Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
import csv
from collections import defaultdict
import sys, getopt
import os
import math
from shutil import copyfile
import pandas as pd
from scipy.stats import chi2
from Bio import SeqIO
import os.path
SOFTWARES = {'meme','dreme','centrimo','meme_tomtom'}
##TYPES_SEARCHES = {'All','Narrow','Const','Max'}
def get_size_fasta(path_motif, exp_design_name):
with open(path_motif + 'Fasta_Summary.txt', 'w') as fasta_summary:
for data_name in os.listdir(path_motif+'fasta/'):
if data_name.endswith('.fasta'):
print(data_name)
fasta_seq = SeqIO.to_dict(SeqIO.parse(path_motif+'fasta/'+data_name, "fasta"))
print(data_name,len(fasta_seq))
fasta_summary.write(data_name.replace('.fasta','')+'\t'+str(len(fasta_seq))+'\n')
def parse_all_logs(path_motif, exp_design_name):
with open(path_motif + '../Motif_search.log', 'w') as general_log:
header = 'Data_name\t' + '\t'.join(SOFTWARES)
general_log.write(header+'\n')
for data_name in os.listdir(path_motif):
if not data_name.startswith('.') and not data_name.endswith('.log') and not data_name.endswith('.sh'):
progress_filename = path_motif + data_name + '/progress_log.txt'
line = data_name + '\t'
for software in SOFTWARES:
found = False
with open(progress_filename,'r') as file:
for row in file:
status_soft = 'name: '+software+' status: 0'
if status_soft in row:
found = True
if found:
line += '1\t'
else:
line += '0\t'
general_log.write(line.strip() + '\n')
def parse_dreme(path_motif, exp_design_name):
with open(path_motif + 'dreme.sh', 'w') as dreme_file:
for data_name in os.listdir(path_motif):
if exp_design_name in data_name:
print(data_name)
if not data_name.startswith('.') and not data_name.endswith('.log') and not data_name.endswith('.sh'):
# print(data_name)
dreme_xml = path_motif + data_name + '/dreme_out/dreme.xml'
if os.path.exists(dreme_xml):
dreme_list = list()
with open(dreme_xml, 'r') as file:
for row in file:
dreme_list.append(row.strip())
if '<command_line>' in row:
dreme_file.write(row)
dreme_txt = path_motif + data_name + '/dreme_out/dreme.txt'
dreme_txt_list = list()
with open(dreme_txt, 'r') as file:
for row in file:
dreme_txt_list.append(row.strip())
dreme_txt_intro = ''
write_intro = False
for row in dreme_txt_list:
if row.startswith('MOTIF '):
break
if 'MEME version' in row:
write_intro = True
if write_intro:
dreme_txt_intro += row + '\n'
#print(dreme_txt_intro)
# parse dreme
with open(path_motif + '../logs/Dreme_' + data_name + '.log', 'w') as general_log:
header = 'ID\tMotif\tNb_sites\tPos_Occurence\tNeg_Occurence\tNb_Seq\t' \
'Percent\tPos_Percent\tNeg_Percent\tEvalue'
general_log.write(header + '\n')
# search length fasta
for line in dreme_list:
if '<positives name=' in line:
number_seq = float(line.split(' ')[2].replace('\"','').replace('count=',''))
# search motifs
for i in range(1, len(dreme_list)):
line = dreme_list[i]
if '<motifs>' in line:
index_motifs = i
break
# get motifs info
for k in range(index_motifs+1, len(dreme_list)):
if '<motif' in dreme_list[k]:
new_line = dreme_list[k].replace('\"','').split(' ')
#print(new_line)
id = new_line[1].replace('id=', '')
#print(id,data_name)
print(dreme_txt_intro)
seq = new_line[2].replace('seq=', '')
occ = float(new_line[4].replace('nsites=', ''))
pos_occ = float(new_line[5].replace('p=', ''))
neg_occ = float(new_line[6].replace('n=', ''))
evalue = new_line[8].replace('evalue=', '')
# save table
line_to_write = [id, seq, str(occ), str(pos_occ),str(neg_occ), str(number_seq),
str(occ/number_seq), str(pos_occ/number_seq), str(neg_occ/number_seq),
str(evalue)]
general_log.write('\t'.join(line_to_write) + '\n')
# copy png file
for imagefile in os.listdir(path_motif + data_name + '/dreme_out/'):
if id in imagefile:
if 'nc_' in imagefile:
src = path_motif + data_name + '/dreme_out/' + imagefile
dst = path_motif + '../motif_figure/'+seq + '_nc.png'
copyfile(src, dst)
else:
src = path_motif + data_name + '/dreme_out/' + imagefile
dst = path_motif + '../motif_figure/' + seq + '_rc.png'
copyfile(src, dst)
# save motif
with open(path_motif + '../motif/' + seq + '.meme', 'w') as meme_file:
meme_file.write(dreme_txt_intro+'\n')
# find motif info
dreme_txt_motif = ''
write_motif = False
for row in dreme_txt_list:
if write_motif and row.startswith('MOTIF '):
break
if ('MOTIF '+seq+' DREME') in row:
write_motif = True
if write_motif:
dreme_txt_motif += row + '\n'
print(dreme_txt_motif)
meme_file.write(dreme_txt_motif + '\n')
def regroup_motifs(path_motif, exp_design_name):
motif_set = set()
dict_dataset = defaultdict(list)
dict_evalue = defaultdict(list)
for data_name in os.listdir(path_motif+'logs/'):
if data_name.startswith('Dreme_') and data_name.endswith('.log'):
type_data = data_name.replace('Dreme_','').replace('.log','')
print(type_data,data_name)
with open(path_motif+'logs/'+data_name,'r') as log_file:
log_file.readline()
for line in log_file:
motif = line.split('\t')[1]
evalue = line.strip().split('\t')[-1]
motif_set.add(motif)
dict_dataset[motif].append(type_data)
dict_evalue[motif].append(evalue)
with open(path_motif + 'Motif_'+exp_design_name+'.txt','w') as motif_log:
motif_log.write("Motif\tData\tP-value\n")
for motif in motif_set:
motif_log.write(motif+'\t'+';'.join(dict_dataset[motif])+'\t'+';'.join(dict_evalue[motif])+'\n')
def add_motif(path_motif, motif, motif_list_filename):
motif_file = path_motif + '/motif/' + motif + '.meme'
motif_figure_file = path_motif + '/motif_figure/' + motif + '_nc.png'
# Meme-suite as to be installed for using = iupac2meme
os.system('iupac2meme -dna ' + motif + ' > ' + motif_file)
# os.system('ceqlogo -i ' + motif_file + ' -m ' + motif + ' -o '+motif_figure_file+' -f png')
#
# list_motif = list()
# with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
# motif_file.readline()
def regroup_figures(path_motif, motif_list):
'''
Create SVG file with all motifs included
:param path_motif:
:param motif_list:
:return:
'''
print('Create PNG file with all motifs')
df_summary = pd.read_csv(path_motif + motif_list + '.txt', sep='\t')
df_summary = df_summary.sort_values(by=['Motif'], ascending=[True])
svg_text = '<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<!-- Generator: Adobe Illustrator 15.0.0, SVG Export ' \
'Plug-In . SVG Version: 6.00 Build 0) -->\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"' \
'http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<svg version=\"1.1\" id=\"Calque_1\" ' \
'xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" x=\"0px\" y=\"0px\"' \
' width=\"1300px\" height=\"'+str(len(df_summary.index)*100)+'px\" viewBox=\"0 0 1300 '\
+str(len(df_summary.index)*100)+'\" xml:space=\"preserve\">\n'
i=0
for index, row in df_summary.iterrows():
motif = row['Motif']
data = row['Data']
pvalue = row['P-value']
image_file = 'motif_figure/' + motif + '_nc.png'
new_row = '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"'+image_file+'\" ' \
'transform=\"matrix(0.5184 0 0 0.5184 10.00 '+ str(float(100*i))+')\">\n</image>\n'
image_file = 'motif_figure/' + motif + '_rc.png'
if os.path.isfile(image_file):
new_row += '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"' + image_file + '\" ' \
'transform=\"matrix(0.5184 0 0 0.5184 170.00 '+ str(float(100*i))+')\">\n</image>\n'
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 340 '+ str(float(50+100*i))+')\" font-family=' \
'\"\'MyriadPro-Regular\'\" font-size=\"40\">'+data+'</text>\n'
new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 800 '+ str(float(50+100*i))+')\" font-family=' \
'\"\'MyriadPro-Regular\'\" font-size=\"40\">'+pvalue+'</text>\n'
svg_text += new_row
i+=1
svg_text += '</svg>\n'
with open(path_motif + motif_list + '.svg', 'w') as figure_file:
figure_file.write(svg_text)
print('Convert svg to png')
os.system('convert '+path_motif + motif_list + '.svg '+path_motif + motif_list + '.png')
os.system('convert '+path_motif + motif_list + '.svg '+path_motif + '../../All_Figures/Motif/' + motif_list + '.png')
def run_fimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename):
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
data_list = list()
with open(path_motif + data_list_filename + '.txt', 'r') as data_file:
for row in data_file:
data_list.append(row.split('\t')[0].strip())
with open(path_motif + 'Fimo.sh', 'w') as motif_sh:
for motif in motif_list:
motif_file = path_script + 'motif/' + motif + '.meme'
print(motif_file)
for data_name in data_list:
fasta_file = path_script + 'fasta/' + data_name + '.fasta'
background_file = path_script + 'results/' + data_name + '/background'
folder_fimo = path_script + 'fimo/' + motif + '_' + data_name
fimo_sh = 'fimo --parse-genomic-coord --verbosity 1 --thresh 1e-2 --max-stored-scores 1000000 '\
'--oc ' + folder_fimo + ' --bgfile ' + background_file + ' ' + motif_file + ' ' + fasta_file
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
print(fimo_sh)
motif_sh.write(fimo_sh+'\n')
def run_centrimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename):
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
data_list = list()
with open(path_motif + data_list_filename + '.txt', 'r') as data_file:
for row in data_file:
data_list.append(row.split('\t')[0].strip())
with open(path_motif + 'Centrimo.sh', 'w') as motif_sh:
for motif in motif_list:
motif_file = path_motif + 'motif/' + motif + '.meme'
print(motif_file)
for data_name in data_list:
fasta_file = path_motif + 'fasta/' + data_name + '.fasta'
folder_centrimo = path_motif + 'centrimo/' + motif + '_' + data_name
centrimo_sh = 'centrimo -seqlen 100 -verbosity 1 -oc ' + folder_centrimo + ' -score 5.0 '\
'-ethresh 10.0 ' + fasta_file + ' '+motif_file
print(centrimo_sh)
motif_sh.write(centrimo_sh + '\n')
def parse_fimo(path_motif, exp_design_name, motif_list_filename, data_list_filename):
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
data_list = list()
with open(path_motif + data_list_filename + '.txt', 'r') as data_file:
for row in data_file:
data_list.append(row.split('\t')[0].strip())
fasta_to_length = dict()
with open(path_motif + 'Fasta_Summary.txt', 'r') as fasta_summary:
for row in fasta_summary:
fasta_to_length[row.split('\t')[0]] = int(row.strip().split('\t')[1])
with open(path_motif + 'Fimo_Summary_Max.txt', 'w') as fimo_summary_max, \
open(path_motif + 'Fimo_Summary_All.txt', 'w') as fimo_summary_all:
headers = 'Data_Name\tSeq\tData\tTotal_Occurence\tNb_Peaks\tNb_Peaks_Fasta\tRatio\n'
fimo_summary_max.write(headers)
fimo_summary_all.write(headers)
for seq in motif_list:
for data_type in data_list:
data_name = seq + '_'+ data_type
print(data_name)
if not os.path.exists(path_motif + 'fimo/' + data_name + '/fimo.txt'):
print('Cannot find:' + path_motif + 'fimo/' + data_name + '/fimo.txt')
print('Create void table to proceed motif algorithm')
with open(path_motif + 'fimo_template.txt', 'r') as fimo_file, \
open(path_motif + 'fimo/' + data_name + '/fimo.txt', 'w') as fimo_table:
fimo_table.write(fimo_file.readline())
fimo_table.write(fimo_file.readline())
with open(path_motif + 'fimo/' + data_name + '/fimo.txt','r') as fimo_file, \
open(path_motif + 'fimo/' + data_name + '/fimo_table.txt', 'w') as fimo_table:
fimo_table.write('Peak\tOcc\tchi_fisher\tscore\n')
fimo_file_csv = csv.DictReader(fimo_file, delimiter='\t')
peak_to_value = defaultdict(list)
peak_to_occurence = defaultdict(int)
for row in fimo_file_csv:
value = float(row['score'])
if value > 0:
peak_to_occurence[row['sequence name']] += 1
peak_to_value[row['sequence name']].append(str(row['score']))
total_occ = 0
for peak, occ in peak_to_occurence.items():
chi_fisher = 0
for pvalue in peak_to_value[peak]:
#chi_fisher += -2 * math.log1p(float(pvalue))
chi_fisher += float(pvalue)
#print chi_fisher
fimo_table.write(peak+'\t'+str(occ)+'\t'+str(chi_fisher)+'\t'+';'.join(peak_to_value[peak])+'\n')
total_occ += occ
seq = data_name[0:data_name.index('_')]
fasta_name = data_name[data_name.index('_')+1:len(data_name)]
fasta_length = fasta_to_length[fasta_name]
new_line = data_name + '\t' + seq + '\t' + fasta_name + '\t' + str(total_occ) + '\t' \
+ str(len(peak_to_occurence)) + '\t' + str(fasta_length) + '\t' + \
str(total_occ) + '\n'
if 'All_' in data_name:
fimo_summary_all.write(new_line)
else:
fimo_summary_max.write(new_line)
def create_motif_table(path_motif, exp_design_name, path_peaks, motif_list_filename, data_list_filename, type_search):
set_seq = set()
set_type_data = set()
df_summary = pd.read_csv(path_motif + 'Fimo_Summary_' + type_search + '.txt', index_col=0, sep='\t')
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
data_list = list()
with open(path_motif + data_list_filename + '.txt', 'r') as data_file:
for row in data_file:
data_type = row.split('\t')[0].strip()
data_list.append(data_type)
set_peaks = set()
df_peaks = pd.read_csv(path_peaks+ exp_design_name + '_Peaks.txt', index_col=0, sep='\t')
for index in df_peaks.index:
set_peaks.add(index)
for seq in motif_list:
print(seq)
with open(path_motif + 'mutual_information/Fimo_Table_' + type_search + '_' + seq + '.txt', 'w') as fimo_table, \
open(path_motif + 'mutual_information/Fimo_Table_' + type_search + '_' + seq + '_Count.txt', 'w') as fimo_summary:
header_type_data = list(data_list)
#header_type_data[0] = 'All'
fimo_summary.write('Pres_Abs\t' + '\t'.join(header_type_data)+'\n')
fimo_table.write('Peak\t' + '\t'.join(header_type_data) + '\n')
peak_to_occ = defaultdict(dict)
data_to_count = dict()
for type_data in data_list:
print(type_data)
data_name = seq + '_' + type_data
df_motif = pd.read_csv(path_motif + 'fimo/' + data_name + '/fimo_table.txt', index_col=0, sep='\t')
count_occ = 0
for peak in set_peaks:
if peak in df_motif.index:
peak_to_occ[peak][type_data] = df_motif['chi_fisher'][peak]
count_occ += df_motif['chi_fisher'][peak]
else:
peak_to_occ[peak][type_data] = 0
data_to_count[type_data] = count_occ
new_line = 'Present\t'
for index in data_list:
new_line += str(data_to_count[index]) + '\t'
fimo_summary.write(new_line.strip() + '\n')
for peak in peak_to_occ:
new_line = peak + '\t'
for index in data_list:
new_line += str(peak_to_occ[peak][index]) + '\t'
fimo_table.write(new_line.strip() + '\n')
def create_occurence_table(path_motif, exp_design_name, motif_list_filename, data_list_filename, type_search):
fasta_to_length = dict()
with open(path_motif + 'Fasta_Summary.txt', 'r') as fasta_summary:
for row in fasta_summary:
fasta_to_length[row.split('\t')[0]] = int(row.strip().split('\t')[1])
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
data_list = list()
with open(path_motif + data_list_filename + '.txt', 'r') as data_file:
for row in data_file:
data_type = row.split('\t')[0].strip()
data_list.append(data_type)
with open(path_motif + 'Fimo_Table_' + type_search + '.txt', 'w') as fimo_summary:
header = 'Sequence\t' + '\t'.join(list(data_list))
fimo_summary.write(header + '\n')
for seq in motif_list:
print(seq)
df_motif = pd.read_csv(path_motif + 'mutual_information/Fimo_Table_' + type_search + '_' + seq + '_Count.txt'
, index_col=0, sep='\t')
new_line = seq + '\t'
print(df_motif.columns)
for type_data in data_list:
row_name = seq + '_' + type_search + '_' + exp_design_name + type_data
length = fasta_to_length[type_data]
print(length)
if type_data == '':
type_data = 'All'
value = df_motif[type_data]['Present']
if length != 0 :
new_line += str(float(value)/float(length)) + '\t'
else:
new_line += str(0) + '\t'
fimo_summary.write(new_line.strip() + '\n')
#exp_design_name = 'LivOld'
exp_design_name = 'CecAm_MaxMaxValues'
#path = '/Users/cbecavin/Documents/m6aAkker/'
path = '/Volumes/m6aAkker/'
path_motif = path + 'PeakDiffExpression/' + exp_design_name + '/Motif/'
path_peaks = path + 'PeakDetection/Peaks/'
if not os.path.isdir(path_motif + 'logs/'):
os.mkdir(path_motif + 'logs/')
if not os.path.isdir(path_motif + 'motif/'):
os.mkdir(path_motif + 'motif/')
if not os.path.isdir(path_motif + 'motif_figure/'):
os.mkdir(path_motif + 'motif_figure/')
if not os.path.isdir(path_motif + 'fimo/'):
os.mkdir(path_motif + 'fimo/')
#path_script = path + 'PeakDiffExpression/' + exp_design_name + '/Motif/'
path_script = '/pasteur/projets/policy01/m6aAkker/' + 'PeakDiffExpression/' + exp_design_name + '/Motif/'
# get size fasta
#get_size_fasta(path_motif, exp_design_name)
# first look at log to see which software crashed
#parse_all_logs(path_motif+'/results/', exp_design_name)
# Parse meme results and extract all motifs
#parse_dreme(path_motif+'/results/', exp_design_name)
# regroup all motifs
#regroup_motifs(path_motif, exp_design_name)
motif_list_filename = 'Motif_'+exp_design_name+'_Filter'
# add new motif
# motif = 'RRACH'
# add_motif(path_motif, motif, motif_list_filename)
# motif = 'BCA'
# add_motif(path_motif, motif, motif_list_filename)
# put all motifs figures together to filter the list
#regroup_figures(path_motif, motif_list_filename)
data_list_filename = 'list_data_' + exp_design_name
#data_list_filename = 'list_data_All'
# write sh file for running fimo
run_fimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename)
# write sh file for running centrimo
#run_centrimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename)
# parse fimo results
#parse_fimo(path_motif, exp_design_name, motif_list_filename, data_list_filename)
#motif_list_filename = 'list_motifs_All'
#motif_list_filename = 'list_motifs_Max'
#data_list_filename = 'list_data_All'
#data_list_filename = 'list_data_Max'
#type_search = 'All'
#type_search = 'Max'
# create a table for each motif of occurence in list
#create_motif_table(path_motif, exp_design_name, path_peaks, motif_list_filename, data_list_filename, type_search)
# create a table for occurence of each motif
#create_occurence_table(path_motif, exp_design_name, motif_list_filename, data_list_filename, type_search)