evaluate.py 10.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
#!/usr/bin/env python3


import sys
import argparse
from termcolor import colored

import networkx as nx


def parse_args():
    parser = argparse.ArgumentParser(description='Process some integers.')
    parser.add_argument('filename', type=str,
Yoann Dufresne's avatar
Yoann Dufresne committed
14
15
16
                        help='The file to evalute')
    parser.add_argument('--type', '-t', choices=["d2", "path"], default="path", required=True,
                        help="Define the data type to evaluate. Must be 'd2' or 'path'.")
Yoann Dufresne's avatar
Yoann Dufresne committed
17
18
    parser.add_argument('--light-print', '-l', action='store_true',
                        help='Print only wrong nodes and paths')
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

    args = parser.parse_args()
    return args


def load_graph(filename):
    if filename.endswith('.graphml'):
        return nx.read_graphml(filename)
    elif filename.endswith('.gexf'):
        return nx.read_gexf(filename)
    else:
        print("Wrong file format. Require graphml or gefx format", file=sys.stderr)
        exit()


Yoann Dufresne's avatar
Yoann Dufresne committed
34
35
# ------------- Path Graph -------------

Yoann Dufresne's avatar
Yoann Dufresne committed
36
37
38
39
def mols_from_node(node_name):
    return [int(idx) for idx in node_name.split(":")[1].split(".")[0].split("_")]


40
41
42
43
44
45
""" Compute appearance frequencies from node names.
    All the node names must be under the format :
    {idx}:{mol1_id}_{mol2_id}_...{molx_id}.other_things_here
    @param graph The networkx graph representinf the deconvolved graph
    @param only_wong If True, don't print correct nodes
    @param file_pointer Where to print the output. If set to stdout, then pretty print. If set to None, don't print anything.
Yoann Dufresne's avatar
Yoann Dufresne committed
46
    @return A tuple containing two dictionaries. The first one with theoritical frequencies of each node, the second one with observed frequencies.
47
"""
Yoann Dufresne's avatar
Yoann Dufresne committed
48
def parse_path_graph_frequencies(graph):
49
    # Compute origin nodes formated as `{idx}:{mol1_id}_{mol2_id}_...`
Yoann Dufresne's avatar
Yoann Dufresne committed
50
    observed_frequencies = {}
51
    origin_node_names = []
Yoann Dufresne's avatar
Yoann Dufresne committed
52
    node_per_barcode = {}
53
    for node in graph.nodes():
Yoann Dufresne's avatar
Yoann Dufresne committed
54
55
56
57
58
        origin_name = node.split(".")[0]

        if not origin_name in node_per_barcode:
            node_per_barcode[origin_name] = []
        node_per_barcode[origin_name].append(node)
59
60

        # Count frequency
Yoann Dufresne's avatar
Yoann Dufresne committed
61
62
        if not origin_name in observed_frequencies:
            observed_frequencies[origin_name] = 0
63
            origin_node_names.append(origin_name)
Yoann Dufresne's avatar
Yoann Dufresne committed
64
        observed_frequencies[origin_name] += 1
65
66
67
68
69
70
71
72
73
74
    
    # Compute wanted frequencies
    theoritical_frequencies = {}
    for node_name in origin_node_names:
        _, composition = node_name.split(':')

        mol_ids = composition.split('_')
        # The node should be splited into the number of molecules inside itself
        theoritical_frequencies[node_name] = len(mol_ids)

Yoann Dufresne's avatar
Yoann Dufresne committed
75
    return theoritical_frequencies, observed_frequencies, node_per_barcode
76
77


Yoann Dufresne's avatar
Yoann Dufresne committed
78
79
80
81
82
83
84
85
86
""" This function aims to look for direct molecule neighbors.
    If a node has more than 2 direct neighbors, it's not rightly splitted
"""
def parse_graph_path(graph):
    neighborhood = {}

    for node in graph.nodes():
        molecules = mols_from_node(node)
        neighbors = list(graph.neighbors(node))
87

Yoann Dufresne's avatar
Yoann Dufresne committed
88
89
90
91
92
93
94
95
        neighborhood[node] = []
        for mol in molecules:
            for nei in neighbors:
                nei_mols = mols_from_node(nei)
                if mol-1 in nei_mols:
                    neighborhood[node].append(nei)
                if mol+1 in nei_mols:
                    neighborhood[node].append(nei)
96

Yoann Dufresne's avatar
Yoann Dufresne committed
97
    return neighborhood
98
99


Yoann Dufresne's avatar
Yoann Dufresne committed
100
def print_path_summary(frequencies, neighborhood, light_print=False, file_pointer=sys.stdout):
Yoann Dufresne's avatar
Yoann Dufresne committed
101
102
103
    if file_pointer == None:
        return

Yoann Dufresne's avatar
Yoann Dufresne committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    print("--- Nodes analysis ---", file=file_pointer)
    theoritical_frequencies, observed_frequencies,  node_per_barcode = frequencies
    for key in theoritical_frequencies:
        obs, the = observed_frequencies[key], theoritical_frequencies[key]
        result = f"{key}: {obs}/{the}"

        if file_pointer == sys.stdout:
            result = colored(result, 'green' if obs==the else 'red')

        # Compute neighborhood correctness
        neighborhood_ok = True
        for node in node_per_barcode[key]:
            if len(neighborhood[node]) != 2:
                neighborhood_ok = False

Yoann Dufresne's avatar
Yoann Dufresne committed
119
        if light_print and obs==the and neighborhood_ok:
Yoann Dufresne's avatar
Yoann Dufresne committed
120
121
122
123
124
125
126
127
128
129
130
131
            continue

        print(result, file=file_pointer)
        for node in node_per_barcode[key]:
            text = f"\t{node}\t{' '.join(neighborhood[node])}"

            if file_pointer == sys.stdout:
                text = colored(text, 'green' if len(neighborhood[node]) == 2 else 'yellow')

            print(text, file=file_pointer)


132
133
    print("--- Global summary ---", file=file_pointer)

Yoann Dufresne's avatar
Yoann Dufresne committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    # --- Frequency usage ---
    # Tags
    distinct_theoritical_nodes = len(frequencies[0])
    distinct_observed_nodes = len(frequencies[1])
    print(f"Distinct barcodes: {distinct_observed_nodes}/{distinct_theoritical_nodes}", file=file_pointer)
    # molecules
    cumulative_theoritical_nodes = sum(frequencies[0].values())
    cumulative_observed_nodes = sum(frequencies[1].values())
    print(f"Molecules: {cumulative_observed_nodes}/{cumulative_theoritical_nodes}", file=file_pointer)
    # Wrong splits
    over_split = 0
    under_split = 0
    for barcode in frequencies[0]:
        observed = frequencies[1][barcode]
        theoritic = frequencies[0][barcode]
        over_split += max(observed-theoritic, 0)
        under_split += max(theoritic-observed, 0)
    print(f"Under/Over splitting: {under_split} - {over_split}")
152
153


Yoann Dufresne's avatar
Yoann Dufresne committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# ------------- D2 Graph -------------

def parse_dg_name(name):
    name = name.replace("]", "").replace(' [', '[')
    header, h1, h2 = name.split('[')
    
    # Parse header
    header = header.split(" ")
    idx = central = score = -1
    if len(header) == 3:
        idx, central, score = header
    else:
        central, score = header

    # Parse hands
    h1 = h1.split(', ')
    h2 = h2.split(', ')

    return (idx, central, score), h1, h2


def print_d2_summary(connected_components, light_print=False):
    print("--- Global summary ---")
    print(f"Number of connected components: {len(connected_components)}")
    print(f"Total number of nodes: {sum([len(x) for x in connected_components])}")
    print(f"The 5 largest components: {[len(x) for x in connected_components][:5]}")

    print("--- Largest component analysis ---")
    


# def component_to_nearest_neighbor_graph(component):
#     nng = nx.Graph()
#     nng.add_nodes_from(component.nodes())

#     for edge in component.edges():
#         node1, node2 = edge
#         node1 = parse_dg_name(node1)
#         node2 = parse_dg_name(node2)

#         central1 = mols_from_node(node1[0][1])
#         central2 = frozenset(mols_from_node(node2[0][1]))

#         for mol1 in central1:
#             if mol1-1 in central2 or mol1+1 in central2:
#                 nng.add_edge(edge[0], edge[1])

#     componnents = list(nx.connected_components(nng))
#     print([len(x) for x in componnents])
#     componnents.sort(key=lambda x: -len(x))
#     componnents = [nng.subgraph(x) for x in componnents]
#     nx.write_gexf(componnents[0], "data/d2_reducted.gexf")

#     return nng, componnents


def compute_next_nodes(d2_component):
    next_nodes = {}

    for node in d2_component.nodes():
        # Parse the current node name
        head, h1, h2 = parse_dg_name(node)
        next_nodes[node] = {}
        neighbors = list(d2_component.neighbors(node))

        # Get the current molecule idxs
        molecule_idxs = mols_from_node(head[1])
        for mol_idx in molecule_idxs:
            nexts = []
            for neighbor in neighbors:
                nei_head, _, _ = parse_dg_name(neighbor)
                nei_mols = mols_from_node(nei_head[1])
                nei_mols = [x for x in nei_mols if x > mol_idx]
                
                # If there are molecule next
                if len(nei_mols) > 0:
                    next_nei_mol = min(nei_mols)
                    nexts.append((next_nei_mol, neighbor))

            nexts.sort(key=lambda x: x[0])
            next_nodes[node][mol_idx] = nexts
            # print(next_nodes)

    return next_nodes


def compute_longest_increasing_paths(d2_component):
    next_nodes = compute_next_nodes(d2_component)

    # Compute the longest path for each node
    longest_paths = {}
    for idx, start_node in enumerate(next_nodes):
        # print(f"{idx}/{len(next_nodes)}")
        for mol_idx in next_nodes[start_node]:
            recursive_longest_path(start_node, mol_idx , next_nodes, longest_paths)

    # Get the longest path size
    max_len, node_val, mol_idx = 0, None, -1
    for node in longest_paths:
        for mol in longest_paths[node]:
            length, _, _ = longest_paths[node][mol]
            if max_len < length:
                max_len = length
                node_val = node
                mol_idx = mol

    # Backtrack the longest path
    path = backtrack_longest_path(node_val, mol_idx, longest_paths)
    return path


def backtrack_longest_path(node, molecule, longest_paths, path=[]):
    if node == None:
        return path

    path.append(node)
    print(node, molecule)
    length, next_node, next_mol = longest_paths[node][molecule]
    return backtrack_longest_path(next_node, next_mol, longest_paths, path)


def recursive_longest_path(current_node, current_molecule, next_nodes, longest_paths):
    # Dynamic programming
    if current_node in longest_paths and current_molecule in longest_paths[current_node]:
        return longest_paths[current_node][current_molecule]

    longest = 0
    longest_next = None
    min_mol_idx = current_molecule + 10000
    # Recursively compute the longest path
    for mol_idx, node in next_nodes[current_node][current_molecule]:
        size, _, _ = recursive_longest_path(node, mol_idx, next_nodes, longest_paths)
        if size + 1 > longest:
            longest = size + 1
            longest_next = node
            min_mol_idx = mol_idx
        # If there is an alternative path with shorter distance
        elif size + 1 == longest and mol_idx < min_mol_idx:
            longest = size + 1
            longest_next = node
            min_mol_idx = mol_idx
    
    # Save the result
    if not current_node in longest_paths:
        longest_paths[current_node] = {}
    longest_paths[current_node][current_molecule] = (longest, longest_next, min_mol_idx)
    return longest_paths[current_node][current_molecule]


303
304
305
306
def main():
    args = parse_args()
    graph = load_graph(args.filename)

Yoann Dufresne's avatar
Yoann Dufresne committed
307
308
309
310
311
312
313
314
315
316
317
318
    if args.type == "path":
        frequencies = parse_path_graph_frequencies(graph)
        neighborhood = parse_graph_path(graph)

        print_path_summary(frequencies, neighborhood, light_print=args.light_print)
    elif args.type == "d2":
        components = list(nx.connected_components(graph))
        components.sort(key=lambda x: -len(x))

        component = graph.subgraph(components[0])
        longest_path = compute_longest_increasing_paths(component)
        print_d2_summary(components, longest_path, light_print=args.light_print)
319
320
321
322


if __name__ == "__main__":
    main()