From 458a265dfeebf690217698f12c73d9fcd675849d Mon Sep 17 00:00:00 2001 From: Matthieu Haudiquet <matthieu.haudiquet@pasteur.fr> Date: Tue, 1 Oct 2019 19:23:24 +0200 Subject: [PATCH] tkt --- .Rhistory | 771 +++++++++++++++++++++++++++++++---------------- R/plot_dna_ref.R | 6 +- 2 files changed, 513 insertions(+), 264 deletions(-) diff --git a/.Rhistory b/.Rhistory index 8b71011..ac469bb 100644 --- a/.Rhistory +++ b/.Rhistory @@ -1,263 +1,512 @@ -library(readxl) +x_lims_list <- to_xlims$lim +genoPlotR::plot_gene_map(dna_segs = list(ref_seq, query_seq), comparisons = list(comparison_table), +xlims = x_lims_list, dna_seg_labels = c(basename(ref), basename(query)), dna_seg_label_cex = 0.3) +comparison_table$col <- apply_color_scheme(comparison_table$pident, color_scheme = "grey") +class(comparison_table) <- c("comparison", "data.frame") +to_xlims <- bind_rows(ref_seq, query_seq, .id = "id") %>% +group_by(id) %>% +summarise( +lim1 = 1, +lim2 = pmax( max(start), max(end)) +) %>% +select(id, lim1, lim2) %>% +group_by(id) %>% +mutate( +lim = ifelse(test = reverse_query==T & id==2, list(c(lim2,lim1)), list(c(lim1,lim2)) ) +) +x_lims_list <- to_xlims$lim +genoPlotR::plot_gene_map(dna_segs = list(ref_seq, query_seq), comparisons = list(comparison_table), +xlims = x_lims_list, dna_seg_labels = c(basename(ref), basename(query)), dna_seg_label_cex = 0.3) +ref <- "../data-raw/NC_024711_ori_RepL_function.gbk" +query <- "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv" +comp <- "../data-raw/BBH_18_49_Crass_V2.txt" +ref_seq <- read_dna_seg_from_genbank(file = ref, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80") +ref_seq <- read_dna_seg_from_genbank(file = query, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80") +try( +ref_seq <- read_dna_seg_from_genbank(file = query, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80") +) +try( +ref_seq <- read_dna_seg_from_genbank(file = ref, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80") +) +try( +ref_seq <- read_dna_seg_from_tab(file = ref, header = T, gene_type = "arrows", col = "black", fill = "grey80") +) +query_seq <- read_dna_seg_from_tab(file = query, header = T, gene_type = "arrows", col = "black", fill = "grey80") +try( +ref_seq <- read_dna_seg_from_tab(file = ref, header = T, gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +# Try either gbk or table for the ref +try( +ref_seq <- read_dna_seg_from_genbank(file = ref, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +try( +ref_seq <- read_dna_seg_from_tab(file = ref, header = T, gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +# Try either gbk or table for the query +try( +query_seq <- read_dna_seg_from_tab(file = query, header = T, gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +try( +query_seq <- read_dna_seg_from_genbank(file = query, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +try( +ref_seq <- read_dna_seg_from_genbank(file = ref, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +try( +ref_seq <- read_dna_seg_from_tab(file = ref, header = T, gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +# Try either gbk or table for the query +try( +query_seq <- read_dna_seg_from_tab(file = query, header = T, gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +try( +query_seq <- read_dna_seg_from_genbank(file = query, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +# BBH table. Would be better to change header names I think +comparison_bbh <- read.table(file = comp, col.names = c("prot_element_1","prot_element_2","element_2","element_1","pid"), stringsAsFactors = F) %>% +select(prot_element_1, prot_element_2, pid) +# Extract position +bbh_position_table <- bind_rows(ref_seq, query_seq) %>% +select(name, start, end) +# Bind the positions for the comparison table. Reverse the coords if the query is gonna be reversed. +comparison_table <- comparison_bbh %>% +left_join(bbh_position_table, by = c("prot_element_1"="name")) %>% +left_join(bbh_position_table, by = c("prot_element_2"="name"), suffix = c("1", "2")) %>% +group_by(prot_element_2) %>% +mutate( +pident = floor(pid), +start22 = ifelse(reverse_query==T, end2, start2), +end22 = ifelse(reverse_query==T, start2, end2) +) %>% +ungroup() %>% +select(start1, end1, start22, end22, pident) %>% +rename(start2=start22, end2=end22) +# Apply grey color scheme +comparison_table$col <- apply_color_scheme(comparison_table$pident, color_scheme = "grey") +class(comparison_table) <- c("comparison", "data.frame") +# Reverse the query if necessary +to_xlims <- bind_rows(ref_seq, query_seq, .id = "id") %>% +group_by(id) %>% +summarise( +lim1 = 1, +lim2 = pmax( max(start), max(end)) +) %>% +select(id, lim1, lim2) %>% +group_by(id) %>% +mutate( +lim = ifelse(test = reverse_query==T & id==2, list(c(lim2,lim1)), list(c(lim1,lim2)) ) +) +x_lims_list <- to_xlims$lim +# Plot +genoPlotR::plot_gene_map(dna_segs = list(ref_seq, query_seq), comparisons = list(comparison_table), +xlims = x_lims_list, dna_seg_labels = c(basename(ref), basename(query)), dna_seg_label_cex = 0.3) +View(query_seq) +View(ref_seq) +# Try either gbk or table for the ref +try( +ref_seq <- read_dna_seg_from_genbank(file = ref, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +View(ref_seq) +# Try either gbk or table for the ref +try( +ref_seq <- read_dna_seg_from_genbank(file = ref, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +View(ref_seq) +# Try either gbk or table for the ref +try( +ref_seq <- read_dna_seg_from_genbank(file = ref, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +View(ref_seq) +# BBH table. Would be better to change header names I think +comparison_bbh <- read.table(file = comp, col.names = c("prot_element_1","prot_element_2","element_2","element_1","pid"), stringsAsFactors = F) %>% +select(prot_element_1, prot_element_2, pid) +# Init the colors +set.seed(42) +install.packages("randomcoloR") +library(randomcoloR) +View(query_seq) +category <- c(unique(query_seq$category, unique(ref_seq$product))) +category +category <- unique(c(query_seq$category, ref_seq$product)) +category +library(RColorBrewer) +fill <- c(brewer.pal(n = length(category), name = "Paired")) +category <- unique(c(query_seq$category, ref_seq$product)) +fill <- c(brewer.pal(n = length(category), name = "Paired")) +col_categories <- as.data.frame(cbind(category, fill)) +View(col_categories) +View(query_seq) +View(col_categories) +View(col_categories) +col_categories <- as.data.frame(cbind(category, fill)) %>% +mutate( +product = category +) +View(col_categories) +col_categories <- as.data.frame(cbind(category, fill)) %>% +mutate( +product = category +) %>% +select(category, product, fill) +query_annotated <- query_seq %>% +select(-fill) %>% +left_join(col_categories) +ref_annotated <- ref_seq %>% +select(-fill) %>% +left_join(col_categories) +ref_annotated <- ref_seq %>% +select(-fill) %>% +left_join(col_categories) %>% +mutate( +col = ifelse(feature == "tRNA", "#ff5145", col) +) %>% +as.data.frame() +View(ref_annotated) +query_annotated <- query_seq %>% +select(-fill) %>% +left_join(col_categories) +query_annotated <- query_seq %>% +select(-fill) %>% +left_join(col_categories)%>% +mutate( +col = ifelse(feature == "tRNA", "#ff5145", col) +) %>% +as.data.frame() +class(query_annotated) <- c("dna_seg", "data.frame") +ref_annotated <- ref_seq %>% +select(-fill) %>% +left_join(col_categories) %>% +mutate( +col = ifelse(feature == "tRNA", "#ff5145", col) +) %>% +as.data.frame() +class(ref_annotated) <- c("dna_seg", "data.frame") +# Plot +genoPlotR::plot_gene_map(dna_segs = list(ref_annotated, query_annotated), comparisons = list(comparison_table), +xlims = x_lims_list, dna_seg_labels = c(basename(ref), basename(query)), dna_seg_label_cex = 0.3) +View(col_categories) +# Plot legend +apply_color_scheme(seq(min(all_blast_res$pident),100)) +# Plot legend +apply_color_scheme(seq(min(comp$pident),100)) +# Plot legend +apply_color_scheme(seq(min(comparison_table$pident),100)) +comparison_table %>% +ggplot(aes(x = pident, y= pident, fill = pident)) + +geom_point() + +scale_fill_gradient(low = apply_color_scheme(min(comparison_table$pident)), high = "#40404080") +library(ggplot2) +library(ggplot2, ggpubr) library(ggpubr) +comparison_table %>% +ggplot(aes(x = pident, y= pident, fill = pident)) + +geom_point() + +scale_fill_gradient(low = apply_color_scheme(min(comparison_table$pident)), high = "#40404080") +comparison_table %>% +ggplot(aes(x = pident, y= pident, fill = pident)) + +geom_point() + +scale_fill_gradient(low = apply_color_scheme(min(comparison_table$pident)), high = apply_color_scheme(max(comparison_table$pident))) +apply_color_scheme(max(comparison_table$pident) +) +apply_color_scheme(min(comparison_table$pident)) +min(comparison_table$pident) +max(comparison_table$pident) +# Plot legend +grey <- apply_color_scheme(seq(min(comparison_table$pident),100)) +# Plot legend +grey <- apply_color_scheme(seq(min(comparison_table$pident),100)) +grey +grey[,1] +grey[1,] +grey[1] +grey[length(grey)] +# Plot legend +greyscale <- apply_color_scheme(seq(min(comparison_table$pident),100)) +comparison_table %>% +ggplot(aes(x = pident, y= pident, fill = pident)) + +geom_point() + +scale_fill_gradient(low = greyscale[1], high = greyscale[length(greyscale)]) +get_legend( +comparison_table %>% +ggplot(aes(x = pident, y= pident, fill = pident)) + +geom_point() + +scale_fill_gradient(low = greyscale[1], high = greyscale[length(greyscale)]) +) +plot(get_legend( +comparison_table %>% +ggplot(aes(x = pident, y= pident, fill = pident)) + +geom_point() + +scale_fill_gradient(low = greyscale[1], high = greyscale[length(greyscale)]) +)) +category <- sort(unique(c(query_seq$category, ref_seq$product))) +fill <- c(brewer.pal(n = length(category), name = "Paired")) +col_categories <- as.data.frame(cbind(category, fill)) %>% +mutate( +product = category +) %>% +select(category, product, fill) +# Put the colors +query_annotated <- query_seq %>% +select(-fill) %>% +left_join(col_categories)%>% +mutate( +col = ifelse(feature == "tRNA", "#ff5145", col) +) %>% +as.data.frame() +class(query_annotated) <- c("dna_seg", "data.frame") +ref_annotated <- ref_seq %>% +select(-fill) %>% +left_join(col_categories) %>% +mutate( +col = ifelse(feature == "tRNA", "#ff5145", col) +) %>% +as.data.frame() +class(ref_annotated) <- c("dna_seg", "data.frame") +# BBH table. Would be better to change header names I think +comparison_bbh <- read.table(file = comp, col.names = c("prot_element_1","prot_element_2","element_2","element_1","pid"), stringsAsFactors = F) %>% +select(prot_element_1, prot_element_2, pid) +# Extract position +bbh_position_table <- bind_rows(ref_seq, query_seq) %>% +select(name, start, end) +# Bind the positions for the comparison table. Reverse the coords if the query is gonna be reversed. +comparison_table <- comparison_bbh %>% +left_join(bbh_position_table, by = c("prot_element_1"="name")) %>% +left_join(bbh_position_table, by = c("prot_element_2"="name"), suffix = c("1", "2")) %>% +group_by(prot_element_2) %>% +mutate( +pident = floor(pid), +start22 = ifelse(reverse_query==T, end2, start2), +end22 = ifelse(reverse_query==T, start2, end2) +) %>% +ungroup() %>% +select(start1, end1, start22, end22, pident) %>% +rename(start2=start22, end2=end22) +# Apply grey color scheme +comparison_table$col <- apply_color_scheme(comparison_table$pident, color_scheme = "grey") +class(comparison_table) <- c("comparison", "data.frame") +# Reverse the query if necessary +to_xlims <- bind_rows(ref_seq, query_seq, .id = "id") %>% +group_by(id) %>% +summarise( +lim1 = 1, +lim2 = pmax( max(start), max(end)) +) %>% +select(id, lim1, lim2) %>% +group_by(id) %>% +mutate( +lim = ifelse(test = reverse_query==T & id==2, list(c(lim2,lim1)), list(c(lim1,lim2)) ) +) +x_lims_list <- to_xlims$lim +# Plot +genoPlotR::plot_gene_map(dna_segs = list(ref_annotated, query_annotated), comparisons = list(comparison_table), +xlims = x_lims_list, dna_seg_labels = c(basename(ref), basename(query)), dna_seg_label_cex = 0.3) +# Plot legend +greyscale <- apply_color_scheme(seq(min(comparison_table$pident),100)) +plot(get_legend( +comparison_table %>% +ggplot(aes(x = pident, y= pident, fill = pident)) + +geom_point() + +scale_fill_gradient(low = greyscale[1], high = greyscale[length(greyscale)]) +)) +col_categories %>% +ggplot(aes(x = category))+ +geom_bar(aes(fill = category)) +col_categories %>% +ggplot(aes(x = category))+ +geom_bar(aes(fill = category)) + +scale_fill_manual(values = col_categories$fill, +breaks = col_categories$category) +# Plot +genoPlotR::plot_gene_map(dna_segs = list(ref_annotated, query_annotated), comparisons = list(comparison_table), +xlims = x_lims_list, dna_seg_labels = c(basename(ref), basename(query)), dna_seg_label_cex = 0.3) +col_categories$fill +plot(col_categories$fill) +plot(col_categories$fill, col = col_categories$fill) +View(comparison_table) +View(comparison_table) +category +col_categories <- as.data.frame(cbind(category, fill)) %>% +mutate( +category = as.character(category), +product = as.character(category), +fill = as.character(fill) +) %>% +select(category, product, fill) +category <- sort(unique(c(query_seq$category, ref_seq$product))) +fill <- c(brewer.pal(n = length(category), name = "Paired")) +col_categories <- as.data.frame(cbind(category, fill)) %>% +mutate( +category = as.character(category), +product = as.character(category), +fill = as.character(fill) +) %>% +select(category, product, fill) +# Put the colors +query_annotated <- query_seq %>% +select(-fill) %>% +left_join(col_categories)%>% +mutate( +col = ifelse(feature == "tRNA", "#ff5145", col) +) %>% +as.data.frame() +col_categories %>% +ggplot(aes(x = category))+ +geom_bar(aes(fill = category)) + +scale_fill_manual(values = col_categories$fill, +breaks = col_categories$category) +plot(get_legend( +col_categories %>% +ggplot(aes(x = category))+ +geom_bar(aes(fill = category)) + +scale_fill_manual(values = col_categories$fill, +breaks = col_categories$category) +)) +plot_dna_ref(ref ="../data-raw/NC_024711_ori_RepL_function.gbk", query = "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv", comp = "../data-raw/BBH_18_49_Crass_V2.txt", reverse_query = T) +plot_dna_ref <- function(ref, query, comp, reverse_query = F){ +# Try either gbk or table for the ref +try( +ref_seq <- read_dna_seg_from_genbank(file = ref, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +try( +ref_seq <- read_dna_seg_from_tab(file = ref, header = T, gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +# Try either gbk or table for the query +try( +query_seq <- read_dna_seg_from_tab(file = query, header = T, gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +try( +query_seq <- read_dna_seg_from_genbank(file = query, tagsToParse = c("CDS"), gene_type = "arrows", col = "black", fill = "grey80"), +silent = T +) +# Pick the colors +set.seed(42) +category <- sort(unique(c(query_seq$category, ref_seq$product))) +fill <- c(brewer.pal(n = length(category), name = "Paired")) +col_categories <- as.data.frame(cbind(category, fill)) %>% +mutate( +category = as.character(category), +product = as.character(category), +fill = as.character(fill) +) %>% +select(category, product, fill) +# Put the colors +query_annotated <- query_seq %>% +select(-fill) %>% +left_join(col_categories)%>% +mutate( +col = ifelse(feature == "tRNA", "#ff5145", col) +) %>% +as.data.frame() +class(query_annotated) <- c("dna_seg", "data.frame") +ref_annotated <- ref_seq %>% +select(-fill) %>% +left_join(col_categories) %>% +mutate( +col = ifelse(feature == "tRNA", "#ff5145", col) +) %>% +as.data.frame() +class(ref_annotated) <- c("dna_seg", "data.frame") +# BBH table. Would be better to change header names I think +comparison_bbh <- read.table(file = comp, col.names = c("prot_element_1","prot_element_2","element_2","element_1","pid"), stringsAsFactors = F) %>% +select(prot_element_1, prot_element_2, pid) +# Extract position +bbh_position_table <- bind_rows(ref_seq, query_seq) %>% +select(name, start, end) +# Bind the positions for the comparison table. Reverse the coords if the query is gonna be reversed. +comparison_table <- comparison_bbh %>% +left_join(bbh_position_table, by = c("prot_element_1"="name")) %>% +left_join(bbh_position_table, by = c("prot_element_2"="name"), suffix = c("1", "2")) %>% +group_by(prot_element_2) %>% +mutate( +pident = floor(pid), +start22 = ifelse(reverse_query==T, end2, start2), +end22 = ifelse(reverse_query==T, start2, end2) +) %>% +ungroup() %>% +select(start1, end1, start22, end22, pident) %>% +rename(start2=start22, end2=end22) +# Apply grey color scheme +comparison_table$col <- apply_color_scheme(comparison_table$pident, color_scheme = "grey") +class(comparison_table) <- c("comparison", "data.frame") +# Reverse the query if necessary +to_xlims <- bind_rows(ref_seq, query_seq, .id = "id") %>% +group_by(id) %>% +summarise( +lim1 = 1, +lim2 = pmax( max(start), max(end)) +) %>% +select(id, lim1, lim2) %>% +group_by(id) %>% +mutate( +lim = ifelse(test = reverse_query==T & id==2, list(c(lim2,lim1)), list(c(lim1,lim2)) ) +) +x_lims_list <- to_xlims$lim +# Plot +genoPlotR::plot_gene_map(dna_segs = list(ref_annotated, query_annotated), comparisons = list(comparison_table), +xlims = x_lims_list, dna_seg_labels = c(basename(ref), basename(query)), dna_seg_label_cex = 0.3) +# Plot legend +greyscale <- apply_color_scheme(seq(min(comparison_table$pident),100)) +plot(get_legend( +comparison_table %>% +ggplot(aes(x = pident, y= pident, fill = pident)) + +geom_point() + +scale_fill_gradient(low = greyscale[1], high = greyscale[length(greyscale)]) +)) +plot(get_legend( +col_categories %>% +ggplot(aes(x = category))+ +geom_bar(aes(fill = category)) + +scale_fill_manual(values = col_categories$fill, +breaks = col_categories$category) +)) +} +plot_dna_ref(ref ="../data-raw/NC_024711_ori_RepL_function.gbk", query = "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv", comp = "../data-raw/BBH_18_49_Crass_V2.txt", reverse_query = T) +usethis::use_package(ggpubr) +usethis::use_package("ggpubr") +plot_dna_ref(ref ="../data-raw/NC_024711_ori_RepL_function.gbk", query = "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv", comp = "../data-raw/BBH_18_49_Crass_V2.txt", reverse_query = T) +cairo_pdf(filename = "test.pdf") +plot_dna_ref(ref ="../data-raw/NC_024711_ori_RepL_function.gbk", query = "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv", comp = "../data-raw/BBH_18_49_Crass_V2.txt", reverse_query = T) +dev.off() +cairo_pdf(onefile = T) +plot_dna_ref(ref ="../data-raw/NC_024711_ori_RepL_function.gbk", query = "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv", comp = "../data-raw/BBH_18_49_Crass_V2.txt", reverse_query = T) +dev.off() +library(plotDNA) +plot_dna_ref(ref ="../data-raw/NC_024711_ori_RepL_function.gbk", query = "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv", comp = "../data-raw/BBH_18_49_Crass_V2.txt", reverse_query = T) +usethis::use_data("DATASET") +library(plotDNA) +setwd("~/Documents/_Dev/plotDNA/data-raw") +setwd("~/Documents/_Dev/plotDNA/data-raw") +plot_dna_ref(ref ="../data-raw/NC_024711_ori_RepL_function.gbk", query = "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv", comp = "../data-raw/BBH_18_49_Crass_V2.txt", reverse_query = T) +devtools::install_git(url = "https://gitlab.pasteur.fr/mahaudiq/plot-dna/") +library(devtools) +install_git(url = "https://gitlab.pasteur.fr/mahaudiq/plot-dna/") +install_git(url = "https://gitlab.pasteur.fr/mahaudiq/plot-dna/") +install.packages("dplyr") +if (!require('devtools')) install.packages('devtools'); library('devtools') +library(plotDNA) +plot_dna_ref(ref ="../data-raw/NC_024711_ori_RepL_function.gbk", query = "../data-raw/ALL_18_ALL_0000049.prt.details.fixed.tsv", comp = "../data-raw/BBH_18_49_Crass_V2.txt", reverse_query = T) +args <- c(1,2,3) +reverse_or_not <- ifelse( args[4] == 1, T, F) +reverse_or_not +reverse_or_not <- if_else( args[4] == 1, T, F, F) library(dplyr) -data <- read_excel("Shld1-mice-phenotype-2.xlsx") -View(data) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -stat_compare_means() -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_pubclean()+ -stat_compare_means() -theme_bw(+ -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -stat_compare_means() -data %>% -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -stat_compare_means() -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means() -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x.npc = 1) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x.npc = 0.11) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x.npc = 0.01) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x.npc = 0.0001) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary() -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary(fun.y = "mean") -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary(fun.y = "mean", geom = "line") -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary(fun.y = "mean", geom = "crossbar") -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar") -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.5) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.2) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -geom_point()+ -theme_bw()+ -ggplot2::stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15, alpha = 0.8) -geom_point(aes(alpha = 0.9))+ -theme_bw()+ -ggplot2::stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point(aes(alpha = 0.9))+ -theme_bw()+ -ggplot2::stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number, alpha = 0.9))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point(aes(alpha = 0.9))+ -theme_bw()+ -ggplot2::stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means() -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 1, label.y = 100) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 1, label.y = 200) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = -1, label.y = 200) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.1, label.y = 200) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.3, label.y = 200) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.5, label.y = 200) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.6, label.y = 200) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.6, label.y = 180) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.6, label.y = 190) -class(data) -class(data$Genotype) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.6, label.y = 190) + -scale_x_discrete(limits=c("WT", "Shld1"))) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.6, label.y = 190) + -scale_x_discrete(limits=c("WT", "Shld1")) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -scale_x_discrete(limits=c("WT", "Shld1"))+ -stat_compare_means(label.x = 0.6, label.y = 190) -data$Genotype <- as.factor(data$Genotype) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.6, label.y = 190) -data$Genotype<- factor(data$Genotype,levels = c("WT", "Shld1")) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -stat_compare_means(label.x = 0.6, label.y = 190) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -ylab("Splenocyte number")+ -stat_compare_means(label.x = 0.6, label.y = 190) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -ylab("Splenocyte number")+ -labs(title = "plot") -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -ylab("Splenocyte number")+ -labs(title = "plot")+ -stat_compare_means(label.x = 0.6, label.y = 190) -data %>% -ggplot(aes(x=Genotype, y = Splenocyte_number))+ -stat_summary(fun.y = mean, fun.ymax = mean, fun.ymin = mean, geom = "crossbar", width = 0.15)+ -geom_point()+ -theme_bw()+ -coord_cartesian(ylim = c(0, 200))+ -ylab("Splenocyte number")+ -labs(title = "plot")+ -stat_compare_means(label.x = 0.6, label.y = 190) + -ggsave(filename = "plot.png", dpi = "retina") +reverse_or_not <- if_else( args[4] == 1, T, F, F) +reverse_or_not +sort("Lysis", "Others", "DNA_metabolism-Regulation-Recombination", "Packaging,Injection&Assembly", "structure", "Structure-lysis", "Unknown") +sort(c("Lysis", "Others", "DNA_metabolism-Regulation-Recombination", "Packaging,Injection&Assembly", "structure", "Structure-lysis", "Unknown")) +sort(c("Lysis", "Others", "DNA_metabolism-Regulation-Recombination", "Packaging-Injection-Assembly", "Structure", "Structure-lysis", "Unknown")) diff --git a/R/plot_dna_ref.R b/R/plot_dna_ref.R index 90215f1..0f3ba0f 100644 --- a/R/plot_dna_ref.R +++ b/R/plot_dna_ref.R @@ -42,15 +42,15 @@ plot_dna_ref <- function(ref, query, comp, reverse_query = F){ ) # Pick the colors - set.seed(42) - + set.seed(123) category <- sort(unique(c(query_seq$category, ref_seq$product))) fill <- c(brewer.pal(n = length(category), name = "Paired")) + col_categories <- as.data.frame(cbind(category, fill)) %>% mutate( category = as.character(category), product = as.character(category), - fill = as.character(fill) + fill = ifelse( category == "Unknown", "grey80", as.character(fill)) ) %>% select(category, product, fill) -- GitLab