + +# cov to cor +def cov2cor(c): + """ + Return a correlation matrix given a covariance matrix. + : c = covariance matrix + """ + D = 1 / np.sqrt(np.diag(c)) # takes the inverse of sqrt of diag. + return D * c * D + +def compute_detected_undected_h2(inittable_path): + + phenoL = pd.read_hdf(inittable_path, "PhenoList") + gen_cov = pd.read_hdf(inittable_path, "GEN_COV") + region = pd.read_hdf(inittable_path, "Regions") + + combi_c = list(phenoL.index) + reg_start=0 + reg_end=50 + + chunk_size=50 + Nchunk = region.shape[0] // chunk_size + 1 + start_value = 0 + + zscore_threshold = 5.452 + h2_GW = np.zeros(len(combi_c)) + + for chunk in range(start_value, Nchunk): + print(chunk) + binf = chunk * chunk_size + bsup = (chunk + 1) * chunk_size + + init_extract = pd.read_hdf(inittable_path, "SumStatTab", where= "Region >= {0} and Region < {1}".format(reg_start, reg_end)) + + init_extract[combi_c] = init_extract[combi_c].abs() + max_zscore = init_extract[["Region"] + combi_c].groupby("Region").max() + + Neff_term = np.ones(max_zscore.shape) + Neff_term = Neff_term* (1/phenoL.loc[combi_c, "Effective_sample_size"].values) + + beta_2 = max_zscore.mask((max_zscore < zscore_threshold)) + beta_2 = beta_2 * np.sqrt(Neff_term) + beta_2 = beta_2.mask( (beta_2 > 0.019)) + + h2_GW += (beta_2**2).sum() + + h2 = np.diag(gen_cov.loc[combi_c, combi_c]) + undetected_h2 = ((h2 - h2_GW) / h2) + + phenoL["h2"] = h2 + phenoL["h2_GW"] = h2_GW + phenoL["undetected_h2_perc"] = undetected_h2 + + return phenoL + +def add_h2_to_pheno_description(inittable_path): + phenoL_before = pd.read_hdf(inittable_path, "PhenoList") + if "avg_perc_h2_diff_region" in phenoL_before.columns: + phenoL = compute_detected_undected_h2(inittable_path) + phenoL.to_hdf(inittable_path, key="table") + + +def compute_mean_cov(cov, combi_c): + rows, cols = np.indices(cov.loc[combi_c, combi_c].shape) + mean_gencov = cov.loc[combi_c, combi_c].where(rows != cols).stack().abs().mean() + return mean_gencov + +def compute_diff_cor(res_cov, gen_cov, combi_c): + res_cor = cov2cor(res_cov.loc[combi_c, combi_c]) + gen_cor = cov2cor(gen_cov.loc[combi_c, combi_c]) + rows, cols = np.indices(res_cor.loc[combi_c, combi_c].shape) + off_gencor = res_cor.where(rows != cols).stack() + off_rescor = gen_cor.where(rows != cols).stack() + return (off_gencor - off_rescor).abs().mean() + +def compute_mean_undetected_h2(phenoL, combi_c): + mean_h2 = np.mean(phenoL.loc[combi_c, "undetected_h2_perc"]) + return mean_h2 + +def compute_mean_h2(phenoL, combi_c): + mean_h2 = np.mean(phenoL.loc[combi_c, "h2"]) + return mean_h2 + +def compute_mean_Neff(phenoL, combi_c): + mean_neff = np.mean(phenoL.loc[combi_c, "Effective_sample_size"]) + return mean_neff + + +#beta_2_GW = beta_2_GW * (1/phenoL.loc[combi_c, "Effective_sample_size"].values) +def create_features(inittable_path, combi_file): + add_h2_to_pheno_description(inittable_path) + + phenoL = pd.read_hdf(inittable_path, "PhenoList") + gen_cov = pd.read_hdf(inittable_path, "GEN_COV") + res_cov = pd.read_hdf(inittable_path, "COV") + + combi = pd.read_csv(combi_file, sep=",", index_col=0, names=["combi"]) + combi = list(combi.combi.str.split(" ")) + + D = {'traits':[] ,'k':[], 'avg_distance_cor': [], 'mean_gencov': [], + 'avg_Neff':[], 'avg_h2':[], 'avg_perc_h2_diff_region':[]} + + for c in combi: + D['traits'].append(str(c)) + D["k"].append(len(c)) + D["avg_distance_cor"].append(compute_diff_cor(res_cov, gen_cov, c)) + D["mean_gencov"].append(compute_mean_cov(gen_cov, c)) + D["avg_Neff"].append(compute_mean_Neff(phenoL, c)) + + D["avg_h2"].append(compute_mean_h2(phenoL, c)) + D["avg_perc_h2_diff_region"].append(compute_mean_undetected_h2(phenoL, c)) + + return pd.DataFrame.from_dict(D) + diff --git a/jass/test/data_real/initTable.hdf5 b/jass/test/data_real/initTable.hdf5 index 821bdcc09b2740e389cec2d5049da4fb1b2d3523..bbeb66410fbcbb9dcbfaf5dae49355d0b9018cf9 100644 Binary files a/jass/test/data_real/initTable.hdf5 and b/jass/test/data_real/initTable.hdf5 differ diff --git a/jass/test/data_real/worktable.hdf5 b/jass/test/data_real/worktable.hdf5 index 6c0162e61d22b93316dfe293a05b5b47d6c68fe4..809f790a23140377941366ffc081c41dfd0e4e97 100644 Binary files a/jass/test/data_real/worktable.hdf5 and b/jass/test/data_real/worktable.hdf5 differ diff --git a/jass/test/data_test1/COV.csv b/jass/test/data_test1/COV.csv deleted file mode 100644 index 2c45ac17818b90efa5afbc3d58060bf9c65263a8..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/COV.csv +++ /dev/null @@ -1,3 +0,0 @@ -ID z_DISNEY_RATATOUY z_DISNEY_POCAHONT -z_DISNEY_RATATOUY 2.05403006060606 0.394332909090909 -z_DISNEY_POCAHONT 0.394332909090909 1.17729254545455 diff --git a/jass/test/data_test1/SumStatTab.txt b/jass/test/data_test1/SumStatTab.txt deleted file mode 100644 index c35ae04ecf7404997a7401dfd84c29a2ef2dfe40..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/SumStatTab.txt +++ /dev/null @@ -1,13 +0,0 @@ -rsid position chr region Z_ratatouy Z_pocahont -rs1 1 1 1 0.812 -1.06 -rs2 2 1 1 2.197 0.937 -rs3 3 1 2 2.049 0.854 -rs4 1 2 3 1.632 1.461 -rs5 2 2 3 0.254 -1.413 -rs6 3 2 4 0.491 0.567 -rs7 4 2 4 -0.324 0.583 -rs8 5 2 4 -1.662 -1.307 -rs9 1 3 5 1.768 -0.54 -rs10 2 3 5 0.026 1.948 -rs11 3 3 6 1.129 0.054 -rs12 4 3 7 -2.38 0.352 diff --git a/jass/test/data_test1/chr.txt b/jass/test/data_test1/chr.txt deleted file mode 100644 index 337d7e8e0b79701321e9bffec5fd47093cd0a61b..0000000000000000000000000000000000000000 Binary files a/jass/test/data_test1/chr.txt and /dev/null differ diff --git a/jass/test/data_test1/initTable.hdf5 b/jass/test/data_test1/initTable.hdf5 deleted file mode 100644 index 43518edff657babee693ad6a63b453d2fbe434cb..0000000000000000000000000000000000000000 Binary files a/jass/test/data_test1/initTable.hdf5 and /dev/null differ diff --git a/jass/test/data_test1/metadata.txt b/jass/test/data_test1/metadata.txt deleted file mode 100644 index 8eb75e7afde9d6be08b89e2cf8892384a384af5a..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/metadata.txt +++ /dev/null @@ -1,5 +0,0 @@ -information content -title Mock dataset with disney -description "lorem ipsum" -ancestry DIS -assembly dSNY diff --git a/jass/test/data_test1/regions.txt b/jass/test/data_test1/regions.txt deleted file mode 100644 index c7241b86a4541d8c7d7f5c5ba9e6317e339a64e2..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/regions.txt +++ /dev/null @@ -1,8 +0,0 @@ -chr start stop -chr1 1 2 -chr1 3 4 -chr2 1 2 -chr2 3 5 -chr3 1 2 -chr3 3 3 -chr3 4 4 diff --git a/jass/test/data_test1/summary.csv b/jass/test/data_test1/summary.csv deleted file mode 100644 index 149b6ca13274a17c43fced1f210ca452e0d7f733..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/summary.csv +++ /dev/null @@ -1,3 +0,0 @@ -Outcome FullName Consortium Type Reference ReferenceLink dataLink internalDataLink Nsample Ncase Ncontrol -RATATOUY Ratatouille ou la mort de l'hygiène en cuisine DISNEY BrainWashing Courgette et al., 1754 http://www.marmiton.org/recettes/recette_ratatouille_23223.asp pouet pouet 1000000 -POCAHONT Pocahontas mange des tapas DISNEY BrainWashing Rolfe et al., 1614 https://fr.wikipedia.org/wiki/Pocahontas Gargar Gargar 1000000 diff --git a/jass/test/data_test1/worktable.hdf5 b/jass/test/data_test1/worktable.hdf5 deleted file mode 100644 index 69f0978b16d217d89fc994c26c296cc397846bb5..0000000000000000000000000000000000000000 Binary files a/jass/test/data_test1/worktable.hdf5 and /dev/null differ diff --git a/jass/test/data_test1/z_DISNEY_POCAHONT_chr1.txt b/jass/test/data_test1/z_DISNEY_POCAHONT_chr1.txt deleted file mode 100644 index ded3476cd998c42133d1ca9c4d5d27b3f4b60c22..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/z_DISNEY_POCAHONT_chr1.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs1 1 C T -1.06 -rs2 2 G T 0.937 -rs3 3 C T 0.854 diff --git a/jass/test/data_test1/z_DISNEY_POCAHONT_chr2.txt b/jass/test/data_test1/z_DISNEY_POCAHONT_chr2.txt deleted file mode 100644 index d4eec567807c2eec9e6932c02faec9daa46fcf22..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/z_DISNEY_POCAHONT_chr2.txt +++ /dev/null @@ -1,6 +0,0 @@ -rsid position refAllele altAllele Z -rs4 1 G T 1.461 -rs5 2 A T -1.413 -rs6 3 A C 0.567 -rs7 4 A G 0.583 -rs8 5 C G -1.307 diff --git a/jass/test/data_test1/z_DISNEY_POCAHONT_chr3.txt b/jass/test/data_test1/z_DISNEY_POCAHONT_chr3.txt deleted file mode 100644 index 18264b859cb897c27cc558548820a1d5b2abd83a..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/z_DISNEY_POCAHONT_chr3.txt +++ /dev/null @@ -1,5 +0,0 @@ -rsid position refAllele altAllele Z -rs9 1 C T -0.54 -rs10 2 G T 1.948 -rs11 3 A C 0.054 -rs12 4 A C 0.352 diff --git a/jass/test/data_test1/z_DISNEY_RATATOUY_chr1.txt b/jass/test/data_test1/z_DISNEY_RATATOUY_chr1.txt deleted file mode 100644 index a4e8fa9cd4ec1ba8dac092aab3230362196e20c3..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/z_DISNEY_RATATOUY_chr1.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs1 1 C T 0.812 -rs2 2 G T 2.197 -rs3 3 C T 2.049 diff --git a/jass/test/data_test1/z_DISNEY_RATATOUY_chr2.txt b/jass/test/data_test1/z_DISNEY_RATATOUY_chr2.txt deleted file mode 100644 index 86f61ecbd7d6aab1dc8b7655cebfed8fbf272ee6..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/z_DISNEY_RATATOUY_chr2.txt +++ /dev/null @@ -1,6 +0,0 @@ -rsid position refAllele altAllele Z -rs4 1 G T 1.632 -rs5 2 A T 0.254 -rs6 3 A C 0.491 -rs7 4 A G -0.324 -rs8 5 C G -1.662 diff --git a/jass/test/data_test1/z_DISNEY_RATATOUY_chr3.txt b/jass/test/data_test1/z_DISNEY_RATATOUY_chr3.txt deleted file mode 100644 index c1959185fdc4e2157ede61fc170790e6c863d8bc..0000000000000000000000000000000000000000 --- a/jass/test/data_test1/z_DISNEY_RATATOUY_chr3.txt +++ /dev/null @@ -1,5 +0,0 @@ -rsid position refAllele altAllele Z -rs9 1 C T 1.768 -rs10 2 G T 0.026 -rs11 3 A C 1.129 -rs12 4 A C -2.38 diff --git a/jass/test/data_test2/COV.csv b/jass/test/data_test2/COV.csv deleted file mode 100644 index 46119fe1b9a6a3eb86a4666fb07f93d318018fa0..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/COV.csv +++ /dev/null @@ -1,7 +0,0 @@ -ID z_BMW_ISETTA z_BMW_MINI z_FIAT_CINQCENT z_FIAT_CINQUECENTO z_MERCO_SMART z_TATA_TATANANO -z_BMW_ISETTA 2 1 1 1 1 1 -z_BMW_MINI 1 2 1 1 1 1 -z_FIAT_CINQCENT 1 1 2 1 1 1 -z_FIAT_CINQUECENTO 1 1 1 2 1 1 -z_MERCO_SMART 1 1 1 1 2 1 -z_TATA_TATANANO 1 1 1 1 1 2 diff --git a/jass/test/data_test2/chr.txt b/jass/test/data_test2/chr.txt deleted file mode 100644 index 9c5544b333bb58576eb22e68abfca405ed445acb..0000000000000000000000000000000000000000 Binary files a/jass/test/data_test2/chr.txt and /dev/null differ diff --git a/jass/test/data_test2/create_unit_test_smart.R b/jass/test/data_test2/create_unit_test_smart.R deleted file mode 100644 index 71a0e7631b1c5ea8ab8804b94ff984665164ea91..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/create_unit_test_smart.R +++ /dev/null @@ -1,87 +0,0 @@ -## There 6 phenotypes -sumtab <- read.table("summary.txt", sep="\t", header=TRUE, stringsAsFactors = FALSE) -## Zscore ID: z_CONSORITUM_PHENOTYPE_chr#chr.txt -ids <- sprintf("z_%s_%s",sumtab$Consortium, sumtab$Outcome) -## The covariance is set to 1 and the variance to 2 -COV <- toeplitz(c(2,1,1,1,1,1)) -rownames(COV) <- colnames(COV) <- ids - - -## Structure: -# - 5 chromosomes, 2 regions per chromosomes -# - 10 regions, 2 regions per chromosome -# - 30 SNPs, 3 SNPs per region - -## Structure of missing values region per region ; -## ".." means no missing values -## "XX" means the whole region is missing -# -# Z1 Z2 Z3 Z4 Z5 Z6 -# R1 .. .. .. .. .. .. -# R2 .. .. .. .. .. .. -# R3 XX .. .. .. .. .. -# R4 .. XX .. .. .. .. -# R5 .. .. XX .. .. .. -# R6 .. .. .. XX .. .. -# R7 .. .. .. .. XX .. -# R8 .. .. .. .. .. XX -# R9 XX XX XX .. .. .. -# R10 .. .. .. XX XX XX -filenames <- paste0(rep(ids,e=5), "_chr", rep(1:5, 6), ".txt") - -## rsid : rs_#chr_#region_#snp -rsid <- paste0("rs", "_chr", rep(1:5, e=6), # chr - "_reg", sprintf("%02i", rep(1:10, e=3)), # region - "_", sprintf("%02i", 1:30)) # snp -pos <- rep(1:6, 5) -chr <- rep(1:5, e=6) -reg <- rep(1:10, e=3) -ref <- "A" -alt <- "G" -BIGZ <- matrix(1:(30*6), 30, 6) -BIGZ[grep("reg03", rsid),1] <- NA -BIGZ[grep("reg04", rsid),2] <- NA -BIGZ[grep("reg05", rsid),3] <- NA -BIGZ[grep("reg06", rsid),4] <- NA -BIGZ[grep("reg07", rsid),5] <- NA -BIGZ[grep("reg08", rsid),6] <- NA -BIGZ[grep("reg09", rsid),1:3] <- NA -BIGZ[grep("reg10", rsid),4:6] <- NA -rownames(BIGZ) <- rsid - -# What does it look like ? -require(pheatmap) -png("zscores.png", res = 100) -pheatmap(BIGZ, cluster_rows = FALSE, cluster_cols = FALSE, cellwidth = 10, cellheight = 10) -dev.off() -# Create regions - -# Create Z scores - - -# Write covariance matrix -write.table(data.frame(ID=ids, COV), file="COV.csv", row.names = F, quote=F, sep="\t") - -# Write region file -regions <- data.frame(chr=sprintf("chr%i", rep(1:5,e=2)), - start=rep(c(1,4),5), - stop=rep(c(3,6),5)) -write.table(regions, file="regions.txt", row.names = F, quote=F, sep="\t") -# Write all the Z files -k <- 1 -for (j in 1:6) { - for (chrnum in 1:5) { - ind <- grep(sprintf("chr%i", chrnum), rsid) - tmp <- data.frame(rsid = rsid[ind], - pos = pos[ind], - ref=ref, - alt=alt, - Zscore=unname(BIGZ[ind, j])) - write.table(na.omit(tmp), file = filenames[k], quote=FALSE) - k <- k+1 - } -} - -# Compute the summary statistic - - diff --git a/jass/test/data_test2/initTable.hdf5 b/jass/test/data_test2/initTable.hdf5 deleted file mode 100644 index b7dc5d7db470bf3819f4617cd3b9e92e1a2c1f0d..0000000000000000000000000000000000000000 Binary files a/jass/test/data_test2/initTable.hdf5 and /dev/null differ diff --git a/jass/test/data_test2/metadata.txt b/jass/test/data_test2/metadata.txt deleted file mode 100644 index e70e8c5f23fb4ce9142e833a6da916d228e9f001..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/metadata.txt +++ /dev/null @@ -1,5 +0,0 @@ -information content -title Mock dataset with car -description "lorem ipsum" -ancestry CAR -assembly car1 diff --git a/jass/test/data_test2/regions.txt b/jass/test/data_test2/regions.txt deleted file mode 100644 index 020c4d931922cf1e0b267f44c89dea30e9b73385..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/regions.txt +++ /dev/null @@ -1,11 +0,0 @@ -chr start stop -chr1 1 3 -chr1 4 6 -chr2 1 3 -chr2 4 6 -chr3 1 3 -chr3 4 6 -chr4 1 3 -chr4 4 6 -chr5 1 3 -chr5 4 6 diff --git a/jass/test/data_test2/summary.csv b/jass/test/data_test2/summary.csv deleted file mode 100644 index 6aef4f3a55b773fa1a7faf0ec0488aba59e3373d..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/summary.csv +++ /dev/null @@ -1,7 +0,0 @@ -Outcome FullName Consortium Type Reference ReferenceLink dataLink internalDataLink Nsample Ncase Ncontrol -ISETTA Wer an seine Frau denkt, fahrt Isetta. BMW Pascher Ghirlanda, S., Jansson, L., & Enquist, M. (2002). Chickens prefer beautiful humans. Human Nature, 13(3), 383_389. https://fr.wikipedia.org/wiki/Isetta /data_test2/isetta /data_test2/isetta 1000000 -MINI Matte hi BMW Cher Fardin, M. A. (2014). On the rheology of cats. Rheology Bulletin, 83(2). https://fr.wikipedia.org/wiki/Mini_(1959-2000) /data_test2/mini /data_test2/mini 1000000 -CINQCENT TE baby come on, uh-huh Trackmasters uh-huh FIAT Pascher Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Cortex, 53, 60_77. https://www.fiat500nelmondo.it/fr/tag/cinquecento/ /data_test2/cinqcent /data_test2/cinqcent 1000000 -CINQUECENTO Elle a tout d une grande FIAT Cher Royet, J.-P., Meunier, D., Torquet, N., Mouly, A.-M., & Jiang, T. (2016). The Neural Bases of Disgust for Cheese: An fMRI Study. Frontiers in Human Neuroscience, 10, 511. https://doi.org/10.3389/fnhum.2016.00511 https://fr.wikipedia.org/wiki/Cinquecento /data_test2/cinquecento /data_test2/cinquecento 1000000 -SMART Pas assez cher mon fils MERCO Cher Barss, P. (1984). Injuries due to falling coconuts. The Journal of Trauma, 24(11), 990_1. https://fr.wikipedia.org/wiki/Smart /data_test2/smart /data_test2/smart 1000000 -TATANANO Qu est-ce que t as sous ton grand chapeau? TATA Pascher Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing ones own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121_34. https://fr.wikipedia.org/wiki/Tata_Nano /data_test2/tatanano /data_test2/tatanano 1000000 diff --git a/jass/test/data_test2/worktable.hdf5 b/jass/test/data_test2/worktable.hdf5 deleted file mode 100644 index 3f450db54e44deaaebf5df421e71aeb66a69e8ea..0000000000000000000000000000000000000000 Binary files a/jass/test/data_test2/worktable.hdf5 and /dev/null differ diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr1.txt b/jass/test/data_test2/z_BMW_ISETTA_chr1.txt deleted file mode 100644 index ba168c87cb4a0d7a71bb9e345e8e52058f81c6c6..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_ISETTA_chr1.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr1_reg01_01 1 A G 1.001 -rs_chr1_reg01_02 2 A G 2.001 -rs_chr1_reg01_03 3 A G 3.001 -rs_chr1_reg02_04 4 A G 4.001 -rs_chr1_reg02_05 5 A G 5.001 -rs_chr1_reg02_06 6 A G 6.001 diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr2.txt b/jass/test/data_test2/z_BMW_ISETTA_chr2.txt deleted file mode 100644 index f654684b8edbad4b0c8570e6e673a898bf3968e8..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_ISETTA_chr2.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr2_reg04_10 4 A G 10.001 -rs_chr2_reg04_11 5 A G 11.001 -rs_chr2_reg04_12 6 A G 12.001 diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr3.txt b/jass/test/data_test2/z_BMW_ISETTA_chr3.txt deleted file mode 100644 index 30b5fefe1978c0e8d5b8002adcebc6f674bab97b..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_ISETTA_chr3.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr3_reg05_13 1 A G 13.001 -rs_chr3_reg05_14 2 A G 14.001 -rs_chr3_reg05_15 3 A G 15.001 -rs_chr3_reg06_16 4 A G 16.001 -rs_chr3_reg06_17 5 A G 17.001 -rs_chr3_reg06_18 6 A G 18.001 diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr4.txt b/jass/test/data_test2/z_BMW_ISETTA_chr4.txt deleted file mode 100644 index f5269355934349a3552ac1421a1761b3e57c9af4..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_ISETTA_chr4.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr4_reg07_19 1 A G 19.001 -rs_chr4_reg07_20 2 A G 20.001 -rs_chr4_reg07_21 3 A G 21.001 -rs_chr4_reg08_22 4 A G 22.001 -rs_chr4_reg08_23 5 A G 23.001 -rs_chr4_reg08_24 6 A G 24.001 diff --git a/jass/test/data_test2/z_BMW_ISETTA_chr5.txt b/jass/test/data_test2/z_BMW_ISETTA_chr5.txt deleted file mode 100644 index be6510ece435217aad150b535b63a6c7a3b36843..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_ISETTA_chr5.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr5_reg10_28 4 A G 28.001 -rs_chr5_reg10_29 5 A G 29.001 -rs_chr5_reg10_30 6 A G 30.001 diff --git a/jass/test/data_test2/z_BMW_MINI_chr1.txt b/jass/test/data_test2/z_BMW_MINI_chr1.txt deleted file mode 100644 index fe30e814732cf650b50b165aecfe015eabb061bc..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_MINI_chr1.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr1_reg01_01 1 A G 31.001 -rs_chr1_reg01_02 2 A G 32.001 -rs_chr1_reg01_03 3 A G 33.001 -rs_chr1_reg02_04 4 A G 34.001 -rs_chr1_reg02_05 5 A G 35.001 -rs_chr1_reg02_06 6 A G 36.001 diff --git a/jass/test/data_test2/z_BMW_MINI_chr2.txt b/jass/test/data_test2/z_BMW_MINI_chr2.txt deleted file mode 100644 index 8d43408a9306776e8d1d8f5888e5a734ac8b163b..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_MINI_chr2.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr2_reg03_07 1 A G 37.001 -rs_chr2_reg03_08 2 A G 38.001 -rs_chr2_reg03_09 3 A G 39.001 diff --git a/jass/test/data_test2/z_BMW_MINI_chr3.txt b/jass/test/data_test2/z_BMW_MINI_chr3.txt deleted file mode 100644 index 01931f84bbf48153933ae21b4590f8e367157f4a..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_MINI_chr3.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr3_reg05_13 1 A G 43.001 -rs_chr3_reg05_14 2 A G 44.001 -rs_chr3_reg05_15 3 A G 45.001 -rs_chr3_reg06_16 4 A G 46.001 -rs_chr3_reg06_17 5 A G 47.001 -rs_chr3_reg06_18 6 A G 48.001 diff --git a/jass/test/data_test2/z_BMW_MINI_chr4.txt b/jass/test/data_test2/z_BMW_MINI_chr4.txt deleted file mode 100644 index 7cbd68f13544cfe0da4b81cf38b0a1853e63ec0a..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_MINI_chr4.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr4_reg07_19 1 A G 49.001 -rs_chr4_reg07_20 2 A G 50.001 -rs_chr4_reg07_21 3 A G 51.001 -rs_chr4_reg08_22 4 A G 52.001 -rs_chr4_reg08_23 5 A G 53.001 -rs_chr4_reg08_24 6 A G 54.001 diff --git a/jass/test/data_test2/z_BMW_MINI_chr5.txt b/jass/test/data_test2/z_BMW_MINI_chr5.txt deleted file mode 100644 index ee8a72149b041dba76cde9e38347aac4fc8dc185..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_BMW_MINI_chr5.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr5_reg10_28 4 A G 58.001 -rs_chr5_reg10_29 5 A G 59.001 -rs_chr5_reg10_30 6 A G 60.001 diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr1.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr1.txt deleted file mode 100644 index 90c8298ac67ab48c1521708e82dd2cc8aadc08bd..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQCENT_chr1.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr1_reg01_01 1 A G 61.001 -rs_chr1_reg01_02 2 A G 62.001 -rs_chr1_reg01_03 3 A G 63.001 -rs_chr1_reg02_04 4 A G 64.001 -rs_chr1_reg02_05 5 A G 65.001 -rs_chr1_reg02_06 6 A G 66.001 diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr2.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr2.txt deleted file mode 100644 index eaeaedff3e765943efabe07bc592cafafe2e2153..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQCENT_chr2.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr2_reg03_07 1 A G 67.001 -rs_chr2_reg03_08 2 A G 68.001 -rs_chr2_reg03_09 3 A G 69.001 -rs_chr2_reg04_10 4 A G 70.001 -rs_chr2_reg04_11 5 A G 71.001 -rs_chr2_reg04_12 6 A G 72.001 diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr3.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr3.txt deleted file mode 100644 index 79f6654e10d70614c5df7b159e4632649943f512..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQCENT_chr3.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr3_reg06_16 4 A G 76.001 -rs_chr3_reg06_17 5 A G 77.001 -rs_chr3_reg06_18 6 A G 78.001 diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr4.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr4.txt deleted file mode 100644 index e3ee62385639908a2e5b4ac9a6fe25701391101b..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQCENT_chr4.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr4_reg07_19 1 A G 79.001 -rs_chr4_reg07_20 2 A G 80.001 -rs_chr4_reg07_21 3 A G 81.001 -rs_chr4_reg08_22 4 A G 82.001 -rs_chr4_reg08_23 5 A G 83.001 -rs_chr4_reg08_24 6 A G 84.001 diff --git a/jass/test/data_test2/z_FIAT_CINQCENT_chr5.txt b/jass/test/data_test2/z_FIAT_CINQCENT_chr5.txt deleted file mode 100644 index ff4a6d54b2699b83c398267413910ea680412861..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQCENT_chr5.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr5_reg10_28 4 A G 88.001 -rs_chr5_reg10_29 5 A G 89.001 -rs_chr5_reg10_30 6 A G 90.001 diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr1.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr1.txt deleted file mode 100644 index ab76c899a0c8cacc10549e329126c162467efe95..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr1.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr1_reg01_01 1 A G 91.001 -rs_chr1_reg01_02 2 A G 92.001 -rs_chr1_reg01_03 3 A G 93.001 -rs_chr1_reg02_04 4 A G 94.001 -rs_chr1_reg02_05 5 A G 95.001 -rs_chr1_reg02_06 6 A G 96.001 diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr2.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr2.txt deleted file mode 100644 index 41efda8549747b5aa27865a3e3bf1e4c7eb6589b..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr2.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr2_reg03_07 1 A G 97.001 -rs_chr2_reg03_08 2 A G 98.001 -rs_chr2_reg03_09 3 A G 99.001 -rs_chr2_reg04_10 4 A G 100.001 -rs_chr2_reg04_11 5 A G 101.001 -rs_chr2_reg04_12 6 A G 102.001 diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr3.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr3.txt deleted file mode 100644 index bb75d15270802fdd2ce684f50b84cb10da58aa8e..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr3.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr3_reg05_13 1 A G 103.001 -rs_chr3_reg05_14 2 A G 104.001 -rs_chr3_reg05_15 3 A G 105.001 diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr4.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr4.txt deleted file mode 100644 index f39337397edcfd212ec5f5a0d84ad2b08cd518ce..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr4.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr4_reg07_19 1 A G 109.001 -rs_chr4_reg07_20 2 A G 110.001 -rs_chr4_reg07_21 3 A G 111.001 -rs_chr4_reg08_22 4 A G 112.001 -rs_chr4_reg08_23 5 A G 113.001 -rs_chr4_reg08_24 6 A G 114.001 diff --git a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr5.txt b/jass/test/data_test2/z_FIAT_CINQUECENTO_chr5.txt deleted file mode 100644 index ce0f5748472d5cd7e27f945ed87aecef2840603a..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_FIAT_CINQUECENTO_chr5.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr5_reg09_25 1 A G 115.001 -rs_chr5_reg09_26 2 A G 116.001 -rs_chr5_reg09_27 3 A G 117.001 diff --git a/jass/test/data_test2/z_MERCO_SMART_chr1.txt b/jass/test/data_test2/z_MERCO_SMART_chr1.txt deleted file mode 100644 index c1690edd2238a345d6579cb796abe8d21817eaa7..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_MERCO_SMART_chr1.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr1_reg01_01 1 A G 121.001 -rs_chr1_reg01_02 2 A G 122.001 -rs_chr1_reg01_03 3 A G 123.001 -rs_chr1_reg02_04 4 A G 124.001 -rs_chr1_reg02_05 5 A G 125.001 -rs_chr1_reg02_06 6 A G 126.001 diff --git a/jass/test/data_test2/z_MERCO_SMART_chr2.txt b/jass/test/data_test2/z_MERCO_SMART_chr2.txt deleted file mode 100644 index b550771006bb7919a0199d3a3d2f7e0429eb5b80..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_MERCO_SMART_chr2.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr2_reg03_07 1 A G 127.001 -rs_chr2_reg03_08 2 A G 128.001 -rs_chr2_reg03_09 3 A G 129.001 -rs_chr2_reg04_10 4 A G 130.001 -rs_chr2_reg04_11 5 A G 131.001 -rs_chr2_reg04_12 6 A G 132.001 diff --git a/jass/test/data_test2/z_MERCO_SMART_chr3.txt b/jass/test/data_test2/z_MERCO_SMART_chr3.txt deleted file mode 100644 index e81f2ac70279ecaa6fc7f626e35952af4a47e49a..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_MERCO_SMART_chr3.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr3_reg05_13 1 A G 133.001 -rs_chr3_reg05_14 2 A G 134.001 -rs_chr3_reg05_15 3 A G 135.001 -rs_chr3_reg06_16 4 A G 136.001 -rs_chr3_reg06_17 5 A G 137.001 -rs_chr3_reg06_18 6 A G 138.001 diff --git a/jass/test/data_test2/z_MERCO_SMART_chr4.txt b/jass/test/data_test2/z_MERCO_SMART_chr4.txt deleted file mode 100644 index bb4267422d8903207c9f986377365925fede7c97..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_MERCO_SMART_chr4.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr4_reg08_22 4 A G 142.001 -rs_chr4_reg08_23 5 A G 143.001 -rs_chr4_reg08_24 6 A G 144.001 diff --git a/jass/test/data_test2/z_MERCO_SMART_chr5.txt b/jass/test/data_test2/z_MERCO_SMART_chr5.txt deleted file mode 100644 index 84a041f4660f4e7927c65caa88997efb7b2f9505..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_MERCO_SMART_chr5.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr5_reg09_25 1 A G 145.001 -rs_chr5_reg09_26 2 A G 146.001 -rs_chr5_reg09_27 3 A G 147.001 diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr1.txt b/jass/test/data_test2/z_TATA_TATANANO_chr1.txt deleted file mode 100644 index 909ae54449de02a93e2988cdcbcc12205d913dff..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_TATA_TATANANO_chr1.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr1_reg01_01 1 A G 151.001 -rs_chr1_reg01_02 2 A G 152.001 -rs_chr1_reg01_03 3 A G 153.001 -rs_chr1_reg02_04 4 A G 154.001 -rs_chr1_reg02_05 5 A G 155.001 -rs_chr1_reg02_06 6 A G 156.001 diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr2.txt b/jass/test/data_test2/z_TATA_TATANANO_chr2.txt deleted file mode 100644 index 7b83919ad2352ca41bb726672d95f5795939cb6a..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_TATA_TATANANO_chr2.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr2_reg03_07 1 A G 157.001 -rs_chr2_reg03_08 2 A G 158.001 -rs_chr2_reg03_09 3 A G 159.001 -rs_chr2_reg04_10 4 A G 160.001 -rs_chr2_reg04_11 5 A G 161.001 -rs_chr2_reg04_12 6 A G 162.001 diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr3.txt b/jass/test/data_test2/z_TATA_TATANANO_chr3.txt deleted file mode 100644 index 2e18b72c75b85e8b36de115ad275c31e2ee23431..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_TATA_TATANANO_chr3.txt +++ /dev/null @@ -1,7 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr3_reg05_13 1 A G 163.001 -rs_chr3_reg05_14 2 A G 164.001 -rs_chr3_reg05_15 3 A G 165.001 -rs_chr3_reg06_16 4 A G 166.001 -rs_chr3_reg06_17 5 A G 167.001 -rs_chr3_reg06_18 6 A G 168.001 diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr4.txt b/jass/test/data_test2/z_TATA_TATANANO_chr4.txt deleted file mode 100644 index c10363107c3e979971a3e60e8ff1efef7fd0f3a3..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_TATA_TATANANO_chr4.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr4_reg07_19 1 A G 169.001 -rs_chr4_reg07_20 2 A G 170.001 -rs_chr4_reg07_21 3 A G 171.001 diff --git a/jass/test/data_test2/z_TATA_TATANANO_chr5.txt b/jass/test/data_test2/z_TATA_TATANANO_chr5.txt deleted file mode 100644 index 765fd14e4bc6d5742677609829a04b54c1ec48c9..0000000000000000000000000000000000000000 --- a/jass/test/data_test2/z_TATA_TATANANO_chr5.txt +++ /dev/null @@ -1,4 +0,0 @@ -rsid position refAllele altAllele Z -rs_chr5_reg09_25 1 A G 175.001 -rs_chr5_reg09_26 2 A G 176.001 -rs_chr5_reg09_27 3 A G 177.001 diff --git a/jass/test/data_test2/zscores.png b/jass/test/data_test2/zscores.png deleted file mode 100644 index d311c401bcdb3f586728a01a5314a19be8b9d6dd..0000000000000000000000000000000000000000 Binary files a/jass/test/data_test2/zscores.png and /dev/null differ diff --git a/setup.py b/setup.py index f219c359653ae00d87b9dfacea28330db078ba1f..61bba8e85879dc9f5f6e8efca8c09667813475b9 100644 --- a/setup.py +++ b/setup.py @@ -31,7 +31,7 @@ setup( install_requires=REQUIRES, license="MIT", keywords=["GWAS", "Data analysis", "summary statistics"], - package_data={'jass': ['swagger/swagger.yaml']}, + package_data={'jass': ['swagger/swagger.yaml', "data/*.tsv"]}, include_package_data=True, long_description=readme, long_description_content_type="text/markdown",