Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Data visualization in R and Python snippets
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Model registry
Analyze
Contributor analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Cosmin SAVEANU
Data visualization in R and Python snippets
Commits
e63338bc
Commit
e63338bc
authored
3 years ago
by
Cosmin SAVEANU
Browse files
Options
Downloads
Patches
Plain Diff
Add new file
parent
3aa1fd62
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Density coloured scatterplots with ggplot2/density_coloured_scatterplots20210913.R
+114
-0
114 additions, 0 deletions
...lots with ggplot2/density_coloured_scatterplots20210913.R
with
114 additions
and
0 deletions
Density coloured scatterplots with ggplot2/density_coloured_scatterplots20210913.R
0 → 100644
+
114
−
0
View file @
e63338bc
#File: density_coloured_scatterplots20210913.R
#Created September 13, 2021, by Cosmin SAVEANU
#Putting together a customized density coloured scatterplot
#version 1.0
library
(
ggplot2
)
library
(
dplyr
)
library
(
cowplot
)
library
(
viridis
)
##### Functions that can be used together for the scatter plot ######
# from https://stackoverflow.com/questions/13094827/how-to-reproduce-smoothscatters-outlier-plotting-in-ggplot
# thanks to the stackoverflow user "ninjaminb" https://stackoverflow.com/users/8933815/ninjaminb
densVals
<-
function
(
x
,
y
=
NULL
,
nbin
=
128
,
bandwidth
,
range.x
)
{
dat
<-
cbind
(
x
,
y
)
# limit dat to strictly finite values
sel
<-
is.finite
(
x
)
&
is.finite
(
y
)
dat.sel
<-
dat
[
sel
,
]
# density map with arbitrary graining along x and y
map
<-
grDevices
:::
.smoothScatterCalcDensity
(
dat.sel
,
nbin
,
bandwidth
)
map.x
<-
findInterval
(
dat.sel
[,
1
],
map
$
x1
)
map.y
<-
findInterval
(
dat.sel
[,
2
],
map
$
x2
)
# weighted mean of the fitted density map according to how close x and y are
# to the arbitrary grain of the map
den
<-
mapply
(
function
(
x
,
y
)
weighted.mean
(
x
=
c
(
map
$
fhat
[
x
,
y
],
map
$
fhat
[
x
+
1
,
y
+
1
],
map
$
fhat
[
x
+
1
,
y
],
map
$
fhat
[
x
,
y
+
1
]),
w
=
1
/
c
(
map
$
x1
[
x
]
+
map
$
x2
[
y
],
map
$
x1
[
x
+
1
]
+
map
$
x2
[
y
+
1
],
map
$
x1
[
x
+
1
]
+
map
$
x2
[
y
],
map
$
x1
[
x
]
+
map
$
x2
[
y
+
1
])),
map.x
,
map.y
)
# replace missing density estimates with NaN
res
<-
rep
(
NaN
,
length
(
sel
))
res
[
sel
]
<-
den
res
}
corstring
<-
function
(
datax
,
datay
){
cor_x_vs_y
<-
cor.test
(
datax
,
datay
)
pearson_r
<-
cor_x_vs_y
$
estimate
pearson_int
<-
cor_x_vs_y
$
estimate
-
cor_x_vs_y
$
conf.int
[
1
]
pearson_df
<-
cor_x_vs_y
$
parameter
pearson_text
<-
sprintf
(
"%s%.2f %s %.3f %s"
,
"r = "
,
pearson_r
,
"±"
,
pearson_int
,
'(95% CI)'
)
pearson_txt2
<-
sprintf
(
"%s %d"
,
"N = "
,
pearson_df
+2
)
return
(
paste
(
pearson_text
,
pearson_txt2
,
sep
=
"\n"
))
}
correl_plot_log
<-
function
(
df
,
colx
,
coly
,
breaksx
,
labelsx
,
breaksy
,
labelsy
,
xmin
,
xmax
,
ymin
,
ymax
,
cortext
,
xlabel
,
ylabel
)
{
# uses densVals to select a subset of points for the plot to avoid overlplotting
# the x and y values are considered to be log2 transformed
dfd
<-
data.frame
(
x
=
df
[,
colx
],
y
=
df
[,
coly
])
dfd
$
point_density
<-
densVals
(
dfd
$
x
,
dfd
$
y
)
corannotdf
<-
data.frame
(
x
=
log2
(
xmax
/
2
),
y
=
log2
(
ymax
))
ggplot
(
data
=
dfd
,
aes
(
x
=
x
,
y
=
y
))
+
stat_density2d
(
geom
=
"raster"
,
aes
(
fill
=
..density..
^
0.8
),
contour
=
FALSE
,
n
=
200
)
+
# the following line can be ommited if contour lines are not required
stat_density2d
(
aes
(
color
=
..level..
),
contour
=
TRUE
,
geom
=
"contour"
)
+
# instead of viridis, other color pallettes can be used
# white is the first color to avoid having color in low density regions of the plot
scale_fill_gradientn
(
colours
=
c
(
"white"
,
"#9D80A4"
,
viridis
(
n
=
10
)))
+
# select only the 500 points from lower density region
geom_point
(
data
=
dplyr
::
top_n
(
dfd
,
500
,
-
point_density
),
col
=
"#440154FF"
,
size
=
1
,
pch
=
21
,
fill
=
"#440154FF"
)
+
scale_x_continuous
(
breaks
=
breaksx
,
labels
=
labelsx
,
limits
=
c
(
log2
(
xmin
),
log2
(
xmax
)))
+
scale_y_continuous
(
breaks
=
breaksy
,
labels
=
labelsy
,
limits
=
c
(
log2
(
ymin
),
log2
(
ymax
)))
+
xlab
(
xlabel
)
+
ylab
(
ylabel
)
+
# the positioning of the labeling can be altered, or removed by commenting the following line
geom_text
(
data
=
corannotdf
,
x
=
corannotdf
$
x
,
y
=
corannotdf
$
y
,
label
=
cortext
,
size
=
2
)
+
# other themes can be indicated here
theme_cowplot
()
+
# tweaks to the theme by hiding the legend and changing the size of the axis labels
theme
(
axis.title
=
element_text
(
size
=
8
),
axis.text
=
element_text
(
size
=
8
),
axis.text.x
=
element_text
(
angle
=
90
,
vjust
=
0.5
,
hjust
=
1
),
legend.position
=
"none"
)
}
######## EXAMPLE ########
testdf
<-
data.frame
(
xbase
=
exp
(
rnorm
(
10000
)),
ybase
=
exp
(
rnorm
(
10000
)))
# the transformation applied will affect the local density estimate
testdf
$
log2x
<-
log2
(
testdf
$
xbase
)
testdf
$
log2y
<-
log2
(
testdf
$
ybase
)
# establish a custom scale, using log2 of values
xyvals
=
c
(
0.01
,
0.1
,
1
,
10
,
100
,
1000
)
breaksxy
=
log2
(
xyvals
)
labelsxy
=
as.character
(
xyvals
)
# compute a correlation value that will be displayed on the plot
testdfcor
<-
corstring
(
testdf
$
log2x
,
testdf
$
log2y
)
# compute the density of points around each x,y pair
testdf
$
point_density
<-
densVals
(
testdf
$
log2x
,
testdf
$
log2y
)
correl_plot_log
(
testdf
,
"log2x"
,
"log2y"
,
breaksxy
,
labelsxy
,
breaksxy
,
labelsxy
,
0.01
,
100
,
0.01
,
100
,
testdfcor
,
"x (log2 scale)"
,
"y (log2scale)"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment