Skip to content
Snippets Groups Projects
Commit 8bceb897 authored by Bernd  JAGLA's avatar Bernd JAGLA
Browse files

git pat

parent 5cedc52a
No related branches found
No related tags found
No related merge requests found
Pipeline #105241 failed
......@@ -55,8 +55,11 @@ image: pf2dock/schnapps
test2:
stage: test2
script:
- set
- echo $GITHUB_PAT
- R -e "sessionInfo()"
- R -e "devtools::update_packages(dependencies = T, upgrade='always')"
- R -e "installed.packages()"
- export GITHUB_PAT=${R_PAT_TOKEN};R -e "devtools::update_packages(dependencies = T, upgrade='always')"
- R -e "devtools::install_gitlab(host='https://gitlab.pasteur.fr', repo = 'bernd/UTechSCB-SCHNAPPs', dependencies = TRUE)"
only:
- master
library(rhdf5)
h5ls("~/Downloads/GSE115189/suppl/GSM3169075_filtered_gene_bc_matrices_h5.h5")
mydata <- h5read("~/Downloads/GSE115189/suppl/GSM3169075_filtered_gene_bc_matrices_h5.h5", "/Homo_sapiens.GRCh38.v90.cellranger/data")
# normal distribution
data = rnorm(100000,sd = 1000,mean = 0)
load(file = "GSE3611.RData")
hist(data)
as(gse[[2]], "SingleCellExperiment")
assayData(gse[[1]])$exprs
adata = asinh(data)
colnames(gse[[1]])
pData(gse[[1]])
gse[[1]]
SingleCellExperiment(assays = assayData(gse[[1]])$exprs)
hist(adata)
# need to set rownames before
scEx <- SingleCellExperiment(
counts = assayData(gse[[1]])$exprs,
colData = pData(phenoData(gse[[1]]))
)
minb = 1
maxb = 500
stepb = 5
library(dplyr)
for (b in seq(minb, maxb, stepb)){
adata = asinh(data/b)
hist(adata, main = paste("b:",b),breaks = 1000,plot = T)
}
# standard deviation is the driving factor
for( sd in c(1,10,50,100,200,500,1000,10000,1000000)) {
data = rnorm(100000,sd = sd,mean = 0)
for (b in c(1,5,10,100,500,1000,5000)){
adata = asinh(data/b)
hist(adata,breaks = 1000, main=paste("sd:",sd, "b=",b))
}
}
#
# sd:1, b=5
# sd:10, b=100
# sd:50, b=200
# sd:100, b=500
# sd:200, b=800
# sd:500, b=5000
# sd:1000, b=5000
# sd:10,000, b>5000
# if the mean is slightly off, what are the effects
# shift to the negative, negative peak is much higher.
# the effecto of b seems to be independant of the mean
for( sd in c(1,100,500)) {
for(mean in c(-100, -10,0,10, 100)){
data = rnorm(100000,sd = sd,mean = mean)
for (b in c(1,5,500,5000)){
adata = asinh(data/b)
hist(adata,breaks = 1000, main=paste("sd:",sd, "b=",b, "mean:", mean))
}
}
}
# what about the number of cells?
# seems to have no effect...
sd=500
b=500
mean=100
for (nz in c(10000,20000,30000,40000,50000,100000,1000000,1e10)){
data = rnorm(100000,sd = sd,mean = mean)
adata = asinh(data/b)
hist(adata,breaks = 1000, main=paste("sd:",sd, "b=",b, "mean:", mean,"n:",nz))
}
example_sce <- SingleCellExperiment(
assays = list(counts = sc_example_counts),
colData = sc_example_cell_info
`
That means that only the standdeiviation has an effect with regards to b.
this might have some biological reason,
could be related to the age of the fluorchromes or others.
`
# Does the mean / median of the negative values says something about the std?
mean = 0
sd = 500
outDF = data.frame(mean = numeric(),
sd = character(),
b= numeric(),
meanVal = numeric(),
medianVal = numeric()
)
minb = 1
maxb = 5000
stepb = 5
for( sd in c(1,10,50,100,200,500,1000,10000,1000000)) {
data = rnorm(100000,sd = sd,mean = 0)
for (b in seq(minb, maxb, stepb)){
as = asinh(data/b)
as = as[as<0]
m1 = mean(as)
m2 = median(as)
outDF[nrow(outDF) + 1,] = c(mean = mean, sd=sd, b=b, meanVal = m1, medianVal = m2)
}
}
outDF$sd = as.factor(outDF$sd)
outDF$b = as.numeric(outDF$b)
outDF$medianVal = as.numeric(outDF$medianVal)
outDF$meanVal = as.numeric(outDF$meanVal)
outDF = outDF[!is.null(outDF$medianVal),]
library(ggplot2)
# this is IT!!! this shows that the value of b=1 can be used to determine the
# optimal value...
ggplot(outDF, aes(x=b, y=meanVal, color=sd)) + geom_line()
# But what is the optimal value???
library(parallel)
cl <- makeCluster(detectCores()-1) #not to overload your computer
doParallel::registerDoParallel(cl)
library(BiocParallel)
library(foreach)
b=5000
sd = 500
bVals = data.frame(sd = numeric(), b= numeric(), shPval=numeric())
# for(sd in seq(1, 5000, 10)){
out = foreach (sd = seq(1, 5000, 10), .combine = rbind) %dopar% {
for (b in 1:10000){
data = rnorm(5000,sd = sd,mean = 0)
adata = asinh(data/b)
hist(adata)
sh = shapiro.test(adata)
if( sh$p.value >0.1) {
bVals[nrow(bVals)+1,] = c(sd,b,sh$p.value)
return(c(sd,b,sh$p.value))
}
}
}
out = as.data.frame(out)
colnames(out) = c("sd", "b", "p-value")
plot(out$sd,out$b)
lm(b~sd, out)
data.frame(sd= numeric(), b1 = numeric(), b10=numeric())
b=5000
sd = 500
bVals = data.frame(sd = numeric(), b= numeric(), shPval=numeric())
# for(sd in seq(1, 5000, 10)){
out2 = foreach (sd = seq(1, 5000, 1), .combine = rbind) %dopar% {
data = rnorm(5000000,sd = sd,mean = 0)
b=1
as = asinh(data/b)
as = as[as<0]
m1 = mean(as)
m2 = median(as)
return(c(sd, b=1, m1))
}
# gsm holds data
# gse just describes the objects
# still don't know if individual cells are also individual gsm and how to link annoation
# also unclear on how to tranform to scEx
out = as.data.frame(out)
colnames(out) = c("sd", "b", "p-value")
plot(out$sd,out$b)
lm(b~sd, out)
gpl <- getGEO("GPL17021")
Meta(gse[[1]])
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment