diff --git a/pyproject.toml b/pyproject.toml index 581818d0c063e493309d501feb66a12f3d65c520..24de4489d1b3f7dd55643965a5a1b6b8167e6f32 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "MaggotUBA-adapter" -version = "0.2.0" +version = "0.3.0" description = "Interface between MaggotUBA and the Nyx tagging UI" authors = ["François Laurent"] license = "MIT" diff --git a/src/maggotuba/models/predict_model.py b/src/maggotuba/models/predict_model.py index a6f0742ebb6d215c9a9ba99096171d10e6d0937e..589aacf3bb7b41769b0fca1ad88a6a56b697fb79 100644 --- a/src/maggotuba/models/predict_model.py +++ b/src/maggotuba/models/predict_model.py @@ -1,5 +1,6 @@ from taggingbackends.data.trxmat import TrxMat from taggingbackends.data.chore import load_spine +import taggingbackends.data.fimtrack as fimtrack from taggingbackends.data.labels import Labels from taggingbackends.features.skeleton import get_5point_spines from randomforest import RandomForest @@ -46,13 +47,17 @@ def predict_model(backend): if run == "spine": run, data = next(iter(data.items())) t = t[run] + elif file.name.endswith(".csv"): + print("assuming 30 fps") + t, data = fimtrack.read_spines(file, fps=30) + run = "NA" else: # TODO: support more file formats continue # downsample the skeleton if isinstance(data, dict): for larva in data: - data[larva] = np.vstack([get_5point_spines(spine) for spine in data[larva]]) + data[larva] = get_5point_spines(data[larva]) else: data = get_5point_spines(data) # load the model