Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
bioinfo_utils
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Blaise LI
bioinfo_utils
Commits
47ac1ab4
Commit
47ac1ab4
authored
7 years ago
by
Blaise Li
Browse files
Options
Downloads
Patches
Plain Diff
Use correct size factor for iCLIP.
parent
00f001de
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
CLIP/iCLIP.snakefile
+37
-14
37 additions, 14 deletions
CLIP/iCLIP.snakefile
with
37 additions
and
14 deletions
CLIP/iCLIP.snakefile
+
37
−
14
View file @
47ac1ab4
...
...
@@ -110,6 +110,7 @@ wildcard_constraints:
lib="|".join(LIBS),
rep="\d+",
orientation="|".join(ORIENTATIONS),
norm="|".join(SIZE_FACTORS),
#size_range="\d+-\d+"
preprocessing = [
...
...
@@ -136,9 +137,9 @@ counting = [
## Will be pulled in as dependencies of other needed results:
# expand(OPJ(output_dir, "{trimmer}", aligner, "mapped_%s" % genome, "feature_count", "{lib}_{rep}_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"), trimmer=TRIMMERS, lib=LIBS, rep=REPS, read_type=POST_TRIMMING + SIZE_SELECTED, biotype=COUNT_BIOTYPES, orientation=ORIENTATIONS),
##
expand(OPJ(output_dir, "{trimmer}", aligner, "mapped_
%s" %
genome, "feature_count", "summaries", "all_{read_type}_on_%s_{orientation}_counts.txt" % genome), trimmer=TRIMMERS, read_type=POST_TRIMMING + SIZE_SELECTED, orientation=ORIENTATIONS),
expand(OPJ(output_dir, "{trimmer}", aligner, "mapped_
%s" %
genome, "feature_count", "all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"), trimmer=TRIMMERS, read_type=POST_TRIMMING + SIZE_SELECTED, biotype=COUNT_BIOTYPES, orientation=ORIENTATIONS),
expand(OPJ(output_dir, "{trimmer}", aligner, "mapped_
%s" %
genome, "{lib}_{rep}_{read_type}_on_%s_by_{norm
_type
}_{orientation}.bw" % genome), trimmer=TRIMMERS, lib=LIBS, rep=REPS, read_type=POST_TRIMMING + SIZE_SELECTED, norm
_type
=NORM_TYPES, orientation=["all"]),
expand(OPJ(output_dir, "{trimmer}", aligner,
f
"mapped_
{
genome
}"
, "feature_count", "summaries", "all_{read_type}_on_%s_{orientation}_counts.txt" % genome), trimmer=TRIMMERS, read_type=POST_TRIMMING + SIZE_SELECTED, orientation=ORIENTATIONS),
expand(OPJ(output_dir, "{trimmer}", aligner,
f
"mapped_
{
genome
}"
, "feature_count", "all_{read_type}_on_%s" % genome, "{biotype}_{orientation}_counts.txt"), trimmer=TRIMMERS, read_type=POST_TRIMMING + SIZE_SELECTED, biotype=COUNT_BIOTYPES, orientation=ORIENTATIONS),
expand(OPJ(output_dir, "{trimmer}", aligner,
f
"mapped_
{
genome
}"
, "{lib}_{rep}_{read_type}_on_%s_by_{norm}_{orientation}.bw" % genome), trimmer=TRIMMERS, lib=LIBS, rep=REPS, read_type=POST_TRIMMING + SIZE_SELECTED, norm=NORM_TYPES, orientation=["all"]),
]
#TODO:
...
...
@@ -378,7 +379,6 @@ def set_alignment_settings(wildcards):
###########
# Mapping #
###########
# TODO: replace settings by function of read_type
rule map_on_genome:
input:
# fastq = OPJ(data_dir, "trimmed_{trimmer}", "{lib}_{rep}_{read_type}.fastq.gz"),
...
...
@@ -630,28 +630,46 @@ rule compute_median_ratio_to_pseudo_ref_size_factors:
median_ratios.to_csv(output.median_ratios_file, sep="\t")
def source_norm_file(wildcards):
if wildcards.norm == "median_ratio_to_pseudo_ref":
return OPJ(output_dir, f"{wildcards.trimmer}", aligner, f"mapped_{genome}", "feature_count", "all_{wildcards.read_type}_on_%s" % genome, "protein_coding_fwd_median_ratios_to_pseudo_ref.txt"),
else:
return rules.summarize_feature_counts.output.summary
rule make_normalized_bigwig:
input:
bam = rules.sam2indexedbam.output.sorted_bam,
#bam = rules.fuse_bams.output.sorted_bam,
# TODO: use sourcing function based on norm_type
# TODO: use sourcing function based on norm
norm_file = source_norm_file,
#size_factor_file = rules.compute_coverage.output.coverage
median_ratios_file = OPJ(output_dir, "{trimmer}", aligner, "mapped_%s" % genome, "feature_count", "all_{read_type}_on_%s" % genome, "protein_coding_fwd_median_ratios_to_pseudo_ref.txt"),
#
median_ratios_file = OPJ(output_dir, "{trimmer}", aligner, "mapped_%s" % genome, "feature_count", "all_{read_type}_on_%s" % genome, "protein_coding_fwd_median_ratios_to_pseudo_ref.txt"),
# TODO: compute this
#scale_factor_file = OPJ(output_dir, aligner, "mapped_C_elegans", "annotation", "all_%s_on_C_elegans" % size_selected, "pisimi_median_ratios_to_pseudo_ref.txt"),
output:
bigwig_norm = OPJ(output_dir, "{trimmer}", aligner, "mapped_
%s" %
genome, "{lib}_{rep}_{read_type}_on_%s_by_{norm
_type
}_{orientation}.bw" % genome),
bigwig_norm = OPJ(output_dir, "{trimmer}", aligner,
f
"mapped_
{
genome
}"
, "{lib}_{rep}_{read_type}_on_%s_by_{norm}_{orientation}.bw" % genome),
#params:
# orient_filter = bamcoverage_filter,
threads: 12 # to limit memory usage, actually
benchmark:
OPJ(log_dir, "{trimmer}", "make_normalized_bigwig", "{lib}_{rep}_{read_type}_by_{norm
_type
}_{orientation}_benchmark.txt")
OPJ(log_dir, "{trimmer}", "make_normalized_bigwig", "{lib}_{rep}_{read_type}_by_{norm}_{orientation}_benchmark.txt")
params:
genome_binned = genome_binned,
log:
log = OPJ(log_dir, "{trimmer}", "make_normalized_bigwig", "{lib}_{rep}_{read_type}_by_{norm
_type
}_{orientation}.log"),
err = OPJ(log_dir, "{trimmer}", "make_normalized_bigwig", "{lib}_{rep}_{read_type}_by_{norm
_type
}_{orientation}.err"),
log = OPJ(log_dir, "{trimmer}", "make_normalized_bigwig", "{lib}_{rep}_{read_type}_by_{norm}_{orientation}.log"),
err = OPJ(log_dir, "{trimmer}", "make_normalized_bigwig", "{lib}_{rep}_{read_type}_by_{norm}_{orientation}.err"),
run:
if wildcards.norm == "median_ratio_to_pseudo_ref":
size = float(pd.read_table(
input.norm_file, index_col=0, header=None).loc[
f"{wildcards.lib}_{wildcards.rep}"])
else:
# We normalize by million in order not to have too small values
size = pd.read_table(input.norm_file).T.loc[wildcards.norm][0] / 1000000
#scale = 1 / pd.read_table(input.summary, index_col=0).loc[
# wildcards.norm_file].loc[f"{wildcards.lib}_{wildcards.rep}"]
assert size > 0
# TODO: make this a function of deeptools version
no_reads = """Error: The generated bedGraphFile was empty. Please adjust
your deepTools settings and check your input files.
...
...
@@ -663,14 +681,19 @@ bam2bigwig.sh: bedGraphToBigWig failed
shell("""
bam2bigwig.sh {input.bam} {params.genome_binned} \\
{wildcards.lib}_{wildcards.rep} {wildcards.orientation} %s \\
{input.median_ratios_file}
{output.bigwig_norm} \\
%f
{output.bigwig_norm} \\
> {log.log} 2> {log.err} \\
|| error_exit "bam2bigwig.sh failed"
""" % LIB_TYPE[-1])
""" %
(
LIB_TYPE[-1]
, size)
)
except CalledProcessError as e:
if last_lines(log.err, 2) in {no_reads, zero_bytes}:
with open(output.bigwig_norm, "w") as bwfile:
bwfile.write("")
bw_out = pyBigWig.open(output.bigwig_norm, "w")
bw_out.addHeader(list(chrom_sizes.items()))
for (chrom, chrom_len) in bw_out.chroms().items():
bw_out.addEntries(chrom, 0, values=np.nan_to_num(np.zeros(chrom_len)[0::10]), span=10, step=10)
bw_out.close()
#with open(output.bigwig_norm, "w") as bwfile:
# bwfile.write("")
else:
raise
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment