Collection_Data_Types.rst

Collection Data Types
Exercises
4 Exercise
x = [1, 2, 3, 4]
y = x[1]
y = 3.14
x[1] = 'foo'

x = [1, 2, 3, 4]
x += [5, 6]

>>> x = [1, 2, 3, 4]
>>> id(x)
139950507563632
>>> x += [5,6]
>>> id(x)
139950507563632
compare with the exercise on string and integers:
Since list are mutable, when +=
is used the original list object is modified, so no rebinding of x is necessary.
We can observe this using id() which give the memory adress of an object. This adress does not change after the
+=
operation.
Note
even the results is the same ther is a subtelty to use augmented operator.
in a operator= b
python looks up a
’s value only once, so it is potentially faster
than the a = a operator b
.
5 Exercise
wihout using python shell, what is the results of the following statements:
Note
sum is a function which return the sum of each elements of a list.
x = [1, 2, 3, 4]
x[3] = -4 # what is the value of x now ?
y = sum(x)/len(x) #what is the value of y ? why ?
y = 0
because sum(x) is an integer, len(x) is also an integer so in python2.x the result is an integer, all the digits after the periods are discarded. In python3 we will obtain the expected result (see :ref:``)
6 Exercise
How to compute safely the average of a list?
float(sum(l)) / float(len(l))
7 Exercise
Draw the representation in memory of the following expressions.
x = [1, ['a','b','c'], 3, 4]
y = x[1]
y[2] = 'z'
# what is the value of x ?

When we execute y = x[1], we create y
wich reference the list ['a', 'b', 'c']
.
This list has 2 references on it: y
and x[1]
.

This object is a list so it is a mutable object.
So we can access and modify it by the two ways y
or x[1]
x = [1, ['a','b','z'], 3, 4]
8 Exercise
from the list l = [1, 2, 3, 4, 5, 6, 7, 8, 9] generate 2 lists l1 containing all odd values, and l2 all even values.:
l = [1, 2, 3, 4, 5, 6, 7, 8, 9]
l1 = l[::2]
l2 = l[1::2]
9 Exercise
generate a list containing all codons.
bases = 'acgt'
codons = []
for a in bases:
for b in bases:
for c in bases:
codon = a + b + c
codons.append(codon)
10 Exercise
From a list return a new list without any duplicate, regardless of the order of items. For example:
>>> l = [5,2,3,2,2,3,5,1]
>>> uniqify(l)
>>> [1,2,3,5] #is one of the solutions
solution
>>> list(set(l))
11 Exercise
let the following enzymes collection:
import collections
RestrictEnzyme = collections.namedtuple("RestrictEnzyme", "name comment sequence cut end")
ecor1 = RestrictEnzyme("EcoRI", "Ecoli restriction enzime I", "gaattc", 1, "sticky")
ecor5 = RestrictEnzyme("EcoRV", "Ecoli restriction enzime V", "gatatc", 3, "blunt")
bamh1 = RestrictEnzyme("BamHI", "type II restriction endonuclease from Bacillus amyloliquefaciens ", "ggatcc", 1, "sticky")
hind3 = RestrictEnzyme("HindIII", "type II site-specific nuclease from Haemophilus influenzae", "aagctt", 1 , "sticky")
taq1 = RestrictEnzyme("TaqI", "Thermus aquaticus", "tcga", 1 , "sticky")
not1 = RestrictEnzyme("NotI", "Nocardia otitidis", "gcggccgc", 2 , "sticky")
sau3a1 = RestrictEnzyme("Sau3aI", "Staphylococcus aureus", "gatc", 0 , "sticky")
hae3 = RestrictEnzyme("HaeIII", "Haemophilus aegyptius", "ggcc", 2 , "blunt")
sma1 = RestrictEnzyme("SmaI", "Serratia marcescens", "cccggg", 3 , "blunt")
and the 2 dna fragments:
dna_1 = """tcgcgcaacgtcgcctacatctcaagattcagcgccgagatccccgggggttgagcgatccccgtcagttggcgtgaattcag
cagcagcgcaccccgggcgtagaattccagttgcagataatagctgatttagttaacttggatcacagaagcttccaga
ccaccgtatggatcccaacgcactgttacggatccaattcgtacgtttggggtgatttgattcccgctgcctgccagg"""
dna_2 = """gagcatgagcggaattctgcatagcgcaagaatgcggccgcttagagcgatgctgccctaaactctatgcagcgggcgtgagg
attcagtggcttcagaattcctcccgggagaagctgaatagtgaaacgattgaggtgttgtggtgaaccgagtaag
agcagcttaaatcggagagaattccatttactggccagggtaagagttttggtaaatatatagtgatatctggcttg"""
dna_1 = dna_1.replace('\n', '')
dans_2 = dna_2.replace('\n', '')
enzymes = [ecor1, ecor5, bamh1, hind3, taq1, not1, sau3a1, hae3, sma1]
digest_1 = []
for enz in enzymes:
pos = dna_1.find(enz.sequence)
if pos != -1:
digest_1.append(enz)
with this first algorithm we find if an enzyme cut the dna but we cannot find all cuts in the dna for an enzyme.
If we find a cutting site, we must search again starting at the first nucleotid after the begining of the match
until the end of the the dna, for this we use the start parameter of the find function, and so on.
As we don't know how many loop we need to scan the dna until the end we use a while
loop testing for the presence of a cutting site.:
digest_1 = []
for enz in enzymes:
pos = dna_1.find(enz.sequence)
while pos != -1:
digest_1.append(enz)
pos = dna_1.find(enz.sequence, pos + 1)
digest_2 = []
for enz in enzymes:
pos = dna_2.find(enz.sequence)
while pos != -1:
digest_2.append(enz)
pos = dna_2.find(enz.sequence, pos + 1)
cut_dna_1 = set(digest_1)
cut_dna_2 = set(digest_2)
cut_dna_1_not_dna_2 = cut_dna_1 - cut_dna_2
If we want also the position, for instance to compute the fragments of dna.
digest_1 = []
for enz in enzymes:
pos = dna_1.find(enz.sequence)
while pos != -1:
digest_1.append((enz, pos))
pos = dna_1.find(enz.sequence, pos + 1)
from operator import itemgetter
digest_1.sort(key=itemgetter(1))
[(e.name, d) for e, d in digest_1]
digest_2 = []
for enz in enzymes:
pos = dna_2.find(enz.sequence)
while pos != -1:
digest_2.append((enz, pos))
pos = dna_2.find(enz.sequence, pos + 1)
cut_dna_1 = set([e.name for e in digest_1])
cut_dna_2 = set([e.name for e in digest_2])
cut_dna_1_not_dna_2 = cut_dna_1 - cut_dna_2
12 Exercise
From a list return a new list without any duplicate, but keeping the order of items. For example:
>>> l = [5,2,3,2,2,3,5,1]
>>> uniqify_with_order(l)
>>> [5,2,3,1]
solution
>>> uniq = []
>>> for item in l:
>>> if item not in uniq:
>>> uniq.append(item)
solution
>>> uniq_items = set()
>>> l_uniq = [x for x in l if x not in uniq_items and not uniq_items.add(x)]
13 Exercise
list and count occurences of every 3mers in the following sequence
s = """gtcagaccttcctcctcagaagctcacagaaaaacacgctttctgaaagattccacactcaatgccaaaatataccacag
gaaaattttgcaaggctcacggatttccagtgcaccactggctaaccaagtaggagcacctcttctactgccatgaaagg
aaaccttcaaaccctaccactgagccattaactaccatcctgtttaagatctgaaaaacatgaagactgtattgctcctg
atttgtcttctaggatctgctttcaccactccaaccgatccattgaactaccaatttggggcccatggacagaaaactgc
agagaagcataaatatactcattctgaaatgccagaggaagagaacacagggtttgtaaacaaaggtgatgtgctgtctg
gccacaggaccataaaagcagaggtaccggtactggatacacagaaggatgagccctgggcttccagaagacaaggacaa
ggtgatggtgagcatcaaacaaaaaacagcctgaggagcattaacttccttactctgcacagtaatccagggttggcttc
tgataaccaggaaagcaactctggcagcagcagggaacagcacagctctgagcaccaccagcccaggaggcacaggaaac
acggcaacatggctggccagtgggctctgagaggagaaagtccagtggatgctcttggtctggttcgtgagcgcaacaca"""
and finally print the results one 3mer and it's occurence per line.
write first the pseudocode, then implement it.
bonus: print the kmer by incresing occurences.
solution
s = s.replace('\n', '')
kmers = {}
for i in range(len(s) - 3):
kmer = s[i:i+3]
kmers[kmer] = kmers.get(kmer, 0) + 1
for kmer, occurence in kmers.items():
print kmer, " = ", occurence
we can use also a defaultdict:
import collections
s = s.replace('\n', '')
kmers = collection.defaultdict(int)
for i in range(len(s) - 3):
kmer = s[i:i+3]
kmers[kmer] += 1
solution bonus
list_of_kmers = kmers.items()
from operator import itemgetter
list_of_kmers.sort(key=itemgetter(1))
for kmer, occurence in list_of_kmers:
print kmer, " = ", occurence
solution bonus ::
list_of_kmers = kmers.items()
list_of_kmers.sort(key = lambda kmer: kmer[1])
for kmer, occurence in list_of_kmers:
print kmer, " = ", occurence
14 Exercise
compute the reversed complement of the following sequence:
seq = 'acggcaacatggctggccagtgggctctgagaggagaaagtccagtggatgctcttggtctggttcgtgagcgcaacaca'
base_comp = { 'a' : 't',
'c' : 'g',
'g' : 'c',
't' : 'a'}
complement = ''
for base in seq:
complement += base_comp[base]
reverse_comp = complement[::-1]
print reverse_comp
tgtgttgcgctcacgaaccagaccaagagcatccactggactttctcctctcagagcccactggccagccatgttgccgt
15 Exercise
given the following dict :
d = {1 : 'a', 2 : 'b', 3 : 'c' , 4 : 'd'}
We want obtain a new dict with the keys and the values inverted so we will obtain:
inverted_d {'a': 1, 'c': 3, 'b': 2, 'd': 4}
solution
inverted_d = {}
for key in d.keys():
inverted_d[d[key]] = key
solution
inverted_d = {}
for key, value in d.items():
inverted_d[value] = key
solution
inverted_d = {v : k for k, v in d.items()}