- pAgo
- Example of genomic structure
- Distribution of the system among prokaryotes
- Structure
- pAgo
- Example 1: ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
- Example 2: ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
- Example 3: ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
- Example 4: ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
- ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongB-plddts_92.47739.pdb
- Example 5: ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
- ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongB-plddts_92.47739.pdb
- Example 6: ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
- ::molstar-pdbe-plugin
- height: 700 dataUrl: /pago/pAgo__pAgo_LongB-plddts_92.47739.pdb
- Experimental validation
- ::relevant-abstracts
title: pAgo
layout: article
tableColumns:
article:
doi: 10.1186/1745-6150-4-29
abstract: |
BACKGROUND: In eukaryotes, RNA interference (RNAi) is a major mechanism of defense against viruses and transposable elements as well of regulating translation of endogenous mRNAs. The RNAi systems recognize the target RNA molecules via small guide RNAs that are completely or partially complementary to a region of the target. Key components of the RNAi systems are proteins of the Argonaute-PIWI family some of which function as slicers, the nucleases that cleave the target RNA that is base-paired to a guide RNA. Numerous prokaryotes possess the CRISPR-associated system (CASS) of defense against phages and plasmids that is, in part, mechanistically analogous but not homologous to eukaryotic RNAi systems. Many prokaryotes also encode homologs of Argonaute-PIWI proteins but their functions remain unknown. RESULTS: We present a detailed analysis of Argonaute-PIWI protein sequences and the genomic neighborhoods of the respective genes in prokaryotes. Whereas eukaryotic Ago/PIWI proteins always contain PAZ (oligonucleotide binding) and PIWI (active or inactivated nuclease) domains, the prokaryotic Argonaute homologs (pAgos) fall into two major groups in which the PAZ domain is either present or absent. The monophyly of each group is supported by a phylogenetic analysis of the conserved PIWI-domains. Almost all pAgos that lack a PAZ domain appear to be inactivated, and the respective genes are associated with a variety of predicted nucleases in putative operons. An additional, uncharacterized domain that is fused to various nucleases appears to be a unique signature of operons encoding the short (lacking PAZ) pAgo form. By contrast, almost all PAZ-domain containing pAgos are predicted to be active nucleases. Some proteins of this group (e.g., that from Aquifex aeolicus) have been experimentally shown to possess nuclease activity, and are not typically associated with genes for other (putative) nucleases. Given these observations, the apparent extensive horizontal transfer of pAgo genes, and their common, statistically significant over-representation in genomic neighborhoods enriched in genes encoding proteins involved in the defense against phages and/or plasmids, we hypothesize that pAgos are key components of a novel class of defense systems. The PAZ-domain containing pAgos are predicted to directly destroy virus or plasmid nucleic acids via their nuclease activity, whereas the apparently inactivated, PAZ-lacking pAgos could be structural subunits of protein complexes that contain, as active moieties, the putative nucleases that we predict to be co-expressed with these pAgos. All these nucleases are predicted to be DNA endonucleases, so it seems most probable that the putative novel phage/plasmid-defense system targets phage DNA rather than mRNAs. Given that in eukaryotic RNAi systems, the PAZ domain binds a guide RNA and positions it on the complementary region of the target, we further speculate that pAgos function on a similar principle (the guide being either DNA or RNA), and that the uncharacterized domain found in putative operons with the short forms of pAgos is a functional substitute for the PAZ domain. CONCLUSION: The hypothesis that pAgos are key components of a novel prokaryotic immune system that employs guide RNA or DNA molecules to degrade nucleic acids of invading mobile elements implies a functional analogy with the prokaryotic CASS and a direct evolutionary connection with eukaryotic RNAi. The predictions of the hypothesis including both the activities of pAgos and those of the associated endonucleases are readily amenable to experimental tests.
Sensor: Detecting invading nucleic acid
Activator: Direct
Effector: Diverse (Nucleotide modifyingn, Membrane disrupting)
PFAM: PF02171, PF13289, PF13676, PF14280, PF18742
pAgo
Example of genomic structure
A total of 6 subsystems have been described for the pAgo system.
Here is some examples found in the RefSeq database:
The pAgo_LongA system in Halosimplex pelagicum (GCF_013415905.1, NZ_CP058909) is composed of 1 protein: pAgo_LongA (WP_179918860.1)
The pAgo_LongB system in Serratia fonticola (GCF_019252525.1, NZ_CP072742) is composed of 2 proteins pAgo_LongB (WP_218520044.1) EcAgaN (WP_235784821.1)
The pAgo_S1A system in Parabacteroides merdae (GCF_020735605.1, NZ_CP085927) is composed of 2 proteins pAgo_S1A (WP_227945673.1) pAgo_S1A (WP_227945674.1)
The pAgo_S1B system in Comamonas flocculans (GCF_007954405.1, NZ_CP042344) is composed of 2 proteins SIR2APAZ (WP_146914209.1) pAgo_S1B (WP_146913473.1)
The pAgo_S2B system in Granulicella tundricola (GCF_000178975.2, NC_015064) is composed of 2 proteins XAPAZ (WP_013581437.1) pAgo_S2B (WP_013581438.1)
The pAgo_SPARTA system in Roseivivax sp. THAF30 (GCF_009363575.1, NZ_CP045389) is composed of 2 proteins TIRAPAZ (WP_152461295.1) pAgo_SPARTA (WP_152461296.1)
Distribution of the system among prokaryotes
Among the 22,803 complete genomes of RefSeq, the pAgo is detected in 575 genomes (2.52 %).
The system was detected in 464 different species.
Proportion of genome encoding the pAgo system for the 14 phyla with more than 50 genomes in the RefSeq database.
Structure
pAgo
Example 1: ::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
::
Example 2: ::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
::
Example 3: ::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
::
Example 4: ::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
::
::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongB-plddts_92.47739.pdb
::
Example 5: ::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
::
::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongB-plddts_92.47739.pdb
::
Example 6: ::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongA-plddts_90.01396.pdb
::
::molstar-pdbe-plugin
height: 700 dataUrl: /pago/pAgo__pAgo_LongB-plddts_92.47739.pdb
::
graph LR; Kuzmenko_2020[ Experimental validationKuzmenko et al., 2020] --> Origin_0 Origin_0[ Ago Clostridium butyricum WP_045143632.1] --> Expressed_0[Escherichia coli] Expressed_0[Escherichia coli] ----> M13 & P1vir Xing_2022[Xing et al., 2022] --> Origin_1 Origin_1[Natronobacterium gregoryi WP_005580376.1] --> Expressed_1[Escherichia coli] Expressed_1[Escherichia coli] ----> T7 Zaremba_2022[Zaremba et al., 2022] --> Origin_2 Origin_2[ GsSir2/Ago Geobacter sulfurreducens WP_010942012.1, WP_010942011.1] --> Expressed_2[Escherichia coli] Expressed_2[Escherichia coli] ----> LambdaVir & SECphi27 Zaremba_2022[Zaremba et al., 2022] --> Origin_2 Origin_2[ GsSir2/Ago Geobacter sulfurreducens WP_010942012.1, WP_010942011.1] --> Expressed_2[Escherichia coli] Expressed_2[Escherichia coli] ----> LambdaVir & SECphi27 Zaremba_2022[Zaremba et al., 2022] --> Origin_3 Origin_3[ CcSir2/Ago Caballeronia cordobensis WP_053571900.1, WP_053571899.1] --> Expressed_3[Escherichia coli] Expressed_3[Escherichia coli] ----> LambdaVir Zaremba_2022[Zaremba et al., 2022] --> Origin_4 Origin_4[ PgSir2/Ago Paraburkholderia graminis WP_006053074.1] --> Expressed_4[Escherichia coli] Expressed_4[Escherichia coli] ----> LambdaVir & SECphi27 Lisitskaya_2022[Lisitskaya et al., 2023] --> Origin_5 Origin_5[ Ago Exiguobacterium marinum] --> Expressed_5[Escherichia coli] Expressed_5[Escherichia coli] ----> P1vir Garb_2022[Garb et al., 2022] --> Origin_6 Origin_6[ Sir2/Ago Geobacter sulfurreducens NP_952413, NP_952414] --> Expressed_6[Escherichia coli] Expressed_6[Escherichia coli] ----> LambdaVir Zeng_2021[Zeng et al., 2022] --> Origin_7 Origin_7[ SiAgo/Aga1/Aga2 Sulfolobus islandicus WP_012735993.1, WP_012718851.1, WP_012735992.1] --> Expressed_7[Sulfolobus islandicus] Expressed_7[Sulfolobus islandicus] ----> SMV1 subgraph Title1[Reference] Kuzmenko_2020 Xing_2022 Zaremba_2022 Lisitskaya_2022 Garb_2022 Zeng_2021 end subgraph Title2[System origin] Origin_0 Origin_1 Origin_2 Origin_2 Origin_3 Origin_4 Origin_5 Origin_6 Origin_7 end subgraph Title3[Expression species] Expressed_0 Expressed_1 Expressed_2 Expressed_2 Expressed_3 Expressed_4 Expressed_5 Expressed_6 Expressed_7 end subgraph Title4[Phage infected] M13 P1vir T7 LambdaVir SECphi27 LambdaVir SECphi27 LambdaVir LambdaVir SECphi27 P1vir LambdaVir SMV1 end style Title1 fill:none,stroke:none,stroke-width:none style Title2 fill:none,stroke:none,stroke-width:none style Title3 fill:none,stroke:none,stroke-width:none style Title4 fill:none,stroke:none,stroke-width:none ## Relevant abstracts
::relevant-abstracts
items: - doi: 10.1016/j.cell.2022.03.012 - doi: 10.1016/j.chom.2022.04.015 - doi: 10.1038/s41564-022-01207-8 - doi: 10.1038/s41586-020-2605-1 - doi: 10.1186/1745-6150-4-29 - doi: 10.1038/s41564-022-01239-0
::