From a937fcda7301be56bd95982e2ca24c42f34d13a0 Mon Sep 17 00:00:00 2001 From: Vincent LAVILLE <vincent.laville@pasteur.fr> Date: Fri, 17 Nov 2017 16:57:02 +0100 Subject: [PATCH] Initial commit --- R/deleted_funcs.R | 71 ----------------------------------------------- 1 file changed, 71 deletions(-) delete mode 100644 R/deleted_funcs.R diff --git a/R/deleted_funcs.R b/R/deleted_funcs.R deleted file mode 100644 index e728732..0000000 --- a/R/deleted_funcs.R +++ /dev/null @@ -1,71 +0,0 @@ -#' -#' @examples -#' -#' C <- matrix(rnorm(25), 5, 5) -#' diag(C) <- rep(1, 5) -#' C[lower.tri(C)] <- t(C)[lower.tri(C)] -#' C2 <- pruneCorMatrix(C, 0.7) -#' - -################################################################################ - -#' Calculate the mean and the variance of the exposure -#' -#' @param df is the dataframe with the cohort information -#' @param pheno is the studied outcome -#' @param expo is the studied exposure -#' -#' @return A vector of length 2 which first element is the mean and -#' second element is the variance -#' -#' @examples -#' # Case where E is quantitative -#' datafr <- data.frame(floor(rnorm(5, 5000, 2000)), runif(5, 2.5, 3), runif(5, 1.2, 1.4)) -#' colnames(datafr) <- c("pheno_N", "pheno_expo_Mean", "pheno_expo_SD") -#' params <- calculateExpoParams(df = datafr, pheno = "pheno", expo = "expo") -#' # Case where E is binary -#' datafr <- data.frame(floor(rnorm(5, 5000, 2000)), floor(runif(5, 1000, 3000))) -#' colnames(datafr) <- c("pheno_N", "pheno_expo_P") -#' params <- calculateExpoParams(df = datafr, pheno = "pheno", expo = "expo") -#' -#' @export -#' -calculateExpoParams <- function(df, pheno, expo) { - if (any(grepl(paste0(pheno, "_", expo, "_P"), colnames(df)))) { - n <- df[, grepl("_N", colnames(df))] - nexp <- df[, grepl(paste0(expo, "_P"), colnames(df))] - meanval <- sum(nexp) / sum(n) - return(c(meanval, meanval * (1 - meanval))) - } - else if (any(grepl(paste0(pheno, "_", expo, "_Mean"), colnames(df))) & - any(grepl(paste0(pheno, "_", expo, "_SD"), colnames(df)))) { - n <- df[, grepl("_N", colnames(df))] - m <- df[, grepl(paste0(expo, "_Mean"), colnames(df))] - v <- df[, grepl(paste0(expo, "_SD"), colnames(df))] - return(calculateContParams(n, m, v)) - } - else { - stop("Cannot calcuate exposure parameters.\nCheck columns names.") - } -} - -################################################################################ - -#' Perform singular Value Decomposition on the correlation matrix -#' -#' @param cormat is the correlation matrix -#' @param k is the number of eigenvectors to keep. -#' Default is the correlation matrix rank. -#' -#' @return A list with -#' \describe{ -#' \item{eigval}{A vector of the top \code{k} eigenvalues} -#' \item{eigvev}{A matrix of the top \code{k} eigenvectors} -#' } -#' -getMatCorSVD <- function(cormat, k = qr(cormat)$rank) { - cormat.svd <- svd(cormat, nu = 0, nv = k) - list(eigval = cormat.svd$d[1:k], eigvec = cormat.svd$v) -} - -################################################################################ \ No newline at end of file -- GitLab