Skip to content
Snippets Groups Projects
EPITOME_CS_integration.Rmd 46.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
---
title: "Epigenomic memory of infection: Data integration"
subtitle : "H3K4me2, transcriptome time courses and chromatin state"
author: "Claudia Chica"
date: "02.2021"
output: 
  html_document: 
    keep_md: yes
    number_sections: yes
    smart: no
    toc: yes
    toc_float: yes
editor_options: 
  chunk_output_type: console
---

```{r setup, message = FALSE, warning = FALSE, echo = FALSE}
knitr::opts_chunk$set(message=FALSE,warning=FALSE,echo=FALSE)#, cache=TRUE, cache.lazy = FALSE)
knitr::opts_knit$set(progress = FALSE, verbose = FALSE)
#knitr::opts_chunk$set(dev = "svg")

WDIR="/Volumes/bioit/12891_Chevalier_EpiMemStrep"

library(ggplot2)
library(plyranges)
library(RColorBrewer)
library(knitr)
library(pheatmap)
library(patchwork)
library(FactoMineR)
library(org.Hs.eg.db)
library(msigdbr)


```

# Methylation profile

```{r loadEPIGresults}
# Load epigenomic counts
mark="H3K4me2"
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/countNormLength_",mark,".RData")
load(fileOut)

# Discard ONE peak with negative normalised values in a SINGLE replicate (artefact from cycliclowess normalisation)
countNormLength_H3K4me2=countNormLength_H3K4me2[countNormLength_H3K4me2$norm.H3K4me2_UI_REP1>0,]

# Get list of DM peaks
files=list.files(path = paste0(WDIR,"/results_project12891/tables/tables_v3_UCSC/",mark,"/"),pattern = "resAnDif_with_annotation_sorted.final.xls", full.names = T)
DM_results=list() ; i=1
for (fileDM in files) {
  no_col <- max(count.fields(fileDM, sep = "\t"))
  tmp=read.table(fileDM,header = F,sep="\t", fill = TRUE,skip = 1,
                 col.names=1:no_col,colClasses = c("character",rep("numeric",16),rep("character",no_col-17)))
  row.names(tmp) <- tmp[,1]
  tmp=tmp[,14:17]
  colnames(tmp) <- c("baseMean", "log2FoldChange", "pvalue", "padj")
  tmp=tmp[row.names(countNormLength_H3K4me2),]
  DM_results[[i]]=tmp ; i=i+1
}
rm(tmp)
names(DM_results) <- c("D7vsH3","D7vsUI","H3vsUI")

# DM profiles
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/DMpeaks_",mark,".RData")
load(fileOut)

# Add not DEGs
DMpeaks_H3K4me2=intersect(DMpeaks_H3K4me2,row.names(DM_results$D7vsUI))
tmp=setdiff(row.names(countNormLength_H3K4me2),DMpeaks_H3K4me2)
DMs=data.frame(peakID=DMpeaks_H3K4me2,
               Kind="DM",
Sign=ifelse(DM_results$D7vsUI[DMpeaks_H3K4me2,]$log2FoldChange>=0,"Gain","Loss"))
notDMs=data.frame(peakID=tmp,
                  Kind="notDM",
Sign=ifelse(DM_results$D7vsUI[tmp,]$log2FoldChange>=0,"Gain","Loss"))
DMs=rbind(DMs,notDMs)
DMs$peakID=as.character(DMs$peakID)
rm(tmp,notDMs)

kable(table(DMs$Kind,DMs$Sign))
```

# Transcriptional profile
```{r loadTOMEresults}
# Expression data normalised and batch corrected 
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/Data_RMAandNoBatch_Annot.RData")
load(fileOut)

# DA results, same object used for the functional analysis
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/DE_results_Annot.RData")
load(fileOut)

SYMBOL2ENTREZ=unique(data.frame(SYMBOL=as.character(DE_results$H3vsUI$SYMBOL),
                         ENTREZID=as.character(DE_results$H3vsUI$ENTREZID),stringsAsFactors = FALSE))

# DEGs padjTh=.05 ; lfcTh=0
fileOut=paste0(WDIR,"/results_project12891/tables/transcriptome/DEGs_H3K4me2profiles_CompleteAnnotationPeaks_nearestGene.txt")
DEGs=read.table(fileOut,header = T)[,7:10]
DEGs=unique(na.omit(DEGs))
DEGs$SYMBOL=as.character(DEGs$SYMBOL)
DEGs$ENTREZID=as.character(DEGs$ENTREZID)
# Add not DEGs
tmp=setdiff(SYMBOL2ENTREZ$ENTREZID,DEGs$ENTREZID)
H3vsUI=DE_results$H3vsUI[!duplicated(DE_results$H3vsUI$ENTREZID),]
DIvsD7=DE_results$DIvsD7[!duplicated(DE_results$DIvsD7$ENTREZID),]
notDEGs=data.frame(ENTREZID=SYMBOL2ENTREZ[SYMBOL2ENTREZ$ENTREZID %in% tmp,]$ENTREZID,
                   SYMBOL=SYMBOL2ENTREZ[SYMBOL2ENTREZ$ENTREZID %in% tmp,]$SYMBOL,
                   Kind="notDE",
# Sign=ifelse(H3vsUI[H3vsUI$ENTREZID %in% tmp,]$logFC>=0,
#      ifelse(DIvsD7[DIvsD7$ENTREZID %in% tmp,]$logFC>=0,"Up","UpDown"),
#      ifelse(DIvsD7[DIvsD7$ENTREZID %in% tmp,]$logFC<0,"Down","DownUp")))
Sign=ifelse(H3vsUI[H3vsUI$ENTREZID %in% tmp,]$logFC>=0,"Up","Down"))
DEGs=rbind(DEGs,notDEGs)
DEGs$SYMBOL=as.character(DEGs$SYMBOL)
DEGs$ENTREZID=as.character(DEGs$ENTREZID)
rm(tmp,H3vsUI,DIvsD7,notDEGs)

kable(table(DEGs$Kind,DEGs$Sign))

```

```{r load_peaks2Gene}
mark="H3K4me2"
### Nearest gene
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mergedPeaks_annotNearest_",mark,".RData")
load(fileOut)
peaks2GeneNearest_H3K4me2=data.frame(
  peakId=mergedPeaks_annotNearest_H3K4me2@ranges@NAMES,
  SYMBOL=as.character(mergedPeaks_annotNearest_H3K4me2@elementMetadata@listData[["mcols.GENESYMBOL"]]),
  distance=mergedPeaks_annotNearest_H3K4me2@elementMetadata@listData[["distance"]],
  stringsAsFactors=FALSE)
peaks2GeneNearest_H3K4me2=merge(peaks2GeneNearest_H3K4me2,SYMBOL2ENTREZ,by.x=2,by.y=1,all.x=TRUE)[,c(2,1,3,4)]

### Target gene from MEME
# fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mergedPeaks_annotTgene_",mark,".RData")
# load(fileOut)
# peaks2GeneTgene_H3K4me2=data.frame(peakId=mergedPeaks_annotTgene_H3K4me2$peakId,
#                   SYMBOL=as.character(mergedPeaks_annotTgene_H3K4me2$Gene_Name),
#                   ENTREZID=mergedPeaks_annotTgene_H3K4me2$ENTREZID,
#                   distance=0,stringsAsFactors=FALSE)

# Load ENTREZ ENSEMBL ids mapping to cross Tgene and EPI-TOME information
ENSEMBLEids <- org.Hs.egENSEMBL 
mapped_genes <- mappedkeys(ENSEMBLEids)
ENTREZtoENSEMBL <- as.data.frame(ENSEMBLEids[mapped_genes])
colnames(ENTREZtoENSEMBL)=c("ENTREZID","ENSEMBLEID")

# Load Tgene MEME results
fileIn=paste0(WDIR,"/results_project12891/MEME_Tgene/H2K4me2/links.tsv")
mergedPeaks_Tgene=read.table(fileIn,header = T,sep = "\t")
## Get only significant associations peak-gene
pvalTh=.05 #; FDRth=.5
mergedPeaks_TgeneSig=subset(mergedPeaks_Tgene,mergedPeaks_Tgene$CnD_P_Value < pvalTh)
mergedPeaks_TgeneSig$chr=gsub("chr","",gsub(":[0-9-]*","",mergedPeaks_TgeneSig$RE_Locus))
mergedPeaks_TgeneSig$start=as.character(as.integer(gsub("chr[0-9XY]*:","",gsub("-[0-9]*","",mergedPeaks_TgeneSig$RE_Locus)))-1)
mergedPeaks_TgeneSig$end=gsub(".*-","",mergedPeaks_TgeneSig$RE_Locus)
mergedPeaks_TgeneSig$peakID=apply(mergedPeaks_TgeneSig[,18:20],1,function(x){paste0(x[1],"_",x[2],"_",x[3])})
mergedPeaks_TgeneSig$ENSEMBL=gsub("\\.[0-9-]*","",mergedPeaks_TgeneSig$Gene_ID)
peaks2GeneTgene_H3K4me2=na.omit(merge(mergedPeaks_TgeneSig,
                           ENTREZtoENSEMBL,by.x=22,by.y=2,all.x=TRUE)[,c(22,23,10,14,17)])

# Select unique gene-region associations 
# select association minimun Tgene pvalue 
peaks2GeneTgene_H3K4me2$peak2gene=paste0(peaks2GeneTgene_H3K4me2$peakID,"_",
  peaks2GeneTgene_H3K4me2$ENTREZID)
peaks2GeneTgene_H3K4me2$tmp=paste0(peaks2GeneTgene_H3K4me2$peakID,"_",
  peaks2GeneTgene_H3K4me2$ENTREZID,"_",as.character(peaks2GeneTgene_H3K4me2$CnD_P_Value))
peaks2GeneTgene_H3K4me2=peaks2GeneTgene_H3K4me2[!duplicated(peaks2GeneTgene_H3K4me2$tmp),]

tmp=aggregate(peaks2GeneTgene_H3K4me2$CnD_P_Value,list(peaks2GeneTgene_H3K4me2$peak2gene),min)
tmp$tmp=paste0(tmp$Group.1,"_",as.character(tmp$x))
peaks2GeneTgene_H3K4me2=peaks2GeneTgene_H3K4me2[peaks2GeneTgene_H3K4me2$tmp %in% tmp$tmp,-7]

rm(mergedPeaks_TgeneSig,ENSEMBLEids,mapped_genes,ENTREZtoENSEMBL)
```

# Chromatin states

```{r selectPeaks, eval=FALSE, include=FALSE}
# Select peaks using counts
logFCthUp_H3K4me2=.005 #quantile .75
logFCthDown_H3K4me2=-.005 #quantile .25
tmp=countNormLength_H3K4me2
selPeaksAllRep=row.names(
  subset(tmp,(
  (log(tmp$norm.H3K4me2_D7_REP1/tmp$norm.H3K4me2_UI_REP1,2) > logFCthUp_H3K4me2 & 
   log(tmp$norm.H3K4me2_D7_REP2/tmp$norm.H3K4me2_UI_REP2,2) > logFCthUp_H3K4me2)  |
  (log(tmp$norm.H3K4me2_D7_REP1/tmp$norm.H3K4me2_UI_REP1,2) < logFCthDown_H3K4me2 &  
   log(tmp$norm.H3K4me2_D7_REP2/tmp$norm.H3K4me2_UI_REP2,2) < logFCthDown_H3K4me2))))

selPeaksAll=row.names(tmp)

# Select peaks related to DEGs 
selPeaks_DEGs_nearest=unique(merge(DEGs[DEGs$Kind!="notDE",],peaks2GeneNearest_H3K4me2[,c(4,1)],by=1)[,5])
selPeaks_DEGs_target=unique(merge(DEGs[DEGs$Kind!="notDE",],peaks2GeneTgene_H3K4me2[,c(3,1)],by=1)[,5])

print(c("Number of:"))
print(c("Total peaks",dim(tmp)[1]))
print(c("Selected peaks - methylation logFold",length(selPeaksAll)))
print(c("Selected peaks - reproducible methylation logFold",length(selPeaksAllRep)))
print(c("Selected peaks - nearest to DEG",length(selPeaks_DEGs_nearest)))
print(c("Selected peaks - with DEG target",length(selPeaks_DEGs_target)))

print(c("Methylation logFold nearest to DEG",length(intersect(selPeaksAll,selPeaks_DEGs_nearest))))
print(c("Methylation logFold with DEG target",length(intersect(selPeaksAll,selPeaks_DEGs_target))))
print(c("Reproducible methylation logFold nearest to DEG",length(intersect(selPeaksAllRep,selPeaks_DEGs_nearest))))
print(c("Reproducible methylation logFold with DEG target",length(intersect(selPeaksAllRep,selPeaks_DEGs_target))))

ggplotdf=data.frame(log2FC=c(
  DM_results$D7vsUI[selPeaksAll,]$log2FoldChange,
  DM_results$D7vsUI[selPeaksAllRep,]$log2FoldChange,
  DM_results$D7vsUI[selPeaks_DEGs_nearest,]$log2FoldChange,
  DM_results$D7vsUI[selPeaks_DEGs_target,]$log2FoldChange),
  peakPopulation=factor(c(rep("All peaks",length(selPeaksAll)),
                   rep("Reproducible Log2FC",length(selPeaksAllRep)),
                   rep("DEGs nearest",length(selPeaks_DEGs_nearest)),
                   rep("DEGs target",length(selPeaks_DEGs_target))),
                   levels = c("All peaks","Reproducible Log2FC","DEGs nearest","DEGs target")))

ggplot(ggplotdf, aes(x=log2FC,fill=peakPopulation)) +
    geom_density(alpha=0.5) + facet_grid(~ peakPopulation)
```

```{r get_mergedPeaks_annotTXS}
# Load all merged peaks coords
fileIn=paste0(WDIR,"/results_project12891/tables/tables_v3_UCSC/",mark,"/",mark,"_mergedPeaks.bed")
mergedPeaks=read_bed(fileIn)

# Annotate merged peaks
fileAnnot=paste0(WDIR,"/results_project12891/igv/igv_session_v3/annotation/hg19_transcripts.geneSymbol.reformat.bed")
txs_gr <- read_bed(fileAnnot)
tss_gr <- GRanges(seqnames = txs_gr@seqnames,
                   ranges = IRanges(start = txs_gr@ranges@start-1e3, end = txs_gr@ranges@start+1e3),
                   strand = txs_gr@strand,
                   mcols = data.frame(GENESYMBOL=mcols(txs_gr)$name))
txs_gr <- GRanges(seqnames = txs_gr@seqnames,
                   ranges = txs_gr@ranges,
                   strand = txs_gr@strand,
                   mcols = data.frame(GENESYMBOL=mcols(txs_gr)$name))

mergedPeaks_annotTXS=array(NA,dim=length(mergedPeaks)) ; names(mergedPeaks_annotTXS)=mergedPeaks$name
ovtss=unique(findOverlaps(mergedPeaks,tss_gr)@from)
mergedPeaks_annotTXS[ovtss]="TSS"
ovintraG=setdiff(unique(findOverlaps(mergedPeaks,txs_gr)@from),ovtss)
mergedPeaks_annotTXS[ovintraG]="intraG"
mergedPeaks_annotTXS[is.na(mergedPeaks_annotTXS)]="interG"
```

```{r annotationQuantification}
DIR=paste0(WDIR,"/results_project12891/Encode_data/bigWig/")
fileMetadata=paste0(DIR,"ENCODE_metadata_bigWig_foldChangeOverControl.released.txt")
Encode_metadata <- read.table(file=fileMetadata,header=TRUE,sep="\t")

marks=c("H3K4me3", "H3K4me2", "H3K27ac", "H3K4me1", "H3K79me2", "H3K27me3")
AnnotationCols <- data.frame(
  Mark=factor(sub("-human","",Encode_metadata$Experiment.target),levels = marks),
  row.names = Encode_metadata$File.accession)

colsG=brewer.pal(n = 3, name = "Greys")
colsM=brewer.pal(n = 4, name = "Greens")
colsS=brewer.pal(n = 3, name = "Blues")[2:3]
nClust=8 ; colsC=brewer.pal(n = nClust, name = "Set2")
colsAnnot <- list(Mark=c("H3K4me3"=colsS[1], "H3K4me2"=colsS[2], "H3K27ac"=colsM[1], "H3K4me1"=colsM[2], "H3K79me2"=colsM[3], "H3K27me3"=colsM[4]),
  DM_sign=c("Gain"="#FF0000", "Loss"="#FF000030"),
  DM_kind=c("DM"="#000000", "notDM"="transparent"),
  Localization=c("TSS"=colsG[1], "intraG"=colsG[2], "interG"=colsG[3]),
  CS=c("1"=colsC[1],"2"=colsC[2],"3"=colsC[3],"4"=colsC[4],"5"=colsC[5],"6"=colsC[6],"7"=colsC[7],"8"=colsC[8]))
```

```{bash getMtx_ENCODElogchange, eval=FALSE, include=FALSE}
WDIR=/pasteur/projets/policy01/BioIT/12891_Chevalier_EpiMemStrep/results_project12891/
module load UCSC-tools/v373
module load bedtools/2.25.0

# 1. Download bigWig files
# 2. Get bedGraph files
cd Encode_data/bigWig/
for file in *.bigWig ; do 
if [ ! -f ${file/bigWig/bedGraph} ] ; then echo $file ; 
srun bigWigToBedGraph $file ${file/bigWig/bedGraph} &  fi ; done

# 3. Overlap with mergedPeaks
mark=H3K4me2
filePeaks=$WDIR/tables/tables_v3_UCSC/*/${mark}_mergedPeaks.bed
cd $WDIR/Encode_data/bigWig

# 3.1. Small files
emacs overlapBedGraph_mergedPeaks.sh
#!/bin/sh
i=$(head -n ${SLURM_ARRAY_TASK_ID} $1 | tail -n 1) 
WDIR=$2
filePeaks=$3
mark=$4

if [ ! -f $WDIR/${i/.bedGraph/_mergedPeaks_${mark}.ov} ] ; then 
srun -o $i.ovb -e $i.e intersectBed -a $filePeaks -b $i -wb
awk '{s[$4]=s[$4]+$NF ; n[$4]=n[$4]+1} END {for (p in n) {print p"\t"s[p]/n[p]}}' $i.ovb | 
sort -k1,1 > $WDIR/${i/.bedGraph/_mergedPeaks_${mark}.ov} ; fi

ls *bedGraph > fileList.txt
n=`wc -l fileList.txt | awk '{print $1}'`
sbatch -p hubbioit --qos hubbioit -o ov.o -e ov.e --mem=200G --array=1-$n%$n overlapBedGraph_mergedPeaks.sh fileList.txt $WDIR/Encode_data/bigWig/ $filePeaks $mark

# 4 Assemble matrix
echo "Peak_name" > header0 ; i=0
for file in *$mark*ov ; do let j=$i+1
echo ${file/_mergedPeaks_${mark}.ov} | paste header$i - > header$j ; ((i++)) ; done
paste *$mark*ov | awk '{line=$1 ; for (i=2;i<=NF;i=i+2) {line=line"\t"$i} ; print line}' |
cat header$j - > ENCODE_mergedPeaks_${mark}.ov

# Clean
rm $WDIR/Encode_data/bigWig/*.ovb $WDIR/Encode_data/bigWig/*.bedGraph
rm $WDIR/Encode_data/bigWig/*.e $WDIR/Encode_data/bigWig/ov.o
rm header*
```

```{r ENCODE_bigWig}
DIR=paste0(WDIR,"/results_project12891/Encode_data/bigWig/")
fileSignal=paste0(DIR,"ENCODE_mergedPeaks_",mark,".ov")
matSignal <- read.table(file=fileSignal,header=TRUE,row.names = 1,sep="\t")

markOrder=c(#H3K4me3
  "ENCFF628ANV", "ENCFF510LTC", "ENCFF556OVF",
  #"ENCFF313GRK", "ENCFF709KWY", "ENCFF635VEW",
  "ENCFF250OYQ", "ENCFF189JCB", "ENCFF421ZNH",
  #H3K4me2
  "ENCFF876DTJ", "ENCFF975YWP", "ENCFF419LFZ",
  #H3K4me1
  "ENCFF165ZPD", "ENCFF569ZJQ", "ENCFF613NHX",
  #H3K27ac
  #"ENCFF216GUZ", "ENCFF597SRK", "ENCFF562LEK",
  "ENCFF137KNW", "ENCFF103BLQ", "ENCFF663ILW",
  #H3K79me2
  "ENCFF892LYD", "ENCFF154HXA", "ENCFF931LYX",
  #H3K27me3
  "ENCFF819QSK", "ENCFF134YLO", "ENCFF336AWS")
```

```{r ENCODE_stats}
ENCODE_stats <- function(matSignalSel,selPeaks,mergedPeaks_annotTXS,DMs) {
allZero=which(apply(matSignalSel,1,sum)==0)
if (length(allZero)>0) matSignalSel=matSignalSel[-allZero,]

mtx=t(matSignalSel)
d=dist(t(scale(mtx)))
hc=hclust(d,method = "ward.D2")
nClust=8
clust=cutree(hc,k=nClust)

selPeaks=intersect(selPeaks,row.names(matSignalSel))

# Complete AnnotationRows
AnnotationRows <- data.frame(
  Localization=factor(mergedPeaks_annotTXS[selPeaks],levels = c("TSS","intraG","interG")),
  CS=factor(clust[selPeaks]),
  row.names = selPeaks
)
AnnotationRows=merge(AnnotationRows,DMs,by.x=0,by.y=1)
row.names(AnnotationRows)=AnnotationRows$Row.names ; AnnotationRows=AnnotationRows[,-1]
colnames(AnnotationRows)[3:4]=c("DM_kind","DM_sign")

return(AnnotationRows)
} 
```

```{r ENCODE_heatmap, fig.height=10, fig.width=8}
ENCODE_heatmap <- function(matSignalSel,AnnotationRows,colsAnnot) {
breaks=seq(-4,4,.1) ; cols=colorRampPalette(c("purple","black","yellow"))(length(breaks)+1)

allZero=which(apply(matSignalSel,1,sum)==0)
if (length(allZero)>0) matSignalSel=matSignalSel[-allZero,]

pheatmap(matSignalSel, 
         scale = "row", cluster_rows = T, cluster_cols = F,
         clustering_method = "ward.D2",
         show_rownames = F, show_colnames = F,
         annotation_col = subset(AnnotationCols,row.names(AnnotationCols) %in% markOrder), 
         annotation_row = AnnotationRows, 
         annotation_colors = colsAnnot,
         color = cols, border = NA,
         #main = paste(mark,"DM peaks",length(DMpeaks)),
         fontsize = 12)
}
```

## All H3K4me2 peaks

```{r ENCODE_counts, fig.height=10, fig.width=8, cache=TRUE}
selPeaksAll=row.names(countNormLength_H3K4me2)
selPeaks=selPeaksAll
matSignalSel=na.omit(matSignal[selPeaks,markOrder])
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/AnnotationRows_allPeaks.RData")
if (file.exists(fileOut)) {load(fileOut)} else {
AnnotationRows=ENCODE_stats(matSignalSel,selPeaks,mergedPeaks_annotTXS,DMs)
AnnotationRows_allPeaks=AnnotationRows
save(AnnotationRows_allPeaks,file=fileOut)}

# Tables
AnnotationRows=AnnotationRows_allPeaks
t=table(AnnotationRows$CS)
kable(ceiling(t/sum(t)*100),col.names = c("CS","Freq"))

t1=table(AnnotationRows$Localization)
tt=table(AnnotationRows$CS,AnnotationRows$Localization)
kable(ceiling(t1/sum(t1)*100),col.names = c("Localization","Freq"))
kable(ceiling(tt/as.numeric(t)*100),row.names = T)
# 
# t1=table(AnnotationRows$DM_sign)
# kable(ceiling(t1/sum(t1)*100),col.names = c("H3K4me2 Profile","Freq"))
# tt=table(AnnotationRows$CS,AnnotationRows$DM_sign)
# kable(ceiling(tt/as.numeric(t)*100),row.names = T)
# 
# t1=table(AnnotationRows$DM_kind)
# kable(ceiling(t1/sum(t1)*100),col.names = c("H3K4me2 Dynamic","Freq"))
# tt=table(AnnotationRows$CS,AnnotationRows$DM_kind)
# kable(ceiling(tt/as.numeric(t)*100),row.names = T)

ENCODE_heatmap(matSignalSel,AnnotationRows,colsAnnot)
```

# Multi factorial analysis

Multi factorial analysis (MFA) (Escofier & Pages, Computational Statistics & Data Analysis, 1994) studies several groups of variables (numerical and/or categorical) defined on the same set of individuals. MFA is a factor analysis applied to the array including all groups of variables. Roughly, the behaviour of the method is equivalent to PCA (concerning quantitative variables) or to MCA (concerning qualitative variables).


```{r MFA_functions}
#http://juliejosse.com/wp-content/uploads/2019/03/MFA_staf2015.pdf

individualContributionPlot <- function(mfa.res,nPeaks) {
contribs=data.frame()
for (i in 1:5) {
rs=mfa.res[["ind"]][["contrib"]][order(mfa.res[["ind"]][["contrib"]][,i],decreasing = TRUE),i] %>% cumsum() 
peakId=names(rs)
contribs=rbind(contribs,data.frame(peakId,seq(1,length(rs),1),as.vector(rs),rep(i,length(rs))))}
colnames(contribs)=c("peakId","Rank","RankedSum","Dimension")
contribs$Dimension=factor(contribs$Dimension)

p <- ggplot(contribs,aes(x=Rank,y=RankedSum)) + geom_point(aes(color=Dimension))

print(p)

return(contribs)
}

MFAstats <- function(mfa.res,xlim,ylim) {
# Eigen values of separate analysis
# Describe dimensionality of each variable group
#print(kable(sapply(mfa.res[["separate.analyses"]],"[[", 1),
#            caption = "Eigen values of separate analysis"))
# Eigen values of global analysis
# How many components are necessary to describe the total inertia of the dataset
print(kable(mfa.res[["eig"]][1:10,],
            caption = "Eigen values of global analysis"))
# Correlation coeffs
# How much of the stt defined by component C depends on groups(s) G : G -> C
# Fundamental to see if there are structures COMMON to groups -> useful to integrate 
print(kable(mfa.res[["group"]][["correlation"]],caption = "Group correlation with factor"))
# Inertia or group contribution 
# How much of the inertia of group G is explained by component C : C -> G
print(kable(mfa.res[["group"]][["cos2"]],caption = "Group inertia per factor"))
# Group contribution 
plotGrouprepresentation(mfa.res)
# Invidual contribution to each component
# Determine wheter an axis is due to only some individuals 
#mfa.res[["ind"]][["contrib"]]
#individualContributions=individualContributionPlot(mfa.res,nPeaks)
# Categorical variable representation (centroid of inds )
# Determine how are 
#dimdesc(mfa.res)$Dim.2
#splotIndrepresentation(mfa.res,xlim,ylim)
# Variable contribution 
plotVarrepresentation(mfa.res)
}

plotGrouprepresentation <- function(mfa.res) {
p1 <- plot.MFA(mfa.res,choix = "group",axes = c(1,2), title = "")
p2 <- plot.MFA(mfa.res,choix = "group",axes = c(1,3), title = "")
p3 <- plot.MFA(mfa.res,choix = "group",axes = c(1,4), title = "")
p4 <- plot.MFA(mfa.res,choix = "group",axes = c(1,5), title = "")
print((p1 | p2) / (p3 | p4))
}

plotIndrepresentation <- function(mfa.res,xlim,ylim) {
  if (ylim!="" & xlim!="") {
p1 <- plot.MFA(mfa.res,choix = "ind", invisible = "ind", axes = c(1,2), 
               title = "",ylim=ylim,xlim=xlim)
p2 <- plot.MFA(mfa.res,choix = "ind", invisible = "ind", axes = c(1,3),
               title = "",ylim=ylim,xlim=xlim)
p3 <- plot.MFA(mfa.res,choix = "ind", invisible = "ind", axes = c(1,4),
               title = "",ylim=ylim,xlim=xlim)
p4 <- plot.MFA(mfa.res,choix = "ind", invisible = "ind", axes = c(1,5),           
               title = "",ylim=ylim,xlim=xlim) } else  
{
p1 <- plot.MFA(mfa.res,choix = "ind", invisible = "ind", axes = c(1,2), title = "")
p2 <- plot.MFA(mfa.res,choix = "ind", invisible = "ind", axes = c(1,3), title = "")
p3 <- plot.MFA(mfa.res,choix = "ind", invisible = "ind", axes = c(1,4), title = "")
p4 <- plot.MFA(mfa.res,choix = "ind", invisible = "ind", axes = c(1,5), title = "")
  
}
print((p1 | p2) / (p3 | p4))
}

plotVarrepresentation <- function(mfa.res) {
  title=""
  p1 <- plot.MFA(mfa.res,choix="var", axes=c(1,2),title=title,cex=.7)
  p2 <- plot.MFA(mfa.res,choix="var", axes=c(1,3),title=title,cex=.7)
  p3 <- plot.MFA(mfa.res,choix="var", axes=c(1,4),title=title,cex=.7)
  p4 <- plot.MFA(mfa.res,choix="var", axes=c(1,5),title=title,cex=.7)
  
print((p1 | p2) / (p3 | p4) + plot_layout(guides = "collect"))

}

clusterStats <- function(hcpc.res) {
### Cluster description
## By variables: 
# Test if variable (OMIC samples) values distribution per cluster is random or not 
# For quantitative variables
print(kable(hcpc.res[["desc.var"]]$quanti,caption = "Description by quantitative variables"))
# For qualitative variables
print(kable(hcpc.res[["desc.var"]][["category"]],caption = "Description by qualitative variables"))
## By components 
# Test if individuals coordinates distribution per cluster is random or not 
# For quantitative variables
print(kable(hcpc.res[["desc.axes"]][["quanti"]],
            caption = "Description by factors (quantitative variables)"))
# For qualitative variables
print(kable(hcpc.res[["desc.var"]][["test.chi2"]],
            caption = "Description by factors (qualitative variables)"))
## By individuals (genomic regions)
# Nearest individuals to the cluster's centroid
print("Description by individuals (nearest):")
print(hcpc.res[["desc.ind"]]$para)
# Furthest individuals to the cluster's centroid
print("Description by individuals (furthest):")
print(hcpc.res[["desc.ind"]]$dist)
}

```

```{r MFA_prepareMtx}
# Differential analysis info
AnnotationRows=AnnotationRows_allPeaks[,2:4]
#DEGs2peaks=merge(DEGs,peaks2GeneTgene_H3K4me2[,c(3,1)],by=1)
#AnnotationRows=merge(AnnotationRows,DEGs2peaks[,c(5,4,3,1)],by.x=0,by.y=1)
DEGs2peaks=merge(DEGs,peaks2GeneTgene_H3K4me2,by.x=1,by.y=2)
AnnotationRows=merge(AnnotationRows,DEGs2peaks[,c(5,3,4,1,2,6:8)],by.x=0,by.y=1)
AnnotationRows$Distance=log(abs(AnnotationRows$Distance)+1,10)
#AnnotationRows=AnnotationRows[!duplicated(AnnotationRows[,1]),]
#AnnotationRows <- AnnotationRows[,-c(1,8)] ; 
colnames(AnnotationRows)[5:6] <- c("DEG_kind","DEG_sign")
AnnotationRows$DEG_kind=factor(AnnotationRows$DEG_kind,levels = c("common","only_H3vsUI","only_DIvsD7","notDE"))
#AnnotationRows$DEG_sign=factor(AnnotationRows$DEG_sign,levels = c("Up","Down","UpDown","DownUp"))
AnnotationRows$DEG_sign=factor(AnnotationRows$DEG_sign,levels = c("Up","Down"))
#Re-order columns
AnnotationRows=AnnotationRows[,c(1,7:11,2:6)]

# Merge methylation, transcription and epigenome signal
METHOME=merge(t(scale(t(countNormLength_H3K4me2))),
              DM_results$D7vsUI[,1:2],by=0)
colnames(METHOME)[8:9]=c("H3K4me2_log2baseMean","H3K4me2_D7vsUI_log2FC")
METHOME$H3K4me2_log2baseMean=log(METHOME$H3K4me2_log2baseMean,2)

# Merge TOME data
Data=Data_RMA_NoBatchComBat_Annot
t=na.omit(Data[!duplicated(Data$ENTREZID),])[,c(1,5,9,2,6,10,3,7,11,4,8,12)]
TOME=log(t,2)
row.names(TOME)=na.omit(Data[!duplicated(Data$ENTREZID),14])

# Merge ENCODE data
samples=AnnotationCols[markOrder,]
names(samples)=markOrder
ENCODEmean=t(scale(t(
  data.frame(
  H3K4me3=apply(matSignal[,names(samples[samples=="H3K4me3"])],1,function(x) mean((x))),
  H3K4me2=apply(matSignal[,names(samples[samples=="H3K4me2"])],1,function(x) mean((x))),
  H3K4me1=apply(matSignal[,names(samples[samples=="H3K4me1"])],1,function(x) mean((x))),
  H3K27ac=apply(matSignal[,names(samples[samples=="H3K27ac"])],1,function(x) mean((x))),
  H3K79me2=apply(matSignal[,names(samples[samples=="H3K79me2"])],1,function(x) mean((x))),
  H3K27me3=apply(matSignal[,names(samples[samples=="H3K27me3"])],1,function(x) mean((x))),
  row.names = row.names(matSignal))
)))

# EPITOME all 
EPITOME=merge(AnnotationRows,METHOME,by=1)
EPITOME=merge(EPITOME,ENCODEmean,by.x=1,by.y=0)
EPITOME=merge(EPITOME,TOME,by.x=2,by.y=0)
row.names(EPITOME)=paste0(EPITOME$Row.names,"_",EPITOME$ENTREZID)
colnames(EPITOME)[2]="peakID"
```

```{r MFA_getMtx1}

#### Get INPUT matrix

# Select all peak2gene associations where there is a DMR or a DEG
mfa.EPITOME=subset(EPITOME,EPITOME$DM_kind=="DM" | EPITOME$DEG_kind!="notDE")
corrTh=.4
mfa.EPITOME_corrTh=subset(EPITOME,(EPITOME$DM_kind=="DM" | EPITOME$DEG_kind!="notDE") &
                    abs(EPITOME$Correlation)>corrTh)
distTh=20e3
mfa.EPITOME_distTh=subset(EPITOME,(EPITOME$DM_kind=="DM" | EPITOME$DEG_kind!="notDE") &
                   EPITOME$Distance<log(distTh+1,10))
# Save INPUT matix objects
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.EPITOME.RData")
if (!file.exists(fileOut)) {save(mfa.EPITOME,file = fileOut)}
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.EPITOME_distTh.RData")
if (!file.exists(fileOut)) {save(mfa.EPITOME_distTh,file = fileOut)}
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.EPITOME_corrTh.RData")
if (!file.exists(fileOut)) {save(mfa.EPITOME_corrTh,file = fileOut)}

```

## Input matrix

MFA is performed on the `r dim(mfa.EPITOME)[1]` peak-gene associations that include a DMR or a DEG. This is the distribution of quantitative and qualitative group variables.

```{r MFA_getMtx2}
# Check matrix behaviour
boxplot(mfa.EPITOME[,c(26:37,18:19,4,5,20:25)],las=2,pch=19,cex=.5,
        ylab="Scaled values by group",cex.axis=.8,
        col=c(rep(palette()[8],12),rep(palette()[6],2),
              rep(palette()[3],1),rep(palette()[4],1),rep(palette()[5],6)),
        main="Distribution of quantitative variables for MFA")

kable(table(mfa.EPITOME$DEG_kind,mfa.EPITOME$DEG_sign),caption = "DEGs for MFA")
kable(table(mfa.EPITOME$DM_kind,mfa.EPITOME$DM_sign),caption = "DMRs for MFA")
```

## MFA components description

```{r MFA, fig.height=10, fig.width=10, cache=TRUE}

#### MFA
colInds=c(26:37,18:19,4,5,20:25,7,10:11,8:9)

# fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS_distTh.RData")
# if (file.exists(fileOut)) {load(fileOut)} else {
#   mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS_distTh  <- MFA(mfa.EPITOME_distTh[,colInds], ncp=5, 
#     group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
#     name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),num.group.sup=c(6))
# save(mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS_distTh,file=fileOut)}
# 
# fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS_corrTh.RData")
# if (file.exists(fileOut)) {load(fileOut)} else {
#   mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS_corrTh  <- MFA(mfa.EPITOME_corrTh[,colInds], ncp=5, 
#     group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
#     name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),num.group.sup=c(6))
# save(mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS_corrTh,file=fileOut)}

fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS.RData")
if (file.exists(fileOut)) {load(fileOut)} else {
  mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS  <- MFA(mfa.EPITOME[,colInds], ncp=5, 
    group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
    name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),num.group.sup=c(6))
save(mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS,file=fileOut)}

#### MFA stats
mfa.res=mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS
title="" ; xlim=c(-1,1) ; ylim=c(-1,1)
MFAstats(mfa.res,"","")
#print(plot.MFA(mfa.res,choix="axes", axes=c(1,2),title=title))
plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(1,2), ylim=c(-1,2))
p1 <- plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(1,2), xlim=xlim, ylim=ylim)
p2 <- plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(3,2), xlim=xlim, ylim=ylim)
p3 <- plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(3,4), xlim=xlim, ylim=ylim)
p4 <- plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(5,4), xlim=xlim, ylim=ylim)
print((p1 | p2) / (p3 | p4))
```

# Hierarchical clustering on MFA components

Clustering is performed on the first 5 components obtained with the MFA.

```{r HCPCclustering, fig.height=10, fig.width=10, cache=TRUE}

#### Clustering
nClust=12 ; maxClustSize=1400
hcpc.res <- HCPC(mfa.res, nb.clust=nClust, conso=0, min=3, max=10,
                 metric = "euclidean", method="ward",graph = FALSE,nb.par = maxClustSize)

#clusterStats(hcpc.res)

# Cluster description in term of qualitative variables
lapply(hcpc.res[["desc.var"]][["category"]],function(x) {kable(subset(x,x[,"v.test"]>5.3))})

# Cluster description
tmp=hcpc.res[["data.clust"]][,23:28]
table=merge(mfa.EPITOME[,1:6],tmp,by=0)
colnames(table)[1]="peakIDgene_association"
colnames(table)[13]="MFAclust"

layout(matrix(1:2,nrow = 2))
boxplot(table$Distance ~ table$MFAclust,pch=19,cex=.5,
        xlab="",ylab="Distance peak - gene")
boxplot(table$Correlation ~ table$MFAclust,pch=19,cex=.5,
        xlab="MFA cluster",ylab="Correlation peak_hist-gene_exp")

# Table of associations with clusters
fileOut=paste0(WDIR,"/results_project12891/tables/integration/mfa_clust_TOMEMETHDISTCORREPIGDEGDMR_CS.txt")
if (!file.exists(fileOut)) {
# Add individual data
for (i in 1:nClust) {
  table=merge(table,as.data.frame(hcpc.res[["desc.ind"]][["para"]][[i]]),by.x=1,by.y=0,all.x=TRUE)
  colnames(table)[dim(table)[2]]=paste0("distFromCentroid_MFAclust",i)
}

write.table(table,file = fileOut,sep="\t",quote=FALSE,row.names = FALSE, col.names = TRUE)
}

```

## Statistics on clusters

Number of total genes/peaks per cluster (Ngenes,Npeaks). Number of genes/peaks belonging only to a given cluster (NgeneOnlyClust, NpeakOnlyClust). Nearest cluster in terms of shared genes/peaks (nearestClustGene,nearestClustPeak) and corresponding number of shared genes/peaks (nearestClustNgene,nearestClustNpeak).

```{r}
geneFreq_allAss=table(table$ENTREZID)
singleClustGenes=names(subset(geneFreq_allAss,geneFreq_allAss==1))
peakFreq_allAss=table(table$peakID)
singleClustPeaks=names(subset(peakFreq_allAss,peakFreq_allAss==1))
clusts=split(table,table$MFAclust)
geneClust=unique(table[,c(2,13)])
peakClust=unique(table[,c(3,13)])

clustStats=data.frame(Counts=c("Ngenes","NgeneOnlyClust","nearestClustGene","nearestClustNgene",
                               "Npeaks","NpeaksOnlyClust","nearestClustPeak","nearestClustNpeak")) ; i=1
for (clust in clusts) {
  Ngenes=length(unique(clust$ENTREZID))
  NgeneOnlyClust=length(setdiff(unique(clust$ENTREZID),
                        subset(geneClust,geneClust$MFAclust!=i)$ENTREZID))
  nearestClustGene=names(sort(table(geneClust[geneClust$ENTREZID %in% unique(clust$ENTREZID),]$MFAclust),decreasing = T)[2])
  nearestClustNgene=as.numeric(sort(table(geneClust[geneClust$ENTREZID %in% unique(clust$ENTREZID),]$MFAclust),decreasing = T)[2])
  Npeaks=length(unique(clust$peakID))
  NpeaksOnlyClust=length(setdiff(unique(clust$peakID),
                         subset(peakClust,peakClust$MFAclust!=i)$peakID))
  nearestClustPeak=names(sort(table(peakClust[peakClust$peakID %in% unique(clust$peakID),]$MFAclust),decreasing = T)[2])
  nearestClustNpeak=as.numeric(sort(table(peakClust[peakClust$peakID %in% unique(clust$peakID),]$MFAclust),decreasing = T)[2])
  clustStats=cbind(clustStats,c(Ngenes,NgeneOnlyClust,nearestClustGene,nearestClustNgene,Npeaks,NpeaksOnlyClust,nearestClustPeak,nearestClustNpeak)) ; i=i+1
}
colnames(clustStats)=c("Counts",seq(1,nClust,1))
kable(clustStats)
```


# Explore gene sets from functional analysis 

Check representation of selected gene sets (GS) among genes of every MFA cluster. Values correspond to the ratio between the observed number of genes belonging to a given GS and the expected number per cluster. 

```{r functions_genesetClusterRepresentation, cache=TRUE}
getClustGSenrich <- function(table,selectedGSs,m_t2g_lists) {
  tmp=unique(table[,c(2,13)])
  t=table(tmp$MFAclust)
  expected=t/sum(t)
  overRep=data.frame(matrix(nrow = length(selectedGSs),ncol = nClust))
  colnames(overRep)=seq(1,nClust,1) ; row.names(overRep)=selectedGSs
  for (selectedGS in selectedGSs) {
    ENTREZ_IDs=unique(c(m_t2g_lists[[selectedGS]]))
    subTable=tmp[tmp$ENTREZID %in% ENTREZ_IDs,]
  
    # Clustering distribution
    obs=table(subTable$MFAclust)/sum(table(subTable$MFAclust))
  
    overRep[selectedGS,] <- obs/expected
  }
    return(overRep)

}

m_t2g_df <- msigdbr(species = "Homo sapiens", category = "C2") %>% 
  dplyr::select(gs_subcat, gs_name, entrez_gene)
tmp=m_t2g_df[m_t2g_df$gs_subcat=="CP:REACTOME",]
m_t2g_list_reactome=split(as.character(tmp$entrez_gene),gsub("REACTOME_","",tmp$gs_name))
# tmp=m_t2g_df[m_t2g_df$gs_subcat=="CP:KEGG",]
# m_t2g_list_kegg=split(as.character(tmp$entrez_gene),gsub("KEGG_","",tmp$gs_name))

# m_t2g_lists=c(m_t2g_list_reactome,m_t2g_list_kegg)
m_t2g_lists=m_t2g_list_reactome
```

## GS specific to 1st infection
```{r genesetClusterRepresentation_only1st}
  
selectedGSs_only1st=c("NUCLEAR_RECEPTOR_TRANSCRIPTION_PATHWAY",
              "CHEMOKINE_RECEPTORS_BIND_CHEMOKINES",
              "CHROMATIN_MODIFYING_ENZYMES",
              "PKMTS_METHYLATE_HISTONE_LYSINES",
              "HATS_ACETYLATE_HISTONES",
              "VESICLE_MEDIATED_TRANSPORT",
              "MEMBRANE_TRAFFICKING",
              "DNA_DOUBLE_STRAND_BREAK_RESPONSE",
              "ANTIGEN_PROCESSING_UBIQUITINATION_PROTEASOME_DEGRADATION",
              "PROCESSING_OF_DNA_DOUBLE_STRAND_BREAK_ENDS",
              "DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENESCENCE")
tab=getClustGSenrich(table,selectedGSs_only1st,m_t2g_lists)
kable(tab,digits = rep(1,nClust))
```              

## GS specific to 2nd infection
```{r genesetClusterRepresentation_only2nd}
selectedGSs_only2nd=c("INFLUENZA_INFECTION",
              "CELLULAR_RESPONSES_TO_EXTERNAL_STIMULI",
              "INFECTIOUS_DISEASE","DISEASE",
              "SIGNALING_BY_ROBO_RECEPTORS","SIGNALING_BY_NUCLEAR_RECEPTORS")
 tab=getClustGSenrich(table,selectedGSs_only2nd,m_t2g_lists)
kable(tab,digits = rep(1,nClust))
```

## GS common to both infections
```{r genesetClusterRepresentation_common}
selectedGSs_common=c("INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING",
              "SIGNALING_BY_INTERLEUKINS","DNA_DOUBLE_STRAND_BREAK_REPAIR","DNA_REPAIR",
              "FOXO_MEDIATED_TRANSCRIPTION",
              "NEGATIVE_REGULATION_OF_MAPK_PATHWAY",
              "CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM",
              "INTERLEUKIN_10_SIGNALING",
              "HDR_THROUGH_SINGLE_STRAND_ANNEALING_SSA_",
              "FORMATION_OF_SENESCENCE_ASSOCIATED_HETEROCHROMATIN_FOCI_SAHF_")
tab=getClustGSenrich(table,selectedGSs_common,m_t2g_lists)
kable(tab,digits = rep(1,nClust))

```

```{bash searchSpecificGenes, include=FALSE, eval=FALSE}
cd /Volumes/bioit/12891_Chevalier_EpiMemStrep/results_project12891/tables/
# Count genes only 2nd in all clusters
awk '$(NF-2)>.4 {print $2}' transcriptome/Sig_H3vsUI_D7vsUI_DIvsD7_DIvsH3_Annot.txt> id ; 
grep -f id integration/mfa_clust_TOMEMETHDISTCORREPIGDEGDMR_CS.txt|awk '{print $4,$(NF-12)}' | 
sort -u | awk '{print $2}'|sort |uniq -c  

# Find genes only 2nd in cluster 7
awk '$(NF-2)>.4 {print $2}' transcriptome/Sig_H3vsUI_D7vsUI_DIvsD7_DIvsH3_Annot.txt> id
grep -f id integration/mfa_clust_TOMEMETHDISTCORREPIGDEGDMR_CS.txt|
awk '$(NF-12)==7 {print $4}' | sort -u 

rm id

```


# References

```{r}
sessionInfo()
```


```{r MFA_inputMatrixBenchmark, include=FALSE, eval=FALSE}
ass=sample(row.names(mfa.EPITOME_distTh), 500, replace = FALSE, prob = NULL)
xlim=c(-.6,.6) ; ylim=c(-.6,.6)

title="TOME-METH_DIST-CORR-EPIG-CS-DEG-DMR"
colInds=c(26:37,18:19,4,5,20:25,7,10:11,8:9)
mfa.res_TOMEMETH_DISTCORREPIGCSDEGDMR_distTh <- MFA(mfa.EPITOME_distTh[ass,colInds], ncp=5, 
  group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
  name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),num.group.sup=c(3,4,5,6,7,8))

title="TOME-METH-DIST-CORR_EPIG-CS-DEG-DMR"
mfa.res_TOMEMETHDISTCORR_EPIGCSDEGDMR_distTh <- MFA(mfa.EPITOME_distTh[ass,colInds], ncp=5, 
  group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
  name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),
  num.group.sup=c(5,6,7,8))

title="TOME-METH-DIST-CORR-EPIG_CS-DEG-DMR"
mfa.res_TOMEMETHDISTCORREPIG_CSDEGDMR_distTh <- MFA(mfa.EPITOME_distTh[ass,colInds], ncp=5, 
  group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
  name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),num.group.sup=c(6,7,8))

title="TOME-METH-DIST-CORR-EPIG-CS_DEG-DMR"
mfa.res_TOMEMETHDISTCORREPIGCS_DEGDMR_distTh <- MFA(mfa.EPITOME_distTh[ass,colInds], ncp=5, 
  group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
  name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),num.group.sup=c(7,8))

title="TOME-METH-DIST-CORR-EPIG-CS-DEG_DMR"
mfa.res_TOMEMETHDISTCORREPIGCSDEG_DMR_distTh <- MFA(mfa.EPITOME_distTh[ass,colInds], ncp=5, 
  group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
  name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),num.group.sup=c(8))

title="TOME-METH-DIST-CORR-EPIG-CS-DEG-DMR"
mfa.res_TOMEMETHDISTCORREPIGCSDEGDMR_distTh <- MFA(mfa.EPITOME_distTh[ass,colInds], ncp=5, 
  group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
  name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"))

title="TOME-METH-DMR-DEG-DIST-CORR-EPIG_CS"
mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS_distTh  <- MFA(mfa.EPITOME_distTh[ass,colInds], ncp=5, 
  group=c(12,2,1,1,6,1,2,2), type=c(rep("c",5),rep("n",3)),
  name.group=c("TOME","METH","DIST","CORR","EPIG","CS","DEG","DMR"),num.group.sup=c(6))

results=list(TOMEMETH=mfa.res_TOMEMETH_DISTCORREPIGCSDEGDMR_distTh,
     TOMEMETHDISTCORR=mfa.res_TOMEMETHDISTCORR_EPIGCSDEGDMR_distTh,
     TOMEMETHDISTCORREPIG=mfa.res_TOMEMETHDISTCORREPIG_CSDEGDMR_distTh,
     TOMEMETHDISTCORREPIGCS=mfa.res_TOMEMETHDISTCORREPIGCS_DEGDMR_distTh,
     TOMEMETHDISTCORREPIGCSDEG=mfa.res_TOMEMETHDISTCORREPIGCSDEG_DMR_distTh,
     TOMEMETHDISTCORREPIGCSDEGDMR=mfa.res_TOMEMETHDISTCORREPIGCSDEGDMR_distTh,
     TOMEMETHDISTCORREPIGDEGDMR=mfa.res_TOMEMETHDISTCORREPIGDEGDMR_CS_distTh
     )

xlim=c(-1,1) ; ylim=c(-1,1)
i=1
for (mfa.res in results) {
  title=names(results)[i] ; print(title)
  print(kable(mfa.res[["eig"]][1:10,],caption = "Eigen values of global analysis"))
  print(plot.MFA(mfa.res,choix="axes", axes=c(1,2),title=title))
  print(plot.MFA(mfa.res,choix="var", axes=c(1,2),title=title))
  print(plot.MFA(mfa.res,choix="var", axes=c(3,2),title=title))
  print(plot.MFA(mfa.res,choix="var", axes=c(3,4),title=title))
  plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(1,2))
  plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(1,2), xlim=xlim, ylim=ylim)
  plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(3,2), xlim=xlim, ylim=ylim)
  plot.MFA(mfa.res,choix="ind", invisible="ind", axes=c(3,4), xlim=xlim, ylim=ylim)
  i=i+1
}

MFAstats(mfa.res,xlim,ylim)

###################################
###################################
# OTHER INPUT matrices

mfa.EPITOME_notDM_distTh=subset(EPITOME,(EPITOME$DM_kind!="DM" & EPITOME$DEG_kind!="notDE") &
                   EPITOME$Distance<log(distTh+1,10))

fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETH_distTh.RData")
colInds=c(26:37,18:19,10:11,8:9)
if (file.exists(fileOut)) {load(fileOut)} else {
mfa.res_TOMEMETH_distTh2 <- MFA(mfa.EPITOME_distTh[,colInds], ncp=5, 
    group=c(12,2,2,2), type=c(rep("c",2),rep("n",2)),
    name.group=c("TOME","METH","DEG","DMR"),
    num.group.sup=c(3,4))
save(mfa.res_TOMEMETH_distTh2,file=fileOut)}

fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETH_EPIG.RData")
colInds=c(26:37,18:19,7,10:11,8:9)
if (file.exists(fileOut)) {load(fileOut)} else {
mfa.res_TOMEMETH_EPIG <- MFA(mfa.EPITOME[,colInds], ncp=5, 
    group=c(12,2,1,2,2), type=c(rep("c",2),rep("n",3)),
    name.group=c("TOME","METH","EPIG","DEG","DMR"),
    num.group.sup=c(3,4,5))
save(mfa.res_TOMEMETH_EPIG,file=fileOut)}

fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETH_EPIG_distTh.RData")
colInds=c(26:37,18:19,7,10:11,8:9)
if (file.exists(fileOut)) {load(fileOut)} else {
mfa.res_TOMEMETH_EPIG_distTh <- MFA(mfa.EPITOME_distTh[,colInds], ncp=5, 
    group=c(12,2,1,2,2), type=c(rep("c",2),rep("n",3)),
    name.group=c("TOME","METH","EPIG","DEG","DMR"),
    num.group.sup=c(3,4,5))
save(mfa.res_TOMEMETH_EPIG_distTh,file=fileOut)}

fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETH_EPIG_notDM_distTh.RData")
colInds=c(26:37,18:19,7,10:11,8:9)
if (file.exists(fileOut)) {load(fileOut)} else {
mfa.res_TOMEMETH_EPIG_notDM_distTh <- MFA(mfa.EPITOME_notDM_distTh[,colInds], ncp=5, 
    group=c(12,2,1,2,2), type=c(rep("c",2),rep("n",3)),
    name.group=c("TOME","METH","EPIG","DEG","DMR"),
    num.group.sup=c(3,4,5))
save(mfa.res_TOMEMETH_EPIG_notDM_distTh,file=fileOut)}


```

```{r MFAold, eval=FALSE, include=FALSE}

selPeaks=unique(c(as.character(DMs[DMs$Kind=="DM",]$peakID),selPeaks_DEGs_nearest))
selPeaks_nearest=unique(c(as.character(DMs[DMs$Kind=="DM",]$peakID),
                  intersect(selPeaks_DEGs_nearest,selPeaksAllRep)))
selPeaks_target=unique(c(as.character(DMs[DMs$Kind=="DM",]$peakID),
                  intersect(selPeaks_DEGs_target,selPeaksAllRep)))
nPeaks=length(selPeaks)

selPeaks_nearest=unique(c(as.character(DMs[DMs$Kind=="DM",]$peakID),
                  intersect(selPeaks_DEGs_nearest,selPeaksAllRep)))

#### MFA 
fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETH_EPIG_nearest.RData")
if (file.exists(fileOut)) {load(fileOut)} else {
mfa.res_TOMEMETH_EPIG_nearest <- MFA(na.omit(EPITOME[selPeaks_nearest,c(7:18,5,6,25:30)]), ncp=5, 
    group=c(12,2,2,2,2), type=c(rep("c",2),rep("n",3)),
    name.group=c("TOME","METH","EPIG","DM","DEG"),
    num.group.sup=c(4,5))
save(mfa.res_TOMEMETH_EPIG_nearest,file=fileOut)}

fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_TOMEMETH_EPIG_target.RData")
if (file.exists(fileOut)) {load(fileOut)} else {
mfa.res_TOMEMETH_EPIG_target <- MFA(na.omit(EPITOME[selPeaks_target,c(7:18,5,6,25:30)]), ncp=5, 
    group=c(12,2,2,2,2), type=c(rep("c",2),rep("n",3)),
    name.group=c("TOME","METH","EPIG","DM","DEG"),
    num.group.sup=c(4,5))
save(mfa.res_TOMEMETH_EPIG_target,file=fileOut)}

fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_EPIGMETH_nearest.RData")
if (file.exists(fileOut)) {load(fileOut)} else {
mfa.res_EPIGMETH_nearest <- MFA(na.omit(EPITOME[selPeaks_nearest,c(5,6,19:30)]), ncp=5, 
    group=c(2,6,1,1,2,2), type=c(rep("c",2),rep("n",4)),
    name.group=c("METH","EPIGENOME","LOC","CSkind","DM","DEG"),
    num.group.sup=c(4))
save(mfa.res_EPIGMETH_nearest,file=fileOut)}

fileOut=paste0(WDIR,"/results_project12891/scripts/Robjects/mfa.res_EPIGMETH_target.RData")