
Pattern matching 1/2

Exact Pattern Matching

• Nicolas Maillet • 23/11/08

Part 1

Exact Pattern matching

2 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?

• Where are you?
Why?

• CTRL-F
• Search engines (50 billion web pages)
• DB requests
• Music (plagiarism, licenses youtube, shazam)
• Spell checking
• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?

• CTRL-F
• Search engines (50 billion web pages)
• DB requests
• Music (plagiarism, licenses youtube, shazam)
• Spell checking
• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?

• CTRL-F
• Search engines (50 billion web pages)
• DB requests
• Music (plagiarism, licenses youtube, shazam)
• Spell checking
• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?
• CTRL-F

• Search engines (50 billion web pages)
• DB requests
• Music (plagiarism, licenses youtube, shazam)
• Spell checking
• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?
• CTRL-F
• Search engines (50 billion web pages)

• DB requests
• Music (plagiarism, licenses youtube, shazam)
• Spell checking
• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?
• CTRL-F
• Search engines (50 billion web pages)
• DB requests

• Music (plagiarism, licenses youtube, shazam)
• Spell checking
• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?
• CTRL-F
• Search engines (50 billion web pages)
• DB requests
• Music (plagiarism, licenses youtube, shazam)

• Spell checking
• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?
• CTRL-F
• Search engines (50 billion web pages)
• DB requests
• Music (plagiarism, licenses youtube, shazam)
• Spell checking

• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?
• CTRL-F
• Search engines (50 billion web pages)
• DB requests
• Music (plagiarism, licenses youtube, shazam)
• Spell checking
• Spam filtering

• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Pattern matching?

What for?
• Are you here?
• Where are you?

Why?
• CTRL-F
• Search engines (50 billion web pages)
• DB requests
• Music (plagiarism, licenses youtube, shazam)
• Spell checking
• Spam filtering
• Zettabytes (1021) of data in biology

3 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Application in biology

Is this gene/allele/chromosome/... is in this genome/data/...?

Many different use case... Recombination, integron, crossover, etc

4 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Application in biology

Is this gene/allele/chromosome/... is in this genome/data/...?

Many different use case... Recombination, integron, crossover, etc

4 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Different pattern matching

Exact: Search ACTG in ACGCTAACGGACGCA

Approximate: Search ACTG in ACGCTAACGGACGCA with at most x
substitutions, insertions and deletions

First, let see Exact pattern matching

5 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Different pattern matching

Exact: Search ACTG in ACGCTAACGGACGCA

Approximate: Search ACTG in ACGCTAACGGACGCA with at most x
substitutions, insertions and deletions

First, let see Exact pattern matching

5 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Different pattern matching

Exact: Search ACTG in ACGCTAACGGACGCA

Approximate: Search ACTG in ACGCTAACGGACGCA with at most x
substitutions, insertions and deletions

First, let see Exact pattern matching

5 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

What we saw

• Array/list/hash table/suffix array

• Suffix array: exact pattern matching with binary search! And more than
just exact pattern matching!

• We need to index the text... 13GB for a human genome...
• Can we do exact pattern matching without indexing?

6 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

What we saw

• Array/list/hash table/suffix array
• Suffix array: exact pattern matching with binary search! And more than

just exact pattern matching!

• We need to index the text... 13GB for a human genome...
• Can we do exact pattern matching without indexing?

6 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

What we saw

• Array/list/hash table/suffix array
• Suffix array: exact pattern matching with binary search! And more than

just exact pattern matching!
• We need to index the text... 13GB for a human genome...

• Can we do exact pattern matching without indexing?

6 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

What we saw

• Array/list/hash table/suffix array
• Suffix array: exact pattern matching with binary search! And more than

just exact pattern matching!
• We need to index the text... 13GB for a human genome...
• Can we do exact pattern matching without indexing?

6 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Part 2

Naive algorithm

7 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.

While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.

When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.

When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.

If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.

If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)

8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Naive algorithm
Given a text T we want to find all the occurrences of a pattern P.
T = ”ACGTACGATATATAGCTATAGCATGCATGCTA”
P = ”TATAG”

How would you do it?

The idea is to compare character after character on the main text to characters
of pattern.
While characters of the text are different than the first of the pattern, the
algorithm moves on.
When the first character of pattern is identified, other characters of pattern are
compared to the text, as long as they are identical.
If one character is different, the search is reseted to the first character of the
pattern and the next character of the text after the previous first match
character.

Time complexity: O(|T |x |P|)
8 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Part 3

Knuth–Morris–Pratt

9 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:

We don’t find a match. Then there is at least one index in which the text is not
equal to the pattern. Let i + j be the smallest:
T [i ...i + j − 1] = P[0...j − 1] and T [i + j] ̸= P[j]
Since there is no match at i , we should start finding a match from another
position: where?
Naive algorithm selects i + 1. This position might end up finding a mismatch.
We want to start from a position that guarantees that the strings matches until
i + j − 1.
Therefore, we should find a match starting from the smallest i + k such that
T [i + k...i + j − 1] matches with the prefix of P. We find a mismatch at j , so
we start from the smallest k such that P[k...j − 1] is a prefix of P.

10 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match. Then there is at least one index in which the text is not
equal to the pattern. Let i + j be the smallest:
T [i ...i + j − 1] = P[0...j − 1] and T [i + j] ̸= P[j]

Since there is no match at i , we should start finding a match from another
position: where?
Naive algorithm selects i + 1. This position might end up finding a mismatch.
We want to start from a position that guarantees that the strings matches until
i + j − 1.
Therefore, we should find a match starting from the smallest i + k such that
T [i + k...i + j − 1] matches with the prefix of P. We find a mismatch at j , so
we start from the smallest k such that P[k...j − 1] is a prefix of P.

10 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match. Then there is at least one index in which the text is not
equal to the pattern. Let i + j be the smallest:
T [i ...i + j − 1] = P[0...j − 1] and T [i + j] ̸= P[j]
Since there is no match at i , we should start finding a match from another
position: where?

Naive algorithm selects i + 1. This position might end up finding a mismatch.
We want to start from a position that guarantees that the strings matches until
i + j − 1.
Therefore, we should find a match starting from the smallest i + k such that
T [i + k...i + j − 1] matches with the prefix of P. We find a mismatch at j , so
we start from the smallest k such that P[k...j − 1] is a prefix of P.

10 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match. Then there is at least one index in which the text is not
equal to the pattern. Let i + j be the smallest:
T [i ...i + j − 1] = P[0...j − 1] and T [i + j] ̸= P[j]
Since there is no match at i , we should start finding a match from another
position: where?
Naive algorithm selects i + 1. This position might end up finding a mismatch.

We want to start from a position that guarantees that the strings matches until
i + j − 1.
Therefore, we should find a match starting from the smallest i + k such that
T [i + k...i + j − 1] matches with the prefix of P. We find a mismatch at j , so
we start from the smallest k such that P[k...j − 1] is a prefix of P.

10 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match. Then there is at least one index in which the text is not
equal to the pattern. Let i + j be the smallest:
T [i ...i + j − 1] = P[0...j − 1] and T [i + j] ̸= P[j]
Since there is no match at i , we should start finding a match from another
position: where?
Naive algorithm selects i + 1. This position might end up finding a mismatch.
We want to start from a position that guarantees that the strings matches until
i + j − 1.

Therefore, we should find a match starting from the smallest i + k such that
T [i + k...i + j − 1] matches with the prefix of P. We find a mismatch at j , so
we start from the smallest k such that P[k...j − 1] is a prefix of P.

10 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match. Then there is at least one index in which the text is not
equal to the pattern. Let i + j be the smallest:
T [i ...i + j − 1] = P[0...j − 1] and T [i + j] ̸= P[j]
Since there is no match at i , we should start finding a match from another
position: where?
Naive algorithm selects i + 1. This position might end up finding a mismatch.
We want to start from a position that guarantees that the strings matches until
i + j − 1.
Therefore, we should find a match starting from the smallest i + k such that
T [i + k...i + j − 1] matches with the prefix of P. We find a mismatch at j , so
we start from the smallest k such that P[k...j − 1] is a prefix of P.

10 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match....

Since we start from the smallest k such that P[k...j − 1] is a prefix of P, we
don’t need to check again P[k...j − 1]. We can immediately check j position.
There is no backtracking in T.

11 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match....
Since we start from the smallest k such that P[k...j − 1] is a prefix of P, we
don’t need to check again P[k...j − 1]. We can immediately check j position.
There is no backtracking in T.

11 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:

We don’t find a match....
We find a match. Using the same argument, it’s easy to see that we have to
start finding for the next match from the smallest k such that P[k...j] is a
prefix of P.

12 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match....

We find a match. Using the same argument, it’s easy to see that we have to
start finding for the next match from the smallest k such that P[k...j] is a
prefix of P.

12 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The naive algorithm is very slow. Suppose that we find the beginning of a
match starting at position i on the text. Either:
We don’t find a match....
We find a match. Using the same argument, it’s easy to see that we have to
start finding for the next match from the smallest k such that P[k...j] is a
prefix of P.

12 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Steps of KMP

Knuth-Morris-Pratt algorithm (KMP) first analyze P to deduce informations
allowing to then compare P to T by comparing only one time each characters.
KMP can be seen as two different steps:

• First step: construction of an array indicating for each position in P an
”offset”, i.e. the next position where there is a potential occurrence of P.

• Second step: compare each characters, one by one. When there is a
mismatch, the previous array is used to directly jump to the next
potentially interesting position.

13 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Steps of KMP

Knuth-Morris-Pratt algorithm (KMP) first analyze P to deduce informations
allowing to then compare P to T by comparing only one time each characters.
KMP can be seen as two different steps:

• First step: construction of an array indicating for each position in P an
”offset”, i.e. the next position where there is a potential occurrence of P.

• Second step: compare each characters, one by one. When there is a
mismatch, the previous array is used to directly jump to the next
potentially interesting position.

13 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Steps of KMP

Knuth-Morris-Pratt algorithm (KMP) first analyze P to deduce informations
allowing to then compare P to T by comparing only one time each characters.
KMP can be seen as two different steps:

• First step: construction of an array indicating for each position in P an
”offset”, i.e. the next position where there is a potential occurrence of P.

• Second step: compare each characters, one by one. When there is a
mismatch, the previous array is used to directly jump to the next
potentially interesting position.

13 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and C.

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and C.
The value at index i is the value of j

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and C.
The value at index i is the value of j and we increment i

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and G.

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and G.
The value at index i is the value of j

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and G.
The value at index i is the value of j and we increment i

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and T.

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and T.
The value at index i is the value of j

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and T.
The value at index i is the value of j and we increment i

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1 and we increment both i and j

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between C and C.

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between C and C.
The value at index i is the value of j plus 1

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between C and C.
The value at index i is the value of j plus 1 and we increment both i and j

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between G and A.

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between G and A.
j will go at the index of the value of the previous position (C = 0).

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between G and A.
j will go at the index of the value of the previous position (C = 0).

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array

P = ACGTACA

j i
A C G T A C A
0 1 2 3 4 5 6
0 0 0 0 1 2 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].
It is a match, so the value at index i is the value of j plus 1.

14 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1 and we increment both i and j

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and C.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and C.
j will go at the index of the value of the previous position (A = 0).

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between A and C.
j will go at the index of the value of the previous position (A = 0).

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].
It is a mismatch, so the value at index i is the value of j

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].
It is a mismatch, so the value at index i is the value of j and we increment i

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1 and we increment both i and j

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1 and we increment both i and j

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between C and C.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between C and C.
The value at index i is the value of j plus 1

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between C and C.
The value at index i is the value of j plus 1 and we increment both i and j

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1 and we increment both i and j

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-match between A and A.
The value at index i is the value of j plus 1 and we increment both i and j

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between C and A.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between C and A.
j will go at the index of the value of the previous position (A = 2).

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
-mismatch between C and A.
j will go at the index of the value of the previous position (A = 2).

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].
It is a mismatch, so j will go at the index of the value of the previous
position (A = 1).

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].
It is a mismatch, so j will go at the index of the value of the previous
position (A = 1).

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].
It is a match, so the value at index i is the value of j plus 1.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Building the array, more complicated example

P = AACAACAAA

j i
A A C A A C A A A
0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5 2

Start with j = 0 et i = 1 and first slot is always 0.

Compare P[i] and P[j]:
Then, compare again P[i] and P[j].
It is a match, so the value at index i is the value of j plus 1.

15 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a mismatch!

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a mismatch!
Let’s look where is the next point of comparison in P (previous index)

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a mismatch!
Let’s look where is the next point of comparison in P (previous index)

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a mismatch!

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a mismatch!
Move on

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a mismatch!

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a mismatch!
Let’s look where is the next point of comparison in P (previous index)

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a mismatch!
Let’s look where is the next point of comparison in P (previous index)

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

T = ATTATCATCATG

A T C A T G
0 1 2 3 4 5
0 0 0 1 2 0

It is a match

16 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

Naive algorithm:
Time complexity: O(|T |x |P|)

KMP:
Time complexity: O(|T | + |P|)

No backtracking, each character is only processed one time!

17 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Running KMP

Naive algorithm:
Time complexity: O(|T |x |P|)

KMP:
Time complexity: O(|T | + |P|)

No backtracking, each character is only processed one time!

17 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Part 4

Rabin–Karp

18 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The main problem of the naive algorithm is that comparing two string is time
consuming.

If we can compare quickly two strings, then we can use our naive algorithm
(iterate over all i, and check if there is a match)
Digits are easy and fast to compare. How can we change our string to integer
values?

Hash function!
Compute the hash of the pattern (length= k). Then compute the hash for each
substring of text of size k, and compare hash values.
Hashes are different: move on the next hash of T,
Hashes are identical : compare the strings (false positives are possible).

19 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The main problem of the naive algorithm is that comparing two string is time
consuming.
If we can compare quickly two strings, then we can use our naive algorithm
(iterate over all i, and check if there is a match)

Digits are easy and fast to compare. How can we change our string to integer
values?

Hash function!
Compute the hash of the pattern (length= k). Then compute the hash for each
substring of text of size k, and compare hash values.
Hashes are different: move on the next hash of T,
Hashes are identical : compare the strings (false positives are possible).

19 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The main problem of the naive algorithm is that comparing two string is time
consuming.
If we can compare quickly two strings, then we can use our naive algorithm
(iterate over all i, and check if there is a match)
Digits are easy and fast to compare. How can we change our string to integer
values?

Hash function!
Compute the hash of the pattern (length= k). Then compute the hash for each
substring of text of size k, and compare hash values.
Hashes are different: move on the next hash of T,
Hashes are identical : compare the strings (false positives are possible).

19 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The main problem of the naive algorithm is that comparing two string is time
consuming.
If we can compare quickly two strings, then we can use our naive algorithm
(iterate over all i, and check if there is a match)
Digits are easy and fast to compare. How can we change our string to integer
values?

Hash function!

Compute the hash of the pattern (length= k). Then compute the hash for each
substring of text of size k, and compare hash values.
Hashes are different: move on the next hash of T,
Hashes are identical : compare the strings (false positives are possible).

19 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The main problem of the naive algorithm is that comparing two string is time
consuming.
If we can compare quickly two strings, then we can use our naive algorithm
(iterate over all i, and check if there is a match)
Digits are easy and fast to compare. How can we change our string to integer
values?

Hash function!
Compute the hash of the pattern (length= k). Then compute the hash for each
substring of text of size k, and compare hash values.

Hashes are different: move on the next hash of T,
Hashes are identical : compare the strings (false positives are possible).

19 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The main problem of the naive algorithm is that comparing two string is time
consuming.
If we can compare quickly two strings, then we can use our naive algorithm
(iterate over all i, and check if there is a match)
Digits are easy and fast to compare. How can we change our string to integer
values?

Hash function!
Compute the hash of the pattern (length= k). Then compute the hash for each
substring of text of size k, and compare hash values.
Hashes are different: move on the next hash of T,

Hashes are identical : compare the strings (false positives are possible).

19 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

The main problem of the naive algorithm is that comparing two string is time
consuming.
If we can compare quickly two strings, then we can use our naive algorithm
(iterate over all i, and check if there is a match)
Digits are easy and fast to compare. How can we change our string to integer
values?

Hash function!
Compute the hash of the pattern (length= k). Then compute the hash for each
substring of text of size k, and compare hash values.
Hashes are different: move on the next hash of T,
Hashes are identical : compare the strings (false positives are possible).

19 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

T=AACGTT k = 3
Doing this we will compute k times (almost) each positions. This is not
efficient.

Concept of rolling hash

20 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

AACgtt k = 3
Doing this we will compute k times (almost) each positions. This is not
efficient.

Concept of rolling hash

20 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

aACGtt k = 3
Doing this we will compute k times (almost) each positions. This is not
efficient.

Concept of rolling hash

20 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

aaCGTt k = 3
Doing this we will compute k times (almost) each positions. This is not
efficient.

Concept of rolling hash

20 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Idea of the algorithm

T=AACGTT k = 3
Doing this we will compute k times (almost) each positions. This is not
efficient.

Concept of rolling hash

20 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

A rolling hash allows an algorithm to calculate a hash value without having to
rehash the entire string.

When hashing a substring, rolling hash will do an operation on the hash of
previous substring to get the new hash from the old hash.

We want to perform rolling hash on ACGGT with k = 3. We will compute the
hash for ACG, CGG then GGT.
The hash of CGG can be obtain by removing ”A” from the previous hash (ACG)
and adding the hash of ”G” at the end. Likewise, GGT will be obtain from CGG.

21 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

A rolling hash allows an algorithm to calculate a hash value without having to
rehash the entire string.
When hashing a substring, rolling hash will do an operation on the hash of
previous substring to get the new hash from the old hash.

We want to perform rolling hash on ACGGT with k = 3. We will compute the
hash for ACG, CGG then GGT.
The hash of CGG can be obtain by removing ”A” from the previous hash (ACG)
and adding the hash of ”G” at the end. Likewise, GGT will be obtain from CGG.

21 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

A rolling hash allows an algorithm to calculate a hash value without having to
rehash the entire string.
When hashing a substring, rolling hash will do an operation on the hash of
previous substring to get the new hash from the old hash.

We want to perform rolling hash on ACGGT with k = 3. We will compute the
hash for ACG, CGG then GGT.

The hash of CGG can be obtain by removing ”A” from the previous hash (ACG)
and adding the hash of ”G” at the end. Likewise, GGT will be obtain from CGG.

21 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

A rolling hash allows an algorithm to calculate a hash value without having to
rehash the entire string.
When hashing a substring, rolling hash will do an operation on the hash of
previous substring to get the new hash from the old hash.

We want to perform rolling hash on ACGGT with k = 3. We will compute the
hash for ACG, CGG then GGT.
The hash of CGG can be obtain by removing ”A” from the previous hash (ACG)
and adding the hash of ”G” at the end. Likewise, GGT will be obtain from CGG.

21 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash

Definition: a k-mer is a substring of length k of a string.

Rolling hash will use all k-mers of the string.

22 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4

Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

23 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

23 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of ACCG: H = 0 ∗ 43 + 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40 = 22

23 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of ACCG: H = 0 ∗ 43 + 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40 = 22
Hash of CCGT: H = 1 ∗ 43 + 1 ∗ 42 + 2 ∗ 41 + 3 ∗ 40 = 91

23 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of ACCG: H = 0 ∗ 43 + 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40

Hash of CCGT: H = 1 ∗ 43 + 1 ∗ 42 + 2 ∗ 41 + 3 ∗ 40

23 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of ACCG: H = 0 ∗ 43 + 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40 = 22

Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of ACCG: H = 0 ∗ 43 + 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40 = 22
Remove left letter from hash value:

H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of ACCG: H = 0 ∗ 43 + 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40 = 22
Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of CCG: H = 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40 = 22
Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of CCG: H = 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40 = 22
Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased:

H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of CCG: H = 1 ∗ 42 + 1 ∗ 41 + 2 ∗ 40 = 22
Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of CCGx: H = 1 ∗ 43 + 1 ∗ 42 + 2 ∗ 41 = 88
Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of CCGx: H = 1 ∗ 43 + 1 ∗ 42 + 2 ∗ 41 = 88
Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value:

H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of CCGx: H = 1 ∗ 43 + 1 ∗ 42 + 2 ∗ 41 = 88
Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
A possible hash function

S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 0, C = 1, G = 2, T = 3
k = 4
Hash function: H = c1 ∗ ak−1 + c2 ∗ ak−2 + c3 ∗ ak−3 + c4 ∗ ak−4

Hash of CCGT: H = 1 ∗ 43 + 1 ∗ 42 + 2 ∗ 41 + 3 ∗ 40 = 91
Remove left letter from hash value: H − = (val(A)) ∗ 43)

All ˆare increased: H ∗ = 4 (value of a)

Add the new last character value: H + = (val(T)) ∗ 40)

24 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
The binary way of seeing it
S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 00, C = 01, G = 10, T = 11
k = 4

Hash of ACCG: H = 00 01 01 10 (10110 is 22)

Remove left letter from hash value:
H & = 00111111 → H = 00 01 01 10 (O(1))
All ˆare increased:
H << 2 → H = 00 01 01 10 00 (O(1))
Add the new last character value:
H + val(T) → H = 00 01 01 10 11 (O(1))

Hash of CCGT: H = 01 01 10 11 (1011011 is 91)

25 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
The binary way of seeing it
S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 00, C = 01, G = 10, T = 11
k = 4
Hash of ACCG: H = 00 01 01 10 (10110 is 22)

Remove left letter from hash value:
H & = 00111111 → H = 00 01 01 10 (O(1))
All ˆare increased:
H << 2 → H = 00 01 01 10 00 (O(1))
Add the new last character value:
H + val(T) → H = 00 01 01 10 11 (O(1))

Hash of CCGT: H = 01 01 10 11 (1011011 is 91)

25 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
The binary way of seeing it
S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 00, C = 01, G = 10, T = 11
k = 4
Hash of ACCG: H = 00 01 01 10 (10110 is 22)

Remove left letter from hash value:
H & = 00111111 → H = 00 01 01 10 (O(1))

All ˆare increased:
H << 2 → H = 00 01 01 10 00 (O(1))
Add the new last character value:
H + val(T) → H = 00 01 01 10 11 (O(1))

Hash of CCGT: H = 01 01 10 11 (1011011 is 91)

25 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
The binary way of seeing it
S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 00, C = 01, G = 10, T = 11
k = 4
Hash of ACCG: H = 00 01 01 10 (10110 is 22)

Remove left letter from hash value:
H & = 00111111 → H = 00 01 01 10 (O(1))
All ˆare increased:
H << 2 → H = 00 01 01 10 00 (O(1))

Add the new last character value:
H + val(T) → H = 00 01 01 10 11 (O(1))

Hash of CCGT: H = 01 01 10 11 (1011011 is 91)

25 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
The binary way of seeing it
S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 00, C = 01, G = 10, T = 11
k = 4
Hash of ACCG: H = 00 01 01 10 (10110 is 22)

Remove left letter from hash value:
H & = 00111111 → H = 00 01 01 10 (O(1))
All ˆare increased:
H << 2 → H = 00 01 01 10 00 (O(1))
Add the new last character value:
H + val(T) → H = 00 01 01 10 11 (O(1))

Hash of CCGT: H = 01 01 10 11 (1011011 is 91)

25 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rolling hash
The binary way of seeing it
S=ACCGT Let’s take Σ = A, C , G , T
|Σ| = a = 4
A = 00, C = 01, G = 10, T = 11
k = 4
Hash of ACCG: H = 00 01 01 10 (10110 is 22)

Remove left letter from hash value:
H & = 00111111 → H = 00 01 01 10 (O(1))
All ˆare increased:
H << 2 → H = 00 01 01 10 00 (O(1))
Add the new last character value:
H + val(T) → H = 00 01 01 10 11 (O(1))

Hash of CCGT: H = 01 01 10 11 (1011011 is 91)

25 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rabin–Karp using rolling hash

With the rolling hash, we can use the naive algorithm.

The best- and average-case running time of Rabin-Karp is O(|T | + |P|).
The rolling hash step takes O(|T |) time and once the algorithm finds a
potential match, it must verify each letter to make sure that the match is true
and not the result of a hashing collision: therefore it must check each of the |P|
letters in the pattern.
The rolling hash presented here is simplistic, for teaching purpose. In Python,
the naive algorithm is faster. In the real hash function of Rabin-Karp, all the
operations are done modulo a prime number to avoid dealing with large
numbers. For the sake of readability and simplicity, the modulo has been
excluded, but the calculations still hold when modulo is present.

26 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rabin–Karp using rolling hash

With the rolling hash, we can use the naive algorithm.

The best- and average-case running time of Rabin-Karp is O(|T | + |P|).
The rolling hash step takes O(|T |) time and once the algorithm finds a
potential match, it must verify each letter to make sure that the match is true
and not the result of a hashing collision: therefore it must check each of the |P|
letters in the pattern.

The rolling hash presented here is simplistic, for teaching purpose. In Python,
the naive algorithm is faster. In the real hash function of Rabin-Karp, all the
operations are done modulo a prime number to avoid dealing with large
numbers. For the sake of readability and simplicity, the modulo has been
excluded, but the calculations still hold when modulo is present.

26 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Rabin–Karp using rolling hash

With the rolling hash, we can use the naive algorithm.

The best- and average-case running time of Rabin-Karp is O(|T | + |P|).
The rolling hash step takes O(|T |) time and once the algorithm finds a
potential match, it must verify each letter to make sure that the match is true
and not the result of a hashing collision: therefore it must check each of the |P|
letters in the pattern.
The rolling hash presented here is simplistic, for teaching purpose. In Python,
the naive algorithm is faster. In the real hash function of Rabin-Karp, all the
operations are done modulo a prime number to avoid dealing with large
numbers. For the sake of readability and simplicity, the modulo has been
excluded, but the calculations still hold when modulo is present.

26 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

A bit more... Aho-Corasick

Aho-Corasick algorithm indexes patterns (in a modified trie with links) and
search on the text, only one time each letter.

It finds all occurrences of all patterns at once. One of the best for this task.

Time complexity: O(|T | + |P| + |occ|)

27 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

A bit more... Aho-Corasick

Aho-Corasick algorithm indexes patterns (in a modified trie with links) and
search on the text, only one time each letter.

It finds all occurrences of all patterns at once. One of the best for this task.

Time complexity: O(|T | + |P| + |occ|)

27 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

A bit more... Aho-Corasick

Aho-Corasick algorithm indexes patterns (in a modified trie with links) and
search on the text, only one time each letter.

It finds all occurrences of all patterns at once. One of the best for this task.

Time complexity: O(|T | + |P| + |occ|)

27 | Nicolas Maillet | Pattern matching 1/2 | 23/11/08

Thanks for your attention!

Any question?
https://www.hackerearth.com/fr/practice/notes/exact-string-matching-algorithms/

https://brilliant.org/wiki/rabin-karp-algorithm/Public benefit
foundation with
official charitable
status

Institut Pasteur
25-28, rue du Docteur Roux

75724 Paris Cedex 15 - France

https://www.hackerearth.com/fr/practice/notes/exact-string-matching-algorithms/
https://brilliant.org/wiki/rabin-karp-algorithm/

	Exact Pattern matching
	Pattern matching?
	Application in biology
	Different pattern matching
	What we saw

	Naive algorithm
	Naive algorithm

	Knuth–Morris–Pratt
	Idea of the algorithm
	Steps of KMP
	Building the array
	Building the array, more complicated example
	Running KMP

	Rabin–Karp
	Idea of the algorithm
	Rolling hash
	Rabin–Karp using rolling hash
	A bit more... Aho-Corasick

