diff --git a/content/3.defense-systems/rm.md b/content/3.defense-systems/rm.md
index f4c1db9487d5ed8dff45995c0f503479aaff2779..2626cb73e6125b5ea8e6067170e215732365cbf0 100644
--- a/content/3.defense-systems/rm.md
+++ b/content/3.defense-systems/rm.md
@@ -4,17 +4,18 @@ layout: article
 tableColumns:
     article:
       doi: 10.1016/j.mib.2005.06.003
+      abstract: |
+        The rexA and rexB genes of bacteriophage lambda encode a two-component system that aborts lytic growth of bacterial viruses. Rex exclusion is characterized by termination of macromolecular synthesis, loss of active transport, the hydrolysis of ATP, and cell death. By analogy to colicins E1 and K, these results can be explained by depolarization of the cytoplasmic membrane. We have fractionated cells to determine the intracellular location of the RexB protein and made RexB-alkaline phosphatase fusions to analyze its membrane topology. The RexB protein appears to be a polytopic transmembrane protein. We suggest that RexB proteins form ion channels that, in response to lytic growth of bacteriophages, depolarize the cytoplasmic membrane. The Rex system requires a mechanism to prevent lambda itself from being excluded during lytic growth. We have determined that overexpression of RexB in lambda lysogens prevents the exclusion of both T4 rII mutants and lambda ren mutants. We suspect that overexpression of RexB is the basis for preventing self-exclusion following the induction of a lambda lysogen and that RexB overexpression is accomplished through transcriptional regulation.
     Sensor: Detecting invading nucleic acid
     Activator: Direct
     Effector: Nucleic acid degrading
     PFAM: PF00270, PF02384, PF04313, PF04851, PF12008, PF12161, PF18766
 contributors: 
-- Aude Bernheim
-- Florian Tesson
+  - Aude Bernheim
+  - Florian Tesson
 relevantAbstracts:
-- doi: 10.1016/j.mib.2005.06.003
-- doi: 10.1093/nar/gku734
-
+  - doi: 10.1016/j.mib.2005.06.003
+  - doi: 10.1093/nar/gku734
 ---
 
 # RM
@@ -67,101 +68,23 @@ Proportion of genome encoding the RM system for the 14 phyla with more than 50 g
 
 ## Structure
 
-### DISARM_1
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_1,DISARM_1__drmD,0,DF-plddts_85.45851.pdb
----
-::
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_1,DISARM_1__drmMI,0,DF-plddts_86.22485.pdb
----
-::
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_1,DISARM__drmA,0,DF-plddts_88.08452.pdb
----
-::
+### Experimentaly determined structure
 
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_1,DISARM__drmB,0,DF-plddts_88.41231.pdb
----
-::
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_1,DISARM__drmC,0,DF-plddts_93.3381.pdb
----
-::
-
-### DISARM_2
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_2,DISARM_2__drmE,0,V-plddts_88.46395.pdb
----
-::
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_2,DISARM_2__drmMII,0,V-plddts_92.6996.pdb
----
-::
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_2,DISARM__drmA,0,V-plddts_87.64454.pdb
----
-::
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_2,DISARM__drmB,0,V-plddts_89.69894.pdb
----
-::
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/DISARM_2,DISARM__drmC,0,V-plddts_87.93933.pdb
----
-::
+Many structure for the different types of restriction-modification system are available on the [protein data bank](https://www.rcsb.org/).
 
 ### RM
+#### Restriction modification Type I Prr
 
 ::molstar-pdbe-plugin
 ---
 height: 700
-dataUrl: /rm/RM__Type_I_REases-plddts_86.33796.pdb
----
-::
-
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /rm/RM__Type_I_S-plddts_91.98582.pdb
+dataUrl:
+  - /rm/RM__Type_I_REases-plddts_86.33796.pdb
+  - /rm/RM__Type_I_S-plddts_91.98582.pdb
+  - /prrc/PrrC__EcoprrI-plddts_91.30003.pdb
 ---
 ::
 
-::molstar-pdbe-plugin
----
-height: 700
-dataUrl: /prrc/PrrC__EcoprrI-plddts_91.30003.pdb
----
-::
 ## Experimental validation
 Many RM systems defend against many phages, as such we cannot map this correctly.
+