## Getting age distribution of the population for a defined geographical area ## (metropolitan France or specific region) get_populationVector <- function(name_area){ # region name is the name of the area of interest # National for metropolitan France or the short abbreviations of the regions otherwise if(name_area == 'Metro'){ population_data <- read.csv('Data/population_data/PopByRegionAndAge_MetropolianFrance.csv') vect_name_region <- c('ARA', 'BFC', 'BRE', 'CVL', 'COR', 'GES', 'HDF', 'IDF', 'NAQ', 'NOR', 'OCC', 'PAC', 'PDL') PopGeographicalArea <- apply(population_data[, vect_name_region], 1, sum) } else{ population_data <- read.csv('Data/population_data/PopByRegionAndAge_EntireFrance.csv') PopGeographicalArea <- population_data[, name_area] } names(PopGeographicalArea) <- population_data$Age return(PopGeographicalArea) } ## Function used to adjust the matrices for different infectivity/susceptibility adjust_matrix_infectivity_susceptibility <- function(contactMatrix, susceptibility, infectivity){ # contactMatrix is of size nAge*nAge # susceptibility and infectivity are vectors of length nAge contactMatrix_corr<- matrix(0, ncol = ncol(contactMatrix), nrow = nrow(contactMatrix)) for(i in 1:nrow(contactMatrix_corr)){ for(j in 1:ncol(contactMatrix_corr)){ contactMatrix_corr[i,j] <- contactMatrix[i,j]*infectivity[j]*susceptibility[i] } } return(contactMatrix_corr) } ## Function used to symmetrize the matrices ## Symmetrization well explained in Funk et al., 2019 (BMC Medicine) symmetrize_contact_matrix <- function(contactMatrix, popSize.ageG){ n.ageG <- length(popSize.ageG) tmp_mat_pop <- matrix(rep(popSize.ageG, n.ageG), ncol = n.ageG, nrow = n.ageG) MatPop <- contactMatrix*tmp_mat_pop NormalizedMat <- (MatPop + t(MatPop))/(2*tmp_mat_pop) return(NormalizedMat) } ## Getting the maximum eigenvalue of a matrix get_max_eigenval <- function(M){ eigenvalues <- eigen(M)$values max_eigenval <- max(Re(eigenvalues[abs(Im(eigenvalues)) < 1e-6])) return(max_eigenval) } ## Compute the reduced matrix from a matrix of reduction of contacts for all the age groups compute_matrix_reduction_all_contacts <- function(CM, vect_alpha){ mat_min_alpha <- sapply(vect_alpha, FUN = function(tmp_alpha){ sapply(vect_alpha, FUN = function(tmp_alpha2){ min(tmp_alpha, tmp_alpha2) }) }) mat_res <- CM*mat_min_alpha return(mat_res) } compute_normalized_matrix_reduction_all_contacts <- function(CM, vect_alpha){ mat_res <- compute_matrix_reduction_all_contacts(CM, vect_alpha) mat_res <- mat_res/get_max_eigenval(mat_res) return(mat_res) } get_vect_alpha_from8 <- function(vect_8 # vector of size 8 ){ return(c(vect_8[1:2], #0-9 ; 10-17 1, #18-29 vect_8[3], #30-39 rep(vect_8[4], 2), #40-49 rep(vect_8[5], 2), #50-59 rep(vect_8[6], 2), #60-69 rep(vect_8[7], 2), #70-79 vect_8[8] #80p )) }