diff --git a/Figures_manuscript/scripts/Fig_SUPnote4_simulation_test_boundaries.R b/Figures_manuscript/scripts/Fig_SUPnote4_simulation_test_boundaries.R index 274f2793a3d739f64b16a68526bc0950b4f629fb..99d6e4c9fe612cf4a4acfee464c241839ceb6eaf 100644 --- a/Figures_manuscript/scripts/Fig_SUPnote4_simulation_test_boundaries.R +++ b/Figures_manuscript/scripts/Fig_SUPnote4_simulation_test_boundaries.R @@ -6,7 +6,6 @@ h1 = 0.4 h2 = 0.4 M = 1000 -pgm= 0.4 * min(h1,h1) # unused pgh = 0.5 * min(h1,h2) epsgh = matrix(c(h1, pgh, pgh, h2), ncol=2)/ M @@ -34,20 +33,14 @@ BG_mat <- append(BG_mat, list("G_cov_high"= data.frame(mvrnorm(M, c(0,0),epsgh) #BG_mat <- append(BG_mat, list("G_bicov" = data.frame(rbind(mvrnorm(M/2, c(0,0),epsg1), mvrnorm(M/2, c(0,0), epsg2))))) # genetic effects with a given mixed (local) genetic covariance -sumZ <- function(Z, w){ return((as.matrix(Z) %*% matrix(w))^2 /(as.matrix(t(w))%*%sigr %*%as.matrix(w))[1,1])} # unused Univ <- function(Z){max(abs(Z))} -hypothesis ="G_cov_high" # unused -N= 10000 # unused -overlap= 0.5 # unused sign_threshold = 5 *(10^-8) #/M C_env = seq(-0.9, 0.9, len=5) # Control the environmental correlation. Ns_frac = c(1, 0, 0.5) # Sample overlap N_samp = c(50000) -ce=0.9 # unused - for(hypothesis in names(BG_mat)){ print(hypothesis)