Skip to content
Snippets Groups Projects
Commit 2388d08c authored by Gael  MILLOT's avatar Gael MILLOT
Browse files

tempo saving

parent c023b091
No related branches found
No related tags found
No related merge requests found
......@@ -39,37 +39,36 @@
######## fun_mat_inv() #### return the inverse of a square matrix 41
######## fun_mat_fill() #### fill the empty half part of a symmetric square matrix 42
######## fun_permut() #### progressively breaks a vector order 45
######## fun_permut_consec() #### as fun permut() but permuting consecutive positions 51
################ Graphics management 60
######## fun_width() #### window width depending on classes to plot 60
######## fun_open() #### open a GUI or pdf graphic window 61
######## fun_prior_plot() #### set graph param before plotting (erase axes for instance) 65
######## fun_scale() #### select nice label numbers when setting number of ticks on an axis 69
######## fun_post_plot() #### set graph param after plotting (axes redesign for instance) 73
######## fun_close() #### close specific graphic windows 85
################ Standard graphics 86
######## fun_empty_graph() #### text to display for empty graphs 86
################ gg graphics 88
######## fun_gg_palette() #### ggplot2 default color palette 88
######## fun_gg_just() #### ggplot2 justification of the axis labeling, depending on angle 89
######## fun_gg_point_rast() #### ggplot2 raster scatterplot layer 92
######## fun_gg_scatter() #### ggplot2 scatterplot + lines (up to 6 overlays totally) 95
######## fun_gg_bar_mean() #### ggplot2 mean barplot + overlaid dots if required 131
######## fun_gg_boxplot() #### ggplot2 boxplot + background dots if required 165
######## fun_gg_bar_prop() #### ggplot2 proportion barplot 170
######## fun_gg_strip() #### ggplot2 stripchart + mean/median 171
######## fun_gg_violin() #### ggplot2 violins 171
######## fun_gg_line() #### ggplot2 lines + background dots and error bars 171
######## fun_gg_heatmap() #### ggplot2 heatmap + overlaid mask if required 173
######## fun_gg_empty_graph() #### text to display for empty graphs 187
################ Graphic extraction 188
######## fun_trim() #### display values from a quantitative variable and trim according to defined cut-offs 188
######## fun_segmentation() #### segment a dot cloud on a scatterplot and define the dots from another cloud outside the segmentation 197
################ Import 229
######## fun_pack() #### check if R packages are present and import into the working environment 229
######## fun_python_pack() #### check if python packages are present 230
################ Exporting results (text & tables) 232
######## fun_report() #### print string or data object into output file 232
################ Graphics management 55
######## fun_width() #### window width depending on classes to plot 56
######## fun_open() #### open a GUI or pdf graphic window 57
######## fun_prior_plot() #### set graph param before plotting (erase axes for instance) 60
######## fun_scale() #### select nice label numbers when setting number of ticks on an axis 64
######## fun_post_plot() #### set graph param after plotting (axes redesign for instance) 69
######## fun_close() #### close specific graphic windows 80
################ Standard graphics 81
######## fun_empty_graph() #### text to display for empty graphs 82
################ gg graphics 83
######## fun_gg_palette() #### ggplot2 default color palette 83
######## fun_gg_just() #### ggplot2 justification of the axis labeling, depending on angle 84
######## fun_gg_point_rast() #### ggplot2 raster scatterplot layer 87
######## fun_gg_scatter() #### ggplot2 scatterplot + lines (up to 6 overlays totally) 90
######## fun_gg_bar_mean() #### ggplot2 mean barplot + overlaid dots if required 126
######## fun_gg_boxplot() #### ggplot2 boxplot + background dots if required 161
######## fun_gg_bar_prop() #### ggplot2 proportion barplot 166
######## fun_gg_strip() #### ggplot2 stripchart + mean/median 166
######## fun_gg_violin() #### ggplot2 violins 166
######## fun_gg_line() #### ggplot2 lines + background dots and error bars 166
######## fun_gg_heatmap() #### ggplot2 heatmap + overlaid mask if required 168
######## fun_gg_empty_graph() #### text to display for empty graphs 182
################ Graphic extraction 184
######## fun_trim() #### display values from a quantitative variable and trim according to defined cut-offs 184
######## fun_segmentation() #### segment a dot cloud on a scatterplot and define the dots from another cloud outside the segmentation 192
################ Import 224
######## fun_pack() #### check if R packages are present and import into the working environment 224
######## fun_python_pack() #### check if python packages are present 226
################ Exporting results (text & tables) 227
######## fun_report() #### print string or data object into output file 227
 
 
################################ FUNCTIONS ################################
......@@ -2158,10 +2157,10 @@ return(list(mat = mat, warnings = warning))
}
 
 
######## fun_permut_consec() #### progressively breaks a vector order
######## fun_permut() #### progressively breaks a vector order
 
 
fun_permut_consec <- function(data1, data2 = NULL, n = NULL, seed = NULL, count.print = 10, text.print = "", cor.method = "spearman", cor.limit = 0.2, warn.print = FALSE, path.lib = NULL){
fun_permut <- function(data1, data2 = NULL, n = NULL, seed = NULL, count.print = 10, text.print = "", cor.method = "spearman", cor.limit = 0.2, warn.print = FALSE, path.lib = NULL){
# AIM
# reorder the elements of the data1 vector by flipping 2 randomly selected consecutive positions either:
# 1) n times (when n is precised) or
......@@ -2194,17 +2193,17 @@ fun_permut_consec <- function(data1, data2 = NULL, n = NULL, seed = NULL, count.
# $cor: a spearman correlation between the initial positions (1:length(data1) and the final positions if data2 is not specified and the final correlation between data1 and data2 otherwise, according to cor.method
# $count: the number of loops used
# EXAMPLES
# example (1) showing that for loop, used in fun_permut_consec(), is faster than while loop
# example (1) showing that for loop, used in fun_permut(), is faster than while loop
# ini.time <- as.numeric(Sys.time()) ; count <- 0 ; for(i0 in 1:1e9){count <- count + 1} ; tempo.time <- as.numeric(Sys.time()) ; tempo.lapse <- round(lubridate::seconds_to_period(tempo.time - ini.time)) ; tempo.lapse
# example (2) showing that for loop, used in fun_permut_consec(), is faster than while loop
# example (2) showing that for loop, used in fun_permut(), is faster than while loop
# ini.time <- as.numeric(Sys.time()) ; count <- 0 ; while(count < 1e9){count <- count + 1} ; tempo.time <- as.numeric(Sys.time()) ; tempo.lapse <- round(lubridate::seconds_to_period(tempo.time - ini.time)) ; tempo.lapse
# fun_permut_consec(data1 = LETTERS[1:5], data2 = NULL, n = 100, seed = 1, count.print = 10, text.print = "CPU NB 4")
# fun_permut_consec(data1 = 101:110, data2 = 21:30, seed = 1, count.print = 1e4, text.print = "", cor.method = "spearman", cor.limit = 0.2)
# fun_permut(data1 = LETTERS[1:5], data2 = NULL, n = 100, seed = 1, count.print = 10, text.print = "CPU NB 4")
# fun_permut(data1 = 101:110, data2 = 21:30, seed = 1, count.print = 1e4, text.print = "", cor.method = "spearman", cor.limit = 0.2)
# a way to use the cor.limit argument just considering data1
# obs1 <- 101:110 ; fun_permut_consec(data1 = obs1, data2 = obs1, seed = 1, count.print = 10, cor.method = "spearman", cor.limit = 0.2)
# fun_permut_consec(data1 = 1:1e3, data2 = 1e3:1, seed = 1, count.print = 1e6, text.print = "", cor.method = "spearman", cor.limit = 0.7)
# fun_permut_consec(data1 = 1:1e2, data2 = 1e2:1, seed = 1, count.print = 1e3, cor.limit = 0.5)
# fun_permut_consec(data1 = c(0,0,0,0,0), n = 5, data2 = NULL, seed = 1, count.print = 1e3, cor.limit = 0.5)
# obs1 <- 101:110 ; fun_permut(data1 = obs1, data2 = obs1, seed = 1, count.print = 10, cor.method = "spearman", cor.limit = 0.2)
# fun_permut(data1 = 1:1e3, data2 = 1e3:1, seed = 1, count.print = 1e6, text.print = "", cor.method = "spearman", cor.limit = 0.7)
# fun_permut(data1 = 1:1e2, data2 = 1e2:1, seed = 1, count.print = 1e3, cor.limit = 0.5)
# fun_permut(data1 = c(0,0,0,0,0), n = 5, data2 = NULL, seed = 1, count.print = 1e3, cor.limit = 0.5)
# DEBUGGING
# data1 = LETTERS[1:5] ; data2 = NULL ; n = 1e6 ; seed = NULL ; count.print = 1e3 ; text.print = "" ; cor.method = "spearman" ; cor.limit = 0.2 ; warn.print = TRUE ; path.lib = NULL
# data1 = LETTERS[1:5] ; data2 = NULL ; n = 10 ; seed = 22 ; count.print = 10 ; text.print = "" ; cor.method = "spearman" ; cor.limit = 0.2 ; warn.print = TRUE ; path.lib = NULL
......
No preview for this file type
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment