diff --git a/jass/models/worktable.py b/jass/models/worktable.py
index a4a6c52358e53f6ef797f97c3f0dc735a21c5f17..c3dbb68a991e6b137c722f97b26f1e1cb9aef563 100755
--- a/jass/models/worktable.py
+++ b/jass/models/worktable.py
@@ -74,6 +74,10 @@ def create_worktable_file(phenotype_ids: List[str], init_file_path: str, project
 
     size_chunk = 50
     Nchunk = len(regions) // size_chunk + 1
+
+    Nsnp_total = 0
+    Nsnp_jassed = 0
+
     for chunk in range(Nchunk):
         binf = chunk * size_chunk
         bsup = (chunk+1) * size_chunk
@@ -81,7 +85,7 @@ def create_worktable_file(phenotype_ids: List[str], init_file_path: str, project
         'Region', 'CHR', 'position', 'snp_ids', 'MiddlePosition'] + phenotype_ids,
         where='Region >= {0} and Region < {1}'.format(binf, bsup))
         sum_stat_jost_tab.dropna(axis=0, subset=phenotype_ids, how=how_dropna, inplace=True)
-
+        sum_stat_jost_tab.reset_index(drop=True, inplace=True)
         if sum_stat_jost_tab.shape[0]==0:
             continue # skip region if no data are available
 
@@ -89,27 +93,39 @@ def create_worktable_file(phenotype_ids: List[str], init_file_path: str, project
 
         if remove_nan:
             sum_stat_jost_tab['PVALJOST'] = stat_compute(sum_stat_jost_tab[phenotype_ids])#.apply(stat_compute, axis=1)
+            Nsnp_total = Nsnp_total + sum_stat_jost_tab.shape[0]
+            Nsnp_jassed = Nsnp_jassed + sum_stat_jost_tab.shape[0]
         else:
             # Sort SumStatTab by missing patterns
             patterns_missing = Series(np.dot((1- sum_stat_jost_tab[phenotype_ids].isnull()), 10**np.arange((N_pheno-1), -1, -1)))
 
             pattern_frequency = patterns_missing.value_counts() / len(patterns_missing)
-            print("Frequency of missing patterns :")
-            print(pattern_frequency)
-            frequent_pattern  = pattern_frequency.index[pattern_frequency > 0.05].tolist()
+            frequent_pattern  = pattern_frequency.index[pattern_frequency > 0.01].tolist()
             # index on missing patterns:
-            sum_stat_jost_tab.index = Index(patterns_missing)
-            # Keep_only frequent_pattern
-            sum_stat_jost_tab = sum_stat_jost_tab.loc[frequent_pattern]
+
+
             # Apply the statistic computation by missing patterns
+
             for pattern in frequent_pattern:
-                print('>>>>')
-                print(sum_stat_jost_tab.loc[pattern, phenotype_ids].shape)
-                print(stat_compute(sum_stat_jost_tab.loc[pattern, phenotype_ids]).shape)
-                print('<<<<')
-                sum_stat_jost_tab.loc[pattern, "PVALJOST"] = np.array(range(6))
-                #stat_compute(sum_stat_jost_tab.loc[pattern, phenotype_ids])
+                # print('>>>>')
+                # print(pattern)
+
+                # print(bool_serie)
+                # print(sum_stat_jost_tab.loc[bool_serie, phenotype_ids])
+                # print(stat_compute(sum_stat_jost_tab.loc[bool_serie, phenotype_ids]))
+                # print(sum_stat_jost_tab.loc[bool_serie])
+                # print('<<<<')
+                bool_serie = (patterns_missing == pattern)
+                sum_stat_jost_tab.loc[bool_serie, "PVALJOST"] = stat_compute(sum_stat_jost_tab.loc[bool_serie, phenotype_ids])
+
+            Nsnp_total = Nsnp_total + sum_stat_jost_tab.shape[0]
 
+            sum_stat_jost_tab.index = Index(patterns_missing)
+            #Keep_only frequent_pattern
+            sum_stat_jost_tab = sum_stat_jost_tab.loc[frequent_pattern]
+            Nsnp_jassed = Nsnp_jassed + sum_stat_jost_tab.shape[0]
+            # drop pattern index :
+            sum_stat_jost_tab.reset_index(drop=True, inplace=True)
 
         sum_stat_jost_tab.sort_values(by=["Region", "CHR"], inplace=True)
 
@@ -138,6 +154,8 @@ def create_worktable_file(phenotype_ids: List[str], init_file_path: str, project
         hdf_work.append('RegionSubTable', region_sub_table, min_itemsize=region_sub_table_min_itemsizes)
     hdf_work.close()
 
+    print("{1} SNPs treated on {0} SNPs".format(Nsnp_jassed, Nsnp_total))
+
     RegionSubTable = read_hdf(project_hdf_path, 'RegionSubTable')
     thresh = 1e-8
     pval_min = RegionSubTable['PVALmin']