From 65896b05aa63881973e8af441e582ed6f7fab068 Mon Sep 17 00:00:00 2001
From: Jean  CURY <jean.cury@pasteur.fr>
Date: Wed, 22 Nov 2023 17:03:45 +0100
Subject: [PATCH] Update olokun.md

---
 content/3.defense-systems/olokun.md | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/content/3.defense-systems/olokun.md b/content/3.defense-systems/olokun.md
index d9531430..3ec671ee 100644
--- a/content/3.defense-systems/olokun.md
+++ b/content/3.defense-systems/olokun.md
@@ -4,7 +4,7 @@ layout: article
 tableColumns:
     article:
       doi: 10.1016/j.chom.2022.09.017
-      abstract: 
+      abstract: |
         Bacterial anti-phage systems are frequently clustered in microbial genomes, forming defense islands. This property enabled the recent discovery of multiple defense systems based on their genomic co-localization with known systems, but the full arsenal of anti-phage mechanisms remains unknown. We report the discovery of 21 defense systems that protect bacteria from phages, based on computational genomic analyses and phage-infection experiments. We identified multiple systems with domains involved in eukaryotic antiviral immunity, including those homologous to the ubiquitin-like ISG15 protein, dynamin-like domains, and SEFIR domains, and show their participation in bacterial defenses. Additional systems include domains predicted to manipulate DNA and RNA molecules, alongside toxin-antitoxin systems shown here to function in anti-phage defense. These systems are widely distributed in microbial genomes, and in some bacteria, they form a considerable fraction of the immune arsenal. Our data substantially expand the inventory of defense systems utilized by bacteria to counteract phage infection.
     Sensor: Unknown
     Activator: Unknown
-- 
GitLab