diff --git a/.Rbuildignore b/.Rbuildignore index 9c006ca783a68552e1cf0afbf51d9cc1ec166dae..71c3f60e55777b3f89e6af2412486004143dd019 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -1,3 +1,5 @@ VarExp.Rproj R/deleted_funcs.R -readme.md +code-of-conduct.md +README.html +README.md diff --git a/README.html b/README.html index e363729acaa01c7bbc0bd03c1f8b6ce7edd4e1c2..a3af51dc9c48b3c06ab48cf751adab88f3b2d1be 100644 --- a/README.html +++ b/README.html @@ -215,11 +215,11 @@ fracJ <- calculateVarFrac(std_betaG, std_betaI, C, parsY[2], sum(COHORT$PH </div> <div id="code-of-conduct" class="section level2"> <h2>Code of conduct</h2> -<p>Please note that this project is released with a <a href="https://github.com/vincenla/VarExp/code-of-conduct.md">Contributor Code of Conduct</a>. By participating in this project you agree to abide by its terms.</p> +<p>Please note that this project is released with a <a href="https://gitlab.pasteur.fr/statistical-genetics/VarExp/blob/master/code-of-conduct.md">Contributor Code of Conduct</a>. By participating in this project you agree to abide by its terms.</p> </div> <div id="license" class="section level2"> <h2>License</h2> -<p>This project is licensed under the MIT License - see the <a href="https://github.com/vincentla/VarExp/">LICENSE.md</a> file for details</p> +<p>This project is licensed under the MIT License - see the <a href="https://gitlab.pasteur.fr/statistical-genetics/VarExp/blob/master/LICENSE">LICENSE.md</a> file for details</p> </div> </div> diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..4fe0e75df4e89d51a15ad56ba48095c91eca9335 --- /dev/null +++ b/README.md @@ -0,0 +1,102 @@ + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) +``` + +# VarExp + +The R package **VarExp** provides functions for the estimating of the percentage of phenotypic variance explained by genetic effects, interaction effects or jointly by both effects. This suite of functions are useful for meta-analysis designs where pooling individual genotype data is challenging. A pre-print article related to this work is available [here](bioRkiv link) + +## Prerequisite + +Library [**Rcurl**](https://cran.r-project.org/web/packages/RCurl/index.html) is required to run **VarExp** + +## Installation + +For now, **VarExp** can be installed only using package source. In R, after setting your working directory to *VarExp_0.1.0.tar.gz* location, type: + +``` r +install.packages("VarExp_0.1.0.tar.gz", repos = NULL, type = "source") +``` + +## Input format + +Two input files are required. + +* A file providing the meta-analysis results with the following mandatory columns: + + the rs identifier of the variant + + the chromosome number on which the variant is + + the physical position of the variant (currently in NCBI Build B37) + + the tested allele of the variant + + the frequency of the allele A0 + + the regression coefficient of the main genetic effect + + the regression coefficient of the interaction effect + +```{r, echo = FALSE} +data("GWAS") +print(GWAS, row.names = FALSE) +``` + +* A file providing the summary statistics for the outcome and the exposure in each individual cohort included in the meta-analysis. +Mandatory columns of this file are: + + the identifier of the cohort + + the sample size of the cohort + + the phenotype mean in the cohort + + the standard deviation of the phenotype in the cohort + + the exposure mean in the cohort + + the standard deviation of the exposure in the cohort + +``` {r, echo = FALSE} +data("COHORT") +print(COHORT, row.names = FALSE) +``` + +Note that in the case of a binary exposure, the two latter columns can be replaced by a single column providing the count of exposed individuals in each cohort. + +## Short tutorial + +Data used in this tutorial are included in the ***VarExp*** package. + +``` r +# Load the package +library(VarExp) + +# Load the meta-analysis summary statistics file +data(GWAS) + +# Load the cohort description file +data(COHORT) + +# Compute the genotype correlation matrix from the reference panel +C <- getGenoCorMatrix(GWAS$RSID, GWAS$CHR, GWAS$POS, GWAS$A0, "EUR", pruning = FALSE) + +# Make sure SNPs in the GWAS data and in the correlation matrix match +# Necessary if pruning = TRUE, otherwise should have no effect +GWAS <- checkInput(GWAS, colnames(C)) + +# Retrieve mean and variance of the exposure and the phenotype +# from individual cohort summary statistics +parsY <- calculateParamsFromIndParams(COHORT$PHENO_N, COHORT$PHENO_Mean, COHORT$PHENO_SD) +parsE <- calculateParamsFromIndParams(COHORT$PHENO_N, COHORT$EXPO_Mean, COHORT$EXPO_SD) + +# Re-scale effect sizes as if estimated in a standardized model +std_betaG <- standardizeBeta(GWAS$MAIN_EFFECT, GWAS$INT_EFFECT, GWAS$FREQ_A0, parsE[1], parsE[2], type = "G") +std_betaI <- standardizeBeta(GWAS$MAIN_EFFECT, GWAS$INT_EFFECT, GWAS$FREQ_A0, parsE[1], parsE[2], type = "I") + +# Estimation of the fraction of variance explained +fracG <- calculateVarFrac(std_betaG, std_betaI, C, parsY[2], sum(COHORT$PHENO_N), "G") +fracI <- calculateVarFrac(std_betaG, std_betaI, C, parsY[2], sum(COHORT$PHENO_N), "I") +fracJ <- calculateVarFrac(std_betaG, std_betaI, C, parsY[2], sum(COHORT$PHENO_N), "J") +``` + +## Bug report / Help + +Please open an issue if you find a bug. + +## Code of conduct + +Please note that this project is released with a [Contributor Code of Conduct](https://gitlab.pasteur.fr/statistical-genetics/VarExp/blob/master/code-of-conduct.md). By participating in this project you agree to abide by its terms. + +## License + +This project is licensed under the MIT License - see the [LICENSE.md](https://gitlab.pasteur.fr/statistical-genetics/VarExp/blob/master/LICENSE) file for details \ No newline at end of file