Skip to content
Snippets Groups Projects
criscuol's avatar
Alexis CRISCUOLO authored
834a263c
Name Last commit Last update
COPYING
README.md
contig_info.sh

contig_info

contig_info is a command line program written in Bash for quickly estimating several standard descriptive statistics from FASTA-formatted contig files inferred by de novo genome assembly methods. Estimated statistics are:

  ▹   sequence number,

  ▹   nucleotide residue counts,

  ▹   AT- and GC-content,

  ▹   sequence lengths,

  ▹   auN (also called E-size, Salzberg et al. 2012) or auNG,

  ▹   N50 (Lander et al. 2001) and the related N75 and N90 (e.g. Reinhardt et al. 2009, Craig Venter et al. 2001),

  ▹   L50 and the related L75 and L90,

  ▹   NG50 (Earl et al. 2011) and the related NG75, NGG90, LG50, LG75, LG90.

contig_info can also compute nucleotide content statistics for each contig sequence.

Installation and execution

Give the execute permission to the file contig_info.sh by typing:

chmod +x contig_info.sh

and run it with the following command line model:

./contig_info.sh [options]

Usage

Run contig_info without option to read the following documentation:

 USAGE:  contig_info.sh  [options]  <contig_files> 

  where 'options' are:

   -m <int>    minimum contig length; every contig sequence of length shorter
               than this cutoff will be discarded (default: 1)
   -g <int>    expected genome size  for computing auNG  and {N,L}G{50,75,90}
               values instead of auN and {N,L}{50,75,90} ones, respectively
   -r          residue content statistics for each contig sequence instead of 
               global statistics
   -t          tab-delimited output
   -h          prints this help and exits

Examples

The following Bash command lines enable to download the genome sequences of the 5 Mucor circinelloides strains 1006PhL, CBS 277.49, WJ11, B8987 and JCM 22480 from the NCBI genome repository:

NCBIFTP="wget -q -O- https://ftp.ncbi.nlm.nih.gov/sra/wgs_aux/"; Z=".1.fsa_nt.gz";
echo -e "1006PhL\tAOCY01\nCBS277.49\tAMYB01\nWJ11\tLGTF01\nB8987\tJNDM01\nJCM22480\tBCHG01" |
  while read -r s a; do echo -n "$s ... ";$NCBIFTP${a:0:2}/${a:2:2}/$a/$a$Z|zcat>Mucor.$s.fasta;echo "[ok]";done

The following command line runs contig_info.sh to analyze the first downloaded file Mucor.1006PhL.fasta:

./contig_info.sh  Mucor.1006PhL.fasta

leading to the following standard output:

File                           Mucor.1006PhL.fasta

Number of sequences            1459

Residue counts:
  Number of A's                10320010  30.23 %
  Number of C's                6747611  19.76 %
  Number of G's                6731530  19.72 %
  Number of T's                10335465  30.27 %
  Number of N's                0  0.00 %
  Total                        34134616

  %AT                          60.52 %
  %GC                          39.48 %

Sequence lengths:
  Minimum                      410
  Quartile 25%                 1660
  Median                       6176
  Quartile 75%                 37608
  Maximum                      213712
  Average                      23395.89

Contiguity statistics:
  auN                          65329
  N50                          58982
  N75                          36291
  N90                          18584
  L50                          194
  L75                          376
  L90                          562

The same results can be outputted in tab-delimited format using option -t:

./contig_info.sh  -t  Mucor.1006PhL.fasta
#File               Nseq   Nres     A        C       G       T        N    %A     %C     %G     %T     %N     %AT    %GC     Min   Q25   Med   Q75   Max    Avg       auN    N50   N75   N90   L50 L75 L90
Mucor.1006PhL.fasta 1459   34134616 10320010 6747611 6731530 10335465 0    30.23% 19.76% 19.72% 30.27% 0.00%  60.52% 39.48%  410   1660  6176  37608 213712 23395.89  65329  58982 36291 18584 194 376 562

Of note, the five downloaded FASTA files can be analyzed with a single command line:

./contig_info.sh  -t  Mucor.*.fasta
#File                 Nseq   Nres      A        C       G       T        N       %A     %C     %G     %T     %N    %AT    %GC     Min   Q25   Med    Q75     Max     Avg         auN     N50      N75     N90      L50 L75 L90
Mucor.1006PhL.fasta   1459   34134616  10320010 6747611 6731530 10335465 0       30.23% 19.76% 19.72% 30.27% 0.00% 60.52% 39.48%  410   1660  6176   37608   213712  23395.89    65329   58982    36291   18584    194 376 562
Mucor.B8987.fasta     2210   36700617  11096810 7247117 7233795 11122895 0       30.23% 19.74% 19.71% 30.30% 0.00% 60.55% 39.45%  206   839   2482   20727   258792  16606.61    69144   58460    30025   13274    193 416 674
Mucor.CBS277.49.fasta 21     36567582  10571030 7715901 7705901 10574750 0       28.90% 21.10% 21.07% 28.91% 0.00% 57.83% 42.17%  4155  41542 934259 3187354 6050249 1741313.42  3912950 4318338  3096690 1074709  4   7   9
Mucor.JCM22480.fasta  401    36616466  10586281 6882218 6899109 10581984 1659222 28.91% 18.79% 18.84% 28.89% 4.53% 60.57% 39.43%  1038  4814  50332  135940  659822  91312.88    229712  197059   109360  63107    61  121 183
Mucor.WJ11.fasta      2519   33065171  9974064  6559358 6556539 9975210  0       30.16% 19.83% 19.82% 30.16% 0.00% 60.34% 39.66%  430   3275  7692   18010   118704  13126.30    28368   24148    12884   5672     429 898 1455

The tab-delimited output format can be useful for focusing on specific fields like, e.g. the seven contiguity statistics:

./contig_info.sh  -t  Mucor.*.fasta  |  cut -f1,22-
#File                 auN     N50      N75     N90      L50  L75  L90
Mucor.1006PhL.fasta   65329   58982    36291   18584    194  376  562
Mucor.B8987.fasta     69144   58460    30025   13274    193  416  674
Mucor.CBS277.49.fasta 3912950 4318338  3096690 1074709  4    7    9
Mucor.JCM22480.fasta  229712  197059   109360  63107    61   121  183
Mucor.WJ11.fasta      28368   24148    12884   5672     429  898  1455

The option -g can be used to set an expected genome size for obtaining auNG and {N,L}G{50,75,90} statistics instead of auN and {N,L}{50,75,90} ones:

./contig_info.sh  -t  -g 36000000  Mucor.*.fasta | cut -f1,22-
#File                 auN     N50      N75     N90      L50  L75  L90  ExpSize
Mucor.1006PhL.fasta   61944   57499    32472   7652     210  417  692  36000000
Mucor.B8987.fasta     70490   59771    30857   15730    187  399  631  36000000
Mucor.CBS277.49.fasta 3974642 4318338  3096690 1074709  4    7    9    36000000
Mucor.JCM22480.fasta  233645  197663   113006  69531    59   117  175  36000000
Mucor.WJ11.fasta      26055   21799    9865    2445     493  1092 2146 36000000

Finally, the option -r enables to obtain the residue details for each sequence within each input file. Option -r can be used together with option -t to obtain a global view of the residue composition:

./contig_info.sh  -r  -t   Mucor.CBS277.49.fasta
#File                  Seq                                                                                           Nres    A       C       G       T       N  %A     %C     %G     %T     %N     %AT    %GC     Pval
Mucor.CBS277.49.fasta  AMYB01000001.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_01, whole genome shotgun sequence   6050249 1750309 1276313 1271843 1751784 0  28.92% 21.09% 21.02% 28.95% 0.00%  57.89% 42.11%  0.2610
Mucor.CBS277.49.fasta  AMYB01000002.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_02, whole genome shotgun sequence   5009828 1445835 1059454 1055351 1449188 0  28.85% 21.14% 21.06% 28.92% 0.00%  57.79% 42.21%  0.2910
Mucor.CBS277.49.fasta  AMYB01000003.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_03, whole genome shotgun sequence   4868387 1404688 1027031 1026257 1410411 0  28.85% 21.09% 21.08% 28.97% 0.00%  57.83% 42.17%  0.1907
Mucor.CBS277.49.fasta  AMYB01000004.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_04, whole genome shotgun sequence   4318338 1250156 914240  913373  1240569 0  28.94% 21.17% 21.15% 28.72% 0.00%  57.68% 42.32%  0.8201
Mucor.CBS277.49.fasta  AMYB01000005.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_05, whole genome shotgun sequence   3239665 934794  681540  688359  934972  0  28.85% 21.03% 21.24% 28.86% 0.00%  57.72% 42.28%  0.1120
Mucor.CBS277.49.fasta  AMYB01000006.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_06, whole genome shotgun sequence   3187354 921853  671173  669308  925020  0  28.92% 21.05% 20.99% 29.02% 0.00%  57.95% 42.05%  0.3346
Mucor.CBS277.49.fasta  AMYB01000007.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_07, whole genome shotgun sequence   3096690 894782  653220  654088  894600  0  28.89% 21.09% 21.12% 28.88% 0.00%  57.79% 42.21%  0.2955
Mucor.CBS277.49.fasta  AMYB01000008.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_08, whole genome shotgun sequence   2213752 637973  467830  470692  637257  0  28.81% 21.13% 21.26% 28.78% 0.00%  57.61% 42.39%  0.6272
Mucor.CBS277.49.fasta  AMYB01000009.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_09, whole genome shotgun sequence   1074709 310418  227365  225234  311692  0  28.88% 21.15% 20.95% 29.00% 0.00%  57.89% 42.11%  0.8349
Mucor.CBS277.49.fasta  AMYB01000010.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_10, whole genome shotgun sequence   976311  285831  206369  203542  280569  0  29.27% 21.13% 20.84% 28.73% 0.00%  58.02% 41.98%  0.0381
Mucor.CBS277.49.fasta  AMYB01000011.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_11, whole genome shotgun sequence   934259  273240  195919  194769  270331  0  29.24% 20.97% 20.84% 28.93% 0.00%  58.19% 41.81%  0.1318
Mucor.CBS277.49.fasta  AMYB01000012.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_12, whole genome shotgun sequence   832466  240427  175344  173907  242788  0  28.88% 21.06% 20.89% 29.16% 0.00%  58.05% 41.95%  0.7506
Mucor.CBS277.49.fasta  AMYB01000013.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_13, whole genome shotgun sequence   423239  121227  88619   87831   125562  0  28.64% 20.93% 20.75% 29.66% 0.00%  58.31% 41.69%  0.0489
Mucor.CBS277.49.fasta  AMYB01000014.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_14, whole genome shotgun sequence   155282  45402   31673   31509   46698   0  29.23% 20.39% 20.29% 30.07% 0.00%  59.32% 40.68%  0.0000
Mucor.CBS277.49.fasta  AMYB01000015.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_15, whole genome shotgun sequence   97977   28739   20928   20035   28275   0  29.33% 21.36% 20.44% 28.85% 0.00%  58.20% 41.80%  0.2347
Mucor.CBS277.49.fasta  AMYB01000016.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_16, whole genome shotgun sequence   41542   11324   9228    9406    11584   0  27.25% 22.21% 22.64% 27.88% 0.00%  55.15% 44.85%  0.0000
Mucor.CBS277.49.fasta  AMYB01000017.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_17, whole genome shotgun sequence   17493   5063    3195    3919    5316    0  28.94% 18.26% 22.40% 30.38% 0.00%  59.34% 40.66%  0.0239
Mucor.CBS277.49.fasta  AMYB01000018.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_18, whole genome shotgun sequence   11355   3216    2365    2256    3518    0  28.32% 20.82% 19.86% 30.98% 0.00%  59.31% 40.69%  0.5719
Mucor.CBS277.49.fasta  AMYB01000019.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_19, whole genome shotgun sequence   9869    2972    2278    2160    2459    0  30.11% 23.08% 21.88% 24.91% 0.00%  55.04% 44.96%  0.0099
Mucor.CBS277.49.fasta  AMYB01000020.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_21, whole genome shotgun sequence   4662    1534    815     946     1367    0  32.90% 17.48% 20.29% 29.32% 0.00%  62.23% 37.77%  0.0002
Mucor.CBS277.49.fasta  AMYB01000021.1 Mucor lusitanicus CBS 277.49 MUCCIscaffold_22, whole genome shotgun sequence   4155    1247    1002    1116    790     0  30.01% 24.11% 26.85% 19.01% 0.00%  49.03% 50.97%  0.0000

Note that the last column Pval assesses the GC-content adequation between each contig and the overall file content. Briefly, (up to) 5,000 nucleotide segments (non-overlapping, of length 200 bases) are first sampled from all the contig sequences, each being used to estimate the %GC, therefore leading to (up to) 5,000 %GC values (i.e. the set GCall) representative of the GC-content variation within the whole genome assembly. Next, for each contig, (up to) 500 nucleotide segments (non-overlapping, of length 200 bases) are sampled, leading to (up to) 500 %GC values (i.e. the set GCseq) representative of the GC-content variation within the contig. For each contig sequence, the adequation between GCseq and GCall is assessed using a Mann-Whitney (1947) U test. When Pval is close to 0, the GC-content of the corresponding contig is significantly different to the overall %GC. These U test p-values can be used to identify artefactual or particular (e.g. plasmid, mitochondrion) contigs, as such sequences often induce specific nucleotide compositions.

References

Craig Venter J, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Russo Wortman J, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea M, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji M-R, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik HK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Yuan Wang Z, Wang A, Wang X, Wang J, Wei M-H, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu SC, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Lai Cheng M, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi V, Reardon M, Rodriguez R, Rogers Y-H, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph R, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang Y-H, Coyne M, Dahlke C, Deslattes Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck D, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The Sequence of the Human Genome. Science, 291(5507):1304-1351. doi:10.1126/science.1058040.

Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V, Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z, Haimel M, Simpson JT, Fonseca NA, Birol İ, Docking TR, Ho IY, Rokhsar DS, Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR, Phillippy AM, Koren S, Yang SP, Wu W, Chou WC, Srivastava A, Shaw TI, Ruby JG, Skewes-Cox P, Betegon M, Dimon MT, Solovyev V, Seledtsov I, Kosarev P, Vorobyev D, Ramirez-Gonzalez R, Leggett R, MacLean D, Xia F, Luo R, Li Z, Xie Y, Liu B, Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Yin S, Sharpe T, Hall G, Kersey PJ, Durbin R, Jackman SD, Chapman JA, Huang X, DeRisi JL, Caccamo M, Li Y, Jaffe DB, Green RE, Haussler D, Korf I, Paten B (2011) Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Research, 21(12):2224-2241. doi:10.1101/gr.126599.111.

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J; International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature, 409(6822):860-921. doi:10.1038/35057062.

Mann HB, Whitney DR (1947) On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics, 18(1):50-60. doi:10.1214/aoms/1177730491.

Reinhardt JA, Baltrus DA, Nishimura MT, Jeck WR, Jones CD, Dangl JL (2009) De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae Genome Research, 19:294-305. doi:10.1101/gr.083311.108.

Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ, Schatz MC, Delcher AL, Roberts M, Marçais G, Pop M, Yorke JA (2012) GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Research, 22(3):557-567. doi:10.1101/gr.131383.111.