diff --git a/Project.toml b/Project.toml index 6c24a0ef51bab96179f28750585a9308e16c33fa..6f89aa7072211e08db91e5ed664764695e816bee 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "LarvaTagger" uuid = "8b3b36f1-dfed-446e-8561-ea19fe966a4d" authors = ["François Laurent", "Institut Pasteur"] -version = "0.14" +version = "0.14.1" [deps] Colors = "5ae59095-9a9b-59fe-a467-6f913c188581" diff --git a/scripts/larvatagger.jl b/scripts/larvatagger.jl index 5c93792031ec30d1450bdd69e651738a7c0291e8..794bc59cb7bf32b3ee186706a45d57750e8bbbe7 100755 --- a/scripts/larvatagger.jl +++ b/scripts/larvatagger.jl @@ -25,8 +25,8 @@ LarvaTagger.jl Usage: larvatagger.jl open <file-path> [--backends=<path>] [--port=<number>] [--quiet] [--viewer] [--browser] [--manual-label=<label>] larvatagger.jl import <input-path> [<output-file>] [--id=<id>] [--framerate=<fps>] [--pixelsize=<μm>] [--overrides=<comma-separated-list>] [--default-label=<label>] [--manual-label=<label>] [--decode] - larvatagger.jl train <backend-path> <data-path> <model-instance> [--pretrained-model=<instance>] [--labels=<comma-separated-list>] [--sample-size=<N>] [--balancing-strategy=<strategy>] [--class-weights=<csv>] [--manual-label=<label>] [--layers=<N>] [--iterations=<N>] - larvatagger.jl predict <backend-path> <model-instance> <data-path> [--make-dataset] [--skip-make-dataset] [--data-isolation] + larvatagger.jl train <backend-path> <data-path> <model-instance> [--pretrained-model=<instance>] [--labels=<comma-separated-list>] [--sample-size=<N>] [--balancing-strategy=<strategy>] [--class-weights=<csv>] [--manual-label=<label>] [--layers=<N>] [--iterations=<N>] [--seed=<seed>] + larvatagger.jl predict <backend-path> <model-instance> <data-path> [--output=<filename>] [--make-dataset] [--skip-make-dataset] [--data-isolation] larvatagger.jl merge <input-path> <input-file> [<output-file>] [--manual-label=<label>] [--decode] larvatagger.jl -V | --version larvatagger.jl -h | --help @@ -48,6 +48,7 @@ Options: --sample-size=<N> Sample only N track segments from the data repository. --layers=<N> (MaggotUBA) Number of layers of the classifier. --iterations=<N> (MaggotUBA) Number of training iterations (can be two integers separated by a comma). + --seed=<seed> Seed for the backend's random number generators. --decode Do not encode the labels into integer indices. --default-label=<label> Label all untagged data as <label>. --manual-label=<label> Secondary label for manually labelled data [default: edited]. @@ -56,6 +57,7 @@ Options: --pretrained-model=<instance> Name of the pretrained encoder (from `pretrained_models` registry). --balancing-strategy=<strategy> Any of `auto`, `maggotuba`, `none` [default: auto]. --overrides=<comma-separated-list> Comma-separated list of key:value pairs. + -o <filename> --output=<filename> Predicted labels filename. Commands: