Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bioinfo_utils
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Blaise LI
bioinfo_utils
Commits
28d6e34e
Commit
28d6e34e
authored
4 years ago
by
Blaise Li
Browse files
Options
Downloads
Patches
Plain Diff
Adapting TPM and RPM counting from RNA-seq.
parent
38c641d1
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
CLIP/iCLIP.snakefile
+113
-8
113 additions, 8 deletions
CLIP/iCLIP.snakefile
with
113 additions
and
8 deletions
CLIP/iCLIP.snakefile
+
113
−
8
View file @
28d6e34e
...
...
@@ -208,9 +208,16 @@ counting = [
## Will be pulled in as dependencies of other needed results:
# expand(OPJ("{trimmer}", aligner, "mapped_%s" % genome, "feature_count", "{lib}_{rep}_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"), trimmer=TRIMMERS, lib=LIBS, rep=REPS, read_type=POST_TRIMMING + SIZE_SELECTED, biotype=COUNT_BIOTYPES, orientation=ORIENTATIONS),
##
expand(OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count", "summaries", "all_{read_type}_on_%s_{orientation}_counts.txt" % genome), trimmer=TRIMMERS, read_type=POST_TRIMMING + SIZE_SELECTED + ["deduped"], orientation=ORIENTATIONS),
expand(OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count", "all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"), trimmer=TRIMMERS, read_type=POST_TRIMMING + SIZE_SELECTED + ["deduped"], biotype=COUNT_BIOTYPES, orientation=ORIENTATIONS),
expand(OPJ("{trimmer}", aligner, f"mapped_{genome}", "{lib}_{rep}_{read_type}_on_%s_by_{norm}_{orientation}.bw" % genome), trimmer=TRIMMERS, lib=LIBS, rep=REPS, read_type=POST_TRIMMING + SIZE_SELECTED + ["deduped"], norm=NORM_TYPES, orientation=["all"]),
expand(OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count", "summaries", "all_{read_type}_on_%s_{orientation}_counts.txt" % genome),
trimmer=TRIMMERS, read_type=POST_TRIMMING + SIZE_SELECTED + ["deduped"], orientation=ORIENTATIONS),
expand(OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count", "all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"),
trimmer=TRIMMERS, read_type=POST_TRIMMING + SIZE_SELECTED + ["deduped"], biotype=COUNT_BIOTYPES, orientation=ORIENTATIONS),
expand(OPJ("{trimmer}", aligner, f"mapped_{genome}", "{lib}_{rep}_{read_type}_on_%s_by_{norm}_{orientation}.bw" % genome),
trimmer=TRIMMERS, lib=LIBS, rep=REPS, read_type=POST_TRIMMING + SIZE_SELECTED + ["deduped"], norm=NORM_TYPES, orientation=["all"]),
expand(OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count", "all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_RPM.txt"),
trimmer=TRIMMERS, read_type=["deduped"], biotype=COUNT_BIOTYPES, orientation=ORIENTATIONS),
expand(OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count", "{lib}_mean_{read_type}_on_%s" % genome, "{lib}_mean_{biotype}_{orientation}_TPM.txt"),
trimmer=TRIMMERS, lib=LIBS, read_type=["deduped"], biotype=["protein_coding"], orientation=ORIENTATIONS),
]
#TODO:
...
...
@@ -647,7 +654,6 @@ rule feature_count_reads:
eval ${{cmd}} 1>> {log.log} 2> {log.err} || error_exit "featureCounts failed"
rm -rf ${{tmpdir}}
cat {output.counts} | wormid2name > {output.counts_converted}
# cat {output.counts} | id2name.py ${{converter}} > {output.counts_converted}
"""
...
...
@@ -667,10 +673,13 @@ rule summarize_feature_counts:
rule gather_read_counts_summaries:
"""Gather read count summaries across libraries: lib_rep -> all."""
input:
summary_tables = expand(OPJ("{{trimmer}}", aligner, "mapped_%s" % genome, "feature_count", "summaries", "{lib}_{rep}_{{read_type}}_on_%s_{{orientation}}_counts.txt" % genome), lib=LIBS, rep=REPS),
summary_tables = expand(OPJ("{{trimmer}}", aligner, "mapped_%s" % genome, "feature_count", "summaries",
"{lib}_{rep}_{{read_type}}_on_%s_{{orientation}}_counts.txt" % genome), lib=LIBS, rep=REPS),
output:
summary_table = OPJ("{trimmer}", aligner, "mapped_%s" % genome, "feature_count", "summaries", "all_{read_type}_on_%s_{orientation}_counts.txt" % genome),
summary_table = OPJ("{trimmer}", aligner, "mapped_%s" % genome, "feature_count", "summaries",
"all_{read_type}_on_%s_{orientation}_counts.txt" % genome),
run:
summary_files = (OPJ(
wildcards.trimmer,
...
...
@@ -689,9 +698,11 @@ rule gather_read_counts_summaries:
rule gather_counts:
"""For a given biotype, gather counts from all libraries in one table."""
input:
counts_tables = expand(OPJ("{{trimmer}}", aligner, "mapped_%s" % genome, "feature_count", "{lib}_{rep}_{{read_type}}_on_%s" % genome, "{{biotype}}_{{orientation}}_counts.txt"), lib=LIBS, rep=REPS),
counts_tables = expand(OPJ("{{trimmer}}", aligner, "mapped_%s" % genome, "feature_count",
"{lib}_{rep}_{{read_type}}_on_%s" % genome, "{{biotype}}_{{orientation}}_counts.txt"), lib=LIBS, rep=REPS),
output:
counts_table = OPJ("{trimmer}", aligner, "mapped_%s" % genome, "feature_count", "all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"),
counts_table = OPJ("{trimmer}", aligner, "mapped_%s" % genome, "feature_count",
"all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"),
# wildcard_constraints:
# # Avoid ambiguity with join_all_counts
# biotype = "|".join(COUNT_BIOTYPES)
...
...
@@ -734,6 +745,100 @@ rule gather_counts:
counts_data.to_csv(output.counts_table, sep="\t")
rule compute_RPK:
"""For a given biotype, compute the corresponding RPK value (reads per kilobase)."""
input:
# TODO: Why wildcards seems to be None?
#counts_data = rules.gather_counts.output.counts_table,
counts_data = OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count",
"all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"),
output:
rpk_file = OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count",
"all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_RPK.txt"),
params:
feature_lengths_file = OPJ(annot_dir, "union_exon_lengths.txt"),
wrapper:
f"file://{wrappers_dir}/compute_RPK"
rule compute_sum_million_RPK:
input:
rpk_file = rules.compute_RPK.output.rpk_file,
output:
sum_rpk_file = OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count",
"all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_sum_million_RPK.txt"),
run:
sum_rpk = pd.read_table(
input.rpk_file,
index_col=0).sum()
(sum_rpk / 1000000).to_csv(output.sum_rpk_file, sep="\t")
# Compute TPM using total number of mappers divided by genome length
# (not sum of RPK across biotypes: some mappers may not be counted)
# No, doesn't work: mappers / genome length not really comparable
# Needs to be done on all_types
rule compute_TPM:
"""For a given biotype, compute the corresponding TPM value (reads per kilobase per million mappers)."""
input:
rpk_file = rules.compute_RPK.output.rpk_file
output:
tpm_file = OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count",
"all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_TPM.txt"),
# The sum must be done over all counted features
wildcard_constraints:
biotype = "|".join(["protein_coding"])
# run:
# rpk = pd.read_table(input.rpk_file, index_col="gene")
# tpm = 1000000 * rpk / rpk.sum()
# tpm.to_csv(output.tpm_file, sep="\t")
wrapper:
f"file://{wrappers_dir}/compute_TPM"
# Useful to compute translation efficiency in the Ribo-seq pipeline
rule compute_mean_TPM:
input:
all_tmp_file = rules.compute_TPM.output.tpm_file
output:
tpm_file = OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count",
"{lib}_mean_{read_type}_on_%s" % genome, "{lib}_mean_{biotype}_{orientation}_TPM.txt"),
wildcard_constraints:
biotype = "|".join(["protein_coding"])
run:
tpm = pd.read_table(
input.all_tmp_file, index_col="gene",
usecols=["gene", *[f"{wildcards.lib}_{rep}" for rep in REPS]])
tpm_mean = tpm.mean(axis=1)
# This is a Series
tpm_mean.name = wildcards.lib
tpm_mean.to_csv(output.tpm_file, sep="\t", header=True)
rule compute_RPM:
input:
counts_data = OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count",
"all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"),
#summary_table = rules.gather_read_counts_summaries.output.summary_table,
summary_table = OPJ(
"{trimmer}", aligner, f"mapped_{genome}", "feature_count", "summaries",
"all_{read_type}_on_%s_fwd_counts.txt" % genome),
output:
rpm_file = OPJ("{trimmer}", aligner, f"mapped_{genome}", "feature_count",
"all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_RPM.txt"),
run:
# Reading column counts from {input.counts_table}
counts_data = pd.read_table(
input.counts_data,
index_col="gene")
# Reading number of protein_coding fwd mappers from {input.summary_table}
norm = pd.read_table(input.summary_table, index_col=0).loc["protein_coding"]
# Computing counts per million protein_coding fwd mappers
RPM = 1000000 * counts_data / norm
RPM.to_csv(output.rpm_file, sep="\t")
# TODO: add other steps found in RNA-seq pipeline ?
rule compute_median_ratio_to_pseudo_ref_size_factors:
input:
counts_table = rules.gather_counts.output.counts_table,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment