Skip to content
Snippets Groups Projects
Commit a3458401 authored by Alexis  CRISCUOLO's avatar Alexis CRISCUOLO :black_circle:
Browse files

0.21b

parent ca2fb568
No related branches found
Tags 0.21b
No related merge requests found
...@@ -172,7 +172,7 @@ nAUC aWallace2 0.999118 [0.996141 , 1.000000] ...@@ -172,7 +172,7 @@ nAUC aWallace2 0.999118 [0.996141 , 1.000000]
The clustering based on the cutoff 0.007 seems robust to data subsampling, as the three estimated nAUC are quite high (e.g. > 0.75). The clustering based on the cutoff 0.007 seems robust to data subsampling, as the three estimated nAUC are quite high (e.g. > 0.75).
However, the same clustering seems less robust to data perturbation, as the 2.5% CI are quite small for the silhouette and the first Wallace coefficient, e.g. < 0.4. However, the same clustering seems less robust to data perturbation, as the 2.5% CI are quite small for the silhouette and the first Wallace coefficient, e.g. < 0.4.
**Searching for optimal clustering** **Searching for optimal clustering(s)**
An optimal MST-based clustering can be defined by the cutoff value that maximizes the different estimated statistics. An optimal MST-based clustering can be defined by the cutoff value that maximizes the different estimated statistics.
By considering every branch length from the minimum spanning tree in _data.graphml_ (see above) as a putative cutoff, _MSTclust_ can be used to display in standard output these statistics in a convenient tab-delimited format (option `-t`): By considering every branch length from the minimum spanning tree in _data.graphml_ (see above) as a putative cutoff, _MSTclust_ can be used to display in standard output these statistics in a convenient tab-delimited format (option `-t`):
...@@ -180,18 +180,37 @@ By considering every branch length from the minimum spanning tree in _data.graph ...@@ -180,18 +180,37 @@ By considering every branch length from the minimum spanning tree in _data.graph
grep "data" data.graphml | awk -F '[<>]' '{print$3}' | sort -g | uniq | grep "data" data.graphml | awk -F '[<>]' '{print$3}' | sort -g | uniq |
while read c ; do MSTclust -i data.d -o out -c $c -L 2038 -B 9 -t ; done 2>/dev/null while read c ; do MSTclust -i data.d -o out -c $c -L 2038 -B 9 -t ; done 2>/dev/null
``` ```
After observing the different outputted statistics (not shown), it seems that an optimal clustering can be obtained using After observing the different outputted statistics (not shown), it seems that an optimal clustering can be obtained using a cutoff between 0.010060363 (approx. 20/2038) and 0.048804782 (approx. 100/2038).
0.016691213 as cutoff. _MSTclust_ can be used again to display the statistics associated to the clustering built from each of these cutoff:
```bash
for i in {20..100}
do
c=0$(bc<<<"scale=9;$i/2038"); MSTclust -i data.d -o out -c $c -L 2038 -B 9 -t ;
done 2>/dev/null
```
This second set of tab-delimited statistics (not shown) demonstrates that using 0.03581943 as cutoff yields an optimal MST-based clustering (i.e. that maximizes all statistics derived from data perturbation and subsampling analyses).
This can be summarized using the following command line: This can be summarized using the following command line:
```bash ```bash
MSTclust -i data.d -o clust -c 0.016691213 -L 2038 -B 9 -t 2>&1 | tail -2 MSTclust -i data.d -o clust -c 0.03581943 -L 2038 -B 9 -t 2>&1 | tail -2
```
This will output:
```
n c k silhouette noise silhouette [low avg up] noise aWallace1 [low avg up] noise aWallace2 [low avg up] nAUC silhouette [low avg up] nAUC aWallace1 [low avg up] nAUC aWallace2 [low avg up]
413 0.035819430 2 0.889605 0.851100 0.892771 0.923340 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.747542 0.894428 0.952076 1.000000 1.000000 1.000000 1.000000 0.997500 1.000000
```
Of note, previous analyses also show that the cutoff value 0.016192345 leads to a clear local optimum between 0.009813542 (20/2038) and 0.049067713 (100/2048).
In consequence, the corresponding MST-based clustering can be also considered if the number of classes obtained from the optimal one (i.e. _k_ = 2, see above) is found to be too small.
This second clustering can be summarized using the following command line:
```bash
MSTclust -i data.d -o clust -c 0.016192345 -L 2038 -B 9 -t 2>&1 | tail -2
``` ```
This will output: This will output:
``` ```
n c k silhouette noise silhouette [low avg up] noise aWallace1 [low avg up] noise aWallace2 [low avg up] nAUC silhouette [low avg up] nAUC aWallace1 [low avg up] nAUC aWallace2 [low avg up] n c k silhouette noise silhouette [low avg up] noise aWallace1 [low avg up] noise aWallace2 [low avg up] nAUC silhouette [low avg up] nAUC aWallace1 [low avg up] nAUC aWallace2 [low avg up]
413 0.016691213 3 0.829778 0.763112 0.838848 0.918818 0.444911 0.977796 1.000000 0.998107 0.999338 1.000000 0.825384 0.899548 0.938995 1.000000 1.000000 1.000000 0.828055 0.978866 1.000000 413 0.016192345 4 0.822087 0.739681 0.828704 0.904527 0.998107 0.993513 1.000000 1.000000 1.000000 1.000000 0.869052 0.903598 0.936799 1.000000 1.000000 1.000000 0.775950 0.970570 1.000000
``` ```
Details of the corresponding clustering (3 classes) is written into file _clust.txt_ (available in _example/_). Details of the corresponding clustering (_k_ = 4 classes) is written into file _clust.txt_ (available in _example/_).
A silhouette plot can be easily drawn using the output of the following command line on _clust.txt_: A silhouette plot can be easily drawn using the output of the following command line on _clust.txt_:
```bash ```bash
grep -F " s=" clust.txt | sed 's/ s=//' | sed 1d grep -F " s=" clust.txt | sed 's/ s=//' | sed 1d
......
# n=413 # n=413
# c=0.01669121 # c=0.01619235
# k=3 # k=4
# s=0.82977824 # s=0.82208711
## cluster_1 n=402 s=0.83278240 ## cluster_1 n=2 s=0.97512282
143 s=0.89825432 28 s=0.97527463
85 s=0.89815314 21 s=0.97497102
37 s=0.89815145
74 s=0.89811303
343 s=0.89792441
86 s=0.89785800
396 s=0.89541756
298 s=0.89456357
124 s=0.89423503
378 s=0.89408981
98 s=0.89394730
170 s=0.89390835
41 s=0.89390809
334 s=0.88770005
322 s=0.88763977
336 s=0.88760053
169 s=0.88760047
401 s=0.88760031
157 s=0.88759993
151 s=0.88601817
235 s=0.88600377
340 s=0.88598133
226 s=0.88586892
144 s=0.88553706
405 s=0.88528186
181 s=0.88523413
191 s=0.88509641
253 s=0.88508710
296 s=0.88505816
16 s=0.88505004
408 s=0.88498494
282 s=0.88494903
7 s=0.88491086
276 s=0.88491082
66 s=0.88487400
208 s=0.88481098
237 s=0.88480514
39 s=0.88430297
153 s=0.88411530
72 s=0.88264892
126 s=0.88204060
140 s=0.88143228
252 s=0.88136205
67 s=0.88128918
158 s=0.88121773
99 s=0.88118281
73 s=0.88118281
163 s=0.88118193
185 s=0.88114746
200 s=0.88111037
15 s=0.88111037
12 s=0.88111037
393 s=0.88103797
115 s=0.87568758
364 s=0.87532500
407 s=0.87514509
338 s=0.87511094
177 s=0.87507125
192 s=0.87499870
283 s=0.87499782
173 s=0.87485384
387 s=0.87481860
374 s=0.87478150
194 s=0.87478082
178 s=0.87470751
161 s=0.87359261
76 s=0.87357888
132 s=0.87351307
345 s=0.87316932
399 s=0.87313918
81 s=0.87310261
375 s=0.87307435
92 s=0.87303104
274 s=0.87255919
6 s=0.87249452
230 s=0.87245748
55 s=0.87244258
409 s=0.87242326
406 s=0.87242326
370 s=0.87241431
128 s=0.87241266
206 s=0.87241252
290 s=0.87238702
127 s=0.87237623
391 s=0.87234363
344 s=0.87231243
278 s=0.87231170
272 s=0.87228193
201 s=0.87227681
245 s=0.87226769
295 s=0.87223913
82 s=0.87223112
121 s=0.87220443
137 s=0.87220420
232 s=0.87220357
270 s=0.87216656
52 s=0.87216656
31 s=0.87215535
179 s=0.87209883
10 s=0.87209628
231 s=0.87209521
175 s=0.87203458
47 s=0.87178727
17 s=0.87163787
382 s=0.87161931
347 s=0.87110186
389 s=0.87105454
83 s=0.87090626
164 s=0.86998089
101 s=0.86978062
119 s=0.86978012
404 s=0.86969943
113 s=0.86969838
400 s=0.86917035
380 s=0.86910031
168 s=0.86902814
166 s=0.86892374
381 s=0.86892243
352 s=0.86888720
139 s=0.86885197
155 s=0.86885189
109 s=0.86878288
122 s=0.86878133
183 s=0.86871211
159 s=0.86871209
104 s=0.86871080
216 s=0.86857762
196 s=0.86823079
297 s=0.86703724
330 s=0.86660966
78 s=0.86657057
331 s=0.86548614
266 s=0.86373299
149 s=0.86322457
142 s=0.86272856
49 s=0.86269319
42 s=0.86262110
213 s=0.86258008
280 s=0.86254361
267 s=0.86241688
293 s=0.86233045
165 s=0.86222207
285 s=0.86195927
152 s=0.86155977
138 s=0.86118748
333 s=0.86111735
383 s=0.86111599
277 s=0.86110932
46 s=0.86079404
79 s=0.86057596
148 s=0.86021880
33 s=0.86019292
367 s=0.86017428
281 s=0.86013522
392 s=0.86011796
359 s=0.86011254
243 s=0.86004086
335 s=0.85996651
18 s=0.85996132
105 s=0.85996084
365 s=0.85993197
112 s=0.85989825
372 s=0.85988819
339 s=0.85988819
264 s=0.85987062
90 s=0.85982600
304 s=0.85976483
302 s=0.85971821
180 s=0.85971797
221 s=0.85968328
217 s=0.85957884
204 s=0.85954408
291 s=0.85950954
96 s=0.85940198
107 s=0.85901557
110 s=0.85876651
286 s=0.85858493
244 s=0.85829192
303 s=0.85822478
64 s=0.85815688
68 s=0.85814321
254 s=0.85806914
141 s=0.85801638
354 s=0.85779538
97 s=0.85777240
114 s=0.85763390
398 s=0.85756234
388 s=0.85750140
84 s=0.85697218
203 s=0.85695166
133 s=0.85679821
123 s=0.85672995
265 s=0.85163380
225 s=0.85161286
316 s=0.85142122
25 s=0.85142112
301 s=0.85139621
320 s=0.85138558
269 s=0.85138553
321 s=0.85137460
262 s=0.85074922
260 s=0.85058498
14 s=0.85051893
215 s=0.85051385
70 s=0.85044842
58 s=0.85044842
40 s=0.85044412
385 s=0.85023382
182 s=0.85012973
292 s=0.85009299
284 s=0.84988056
329 s=0.84984652
54 s=0.84984591
8 s=0.84938597
299 s=0.84929314
195 s=0.84927013
59 s=0.84893027
273 s=0.84882479
38 s=0.84879064
75 s=0.84867535
60 s=0.84864384
246 s=0.84853303
50 s=0.84850404
162 s=0.84836231
100 s=0.84832772
44 s=0.84829549
186 s=0.84816327
210 s=0.84803842
188 s=0.84800315
56 s=0.84797376
35 s=0.84794210
207 s=0.84792141
348 s=0.84790449
289 s=0.84788846
51 s=0.84743654
11 s=0.84729519
20 s=0.84675544
350 s=0.84646689
271 s=0.84576159
69 s=0.84552037
279 s=0.84541764
361 s=0.84528200
116 s=0.84524732
147 s=0.84524613
351 s=0.84517876
187 s=0.84516535
222 s=0.84510934
288 s=0.84510903
236 s=0.84489492
174 s=0.84486905
341 s=0.84003932
323 s=0.83997345
256 s=0.83990112
318 s=0.83989680
319 s=0.83986228
317 s=0.83986228
314 s=0.83977109
184 s=0.83976077
403 s=0.83965524
229 s=0.83956283
71 s=0.83955506
250 s=0.83953735
197 s=0.83875174
306 s=0.83872536
108 s=0.83865536
263 s=0.83841422
189 s=0.83824859
145 s=0.83792224
275 s=0.83786784
120 s=0.83756081
355 s=0.83753576
287 s=0.83753495
211 s=0.83750092
346 s=0.83744383
369 s=0.83742965
356 s=0.83729554
373 s=0.83671387
62 s=0.83593853
368 s=0.83589778
88 s=0.83586696
223 s=0.83508608
77 s=0.83481174
353 s=0.83475770
357 s=0.83465939
402 s=0.83458450
134 s=0.83411138
363 s=0.83383968
160 s=0.83380661
305 s=0.83353679
255 s=0.83350269
146 s=0.83343447
219 s=0.83335839
309 s=0.82905428
313 s=0.82894967
315 s=0.82868625
308 s=0.82868625
251 s=0.82852992
248 s=0.82846167
247 s=0.82846130
23 s=0.82844604
3 s=0.82837868
257 s=0.82837739
342 s=0.82833741
312 s=0.82813618
130 s=0.82800002
234 s=0.82799453
167 s=0.82796398
36 s=0.82772334
233 s=0.82765762
48 s=0.82762442
95 s=0.82708935
227 s=0.82667815
156 s=0.82643620
61 s=0.82594375
94 s=0.82594231
397 s=0.82581265
242 s=0.82547137
371 s=0.82508870
80 s=0.82477636
193 s=0.82473934
117 s=0.82429320
135 s=0.82415146
240 s=0.82407542
258 s=0.82407338
238 s=0.82400528
205 s=0.82394608
228 s=0.82362416
45 s=0.82336730
202 s=0.82224984
63 s=0.82126097
310 s=0.81835772
307 s=0.81803689
311 s=0.81792943
214 s=0.81767199
199 s=0.81741562
241 s=0.81567181
65 s=0.81544331
172 s=0.81543692
218 s=0.81543690
377 s=0.81490001
220 s=0.81486646
395 s=0.81479891
249 s=0.81458737
13 s=0.81405246
106 s=0.81374803
22 s=0.81373053
360 s=0.81322170
136 s=0.81288298
261 s=0.81287908
102 s=0.81284974
111 s=0.81275787
198 s=0.81228949
358 s=0.81159486
259 s=0.81098264
386 s=0.81075611
24 s=0.80936262
171 s=0.80639256
154 s=0.80452136
93 s=0.80445272
376 s=0.80415445
87 s=0.80411933
190 s=0.80376578
150 s=0.80154019
212 s=0.80110144
294 s=0.79617692
125 s=0.79520744
57 s=0.79316846
89 s=0.79304017
103 s=0.79234143
384 s=0.79126037
129 s=0.79106778
43 s=0.78935000
414 s=0.78534625
91 s=0.78394775
53 s=0.78361285
366 s=0.78159332
394 s=0.78097067
379 s=0.77968901
390 s=0.76884389
26 s=0.74811280
4 s=0.71702322
131 s=0.69890047
328 s=0.68702138
30 s=0.68701967
209 s=0.68670817
2 s=0.66485392
239 s=0.64841072
411 s=0.62230583
337 s=0.61921847
176 s=0.61921768
412 s=0.61529783
325 s=0.51759181
362 s=0.50438460
27 s=0.47275294
413 s=0.38401053
349 s=0.37688457
327 s=0.33924291
332 s=0.31875402
34 s=0.31348939
32 s=0.30576043
224 s=0.30412398
118 s=0.27288434
## cluster_2 n=5 s=0.82793797 ## cluster_2 n=5 s=0.82492473
326 s=0.85681704 326 s=0.85318993
1 s=0.83456644 1 s=0.83225636
19 s=0.82185474 19 s=0.81857605
410 s=0.81560084 410 s=0.81212073
9 s=0.81085080 9 s=0.80848059
## cluster_3 n=6 s=0.63003300 ## cluster_3 n=402 s=0.82230651
29 s=0.72546691 343 s=0.89160886
324 s=0.72546498 143 s=0.89140390
300 s=0.68082799 85 s=0.89129591
268 s=0.61902163 37 s=0.89129410
28 s=0.51521003 86 s=0.89125321
21 s=0.51420649 74 s=0.89125309
396 s=0.88968601
298 s=0.88767608
124 s=0.88732608
378 s=0.88717137
98 s=0.88701955
170 s=0.88697805
41 s=0.88697795
334 s=0.88026518
322 s=0.88018911
169 s=0.88014720
401 s=0.88014703
336 s=0.88014689
157 s=0.88014682
151 s=0.87845998
235 s=0.87843625
340 s=0.87842069
237 s=0.87838037
226 s=0.87830083
144 s=0.87794716
405 s=0.87767503
181 s=0.87762414
208 s=0.87748017
191 s=0.87747729
253 s=0.87746736
296 s=0.87743650
16 s=0.87742785
408 s=0.87735842
282 s=0.87732013
7 s=0.87727943
276 s=0.87727939
66 s=0.87724013
153 s=0.87665634
39 s=0.87651322
72 s=0.87509538
126 s=0.87444809
140 s=0.87380062
252 s=0.87372568
393 s=0.87368855
67 s=0.87364831
158 s=0.87357226
99 s=0.87353490
73 s=0.87353490
163 s=0.87353416
185 s=0.87349747
200 s=0.87345800
15 s=0.87345800
12 s=0.87345800
115 s=0.86756724
364 s=0.86718077
407 s=0.86698890
338 s=0.86695252
177 s=0.86691045
192 s=0.86683316
283 s=0.86683242
173 s=0.86667883
387 s=0.86664108
374 s=0.86660156
194 s=0.86660125
178 s=0.86652315
76 s=0.86532017
132 s=0.86525068
161 s=0.86521048
345 s=0.86487452
399 s=0.86485237
81 s=0.86481320
375 s=0.86478331
92 s=0.86473675
55 s=0.86444480
370 s=0.86432039
272 s=0.86427449
274 s=0.86423450
6 s=0.86416560
230 s=0.86412530
409 s=0.86408969
406 s=0.86408969
128 s=0.86407839
206 s=0.86407824
290 s=0.86405087
127 s=0.86403959
175 s=0.86401164
391 s=0.86400465
10 s=0.86398240
344 s=0.86397161
278 s=0.86397084
201 s=0.86393368
245 s=0.86392395
295 s=0.86389353
82 s=0.86388499
137 s=0.86385611
121 s=0.86385593
232 s=0.86385565
270 s=0.86381622
52 s=0.86381622
179 s=0.86374386
231 s=0.86374021
31 s=0.86367791
17 s=0.86349490
47 s=0.86328542
347 s=0.86255479
389 s=0.86250432
83 s=0.86234599
119 s=0.86185095
101 s=0.86184569
382 s=0.86175311
164 s=0.86173260
404 s=0.86143349
113 s=0.86143237
400 s=0.86087085
380 s=0.86079636
168 s=0.86071962
166 s=0.86060838
381 s=0.86060720
216 s=0.86057523
352 s=0.86056973
139 s=0.86053227
155 s=0.86053218
109 s=0.86045880
122 s=0.86045715
183 s=0.86038354
159 s=0.86038352
104 s=0.86038214
330 s=0.85893703
78 s=0.85889613
297 s=0.85847904
196 s=0.85840290
331 s=0.85682767
266 s=0.85511650
149 s=0.85442097
142 s=0.85389258
49 s=0.85385516
42 s=0.85377866
213 s=0.85373500
280 s=0.85369617
267 s=0.85358959
293 s=0.85346907
165 s=0.85335394
285 s=0.85265204
277 s=0.85242350
138 s=0.85225276
333 s=0.85217811
383 s=0.85217667
46 s=0.85183377
79 s=0.85160188
367 s=0.85142954
281 s=0.85138848
148 s=0.85122173
335 s=0.85120900
18 s=0.85120371
33 s=0.85119395
392 s=0.85111440
359 s=0.85110817
304 s=0.85110115
152 s=0.85107995
96 s=0.85107945
243 s=0.85103210
302 s=0.85094517
180 s=0.85094515
365 s=0.85091644
221 s=0.85090828
112 s=0.85088054
372 s=0.85086984
339 s=0.85086984
264 s=0.85085045
105 s=0.85081227
90 s=0.85080365
217 s=0.85079731
204 s=0.85076038
291 s=0.85072323
68 s=0.85034890
107 s=0.84980618
286 s=0.84961369
254 s=0.84954910
110 s=0.84954063
303 s=0.84935834
64 s=0.84928619
141 s=0.84913668
244 s=0.84903503
388 s=0.84895880
354 s=0.84891336
97 s=0.84887767
114 s=0.84873028
398 s=0.84865470
203 s=0.84836477
84 s=0.84802763
133 s=0.84784279
123 s=0.84777026
25 s=0.84238841
316 s=0.84225892
265 s=0.84223657
321 s=0.84222193
269 s=0.84222153
320 s=0.84222134
225 s=0.84219882
301 s=0.84196892
260 s=0.84180381
262 s=0.84154451
14 s=0.84103623
215 s=0.84103083
70 s=0.84096125
58 s=0.84096125
40 s=0.84095667
292 s=0.84084928
385 s=0.84073279
182 s=0.84062210
329 s=0.84032092
54 s=0.84032051
299 s=0.84000011
284 s=0.83990624
195 s=0.83972039
59 s=0.83934678
246 s=0.83931011
273 s=0.83923438
38 s=0.83919781
75 s=0.83907546
60 s=0.83904219
50 s=0.83889352
186 s=0.83880057
162 s=0.83874255
100 s=0.83870601
44 s=0.83867149
207 s=0.83854380
289 s=0.83850881
210 s=0.83839836
188 s=0.83836085
56 s=0.83832960
35 s=0.83829593
348 s=0.83825593
8 s=0.83815255
51 s=0.83814662
11 s=0.83799667
20 s=0.83689180
350 s=0.83686538
236 s=0.83649065
271 s=0.83625080
187 s=0.83600063
69 s=0.83599471
279 s=0.83588564
361 s=0.83574137
116 s=0.83570481
147 s=0.83570355
351 s=0.83563177
222 s=0.83555833
288 s=0.83555774
174 s=0.83530296
323 s=0.83063157
314 s=0.83041714
318 s=0.83016028
319 s=0.83012367
317 s=0.83012367
341 s=0.83003532
229 s=0.82993160
256 s=0.82988848
250 s=0.82977897
184 s=0.82973987
403 s=0.82962748
71 s=0.82952130
306 s=0.82891760
108 s=0.82884335
197 s=0.82866748
189 s=0.82841184
145 s=0.82819253
263 s=0.82816310
275 s=0.82800793
369 s=0.82793927
356 s=0.82779733
120 s=0.82740207
355 s=0.82737572
287 s=0.82737486
211 s=0.82733871
373 s=0.82731845
62 s=0.82567833
368 s=0.82563531
88 s=0.82560229
346 s=0.82549526
223 s=0.82504412
353 s=0.82470812
402 s=0.82452492
357 s=0.82447736
77 s=0.82433261
363 s=0.82413920
134 s=0.82402249
160 s=0.82369972
305 s=0.82341350
146 s=0.82330495
255 s=0.82294052
219 s=0.82145449
312 s=0.81947486
309 s=0.81879884
313 s=0.81868851
315 s=0.81840901
308 s=0.81840901
251 s=0.81824246
248 s=0.81817096
247 s=0.81817084
342 s=0.81802652
23 s=0.81786723
3 s=0.81779600
257 s=0.81779463
234 s=0.81767496
167 s=0.81764341
130 s=0.81739400
233 s=0.81731895
36 s=0.81710025
48 s=0.81699524
95 s=0.81685470
227 s=0.81641888
156 s=0.81588109
80 s=0.81568314
371 s=0.81559671
397 s=0.81536330
61 s=0.81521064
94 s=0.81520941
242 s=0.81455312
193 s=0.81393226
117 s=0.81345860
205 s=0.81338475
240 s=0.81306751
228 s=0.81258082
45 s=0.81232121
135 s=0.81185164
258 s=0.81176839
238 s=0.81169495
63 s=0.81039113
202 s=0.80972829
310 s=0.80760650
307 s=0.80726580
311 s=0.80715286
199 s=0.80660864
214 s=0.80658360
102 s=0.80586197
249 s=0.80534898
241 s=0.80460991
111 s=0.80449699
172 s=0.80436514
218 s=0.80436512
65 s=0.80421937
220 s=0.80390889
377 s=0.80364304
395 s=0.80353608
13 s=0.80274394
106 s=0.80242130
22 s=0.80224430
358 s=0.80220616
360 s=0.80216679
386 s=0.80132683
259 s=0.80066865
136 s=0.79997909
261 s=0.79997492
198 s=0.79888024
24 s=0.79536729
171 s=0.79477821
154 s=0.79279477
93 s=0.79272170
376 s=0.79240552
87 s=0.79236830
190 s=0.79183167
150 s=0.79151894
212 s=0.78746722
294 s=0.78442669
125 s=0.78324566
89 s=0.78128069
57 s=0.78092666
103 s=0.78005033
129 s=0.77902301
414 s=0.77786644
43 s=0.77721935
384 s=0.77714127
91 s=0.77183302
53 s=0.77097384
366 s=0.76900200
394 s=0.76800691
379 s=0.76717126
390 s=0.75607288
26 s=0.73076499
4 s=0.70052798
131 s=0.69234411
328 s=0.66492841
30 s=0.66492712
209 s=0.66459363
2 s=0.64459617
239 s=0.62723115
337 s=0.59603123
176 s=0.59603102
411 s=0.59107296
412 s=0.58286278
325 s=0.48589761
362 s=0.47283060
27 s=0.44478974
413 s=0.32883026
349 s=0.32738178
327 s=0.28979633
32 s=0.27198102
332 s=0.27104993
34 s=0.26617569
224 s=0.25943749
118 s=0.25281028
## cluster_4 n=4 s=0.71997276
29 s=0.77528778
324 s=0.77528653
300 s=0.69240573
268 s=0.63691100
example/plot.png

35.8 KiB | W: | H:

example/plot.png

28.6 KiB | W: | H:

example/plot.png
example/plot.png
example/plot.png
example/plot.png
  • 2-up
  • Swipe
  • Onion skin
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment