Rabin-Karp

N. Maillet
2023-2024

Q 1. Implement a naive algorithm of exact pattern matching in the function
naive_exact_pattern_matching (pattern, text):

This function returns the list of occurrence’s position.

For example, with pattern=AG and text=ATAGCTAGCAT, the produced result must be [2, 6]

Q 2. Write a class RollingHash taking two arguments (text and k, the size of the pattern). Please read
the following before starting to code it.
The constructor will:

* define the alphabet’s mapping (A=0, C=1, G=2, T=3),
¢ store the length of the alphabet (a),
¢ compute the hash of the first portion of k characters (k-mer) of text,

e create two indexes, one for the starting position of current hash, and one for the ending position of
current hash.

This class will also contains two functions:
* next_hash (self), to compute the hash of the next k-mer,

® get_string(self) that return the current the k-mer.

Q 3. Duplicate and modify your naive algorithm to implement rabin_karp (pattern, text).

Q4. Create a function generator_of_sequence (size) that generates and returns a random sequence
of size nucleotides.

Q5. Compare the execution time of your two algorithms. For this, you will need to use the package: t ime.
In this package, the function time.time () returns the current time when processed by Python. Use this
function to determine how fast (or slow) are your algorithms, using your generator to generate texts with
different size. Is everything ok?

Q 6. Install pyahocorasick (pip3 install pyahocorasick) and make it run using;:

def aho_corasick (pattern, text):
""" Aho-Corasick implementation, requires pypi package pyahocorasick """
ahoc = ahocorasick.Automaton ()
ahoc.add_word (pattern, (0, pattern))
ahoc.make_automaton ()



matches = []

for item in ahoc.iter (text):
matches.append(item[0]-len (pattern)+1)

return matches

Compare execution time with your algorithms.



